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8 ABSTRACT: Despite inherent complementarity, nuclear magnetic
9 resonance spectroscopy (NMR) and mass spectrometry (MS) are
10 routinely separately employed to characterize metabolomics samples.
11 More troubling is the erroneous view that metabolomics is better
12 served by exclusively utilizing MS. Instead, we demonstrate the
13 importance of combining NMR and MS for metabolomics by using
14 small chemical compound treatments of Chlamydomonas reinhardtii as
15 an illustrative example. A total of 102 metabolites were detected (82
16 by gas chromatography−MS, 20 by NMR, and 22 by both
17 techniques). Out of these, 47 metabolites of interest were identified:
18 14 metabolites were uniquely identified by NMR, and 16 metabolites
19 were uniquely identified by GC−MS. A total of 17 metabolites were
20 identified by both NMR and GC−MS. In general, metabolites
21 identified by both techniques exhibited similar changes upon compound treatment. In effect, NMR identified key metabolites
22 that were missed by MS and enhanced the overall coverage of the oxidative pentose phosphate pathway, Calvin cycle,
23 tricarboxylic acid cycle, and amino acid biosynthetic pathways that informed on pathway activity in central carbon metabolism,
24 leading to fatty-acid and complex-lipid synthesis. Our study emphasizes a prime advantage of combining multiple analytical
25 techniques: the improved detection and annotation of metabolites.

26 Metabolomics is experiencing exponential growth1 and has
27 made substantial contributions to various research areas, such
28 as nutrition, plant physiology, cellular metabolism, disease
29 diagnosis and biomarker detection, and drug discovery and
30 development.2−45,6 To date, metabolomics has primarily relied
31 on the separate application of mass spectrometry (MS) or
32 nuclear magnetic resonance spectroscopy (NMR), but there
33 are also notable examples of the application of surface
34 enhanced Raman spectroscopy and Fourier transform infrared
35 spectroscopy (FTIR).7 Nevertheless, the vast majority of
36 recently published metabolomics studies are only making use
37 of GC−MS or liquid chromatography (LC)−MS despite prior
38 contributions from NMR and other analytical techniques.8 In
39 2017, only 5% of metabolomics manuscripts published in
40 PubMed described any form of a combined NMR and GC−

f1 41 MS approach to metabolomics (Figure 1). This may be
42 explained, in part, by an erroneous belief that mass
43 spectrometry is the optimal analytical technique for metab-
44 olomics. Unfortunately, this false perspective has begun to
45 negatively impact the field and will likely limit the coverage of
46 the metabolome, potentially diminish the quality of research,
47 and hamper progress. Instead, metabolomics should seek to
48 maximize (not limit) the number of analytical techniques used
49 to characterize the entirety of the metabolome. Moreover, the
50 confidence and accuracy of metabolite identification and

51quantification is improved by the application of multiple
52analytical techniques. Thus, the goal of the field should be to
53accurately address scientific questions by striving for the
54broadest coverage of the metabolome, not by focusing on the
55type of instrumentation used.
56NMR and MS are inherently complementary due to their
57distinct strengths and weaknesses. This, in turn, leads to
58different sets of metabolites that are uniquely detected by
59NMR and MS. Accordingly, combining both NMR and MS
60will result in a greater coverage of the metabolome.
61Simplistically, NMR detects the most-abundant metabolites,
62and MS detects the metabolites that are readily ionizable. This
63arises from fundamental differences between NMR and MS.
64For example, NMR requires minimal sample handling, but
65chromatography is a necessary component of MS metab-
66olomics because of the relatively narrow molecular-weight
67distribution of the metabolome.9 Chromatography methods
68are plagued by non-uniform metabolite derivatization,
69incomplete column recovery, decomposition during derivatiza-
70tion, ion-suppression due to the coeluent matrix, and
71misaligned retention times, to name a few reasons.10−14

