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Abstract

Introduction

Failure to properly account for normal systematic variations in OMICS datasets
may result in misleading biological conclusions. Accordingly, normalization is a
necessary step in the proper preprocessing of OMICS datasets. In this regards, an
optimal normalization method will effectively reduce unwanted biases and
increase the accuracy of downstream quantitative analyses. But, it is currently
unclear which normalization method is best since each algorithm addresses
systematic noise in different ways.
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Objective

Determine an optimal choice of a normalization method for the preprocessing of
metabolomics datasets.

Methods

Nine MVAPACK normalization algorithms were compared with simulated and
experimental NMR spectra modified with added Gaussian noise and random
dilution factors. Methods were evaluated based on an ability to recover the
intensities of the true spectral peaks and the reproducibility of true classifying
features from orthogonal projections to latent structures—discriminant analysis
model (OPLS-DA).

Results

Most normalization methods (except histogram matching) performed equally
well at modest levels of signal variance. Only probabilistic quotient (PQ) and
constant sum (CS) maintained the highest level of peak recovery (> 67%) and
correlation with true loadings (> 0.6) at maximal noise.

Conclusion

PQ and CS performed the best at recovering peak intensities and reproducing the
true classifying features for an OPLS-DA model regardless of spectral noise
level. Our findings suggest that performance is largely determined by the level of
noise in the dataset, while the effect of dilution factors was negligible. A minimal
allowable noise level of 20% was also identified for a valid NMR metabolomics
dataset.
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Abbreviations
NMR Nuclear magnetic resonance
PCA Principal components analysis

OPLS-DA Orthogonal projections to latent structures—discriminant analysis

PQ Probabilistic quotient

HM Histogram matching

SNV Standard normal variate

MSC Multiplicative scatter correction
Q Quantile

CSpline  Natural cubic splines

SSpline Smoothing splines

CS Constant sum
ROI Region of interest
PSC Phase-scatter correction

LOESS LOcally Estimated Scatterplot Smoothing

ROC Receiver operating characteristic curve
1D One-dimensional
SD Standard deviation

Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s11306-018-1400-6)
contains supplementary material, which is available to authorized users.

1. Introduction

High-throughput facilities continue to improve the acquisition and throughput of
OMICS experiments (e.g., genomics, transcriptomics, proteomics, and
metabolomics), which has resulted in the rapid accumulation of large amounts of
data (Berger et al. 2013). These massive datasets have enabled the detection and
quantification of thousands of genes, proteins, and metabolites across various
biological samples (Chawade et al. 2014). Accordingly, OMICs data has
significantly contributed to a variety of fields including drug discovery (Butcher et
al. 2004), personalized medicine (Chen et al. 2012), nutrition (Wishart 2008) and
environmental studies (Aardema and MacGregor 2002). Perturbations or variance
are inherent to all experimental datasets and come from a variety of sources such as
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biological variability, instrument instability, and inconsistency in sample handling
and preparation. For example, the number of cells harvested, the mass of tissue
collected, or the amount of urine produced may vary significantly across all of the
biological replicates. These unavoidable variations may mask the real biological
signals present in the samples, which, in turn, complicates the reliability and
accuracies of all downstream quantitative analyses (Kohl et al. 2012). Accordingly,
the preprocessing of OMICs data is a critical step and involves minimizing
undesirable noise to make all subsequent analyses more robust, accurate, and
precise (Dieterle et al. 2006). One crucial preprocessing step is the normalization of
data, which has been shown to effectively reduce systematic noise in OMICs
datasets (Chawade et al. 2014).

