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intense electrical excitation
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Hybrid perovskite semiconductors represent a promising platform for color-tunable light

emitting diodes (LEDs) and lasers; however, the behavior of these materials under the intense

electrical excitation required for electrically-pumped lasing remains unexplored. Here, we

investigate methylammonium lead iodide-based perovskite LEDs under short pulsed drive at

current densities up to 620 A cm−2. At low current density (J < 10 A cm−2), we find that the

external quantum efficiency (EQE) depends strongly on the time-averaged history of the

pulse train and show that this curiosity is associated with slow ion movement that changes

the internal field distribution and trap density in the device. The impact of ions is less

pronounced in the high current density regime (J > 10 A cm−2), where EQE roll-off is domi-

nated by a combination of Joule heating and charge imbalance yet shows no evidence of

Auger loss, suggesting that operation at kA cm−2 current densities relevant for a laser diode

should be within reach.
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Hybrid organic–inorganic halide perovskite semiconductors
are presently being explored for application in light
emitting diodes (LEDs) and lasers because they combine

high color purity with a broadly tunable bandgap and attractive
gain characteristics1–4. In particular, perovskites may provide a
route to achieve the long-standing goal of a solution-processed
laser diode, surpassing organic semiconductors on the basis of
their higher charge carrier mobility and lack of exciton annihi-
lation processes5. Following numerous optically pumped per-
ovskite laser demonstrations6–10 that have now reached
continuous-wave operation11, the next major milestone on the
path to a diode laser is stimulated emission under intense elec-
trical excitation. Perovskite LEDs are the most well-established
platform for electrical pumping and have demonstrated external
quantum efficiencies (EQEs) over 20% at low current densities
(J < 1 A cm−2)12; however, the high current density regime rele-
vant for lasing (J > 100 A cm−2) remains relatively unexplored.

Here, we investigate the performance of methylammonium
lead iodide (MAPbI3)-based perovskite LEDs at short pulsed
current densities up to 620 A cm−2. At current densities less than
10 A cm−2, we find that the EQE depends strongly on the time-
averaged history of the pulse train and can change dramatically
depending on the duty cycle or background bias, reaching a
peak EQE of approximately 13.5%, which is well above that
obtained under direct current (DC) operation. This behavior is
associated with ion movement on a millisecond to second
timescale that changes the internal field distribution and trap
density in the perovskite layer13–19, thereby affecting charge bal-
ance and non-radiative recombination losses, respectively. The
impact of ions is less pronounced in the high current density
regime (J > 10 A cm−2), where efficiency roll-off is dominated by a
combination of Joule heating and charge imbalance, yet shows
no evidence of Auger loss even at current densities exceeding 150
A cm−2. These results demonstrate that the efficiency of per-
ovskite LEDs depends strongly on the manner in which they are
driven and indicate that operation at kA cm−2 current densities
relevant for electrically pumped lasing should be within reach.

Results
DC versus pulsed operation. Figure 1a illustrates the LED device
architecture, which consists of a 150 nm-thick indium-tin-oxide
(ITO) anode on a glass substrate followed by a 25 nm-thick poly
[N,N′-bis(4-butyl-phenyl)-N,N′-bis(phenyl)-benzidine (poly-
TPD) hole transport layer, a 70 nm-thick MAPbI3 emissive layer
mixed with BAI (n-butylammonium iodide) in a 100:20 molar
ratio, and a 40 nm-thick 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phe-
nyl-1-H-benzimidazole) (TPBi) electron transport layer capped
by a LiF (1.2 nm)/Al (100 nm) cathode3. The circular device
active area shown in Fig. 1b is defined by patterning small holes
with diameter ranging from 50 to 200 μm in a 150 nm-thick layer
of insulating SiO2 deposited on the anode, similar to previous
work on high current organic LEDs20. The electroluminescence
(EL) image in Fig. 1c at J= 110 A cm−2 confirms that the LED is
spatially uniform and does not exhibit hot spots or edge effects.