72Similarly, small molecules exhibit variable thermal stability that
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73 may lead to the loss of metabolites and the erroneous
74 accumulation of degradation products at temperatures
75 routinely used for gas chromatography (GC).15 Conversely,
76 NMR lacks the sensitivity to detect metabolites in the
77 submicromolar range (≥1 μM) and has limited spectral
78 resolution that often results in peak overlap.16 MS also has a
79 higher resolution (∼103 to 104) and dynamic range (∼103 to
80 104) relative to NMR.
81 Ambiguous peak assignments are a common problem
82 encountered by both NMR and MS. This issue is attributed
83 to limitations in the availability of reference spectra, insufficient
84 software and databases, and our incomplete knowledge of the
85 metabolome. It is believed that nearly all metabolomics
86 investigations have at least one misidentified or unidentified
87 metabolite.17 Natural product chemistry has routinely
88 employed protocols involving both NMR and MS data to
89 identify novel compounds, but the application of this
90 combinatorial approach has seen limited usage in metab-
91 olomics.18 Nevertheless, a few methods have recently been

92described that combine NMR and MS to assign metabolites
93and identify unknowns.19−21 Notably, the community has
94recognized that metabolomics needs to continue to move in
95this direction.8,21−26 There have also been a few recent
96examples that highlight the utility and complementarity of
97combining 1D 1H NMR with direct injection or LC− and
98GC−MS experiments for metabolomics.27,28 Most of these
99examples are methodology-driven; are focused on improving
100statistical tools and modeling; or performed parallel, but
101separate, sample analysis.29−31 In this regards, NMR is
102routinely only used as a supplement to MS or in a secondary
103confirmatory role. Accordingly, the full impact of using NMR
104to characterize a metabolomics sample is missed.
105Current estimates suggest the size of the human
106metabolome is approximately 150 000 metabolites, but only
107those upward of a few hundred metabolites are typically
108identified in a given metabolomics study.32 Combining MS
109with NMR and other analytical techniques is necessary to
110move beyond this self-imposed limit.

Figure 1. Summary of metabolomics publications in PubMed that refer only to NMR (yellow), only to GC−MS (blue), or to both GC−MS and
NMR (gray).

Figure 2. (A) Workflow schematic showing the key steps in the combined NMR and GC−MS analysis of the C. reinhardtii metabolome. Three
biological replicates were prepared for each group consisting of the untreated controls, WD30030-treated cells, and WD10784-treated cells. A GC−
MS spectrum and a 2D 1H−13C HSQC NMR spectrum were collected for each biological replicate. (B) Multiblock PCA scores plot generated
from the combined GC-MS and 2D 1H−13C HSQC NMR data sets illustrating a distinct clustering for untreated controls (red squares) and the
WD30030- (green squares) and WD10784- (blue squares) treated cells. A total of three biological replicates are displayed per group, and each data
point represents the combined GC−MS and 2D 1H−13C HSQC NMR data sets plotted in the PC space. The ellipses represent a 95% confidence
limit of the normal distribution of each cluster. The associated dendrogram was derived from the PCA scores plot, and each node is annotated with
a Mahalanobis distance-based p value. The separation between untreated controls and WD30030 (p value of 2.5 × 10−3) and WD10784 (p value of
8.9 × 10−4), respectfully, is considered statistically significant (p < 0.05). The color scheme for the dendrogram is the same as the scores plot.
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111 To address this need, a global metabolomics study was
112 performed in a platform-unbiased fashion to highlight the
113 intrinsic benefits of combining NMR and MS. In this regard,
114 NMR and MS data were collected on a similar set of samples
115 without complicating existing workflows or requiring major
116 protocol modifications. Accordingly, there were no serious
117 experimental barriers encountered that would prevent the
118 metabolomics community from adapting a combined NMR
119 and MS approach as a standard for the field. As an illustrated
120 example, the metabolome of Chlamydomonas reinhardtii grown
121 in tris-acetate phosphate (TAP) media (13C2-acetate for
122 NMR) was characterized by NMR and GC−MS. The cells
123 were also treated with two lipid accumulation modulators
124 (WD30030 and WD10784) as described by Wase et al.33 The
125 aqueous-extracted metabolomes from treated and untreated
126 cells were then compared to identify metabolic variations due
127 to the compound treatments. The eRah package was used to
128 perform peak picking, retention-time alignment, and metabo-
129 lite library search for the GC−MS data set.33,34 Similarly,
130 NMRpipe35 and NMRviewJ36 were used for processing and
131 peak picking the NMR data set and metabolite assignments
132 were performed using spectral databases.37 A schematic