Normalization of OMICS datasets can be accomplished using a variety of methods
(Giraudeau et al. 2014; Hochrein et al. 2015). But, the proper choice depends on
data characteristics and the sources of variation that needs correcting. How well a
specific normalization technique performs in reducing these extraneous biases is
still an open question. Accordingly, identifying an optimal normalization technique
is still a common issue encountered throughout the OMICs fields. For example, in
genomics, differences in sequencing length (library size), gene length, or guanine—
cytosine content may lead to data variance and a false interpretation of gene
expression variability (Zyprych-Walczak et al. 2015). Thus, an appropriate
normalization method needs to eliminate these sources of variance to ensure an
accurate measure of gene expression levels. To address this issue, Choe et al.
examined four popular normalization methods routinely used in genomics that
included: constant sum, rank-invariant, LOcally Estimated Scatterplot Smoothing
(LOESS), and quantile (Choe et al. 2005). The normalization algorithms were
compared using RNA-microarray data. The LOESS normalization algorithm
assumes a non-linear relationship and uses a local regression approach to adjust
signal intensity and noise. Incorporating LOESS normalization into the analysis of
the RNA-microarray data yielded superior results relative to the other normalization
techniques. LOESS improved the detection of true differentially expressed genes as
evident by the largest area under the receiver operating characteristic (ROC) curve.
Similarly, Callister et al. evaluated four normalization techniques routinely used in
proteomics (Callister et al. 2006). Central tendency, linear regression, locally
weighted regression, and quantile normalization algorithms were compared using
three sets of samples representing different levels of data complexity. The linear
regression normalization algorithm was identified as the top performer since it
exhibited the largest reduction in extraneous variability while also maintaining the
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highest reproducibility as measured by both pooled estimate of variance and a
median coefficient of variance.

Metabolomics characterizes both the identity and the quantity of metabolites
present in a biological sample (Kohl et al. 2012). Since metabolites are a direct
product of cellular processes, the metabolome is able to accurately capture the
current state of the system. Thus, even subtle changes in metabolite concentrations
may provide important insights into disease progression (Cuykx et al. 2018), drug
resistance (Thulin et al. 2017), or a response to numerous stress factors (e.g.,
environmental toxins, nutrient limitation, genetic mutation, etc.) (Doran et al. 2017,
Fukushima et al. 2017; Jung et al. 2017). Unfortunately, like genomics and
proteomics, these metabolite differences are easily obscured by the natural variance
that occurs between biological replicates or by inconsistencies in sample sizes.
Furthermore, since nuclear magnetic resonance (NMR) spectroscopy (Kohl et al.
2012) 1s routinely used to monitor the metabolome, instrument instability and
experimental factors such as changes in pH, temperature, ionic strength or even
sample composition may lead to unintended signal variance (Dieterle et al. 2006).
Such non-biologically induced perturbations are likely to mask the true biological
signals in the data and complicate the data analysis process. Again, normalization is
a necessary requirement to minimize these undesirable variations and to increase
the accuracy and reliability of all subsequent data analyses.

A variety of procedures are currently available to normalize NMR metabolomics
data (Fukushima et al. 2017; Hochrein et al. 2015). Since each algorithm addresses
systematic variations in a different manner, the correct choice of a normalization
scheme can be challenging. For example, some normalization algorithms aim to
remove unwanted noise by minimizing inter-sample variation such as probabilistic
quotient (Dieterle et al. 2006) and cubic splines methods (Workman et al. 2002),
while others such as unit variance or Pareto (often referred to as scaling), aim to
adjust the variance of spectral features so that all peaks are equally weighted when
used to construct multivariate models such as principal components analysis (PCA).
Since these algorithms were developed with different underlying assumptions, each
method confers a unique set of advantages and disadvantages. For example, Craig
et al. (2006), demonstrated that while constant sum normalization adequately
preserves signal quality, it can change the underlying correlations between peaks
and generate artifacts. Thus, constant sum may confound interpretations when used
incorrectly. A comparative analysis of normalization schemes by Kohl et al. (2012)
determined that quantile normalization significantly outperforms other approaches
in both minimizing inter-sample standard deviation and accurately preserving fold
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change information. However, it was also noted that the performance of quantile
normalization was only truly realized for large datasets (n > 50) and offers no
significant performance benefits on more modestly sized datasets.