Figure 2a shows the current density–voltage–light (JVL)
characteristics measured for a single device under DC and pulsed
conditions defined by the pulse width (ton), time between pulses
(toff), and background bias (Vbias) as depicted in the inset. Similar
to previous reports, hysteresis is evident in the forward and
backward DC sweeps of both the current and light3,21,22. By
contrast, the pulsed drive JVL data (ton= 15 μs, toff= 2 ms)
exhibit virtually no hysteresis but depend strongly on the
background bias, with both current and light increasing with
Vbias in the range 0 to 3 V. This in turn leads to pulsed EQE
curves in Fig. 2b that increase with Vbias and reach a substantially

higher EQE peak of 13.5% than that obtained under DC drive
(approximately 10%).

Interestingly, the EQE also depends on the pulse duty cycle,
particularly with no background bias where, for example, the
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Fig. 1 Device architecture. a Energy level diagram and schematic of the
device architecture, which consists of ITO (150 nm)/poly-TPD (25 nm)/
MAPbI3:BAI (100:20, 70 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm). The
active area is defined by patterning openings in the insulating SiO2

(150 nm) layer shown in the bottom graphic. b Optical microscope image of
a typical 200 μm diameter device. c Electroluminescence intensity profile
recorded with the microscope camera, demonstrating uniform illumination
even at a pulsed current density of 110 A cm−2
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EQE during a ton= 10 μs pulse increases by an order of
magnitude at J= 0.2 A cm−2 upon reducing toff from 2ms to
130 μs; the functional dependence on toff is detailed in
Supplementary Figure 1. Note that background bias not only
changes the EQE magnitude, but also qualitatively changes its
dependence on current density as exemplified by the open
symbols in Fig. 2b, where EQE increases with J when Vbias= 0 V
but decreases when Vbias exceeds 2.6 V. A practical consequence
of this is that the current density at which the EQE reaches its
peak can vary dramatically depending on duty cycle and
background bias.

All of these effects become less pronounced in the high current
density regime (J > 10 A cm−2), where the EQE curves decrease
monotonically and begin to converge irrespective of background
bias (Fig. 2b). At a pulse width of 2 μs (near the minimum set by
the parasitic capacitance of our device architecture), an EQE of
approximately 1% is reliably achieved at J= 200 A cm−2. Higher
currents up to J= 620 A cm−2 (limited by the driving circuit) can

be reached without catastrophic device failure; however, this leads
to irreversible device degradation as evident from the return
sweep of the brown curve in Fig. 2b. In general, we find that
degradation is insignificant over the timescale of our measure-
ments for current densities below 100 A cm−2; Supplementary
Figure 2 quantifies the rate of degradation observed at higher
current densities. Taken together, the data in Fig. 2 clearly
demonstrate that the performance of these perovskite LEDs is
history dependent in the low current regime current but is
governed by more general factors at high current. The following
sections investigate each regime in more detail.

Low current operation. The impact of background bias on EQE
can be understood in part from an associated change in carrier
lifetime shown in Fig. 3. There, the photoluminescence (PL)
decay of a weak optical excitation pulse (20 ps pulse width,
λex= 410 nm, 0.2 μJ cm−2 fluence) is monitored just before, and
just after, the onset of a voltage pulse with fixed current density,
J= 0.05 A cm−2. When Vbias= 0 V, the PL decay during the
voltage pulse is quenched relative to that before the pulse. Adding
a 2.5 V background bias eliminates PL quenching during the
pulse, yet has no effect on the pre-pulse decay. Fitting these decay
curves with a simple ABC rate model23 indicates that the back-
ground bias decreases the trap-related A coefficient from (4.0 ±
0.4) × 107 s−1 to (1.5 ± 0.3) × 107 s−1. Interestingly, the bimole-
cular B coefficient in these fits also decreases by roughly a factor
of 2, which may be related to a different internal field distribution
(i.e., effectively lowering the encounter probability of photo-
generated electrons and holes by sweeping them apart) created
within the device as discussed below.

In addition to background electrical bias, Fig. 4a shows that the
pulsed EQE also increases with optical bias, which is delivered
here by a λ= 660 nm laser (scattered light is subtracted out in the
baseline of the pulsed electroluminescence signal). The EQE
improvement saturates above a background illumination intensity
of approximately 10 mW cm−2 and is reminiscent of the photo-
induced brightening of MAPbI3 PL previously reported by
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DeQuilettes et al.,24 who attributed it to a reduction in ion-related
trap states.