f2 133 overview of the workflow is shown in Figure 2A. Details of
134 data handling, processing and analyses are available as
135 Supporting Information.
136 The complete 2D 1H−13C HSQC NMR spectra obtained
137 from C. reinhardtii metabolome extracts were used for
138 unsupervised multivariate analyses to generate a principal
139 component analyses (PCA) scores plot with an associated
140 dendrogram (Figure S-1A). Statistical models were generated
141 after the data was processed as a matrix to be standard normal
142 variate (SNV) normalized and unit variance scaled. The
143 WD30030- and WD10784-treated cells formed distinct
144 clusters separate from the untreated control. The dendrogram
145 generated from the Mahalanobis distances between each point
146 in the PCA scores plot and the resulting p value between each

147node indicates a statistically significant (p < 0.05) separation
148between each group. Similarly, metabolite assignments from
149the GC−MS spectral data set were obtained from the eRah
150package and identified using the GOLM database.38 The
151assigned metabolite peak areas were then imported as a matrix
152into MVAPACK to obtain a comparable PCA scores plot and
153dendrogram as described above (Figure S-1B).39 A similar
154statistically significant group separation between the
155WD30030- and WD10784-treated cells and the untreated
156controls was obtained. Importantly, the NMR and GC−MS
157data sets were successfully combined to generate a comparable
158multiblock (MB)-principal component analysis (PCA) model
159with a corresponding dendrogram (Figure 2B).30 The MB-
160PCA model provides a single statistical model for both data
161sets. In this manner, key metabolite differences between the
162treated and untreated controls can be identified irrespective of
163the analytical method.
164Overall, 82 compounds were identified by GC−MS alone
165and 20 by NMR alone, and 22 were common to both methods
166(Tables S-1−S-3). Of these 102 detected metabolites, a total of
16747 metabolites of interest were perturbed upon compound
168treatment (Table S-4). Thus, a greater coverage of compound-
169induced changes in the C. reinhardtii metabolome was obtained
170by combining the metabolite assignments from the NMR and
171GC−-MS data sets. Specifically, 14 unique metabolites were
172identified from the NMR analysis of 13C2-acetate labeled C.
173reinhardtii cells that were significantly perturbed upon
174treatment with either WD30030 or WD10784. Metabolites
175were assigned using the Biological Magnetic Resonance Bank
176(BMRB) metabolomics database.40 Similarly, 16 unique
177metabolites were identified from the GC−MS spectra using
178the GOLM database. Furthermore, an additional 17 metabo-
179lites were identified by both NMR and GC−MS. In total, the
180metabolites comprise the following metabolic pathways: the
181oxidative pentose phosphate pathway, the Calvin cycle, the
182tricarboxylic acid cycle, and the amino acid biosynthetic

Figure 3. Metabolic pathway summarizing the coverage of the C. reinhardtii metabolome (metabolites of interest) from the combined application
of NMR and GC−MS. Metabolites that were only identified by NMR are colored blue. Metabolites that were only identified by GC−MS are
colored red. Metabolites identified by both methods are colored black, and metabolites that are not identified are colored gray. The embedded
Venn diagram identifies the total number of metabolites of interest within these metabolic pathways that were identified either by NMR, by GC−
MS, or by both techniques.
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183 pathways. A summary of the C. reinhardtii metabolic changes
184 of interest resulting from treatment with WD30030 and