The diversity of normalization algorithms and the lack of a clear consensus has
provided the motivation to conduct a thorough and quantitative evaluation of
normalizing methods currently available to the metabolomics community through
our MVAPACK software package (Worley and Powers 2014a). MVAPACK is open
source software (http://bionmr.unl.edu/mvapack.php) that includes a complete set of
functions for data loading, preprocessing, modeling, and validation of NMR
metabolomics datasets. MVAPACK also includes the following normalization
methods: probabilistic quotient (PQ) (Dieterle et al. 2006), histogram matching
(HM) (Torgrip et al. 2008), standard normal variate (SNV) (Barnes et al. 1989),
multiplicative scatter correction (MSC) (Windig et al. 2008), quantile (Q) (Kohl et
al. 2012), natural cubic splines (CSpline) (Workman et al. 2002), smoothing splines
(SSpline) (Fujioka and Kano 2005), constant sum (CS) and region of interest (ROI)
(Dieterle et al. 2006). Our phase-scatter correction (PSC) algorithm is also available
in MVAPACK, but was not included in this comparison since PSC was previously
discussed in detail (Worley and Powers 2014b). The normalization methods were
compared using simulated and experimental NMR datasets with various levels of
added noise and dilution factors (Worley and Powers 2016). Their performances
were evaluated based on an ability to recover the intensities of the true spectral
peaks and the reproducibility of true classifying features from orthogonal
projections to latent structures—discriminant analysis (OPLS-DA) model (Worley
and Powers 2013). In this manner, the normalization methods were evaluated based
upon expected outcomes for routine metabolomics study: (i) the ability to eliminate
irrelevant signal variance due to dilution factors and noise; and (i1) the ability to
produce a predictive model that correctly identifies the real group-dependent
variants. Our analysis indicates that of the normalization algorithms evaluated, PQ
and CS performed the best in the analysis of noisy one-dimensional (1D) NMR
metabolomics datasets.

2. Materials and methods

The performance of each normalization method was assessed using two distinct
datasets: (1) simulated spectral data and (i1) a previously described experimental
data set of 1D '"H NMR spectra of various coffee samples (Worley and Powers
2016). All of the analyses were conducted using our MVAPACK software package
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(Worley and Powers 2014a). All of the figures were generated using the R software
package (R Development Core Team 2017).

2.1. Simulated 1D 'H NMR metabolomics dataset

The simulated dataset consisted of 50 spectra in which each spectrum contained

901 spectral features. The set of spectra were divided into two separate groups.
Each group consisted of 25 spectra that were randomly generated from a reference
spectrum. The reference spectrum for each group was independently simulated from
the Cauchy distribution (Weisstein 2017), but with different parameters. Each
reference spectrum contains four peaks located at chemical shifts of 3, 3.2, 3.5, and
8 ppm, respectively. The peak intensities differ between the four peaks and between
the two reference spectra as illustrated in Fig. 1.

Fig. 1

The simulated reference spectrum used for a group 1 and b for group 2. The two
spectra contain the same number of peaks at the same chemical shifts. The only
difference between the spectra is the relative peak intensities
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The 25 spectra per group were generated from the reference spectrum by the
addition of a minimal amount of Gaussian noise (Mean =0, SD =0.001). These two
sets of 25 spectra, which correspond to group 1 and group 2, were combined to
define the simulated reference dataset X, (N =50, K=901). The simulated
reference dataset X, was then used to generate eight noise-added simulated sets
(X,) (Fig. S1) with § = 1,2,...,8 (Table 1) according to Eq. (1):

Table 1

Parameters used to generate the noise-added simulated spectra

Set Dilution factors (F)*  Standard deviation (o)° Percent added noise (%)

SI  ~ Unif(0.9,1.1) 0.1 5
S2  ~ Unif(0.9,1.1) 0.2 10
S3  ~Unif(0.8,1.2) 0.4 20
S4  ~ Unif(0.5,1.5) 1 50
S5~ Unif(0.3,1.7) 1.4 70
S6  ~ Unif(0.1,1.9) 1.8 90
S7  ~ Unif(0.01,2.5) 2.5 100
S8~ Unif(0.001,5) 4 200

4A dilution factor was randomly selected from the indicated range of values

bThe value of standard deviation used to generate a Gaussian distribution of noise

X,:F,*(Xo—I—E,) 1

where F; is a 50 x 1 vector of dilution factors generated from a uniform
distribution for the 7th set, F; is a matrix of independent Gaussian noise
distributed with mean 0 and standard deviation ¢; for the ith set, and * presents
element-wise multiplication. The value of ¢; ranged from 0.1 to 5 which produced
a systematic increase in noise for the dataset.