The illumination-induced change in current–voltage relation-
ship displayed in Fig. 4b suggests that our EQE improvement
with optical bias is associated with a similar reduction in trap-
mediated recombination. In Fig. 4b, background illumination
increases the slope of the exponential region in the JV curve,
causing the associated ideality factor,η ¼ ðkTq ∂ ln J

∂V Þ�1, calculated in
Fig. 4c to fall from η≈2.2 in the dark to η≈1.6 under illumination.
This difference suggests that the diode current in the device shifts
from being dominated by trap-mediated recombination to
include more (radiative) bimolecular recombination, for which
η is expected to be closer to unity as reflected in the
electroluminescence ideality factor, ηEL ¼ ðkTq ∂ ln L

∂V Þ�1, shown by
the cyan curve25.

Apart from changes in recombination mechanism, it is also
clear from electroabsorption (EA) measurements shown in Fig. 5
that Vbias non-trivially changes the internal electrostatic field
within the device. Figure 5a shows the EA spectrum of a typical
device obtained by measuring the reflectivity change (–ΔR/R) in a
probe beam caused by a dither superimposed on the bias voltage.
The EA lineshape differs somewhat from that reported for
MAPbI3 previously26, possibly due to the nanoscale grain size of
our perovskite film3, but is nonetheless confirmed to be a
quadratic Stark shift (i.e., / χð3Þ ω; 0; 0ð ÞF2, where F is the local
electrostatic field in the perovskite layer)27 based on its quadratic
field dependence at high modulation frequency in Supplementary
Figure 3. The square root of the EA signal therefore provides a
direct measure of the electrostatic field in the perovskite layer and
can be used to monitor changes that may occur due to, e.g., ionic
charge redistribution over time.

Figure 5b shows the time-dependent EA signal28 obtained at
λ= 730 nm in response to a 10 ms period square wave oscillating
between −2 V and +2 V (red trace). In this case, the EA signal
(black trace) largely mirrors the applied voltage, indicating that
the internal field in the perovskite follows accordingly. However,
when the period is increased to 2 s in Fig. 5c, the EA signal decays
strongly in both phases of the square wave, indicating that the
applied field is being screened internally within the perovskite
layer on an approximately 0.5 s timescale. This screening behavior
and timescale are both consistent with that expected for ionic
processes in MAPbI3.

High current operation. The convergence of EQE curves in
Fig. 2b at high current suggests that the hysteretic effects dis-
cussed in the previous section become dominated by more gen-
eral factors that govern the EQE roll-off. Chief among these is
Joule heating, which becomes significant at high current density
despite our efforts to mitigate it through short pulsed drive and
small device area. The current transients shown in Fig. 6a hint at
this problem, evolving from the steady-state plateau maintained
during low-voltage pulses to steady growth during high-voltage
pulses. The latter regime is clearly detrimental to the EQE, where
it leads to a corresponding decrease in EL intensity within the
pulse duration as shown in Fig. 6b.

More direct evidence for heating comes from the peak shift and
high energy spectral broadening of the pulsed EL spectra (red
curves) presented in Fig. 6c. Both changes are expected for
increasing temperature and are observed in control devices heated
on a hot plate under low current density drive which are also
shown in Fig. 6c for comparison (blue curves). Based on these
reference data, we estimate that the temperature of the perovskite
layer exceeds 345 K by the end of the 2 μs pulse when J= 203 A
cm−2. Though we acknowledge that this estimate could be
complicated by spectral changes from unrelated phenomena such
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as a shift in recombination zone discussed below, it agrees with
finite element thermal modeling shown in Fig. 6d. There, the
onset of non-negligible Joule heating occurs at J~10 A cm−2 for 2
μs pulses and the transient temperature rise of the perovskite
layer shown in the inset mirrors the functional form of the EL
intensity decay reproduced from Fig. 6b, supporting the
connection between the two.

