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ABSTRACT: Despite inherent complementarity, nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS) are
routinely separately employed to characterize metabolomics samples.
More troubling is the erroneous view that metabolomics is better
served by exclusively utilizing MS. Instead, we demonstrate the
importance of combining NMR and MS for metabolomics by using
small chemical compound treatments of Chlamydomonas reinhardtii as
an illustrative example. A total of 102 metabolites were detected (82
by gas chromatography—MS, 20 by NMR, and 22 by both
techniques). Out of these, 47 metabolites of interest were identified:
14 metabolites were uniquely identified by NMR, and 16 metabolites
were uniquely identified by GC—MS. A total of 17 metabolites were
identified by both NMR and GC—MS. In general, metabolites
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identified by both techniques exhibited similar changes upon compound treatment. In effect, NMR identified key metabolites
that were missed by MS and enhanced the overall coverage of the oxidative pentose phosphate pathway, Calvin cycle,
tricarboxylic acid cycle, and amino acid biosynthetic pathways that informed on pathway activity in central carbon metabolism,
leading to fatty-acid and complex-lipid synthesis. Our study emphasizes a prime advantage of combining multiple analytical

techniques: the improved detection and annotation of metabolites.

Metabolomics is experiencing exponential growth' and has
made substantial contributions to various research areas, such
as nutrition, plant physiology, cellular metabolism, disease
diagnosis and biomarker detection, and drug discovery and
development.”~*>° To date, metabolomics has primarily relied
on the separate application of mass spectrometry (MS) or
nuclear magnetic resonance spectroscopy (NMR), but there
are also notable examples of the application of surface
enhanced Raman spectroscopy and Fourier transform infrared
spectroscopy (FTIR).” Nevertheless, the vast majority of
recently published metabolomics studies are only making use
of GC—MS or liquid chromatography (LC)—MS despite prior
contributions from NMR and other analytical techniques.® In
2017, only 5% of metabolomics manuscripts published in
PubMed described any form of a combined NMR and GC—
MS approach to metabolomics (Figure 1). This may be
explained, in part, by an erroneous belief that mass
spectrometry is the optimal analytical technique for metab-
olomics. Unfortunately, this false perspective has begun to
negatively impact the field and will likely limit the coverage of
the metabolome, potentially diminish the quality of research,
and hamper progress. Instead, metabolomics should seek to
maximize (not limit) the number of analytical techniques used
to characterize the entirety of the metabolome. Moreover, the
confidence and accuracy of metabolite identification and
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quantification is improved by the application of multiple
analytical techniques. Thus, the goal of the field should be to
accurately address scientific questions by striving for the
broadest coverage of the metabolome, not by focusing on the
type of instrumentation used.

NMR and MS are inherently complementary due to their
distinct strengths and weaknesses. This, in turn, leads to
different sets of metabolites that are uniquely detected by
NMR and MS. Accordingly, combining both NMR and MS
will result in a greater coverage of the metabolome.
Simplistically, NMR detects the most-abundant metabolites,
and MS detects the metabolites that are readily ionizable. This
arises from fundamental differences between NMR and MS.
For example, NMR requires minimal sample handling, but
chromatography is a necessary component of MS metab-
olomics because of the relatively narrow molecular-weight
distribution of the metabolome.” Chromatography methods
are plagued by non-uniform metabolite derivatization,
incomplete column recovery, decomposition during derivatiza-
tion, ion-suppression due to the coeluent matrix, and
misaligned retention times, to name a few reasons.'*™!*
Similarly, small molecules exhibit variable thermal stability that
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Figure 1. Summary of metabolomics publications in PubMed that refer only to NMR (yellow), only to GC—MS (blue), or to both GC—MS and

NMR (gray).
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Figure 2. (A) Workflow schematic showing the key steps in the combined NMR and GC—MS analysis of the C. reinhardtii metabolome. Three
biological replicates were prepared for each group consisting of the untreated controls, WD30030-treated cells, and WD10784-treated cells. A GC—
MS spectrum and a 2D "H—"C HSQC NMR spectrum were collected for each biological replicate. (B) Multiblock PCA scores plot generated
from the combined GC-MS and 2D 'H—"*C HSQC NMR data sets illustrating a distinct clustering for untreated controls (red squares) and the
WD30030- (green squares) and WD10784- (blue squares) treated cells. A total of three biological replicates are displayed per group, and each data
point represents the combined GC—MS and 2D 'H—"*C HSQC NMR data sets plotted in the PC space. The ellipses represent a 95% confidence
limit of the normal distribution of each cluster. The associated dendrogram was derived from the PCA scores plot, and each node is annotated with
a Mahalanobis distance-based p value. The separation between untreated controls and WD30030 (p value of 2.5 X 107*) and WD10784 (p value of
8.9 X 107*), respectfully, is considered statistically significant (p < 0.05). The color scheme for the dendrogram is the same as the scores plot.

may lead to the loss of metabolites and the erroneous
accumulation of degradation products at temperatures
routinely used for gas chromatography (GC)."> Conversely,
NMR lacks the sensitivity to detect metabolites in the
submicromolar range (>1 pM) and has limited spectral
resolution that often results in peak overlap.'® MS also has a
higher resolution (~10* to 10*) and dynamic range (~10° to
10%) relative to NMR.