The CS, PQ, HM, SNV, MSC, ROI, Q, CSpline, and SSpline normalization methods
were then separately applied to each noise-added set ( X;) to obtain normalized set
(X;). An OPLS-DA model was then generated from each normalized set (X;).
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Two-component OPLS-DA models were calculated to obtain the first component
loadings to compare the performance of the normalization approaches.

2.2. Experimental 1D "H NMR metabolomics dataset

A data matrix of 32 1D "H NMR spectra from a publicly available coffees dataset
was used to further evaluate the normalization algorithms (Worley and Powers
2016). The coffees dataset contains two groups defined as light and medium
decaffeinated coffee consisting of 16 1D 'H NMR spectra per group. Each spectrum
contains 284 spectral features.

We applied the same procedures as described above to generate the noise-added
experimental dataset. Specifically, the original coffees dataset of 32 1D 'H NMR
experimental spectra was designated as the reference data set Y, (N =32, K =284).
The reference data set Y, was then used to generate seven simulated sets (Y;) with
1=1, 2,...,7 (Table 2) according to Eq. 2:

Table 2

Parameters used to generate the noise-added coffees dataset

Set Dilution factors (F)*  Standard deviation (o)° Percent added noise (%)

Cl ~Unif(0.9,1.1) 2.3 x 107 5
C2  ~ Unif(0.8,1.2) 4.6 x 1077 10
C3  ~ Unif(0.5,1.5) 9.3 x 10”7 20
C4 ~Unif(0.3,1.7) 2.3 x10°° 50
C5 ~Unif(0.1,1.9) 5% 106 100
C6 ~ Unif(0.01,2.5) 8 x 107° 170
C7  ~ Unif(0.001,5) 1077 200

4A dilution factor was randomly selected from the indicated range of values

5The value of standard deviation used to generate a Gaussian distribution of noise

Y; = F; « (Y, + E;) 2

where Fj is a 32 x | vector of dilution factors generated from a uniform
distribution for the ith set, E; (N =32, K =284) is a matrix of independent
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Gaussian noise distributed with mean 0 and standard deviation ¢; for the ith set,
and * presents element-wise multiplication. The value of ¢; ranged from

2.3 x 1077 to 10~° which produced a systematic increase in noise while also
mimicking the relative variance in the noise present in the coffees dataset.

2.3. Summary of normalization procedures

2.3.1. Constant sum

Each spectrum of the data matrix was divided by its own integral (Dieterle et al.
2006).

2.3.2. Probabilistic quotient

The normalization factor was the most probable quotient between the signals of the
corresponding spectrum and the reference spectrum (Dieterle et al. 2006). The
reference spectrum was chosen as the median spectrum of the spectral set. Each
spectrum in the dataset was divided by this normalization factor to obtain the
normalized spectrum.

2.3.3. Histogram matching

Raw spectra were log transformed prior to normalization. Similar to PQ, the target
reference spectrum was the median spectrum of the dataset. Histograms for each
sample spectrum and target spectrum were obtained on prespecified intensity
intervals. A dilution factor was then chosen to minimize the differences between
each sample spectrum histogram and the target histogram (Torgrip et al. 2008). The
new normalized spectrum was generated by multiplying each original spectrum by
the corresponding dilution factor.

2.3.4. Standard normal variate

Each sample spectrum in the dataset was centered prior to normalization. The
standard deviation of each spectrum was calculated as a normalization factor
(Barnes et al. 1989). A new normalized dataset was then obtained by dividing each
original spectrum by its corresponding normalization factor.