Beyond the issue of heating, it is also clear that some level of
carrier leakage and charge imbalance contribute to the EQE roll-
off at high current density based on the transport layer emission
at λ~420 nm recorded in Fig. 7. This emission emerges above
J~50 A cm−2 and strongly resembles poly-TPD photolumines-
cence (overlaid for comparison), indicating the presence of
electron leakage into (and subsequent EL from) the hole transport
layer. Hole leakage into the TPBi electron transport layer may
also occur; however, any TPBi emission would likely go
undetected due to strong absorption by the perovskite layer as
illustrated in the inset diagram.

Figure 8 examines the possible role of Auger loss in a PL-on-EL
experiment similar to that in Fig. 3, but carried out at higher
current density and shorter pulse width. Figure 8a shows the
timing sequence of the experiment, with the PL pulse arriving
approximately 250 ns before or after the beginning of the EL
pulse to minimize subsequent Joule heating per Fig. 6a, b. Any
time-average Joule heating over the course of many pulses is ruled
out based on the near-identical pre-pulse PL decay for all of the
pulsed current densities shown in Fig. 8b, as an increase in
temperature would be reflected by an acceleration of the decay
rate23. Perhaps surprisingly, however, the in-pulse PL decays are
also largely unaffected by the electrical excitation up to J ~156 A
cm−2 (the damage threshold in this particular measurement).
This observation contrasts with the increased decay rate that
would be expected if Auger recombination (due to the large
electrically-generated carrier density) or any other current
density-dependent quenching mechanism were significant.

Discussion
Taken together, the data above point to a picture in which per-
ovskite LED operation at low currents is heavily influenced by the
distribution of ionic charge, which affects both the trap density
and internal field distribution in the device. Because the motion
of ions—likely dominated by movement of iodide vacancies and
interstitials15,29 (which may have an intrinsic concentration
greater than 0.4% at room temperature)30 in the present case—
takes place on a relatively long (millisecond to second) timescale,
their configuration is essentially frozen during a short micro-
second voltage pulse. Thus, it is the time-averaged history of the
LED under pulsed operation (depending on factors such as Vbias

or average value of the duty cycle) that sets the internal field and
trap distribution that electrons and holes injected on a micro-
second timescale must contend with.

Figure 9 illustrates this model, which is similar in essence to
that from ref. 15. At zero bias, the built-in potential due to the
difference in contact work function causes ions to drift toward the
perovskite layer interfaces, screening the field in the bulk as
shown in Fig. 9a. Under a sudden voltage pulse, the band diagram
tilts accordingly but the ions remain frozen in place (Fig. 9b). The
potential created by the ion distribution concentrates electrons
and holes primarily at the perovskite layer interfaces, maximizing
recombination where the ionic trap density is highest and thereby
leading to large non-radiative loss. In contrast, applying an
appropriate time-averaged forward bias (e.g., from Vbias or the
average duty cycle) reverses the equilibrium ion migration,
causing the iodide vacancies to be refilled by the interstitials they
leave behind (Fig. 9c). This reduces both the ionic trap con-
centration and its associated field distribution that confines
electrons and holes near the transport layer interfaces, enabling
radiative bimolecular recombination to occur more uniformly
and efficiently throughout the perovskite bulk (Fig. 9d). Evidence
of a such a shift in recombination zone follows from a slight red
shift in the EL spectrum with increasing background bias (see
Supplementary Figure 4), which is consistent with a
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recombination zone that moves from the TPBi interface toward
the bulk of the perovskite layer.

This model also rationalizes the PL decay changes in Fig. 3,
where non-radiative recombination is increased during the voltage
pulse with no background bias because photogenerated carriers
are swept by the internal field to the perovskite interfaces where the
ionic defect concentrations are highest (Fig. 9b). The same traps
have less of an influence on the pre-pulse transient because the
internal field is screened and photogenerated carriers therefore
recombine mainly in the perovskite bulk (Fig. 9a). The situation is
essentially the same (i.e., photogenerated carriers recombine in the
perovskite layer bulk) for the pre-pulse transient with background
bias applied since the internal field is similarly suppressed (Fig. 9c).
During the voltage pulse, however, carriers that are swept to the
perovskite layer edges now have fewer ionic defects with which to
undergo non-radiative recombination (Fig. 9d).