f3 185 WD10784 is shown in Figure 3.
186 NMR and GC−MS identified nine glycolytic intermediates
187 in which fructose, glycerol, and pyruvate were uniquely
188 identified by NMR, and fructose-6-phosphate was unique to
189 GC−MS. All 20 amino acids were detected from the combined
190 data sets, but asparagine, cysteine, histidine, serine, and
191 tryptophan were only observed with GC−MS. Consequently,
192 glycine, lysine, methionine, and valine were unique to NMR.
193 Tricarboxylic acid cycle and Calvin cycle metabolites exhibited
194 the most variation. Acetate, isocitrate, ketoglutarate, malate,
195 and succinate were identified by NMR, but fumarate was
196 limited to GC−MS. Ribulose and its phosphate derivatives
197 were exclusively assigned through GC−MS. Nucleotide and
198 nucleoside analogs were the metabolite group consistently
199 observed by both techniques. A total of 7 out of the 10
200 metabolites (2-deoxy adenosine, adenosine, guanosine, hypo-
201 xanthine, inosine, thymine, and xanthosine) were observed by
202 both NMR and GC−MS. Cytosine and uridine were uniquely
203 identified by NMR, whereas uracil was only observed by GC−
204 MS. A complete list of metabolites identified by NMR and GC
205 are provided in Tables S-1−S-4).
206 The complete set of 22 metabolites identified by both NMR
207 and GC−MS, including the 17 metabolites of interest depicted
208 in Figure 3, were further evaluated for overall consistency
209 between the two methods. A correlation between the 22
210 common metabolites was evaluated using Pearson correlation
211 within the R environment (http://www.r-project.org), and the

f4 212 resulting comparison is plotted in Figure 4. While there is
213 significant scatter, the overall trend is quite similar. It is
214 important to note that only relative changes in metabolite
215 concentrations were compared. Furthermore, the GC−MS
216 metabolomics analysis was untargeted and lacked any
217 metabolite-specific calibration. Conversely, the absolute
218 quantitation of metabolite concentration changes is an

219inherent strength of NMR. However, NMR was only used to
220monitor the relative changes in metabolites derived from 13C2-
221acetate, whereas GC−MS captured total metabolite changes.
222Differences in the number of sample processing steps may also
223impart unintended variations. Metabolite derivatization has
224been identified as a major source of sample variation.10,12,14

225Similarly, variable metabolite stability during GC−MS data
226acquisition is another potential source of error.15 Finally, a
227limited number of biological replicates will also contribute to a
228larger variance. We want to emphasize that, given these
229unavoidable discrepancies and the limited number of sample
230replicates, the observed correlation between the relative
231changes in metabolite concentration is quite notable.
232Importantly, the overall trend (or direction) in metabolite
233concentration change is preserved for the majority of
234metabolites despite the scatter in the magnitude of these
235changes. Furthermore, a simple comparison of metabolite
236trends is probably the limit of the data given the distinct and
237numerous sources of variance.
238A pair-wise comparison between the 22 individual
239metabolites identified by both NMR and GC−MS are plotted
240as line curves in Figure S2. Again, an acceptable level of
241consistency is achieved in the pair-wise comparisons. A general
242agreement was also observed in the relative changes between
243both compound treatments. Any observed discrepancies
244between metabolite trends may be explained by the fact that
245GC−MS is capturing the total metabolite change, while NMR
246is only capturing the changes in metabolites derived from 13C2-
247acetate. In this regard, both measurements are likely correct
248but are simply observing different aspects of the metabolome.
249Again, this highlights the inherent strength of combining both
250NMR and MS. Conversely, if GC−MS observes a significantly
251lower metabolite concentration relative to NMR, this is a likely
252an error in the GC−MS data due to a limited thermal stability
253of the metabolite, variations in derivatization efficiency, and
254the multipeak phenomena.12−15 Additionally, given the fact
255that NMR routinely provides highly accurate sample
256quantitation relative to MS, NMR is likely to provide the
257correct metabolite change when the methods disagree (Figure
258S3).41

259Extensive (nearly complete) coverage of key metabolic
260pathways associated with lipid accumulation was only achieved
261by combining NMR and GC−MS data. In effect, the NMR
262data filled-in the metabolites that were missed by GC−MS.
263Importantly, the broader coverage of the C. reinhardtii
264metabolome was able to provide a comprehensive view of
265the algae’s response to a compound treatment. This level of
266detail is essential to further our understanding of the
267mechanism of action of drug leads, of drug resistance, and of
268disease development and progression, among numerous other
269potential utilities. Achieving this level of coverage of the
270metabolome requires employing multiple analytical techniques.
271This viewpoint is consistent with some prior observa-
272tions.8,21−26 For example, Chen et al. noted an improvement
273in biomarker identification by combining 1D 1H NMR and
274GC−MS for the analysis of urine from patients with bipolar
275disorder.42 Another recent example highlighted the use of 1D
276