Ambiguous peak assignments are a common problem
encountered by both NMR and MS. This issue is attributed
to limitations in the availability of reference spectra, insufficient
software and databases, and our incomplete knowledge of the
metabolome. It is believed that nearly all metabolomics
investigations have at least one misidentified or unidentified
metabolite.'” Natural product chemistry has routinely
employed protocols involving both NMR and MS data to
identify novel compounds, but the application of this
combinatorial approach has seen limited usage in metab-
olomics.'® Nevertheless, a few methods have recently been

described that combine NMR and MS to assign metabolites 92
and identify unknowns.'”~*' Notably, the community has 93
recognized that metabolomics needs to continue to move in 94
this direction.””'™>° There have also been a few recent os
examples that highlight the utility and complementarity of 96
combining 1D 'H NMR with direct injection or LC— and 97
GC—MS experiments for metabolomics.””** Most of these 98
examples are methodology-driven; are focused on improving 99
statistical tools and modeling; or performed parallel, but 100
separate, sample analysis.””>' In this regards, NMR is 101
routinely only used as a supplement to MS or in a secondary 102
confirmatory role. Accordingly, the full impact of using NMR 103
to characterize a metabolomics sample is missed. 104

Current estimates suggest the size of the human 1o0s
metabolome is approximately 150 000 metabolites, but only 106
these upward of a few hundred metabolites are typically 107
identified in a given metabolomics study.”> Combining MS 108
with NMR and other analytical techniques is necessary to 109
move beyond this self-imposed limit. 110
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Figure 3. Metabolic pathway summarizing the coverage of the C. reinhardtii metabolome (metabolites of interest) from the combined application
of NMR and GC—MS. Metabolites that were only identified by NMR are colored blue. Metabolites that were only identified by GC—MS are
colored red. Metabolites identified by both methods are colored black, and metabolites that are not identified are colored gray. The embedded
Venn diagram identifies the total number of metabolites of interest within these metabolic pathways that were identified either by NMR, by GC—

MS, or by both techniques.

11 To address this need, a global metabolomics study was
112 performed in a platform-unbiased fashion to highlight the
113 intrinsic benefits of combining NMR and MS. In this regard,
114 NMR and MS data were collected on a similar set of samples
115 without complicating existing workflows or requiring major
116 protocol modifications. Accordingly, there were no serious
117 experimental barriers encountered that would prevent the
118 metabolomics community from adapting a combined NMR
119 and MS approach as a standard for the field. As an illustrated
120 example, the metabolome of Chlamydomonas reinhardtii grown
121 in tris-acetate phosphate (TAP) media (*C,-acetate for
122 NMR) was characterized by NMR and GC—MS. The cells
123 were also treated with two lipid accumulation modulators
124 (WD30030 and WD10784) as described by Wase et al.** The
125 aqueous-extracted metabolomes from treated and untreated
126 cells were then compared to identify metabolic variations due
127 to the compound treatments. The eRah package was used to
128 perform peak picking, retention-time ahgnment and metabo-
129 lite llbrary search for the GC MS data set.”** Similarly,
130 NMRpipe®® and NMRview]*® were used for processing and
131 peak picking the NMR data set and metabolite assignments
132 were performed using spectral databases.’” A schematic
133 overview of the workflow is shown in Figure 2A. Details of
134 data handling, processing and analyses are available as
135 Supporting Information.