Previous reports have demonstrated that background optical
bias has a similar effect in reducing the iodide defect con-
centration in MAPbI324, which is consistent with the EQE
improvement and decrease in trap-mediated recombination
current observed in Fig. 4. Beyond simply changing the balance of

radiative versus non-radiative recombination, it seems likely that
optical and/or electrical background bias also affects the charge
balance of the device due to the variation in internal field that
accompanies the changing ionic charge distribution. Significant
changes in the EQE-current density functional relationship
(Fig. 2) and recombination zone position (Supplementary Fig-
ure 4) with background bias support this notion. Although it is
difficult to quantify how big a role changes in charge balance may
play in the EQE variation of Fig. 2, the fact that the EQE generally
improves more for a given Vbias than the associated decrease in
non-radiative rate (as in Fig. 3) suggests that the impact of charge
balance is not negligible.

In the high current density regime, the EQE roll-off is domi-
nated by a combination of Joule heating and charge imbalance.
The EL transient data in Fig. 6b suggest that, at J~150 A cm−2,
roughly half of the EQE decrease from its peak can be attributed
to Joule heating. Having ruled out any contribution from Auger
loss at this current density in Fig. 8, we attribute the remaining
EQE loss to charge imbalance. It is non-trivial to quantify the
magnitude of this loss; however, it is clear from previous work on
both organic and inorganic LEDs31,32 that it can become a
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overlaid (inverted and scaled by a single, constant factor) to highlight the connection between the two
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dominant factor due to the decreasing effectiveness of carrier
confinement layers at high electric field and temperature (both
factors strongly influence the rate of field-enhanced thermionic
emission over confining energy barriers).

While the EQE and current density required to reach lasing
threshold depend strongly on the details of the eventual resonator
design, a rough estimate can be made based on the threshold carrier
density, nth~8 × 1017 cm−3, measured previously for MAPbI3 in a
metal-clad distributed feedback resonator (the most closely related
existing structure to a laser diode) under optical pumping at T=
160K9. Neglecting Auger losses, the corresponding threshold cur-
rent density is approximately given by Jth � qd0Bn

2
th=ηIQE, where q

is the elementary charge, d0≈100 nm is the thickness of the per-
ovskite active layer, B≈4 × 10−10 cm3 s−1 is the bimolecular radia-
tive rate constant23, and ηIQE is the internal quantum efficiency of
the diode33. Assuming a typical outcoupling efficiency of ϕoc ¼
ηEQE=ηIQE � 0:15 for the present LEDs34, the corresponding EQE-
current density product at threshold would be ηEQEJth≈62A cm−2.
By contrast, the EQE-current density product for the LEDs reported
here peaks at 1.3 A cm−2 (see Supplementary Figure 5), roughly 50
times lower than required. Weighting the needed improvement in
favor of reducing EQE roll-off through improved charge balance
rather than simply relying on higher current density is likely to be
the most effective path forward since it both lowers Joule heating
and reduces the likelihood that Auger will set in as a limiting factor.

In summary, we have investigated perovskite LEDs under short
pulsed drive and found that their efficiency depends strongly on the
manner in which they are driven. Factors such as duty cycle and
background bias can change the EQE by more than an order of
magnitude at a given current density, which is attributed to slow
redistribution of ionic charge that changes both the internal field
and non-radiative trap concentration in the device. This finding is
closely related to the EQE hysteresis observed under DC drive and
implies that the efficiency of many perovskite LEDs reported to date
might be higher under optimal pulsed driving conditions.

Beyond efficiency, the driving scheme may also impact long-
term operational degradation since holes that neutralize nega-
tively charged iodide ions in the recombination zone (see Fig. 9b)
will liberate neutral iodine that can subsequently diffuse into the
adjacent electron transport layer and lead to decomposition of the

perovskite as discussed in ref. 35. This hypothesis may help
explain the large concentration of iodine found in the TPBi layer
previously36. Better heat sinking is essential for operation at high
current densities over 10 A cm−2, even under short pulsed con-
ditions. If Joule heating can be eliminated and improved trans-
port layers can maintain balanced carrier injection into the
emissive layer, it should enable efficient operation to be sustained
at current densities over 100 A cm−2. The fact that we observe no
Auger loss in devices driven at this current density, just an order
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of magnitude below that expected to enable electrically pumped
lasing, suggests that the remaining barriers to a perovskite laser
diode are technical rather than fundamental.