2.3.5. Multiplicative scatter correction

The normalization factors were least squares estimates obtained by regressing each
sample spectrum onto the reference spectrum (Windig et al. 2008). The reference
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spectrum was the mean spectrum. The ordinary least squares of the regression
parameters were used to correct the spectral intensities.

2.3.6. Region of interest

Each sample spectrum of the dataset was normalized to a specified spectral region
where its integral was set to one. Each sample spectrum was then normalized
relative to the most intense peak in the spectrum.

2.3.7. Quantile

The goal of this quantile normalization method was to obtain an identical
distribution of intensities for all of the spectral features (Kohl et al. 2012). First, the
mean spectrum was calculated for the data set. The intensities of all features in each
sample spectrum were then replaced by the mean intensities in accordance with
their quantile orders.

2.3.8. Natural cubic splines

The CSpline method normalized each sample spectrum to the target spectrum. The
target spectrum was calculated using the non-linear arithmetic mean of the data set.
Depending on the type of data, a geometric mean may also be used (Kohl et al.
2012). A set of 100 quantiles was taken from both the sample spectrum and the
target spectrum. The quantiles were then fitted to a natural cubic spline to obtain
parameter estimates, which were used for interpolations. The process was repeated
five times. For each iteration, a small offset was added to the quantiles before
refitting with a natural cubic spline to obtain new interpolations. The set of
interpolations were averaged to obtain the normalized spectrum.

2.3.9. Smoothing splines

SSpline is similar to CSpline, but the SSpline algorithm adds more quantiles toward
the tail end of the spectrum. The most intense spectral features are located in this
region of the spectrum. Moreover, the quantiles are fitted with a smoothing spline
that includes a penalty parameter to avoid overfitting. The predicted feature
intensities were then used as the normalized intensities.

2.4. Evaluation criteria

Regardless of the type of approach used to address dataset bias or variance, an
optimal normalization procedure should reduce any unwanted noise while still
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preserving the true biological signals. In other words, a necessary condition to
retain the true signals is the ability to recover the original peak intensities after
removing noise. In this regards, it should be possible to evaluate the relative
performance of normalization methods based on how well the algorithms handle
increasingly noisy spectra. As the reference set is exposed to increasing amounts of
noise, some (or all) of the normalization algorithms would be expected to fail to
recover the original peaks intensities. Thus, the peak recovery criteria served as a
means to filter-out poorly performing normalization procedures prior to proceeding
with the second evaluation criteria.

A multivariate statistical model, such as PCA or OPLS, is typically employed to
identify spectral features that separate the different groups in the dataset (Worley
and Powers 2013). These spectral features are intrinsic to the dataset. Accordingly,
any properly normalized dataset should reproduce these true set of features. The
first component loadings extracted from an OPLS-DA model contains the weights
of the spectral features that contribute the most to separating the groups. Simply,
the first component loadings identify the most-important group-dependent features.
Thus, an OPLS-DA model was generated to obtain the first component loadings
associated with each normalization method. Only the top performing normalization
methods were used to generate an OPLS-DA model. The top performing
normalization methods were identified based on the peak recovery criteria. Pearson
correlation coefficients were calculated between the loadings of each normalized
dataset and the true loadings set. The Pearson correlation coefficients provide a
means to measure the reproducibility of the true classifying spectral features
produced by each normalization algorithm.

2.4.1. Peak recovery

After sequentially normalizing each noisy data matrix using the nine normalization
methods, the intensity of each peak in each spectrum of the normalized set ( X;)
was compared to the true original spectrum (X,) to measure the recovery of peak
intensities (’l“pig ). For each spectrum from the normalized data matrix ( X;), the
recovery of the jth peak was calculated according to this Eq. 3:

I - 1|

7
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where Iij and Ioj are the intensities of the jth peak from X; and X,
respectively. In this manner, rpi] will range from 0 to 1 regardless of the relative
magnitudes of Iij and Ig . This process was repeated for every peak in each

spectrum. The mean recovery and standard error were calculated and reported for
each normalized set.