1H NMR and GC−MS for the analysis of bronchial-wash fluid
277to investigate responsiveness to air pollution.43 Barding et al.
278have highlighted similar improvements in coverage of the
279metabolome in molecular response of rice to stress.44 These
280studies were able to combine multiple data sets to obtain a
281robust set of biomarkers, which further emphasizes the benefit

Figure 4. Comparison of the 22 relative metabolite concentration
changes detected by NMR and GC−MS. Metabolite changes
resulting from treatment with WD30030 and WD10784 are colored
green or blue, respectively. The regression line fitted to the data
exhibited a correlation coefficient of R2 0.55 and a confidence interval
with a p value of <0.001.
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282 of combining multiple analytical platforms for metabolomics.
283 These are other recent examples in which both NMR and
284 GC−MS metabolomics data sets have been integrated for
285 applications in biomarker identification, food chemistry, and
286 plant physiology.45−48

287 To date, the majority of metabolomics studies have been
288 self-limited to a single analytical platform (Figure 1). This is
289 despite the fact that NMR and MS (and other analytical
290 techniques) are highly complementary. Furthermore, existing
291 workflows (Figure 2A) can easily accommodate the inclusion
292 of both techniques. Consequently, there is little to no barrier to
293 the broad adoption by the scientific community of a
294 multianalytical approach to metabolomics. Importantly, and
295 as clearly demonstrated herein, combining NMR and MS
296 improves the coverage of the metabolome, increases the
297 accuracy of metabolite assignments,19−21 and provides
298 redundant validation of metabolite changes. In fact, our results
299 demonstrate a limited overlap in the metabolites identified by
300 both NMR and GC−MS. However, most metabolites in
301 common did exhibit consistent trends in relative concentration
302 changes, showcasing the robustness of the combined approach.
303 Our results provide clear evidence that both NMR and MS are
304 equally valuable and necessary for metabolomics studies and
305 that combining multiple analytical sources is essential to the
306 future of metabolomics.
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367Trygg, J.; Cañada, F. J.; de Pedro, M. A.; Cava, F. Chemometric
368Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications
369That Empower the Cell Wall against Predatory Enzymes and Fly
370Innate Immunity. J. Am. Chem. Soc. 2016, 138 (29), 9193−9204.

(7) 371Ali, M. R. K.; Wu, Y.; Han, T.; Zang, X.; Xiao, H.; Tang, Y.; Wu,
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(44) 514Barding, G. A.; Beńi, S.; Fukao, T.; Bailey-Serres, J.; Larive, C.
515K. Comparison of GC-MS and NMR for Metabolite Profiling of Rice
516Subjected to Submergence Stress. J. Proteome Res. 2013, 12 (2), 898−
517909.

(45) 518Griffith, C. M.; Morgan, M. A.; Dinges, M. M.; Mathon, C.;
519Larive, C. K. Metabolic Profiling of Chloroacetanilide Herbicides in
520Earthworm Coelomic Fluid Using (1)H NMR and GC-MS. J.
521Proteome Res. 2018, 17 (8), 2611−2622.

(46) 522Kumar, A.; Maurya, A. K.; Chand, G.; Agnihotri, V. K.
523Comparative metabolic profiling of Costus speciosus leaves and
524rhizomes using NMR, GC-MS and UPLC/ESI-MS/MS. Nat. Prod.
525Res. 2018, 32 (7), 826−833.

(47) 526Tomita, S.; Nakamura, T.; Okada, S. NMR- and GC/MS-based
527metabolomic characterization of sunki, an unsalted fermented pickle
528of turnip leaves. Food Chem. 2018, 258, 25−34.

(48) 529Trimigno, A.; Munger, L.; Picone, G.; Freiburghaus, C.;
530Pimentel, G.; Vionnet, N.; Pralong, F.; Capozzi, F.; Badertscher, R.;
531Vergeres, G. GC-MS Based Metabolomics and NMR Spectroscopy
532Investigation of Food Intake Biomarkers for Milk and Cheese in
533Serum of Healthy Humans. Metabolites 2018, 8 (2), 26.

Journal of Proteome Research Letter

DOI: 10.1021/acs.jproteome.8b00567
J. Proteome Res. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acs.jproteome.8b00567