136 The complete 2D 'H—"*C HSQC NMR spectra obtained
137 from C. reinhardtii metabolome extracts were used for
138 unsupervised multivariate analyses to generate a principal
139 component analyses (PCA) scores plot with an associated
140 dendrogram (Figure S-1A). Statistical models were generated
141 after the data was processed as a matrix to be standard normal
142 variate (SNV) normalized and unit variance scaled. The
143 WD30030- and WD10784-treated cells formed distinct
144 clusters separate from the untreated control. The dendrogram
145 generated from the Mahalanobis distances between each point
146 in the PCA scores plot and the resulting p value between each

node indicates a statistically significant (p < 0.05) separation 147
between each group. Similarly, metabolite assignments from 148
the GC—MS spectral data set were obtained from the eRah 149
package and identified using the GOLM database.”® The 150
assigned metabolite peak areas were then imported as a matrix 151
into MVAPACK to obtain a comparable PCA scores plot and 152
dendrogram as described above (Figure S-1B).”” A similar 153
statistically significant group separation between the 154
WD30030- and WD10784-treated cells and the untreated 1ss
controls was obtained. Importantly, the NMR and GC—-MS 156
data sets were successfully combined to generate a comparable 157
multiblock (MB)-principal component analysis (PCA) model 1ss
with a corresponding dendrogram (Figure 2B).*> The MB- 150
PCA model provides a single statistical model for both data 160
sets. In this manner, key metabolite differences between the 161
treated and untreated controls can be identified irrespective of 162
the analytical method. 163

Overall, 82 compounds were identified by GC—MS alone 164
and 20 by NMR alone, and 22 were common to both methods
(Tables S-1—S-3). Of these 102 detected metabolites, a total of 166
47 metabolites of interest were perturbed upon compound 167
treatment (Table S-4). Thus, a greater coverage of compound- 168
induced changes in the C. reinhardtii metabolome was obtained 169
by combining the metabolite assignments from the NMR and 170
GC—-MS data sets. Specifically, 14 unique metabolites were 171
identified from the NMR analysis of '*C,-acetate labeled C. 172
reinhardtii cells that were significantly perturbed upon 173
treatment with either WD30030 or WD10784. Metabolites 174
were assigned using the Biological Magnetic Resonance Bank 175
(BMRB) metabolomics database.*’ Similarly, 16 unique 176
metabolites were identified from the GC—MS spectra using
the GOLM database. Furthermore, an additional 17 metabo- 178
lites were identified by both NMR and GC—MS. In total, the
metabolites comprise the following metabolic pathways: the 180
oxidative pentose phosphate pathway, the Calvin cycle, the 181
tricarboxylic acid cycle, and the amino acid biosynthetic
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183 pathways. A summary of the C. reinhardtii metabolic changes
184 of interest resulting from treatment with WD30030 and
185 WD10784 is shown in Figure 3.

186 NMR and GC—MS identified nine glycolytic intermediates
187 in which fructose, glycerol, and pyruvate were uniquely
188 identified by NMR, and fructose-6-phosphate was unique to
189 GC—MS. All 20 amino acids were detected from the combined
190 data sets, but asparagine, cysteine, histidine, serine, and
191 tryptophan were only observed with GC—MS. Consequently,
192 glycine, lysine, methionine, and valine were unique to NMR.
193 Tricarboxylic acid cycle and Calvin cycle metabolites exhibited
194 the most variation. Acetate, isocitrate, ketoglutarate, malate,
195 and succinate were identified by NMR, but fumarate was
196 limited to GC—MS. Ribulose and its phosphate derivatives
197 were exclusively assigned through GC—MS. Nucleotide and
198 nucleoside analogs were the metabolite group consistently
199 observed by both techniques. A total of 7 out of the 10
200 metabolites (2-deoxy adenosine, adenosine, guanosine, hypo-
201 xanthine, inosine, thymine, and xanthosine) were observed by
202 both NMR and GC—MS. Cytosine and uridine were uniquely
203 identified by NMR, whereas uracil was only observed by GC—
204 MS. A complete list of metabolites identified by NMR and GC
205 are provided in Tables S-1—S-4).

206 The complete set of 22 metabolites identified by both NMR
207 and GC—MS, including the 17 metabolites of interest depicted
208 in Figure 3, were further evaluated for overall consistency
209 between the two methods. A correlation between the 22
210 common metabolites was evaluated using Pearson correlation
211 within the R environment (http:/ / www.r—project.org) , and the
212 resulting comparison is plotted in Figure 4. While there is
213 significant scatter, the overall trend is quite similar. It is
214 important to note that only relative changes in metabolite
215 concentrations were compared. Furthermore, the GC—MS
216 metabolomics analysis was untargeted and lacked any

i

217 metabolite-specific calibration. Conversely, the absolute
218 quantitation of metabolite concentration changes is an
10,
9

GC-MS (log 10 relative change)
(%]

0 1 2 3 4 5 6 7 8 9 10
NMR (log 10 relative change)

Figure 4. Comparison of the 22 relative metabolite concentration
changes detected by NMR and GC—MS. Metabolite changes
resulting from treatment with WD30030 and WD10784 are colored
green or blue, respectively. The regression line fitted to the data
exhibited a correlation coefficient of R* 0.55 and a confidence interval
with a p value of <0.001.