2.4.2. Pearson correlation coefficients

The coffees noisy data matrix (Y;) was only normalized using the top performing
algorithms identified from the peak recovery criteria. An OPLS-DA model was
generated for each normalized coffees data matrix (Y; ) and also the original
coffees data set (Y, ). The datasets were scaled with Pareto scaling prior to
calculating the OPLS-DA models. The first component loadings from each OPLS-
DA model were then used to calculate a Pearson correlation coefficient between the
true backscale loadings vector (p,) from the original coffees data set (Y, ) and the
backscale loadings vector (p,) from each normalized coffees noisy data matric (

Y; ). The Pearson correlation coefficients were calculated according to Eq. 4:

Eﬁ:l (191g - ﬁi)(p’é - 150) 4

VEE 6 -5) S (650

where K denotes the number of spectral features; p, is the mean loading of vector
p;; pt is the kth loading of vector p;; p, is the mean loading of vector p; and

p’g is the kth loading of vector p,. This process was repeated 100 times. The mean
correlation coefficients and standard error were calculated for each normalized set.

3. Results and discussion

The two reference NMR spectra displayed in Fig. 1 were used to generate eight
noise-added simulated metabolomics datasets consisting of 25 spectra for each of
the two groups (Fig. S1). Accordingly, each simulated dataset contained a total of
50 spectra. The total signal variance in each dataset was defined by the amount of
Gaussian noise added and by the dilution factors listed in Table 1. The simulated
NMR metabolomics datasets were then normalized using each of the nine
normalization methods (i.e., CS, CSpline, HM, MSC, PQ, Q, ROI, SNV, and
SSpline). A peak recovery was calculated for each dataset according to Eq. 3. The
peak recovery compares each of the normalized dataset to the original reference
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NMR spectra (Fig. 1). The peak recoveries for each normalized dataset are plotted
in Figs. 2 and 3.

Fig. 2

A plot of the recovery of peak intensities (Eq. 3) for the 9 normalization methods
after being applied to the 8 (S1 to S8) simulated datasets listed in Table 1. The total
signal variance due to the amount of added Gaussian noise and the magnitude of the
dilution factor increases from S1 to S8. The horizontal dashed lines represent a full
recovery at 100% and partial recovery at 50%. Each bar represents the mean peak
recovery and the error bars represent + 2 * standard error of the mean
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Fig. 3

A plot of the recovery of peak intensities (Eq. 3) for the three top performing
normalization methods after being applied to the 8 (S1 to S8) simulated datasets listed
in Table 1. The total signal variance due to the amount of added Gaussian noise and
the magnitude of the dilution factor increases from S1 to S8. The horizontal dashed
lines represent a full recovery at 100% and partial recovery at 50%. Each bar
represents the mean peak recover and the error bars represent +2 * standard error of
the mean
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As expected, the efficiency of peak recovery decreases with increasing signal
variance regardless of the normalization method. As illustrated in Fig. 2, most of
the normalization methods achieve nearly 100% peak recovery (96 to 99%) under
conditions of modest signal variance (S1 and S2).

The most notable outlier is HM, which achieved a peak recovery of only 20-28%.
This extremely poor performance suggests that HM should be avoided and not used
for the normalization of NMR metabolomics data. While significantly better than
HM, SSpline also performed consistently below average with a peak recovery range
of 93-95%. PQ was modestly below the best performers with a peak recovery range
of 96-97%. Conversely, ROI, CS, SNV, MSC, and Q, recovered at least 98% of the
peak intensities under conditions of modest signal variance. A further separation in
algorithm performance was apparent as the signal variance was progressively
increased. SSpline continued to perform worse than average, but from simulated set
S5 forward the performance of SNV had also significantly declined to match
SSpline.

Similarly, from simulated set S6, CSpline had fallen below the average performance
of the other normalization methods. In fact, as the amount of signal variance was
increased to the highest level (S8), the peak recoveries for CSpline, HM, MSC, Q,
and SSpline all fell below 50%. Conversely, CS, PQ and ROI maintained a peak
recovery of around 70% (67-74%). Accordingly, the peak recovery results suggest
that the CS, PQ and ROI were the most robust normalization methods and were able
to maintain a maximal peak recovery as a function of signal variance (Fig. 3).
Pairwise Student’s t tests of the mean peak recovery values at the highest signal
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variance level (S8) yield a maximum p-value of <2.8 x 10713 between the CS, PQ,
ROI algorithms and the other normalization methods.

To further investigate the individual impact of Gaussian noise and dilution factors
on peak recovery, the simulation was repeated for the three top performing
normalization methods (i.e., CS, PQ and ROI). Instead of simultaneously varying
both Gaussian noise and the dilution factors as listed in Table 1, the simulation was
repeated with either Gaussian noise or the dilution factor held constant at S1 values.
The combined average peak recovery values for CS, PQ and ROI normalized
datasets are plotted as a function of added Gaussian noise or dilution factor in

Fig. 4. This simulation yielded an unexpected result. The performance of the
normalization method was essentially unaffected by the dilution factor. Near perfect
peak recovery was obtained even for the highest dilution factor. Instead, the
normalization performance was strictly dependent on the level of Gaussian noise
added to the spectra. However, it is important to note that normalization methods
also rely on good peak alignment, spectral phasing, baseline correction and solvent
suppression in order to perform well. Accordingly, the simulations reported herein
were restricted to well-behaved datasets.

Fig. 4

A plot of the average peak recovery calculated from the three top-performing
normalization methods (CS, PQ, and ROI). Datasets were regenerated according to
the scheme described in Table 1 but containing only a dilution factor (filled diamond)
or the addition of Gaussian noise (filled square). The dilution factor or added
Gaussian noise was held constant at S1 values when the other parameter was varied.
The peak recovery decreases with additive noise, but is unaffected by dilution factor
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While being able to accurately reconstitute peak intensity is an important attribute
of a normalization algorithm, the proper identification of group-defining spectral
features is still a vital necessity. In essence, are biologically-relevant metabolic
differences still being correctly identified regardless of the natural signal variance?
Does a PCA or OPLS scores plot yield statistically relevant group separations and
do the loadings identify the “true” metabolic differences between the groups? To
address this issue, the CS, PQ and ROI normalization methods were further
evaluated based on the reproducibility of OPLS-DA models as a function of
increasing signal variance. An experimental coffees dataset previously used to
investigate PCA and OPLS model stability (Worley and Powers 2016), was
employed to generate OPLS-DA models using the CS, PQ and ROI normalization
methods. Specifically, the coffee dataset consists of 32 1D '"H NMR spectra for two
groups of observations (light and medium decaffeinated coffees). The coffees
dataset was modified with Gaussian noise and a dilution factor (Fig. S2) as outlined
in Table 2. Consistent with our prior observations (Worley and Powers 2016), the
two coffee groups become indistinguishable with an increase in signal variance.
Importantly, the estimated loadings from the corresponding OPLS-DA model are
less correlated to the true loadings (Fig. 5) with increasing signal variance. Notably,
at minimal to moderate signal variance levels (C1 to C3), the PQ and ROI
normalization methods perform almost identically and significantly better than CS.
But, as the amount of signal variance increased significantly (C4 to C7), the OPLS-
DA model was no longer valid with the ROI normalization technique; and the
loadings correlation, not surprisingly, decreased dramatically.
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Fig. 5