inherent strength of NMR. However, NMR was only used to 219
monitor the relative changes in metabolites derived from "*C,- 220
acetate, whereas GC—MS captured total metabolite changes. 221
Differences in the number of sample processing steps may also 222
impart unintended variations. Metabolite derivatization has 223
been identified as a major source of sample variation.'”'>'* 224
Similarly, variable metabolite stability during GC—MS data 225
acquisition is another potential source of error."” Finally, a 226
limited number of biological replicates will also contribute to a 227
larger variance. We want to emphasize that, given these 228
unavoidable discrepancies and the limited number of sample 229
replicates, the observed correlation between the relative 230
changes in metabolite concentration is quite notable. 231
Importantly, the overall trend (or direction) in metabolite 232
concentration change is preserved for the majority of 233
metabolites despite the scatter in the magnitude of these 234
changes. Furthermore, a simple comparison of metabolite 235
trends is probably the limit of the data given the distinct and 236
numerous sources of variance. 237

A pair-wise comparison between the 22 individual 238
metabolites identified by both NMR and GC—MS are plotted 239
as line curves in Figure S2. Again, an acceptable level of 240
consistency is achieved in the pair-wise comparisons. A general 241
agreement was also observed in the relative changes between 242
both compound treatments. Any observed discrepancies 243
between metabolite trends may be explained by the fact that 244
GC—MS is capturing the total metabolite change, while NMR 245
is only capturing the changes in metabolites derived from "*C,- 246
acetate. In this regard, both measurements are likely correct 247
but are simply observing different aspects of the metabolome. 248
Again, this highlights the inherent strength of combining both 249
NMR and MS. Conversely, if GC—MS observes a significantly 250
lower metabolite concentration relative to NMR, this is a likely 2s1
an error in the GC—MS data due to a limited thermal stability 252
of the metabolite, variations in derivatization efficiency, and 253
the multipeak phenomena.'””"® Additionally, given the fact 254
that NMR routinely provides highly accurate sample 255
quantitation relative to MS, NMR is likely to provide the 256
correct metabolite change when the methods disagree (Figure 257
$3).* 258

Extensive (nearly complete) coverage of key metabolic 259
pathways associated with lipid accumulation was only achieved 260
by combining NMR and GC—MS data. In effect, the NMR 261
data filled-in the metabolites that were missed by GC—MS. 262
Importantly, the broader coverage of the C. reinhardtii 263
metabolome was able to provide a comprehensive view of 264
the algae’s response to a compound treatment. This level of 265
detail is essential to further our understanding of the 266
mechanism of action of drug leads, of drug resistance, and of 267
disease development and progression, among numerous other 268
potential utilities. Achieving this level of coverage of the 269
metabolome requires employing multiple analytical techniques. 270
This viewpoint is consistent with some prior observa- 271
tions.**'~*° For example, Chen et al. noted an improvement 272
in biomarker identification by combining 1D "H NMR and 273
GC—MS for the analysis of urine from patients with bipolar 274
disorder."* Another recent example highlighted the use of 1D 275
'H NMR and GC—MS for the analysis of bronchial-wash fluid 276
to investigate responsiveness to air pollution.” Barding et al. 277
have highlighted similar improvements in coverage of the 278
metabolome in molecular response of rice to stress.”* These 279
studies were able to combine multiple data sets to obtain a 280
robust set of biomarkers, which further emphasizes the benefit 281
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282 of combining multiple analytical platforms for metabolomics.
283 These are other recent examples in which both NMR and
28¢ GC—MS metabolomics data sets have been integrated for
285 applications in biomarker identification, food chemistry, and
286 plant physiology."~**

287 To date, the majority of metabolomics studies have been
288 self-limited to a single analytical platform (Figure 1). This is
289 despite the fact that NMR and MS (and other analytical
290 techniques) are highly complementary. Furthermore, existing
291 workflows (Figure 2A) can easily accommodate the inclusion
292 of both techniques. Consequently, there is little to no barrier to
293 the broad adoption by the scientific community of a
294 multianalytical approach to metabolomics. Importantly, and
295 as clearly demonstrated herein, combining NMR and MS
296 improves the coverage of the metabolome, increases the
297 accuracy of metabolite assignments,'””>" and provides
208 redundant validation of metabolite changes. In fact, our results
299 demonstrate a limited overlap in the metabolites identified by
300 both NMR and GC—MS. However, most metabolites in
301 common did exhibit consistent trends in relative concentration
302 changes, showcasing the robustness of the combined approach.
303 Our results provide clear evidence that both NMR and MS are
304 equally valuable and necessary for metabolomics studies and
305 that combining multiple analytical sources is essential to the
306 future of metabolomics.
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