A plot of the average Pearson correlation coefficients (Eq. 4) calculated by comparing
the true backscaled loadings from the original coffee dataset OPLS-DA model
relative to the backscaled loadings from the CS (filled diamond), PQ (filled square),
and ROI (filled triangle) normalized coffees noisy dataset OPLS-DA model. The
amount of signal variance introduced into the coffees dataset is described in Table 2.
The error bars represent + 2 * standard error of the mean. Please note that most of the
error bars are smaller than the size of the symbols
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Similarly, the standard errors of mean loadings correlation coefficients increased
significantly for ROI compared to the negligible values observed for CS and PQ
(ranged from 0.0003 to 0.008). Interestingly, despite CS initially performing worse
than PQ, there was no difference in the loadings correlation between PQ and CS at
C4. Furthermore, CS out-performed PQ at the highest signal variance levels (C5 to
C7). But, the loadings correlations still decreased linearly with increasing signal
variance following CS or PQ normalization. The loss of a correlation to the true
loadings was still substantial and would likely lead to incorrect biological
interpretations. A similar set of results was obtained for the simulated dataset (Fig.
S3). In total, our analysis suggest that CS and PQ are the most robust normalization
techniques and are able to compensate, at least partly, for large signal variance.
Both CS and PQ maintained the highest level of peak recovery and the highest
correlation between backscaled loadings. Notably, PQ was the most robust
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normalization technique at low to moderate noise levels while CS was slightly
better at compensating for larger signal variance.

A combined analysis of the peak recovery and OPLS-DA backscaled loadings data
provides some further guidance for designing and executing an NMR metabolomics
study. As we have noted previously (Halouska and Powers 2006; Halouska et al.
2013; Worley and Powers 2016), noise is detrimental to the accurate and reliable
analysis of metabolomics data using multivariate statistical techniques such as PCA
and OPLS. The results reported herein further support the negative impact of noise
on the analysis of NMR metabolomics data. As evident in Fig. 4, a dilution factor
had no appreciable impact on the performance of a normalization method. Instead,
all variance in the performance of the normalization methods was due to noise.
Furthermore, most of the normalization methods performed equally-well in regards
to peak recovery and loadings correlation for added noise levels up to about 20%.
The lone exception is HM, which should be avoided. A significant decay in
performance occurred when > 20% of noise was added to either the simulated or
experimental dataset. Accordingly, an experimental NMR dataset that exhibits
greater than 20% noise is a serious concern and the resulting chemometrics model
is highly suspect. In essence, our analysis sets a minimum criterion for maintaining
noise (defined by a standard Gaussian distribution) at below 20% for a valid
metabolomics dataset.

4. Conclusion

The nine normalization methods available in our MVAPACK software package
were evaluated for their ability to compensate for increasing signal variance. The
performance of the normalization techniques were tested on simulated and
experimental 1D '"H NMR datasets with the addition of Gaussian noise and dilution
factors. However, it is important to keep in mind that the Gaussian noise and
dilution factors used in model construction are only an approximation of non-
biological variance. At low to moderate noise levels, all of the normalization
methods, except HM, performed well in terms of peak recovery. Accordingly, HM
should be avoided as a normalization technique for NMR. Notably, peak recovery
performance was only dependent on added Gaussian noise, and independent of
dilution factor. At high signal variance, most normalization procedures failed to
recover true peak intensities except for CS, PQ, and ROI. Again, PQ and ROI
normalization algorithms performed equally-well and significantly better than CS at
low to moderate noise levels in reproducing the backscaled loadings from an OPLS-
DA model. But, ROI generated statistically invalid OPLS-DA models and poor
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backscaled loadings correlations at higher-levels of noise. Interestingly, CS
performed slightly better than PQ in reproducing the backscaled loadings at high
noise levels. Thus, our results suggest that CS and PQ perform the best in regards to
maintaining the true signal in noisy datasets. Consistent with our prior
observations, groups become indistinguishable with increasing noise; and
correlations to the true loadings are lost. In other words, an increasing level of
additive Gaussian noise masks the true signals in the datasets. Accordingly, if this
noise is not handled properly, it will lead to false conclusions and biologically
irrelevant observations. In this regards, our analysis suggests that, at a minimum,
noise needs to remain below 20% in order for an NMR metabolomics dataset to
provide an accurate and biologically-relevant chemometrics model.
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