Methods
Fabrication. MAI (BAI) was synthesized by mixing methylamine (n-butylamine)
(Sigma Aldrich) with HI (Sigma Aldrich) in a 1:1 molar ratio. The reaction was
performed in an ice bath while stirring for 3 h. The solvent of the resulting solution
was evaporated using a rotary evaporator. The MAI (BAI) was recrystallized from an
isopropyl alcohol/toluene mixture, filtered, and dried under low heat. Recrystalliza-
tion, filtration, and drying were performed inside a N2-filled glovebox. PbI2 and MAI
were dissolved in dimethylformamide (Sigma Aldrich, 99.8% anhydrous) to obtain a
0.4M MAPbI3 precursor solution. BAI was mixed with the MAPbI3 precursor
solution in a 0.2:1 molar ratio. Poly-TPD (6mgml−1 in chlorobenzene) was spin
coated on glass substrates with pre-patterned ITO and SiO2 at 1500 rpm for 70 s
followed by thermal annealing at 150 °C for 20min. Poly-TPD was then treated with
O2 plasma for 6 s to improve wetting. Perovskite films were deposited on poly-TPD
by spin coating at 6000 rpm. A solvent exchange step was performed after 3.5 s by
dropping toluene on the spinning samples. Then, the samples were annealed at 70 °C
for 5min. The TPBi, LiF, and Al layers were thermally evaporated with thicknesses of
40 nm, 1.2 nm and 100 nm, respectively. All samples were encapsulated with
encapsulation epoxy (Ossila) in conjunction with glass coverslips in a N2-filled glo-
vebox before transferring out for electrical and optical characterization.

To pattern SiO2 on ITO, photoresist (AZ5214E) was spin-coated at 4000 rpm
for 40 s on an ITO/glass substrate. After baking the photoresist layer at 100 °C for
70 s, image-reversal photolithography was carried out, followed by development for
90 s. An insulating 150 nm-thick SiO2 layer was grown by plasma enhanced
chemical vapor deposition at 90 °C. The small-area LED pattern was finally
obtained by lift-off and then soaking the sample in photoresist remover (AZ1165)
at 80 °C overnight.

Characterization. A voltage pulse train generated from a digital delay generator
(Stanford Research System, DG645) was amplified by a custom designed amplifier
and applied to the LEDs with background bias provided by a series-connected DC
power supply. Current was determined by measuring the voltage across a 10 Ohm
termination resistor amplified by a high-speed amplifier and detected using an
oscilloscope. Electroluminescence was measured using a calibrated Si photodetector

and a fast photodiode connected to a wide bandwidth transimpedance amplifier for
DC and pulsed measurements, respectively. In situations where Joule heating leads
to changes in the current and EL intensity during the pulse (as in Fig. 6), the EQE
was determined from the average value of each in the final 250 ns. The measure-
ments reported in this work were collected over a 6-month period from encapsu-
lated devices fabricated in four separate fabrication runs. We observe no
environmental degradation over the course of 1 month and the EQE measured from
run to run and device to device typically varies by less than 10% under pulsed drive.
High current pulsed JVL sweeps (forward and backward) were acquired in less than
2 min to minimize degradation above 100 A cm−2 per Supplementary Figure 2.
Electroluminescence imaging was performed with an inverted microscope and an
electron multiplying CCD camera. Background illumination was provided by a
λ=660 nm laser diode using a series of neutral density filters to tune the power.

Spectrally resolved transient PL and EL spectra were collected using a
Hamamatsu C10910 streak camera (10 ps temporal resolution) with a
monochromator using an optical parametric oscillator (20 ps pulse width and 1
kHz repetition rate) for excitation. In cases where PL was collected during an EL
pulse, the baseline EL signal was subtracted from the PL transient. Steady-state
spectra were measured through an inverted microscope ported to a spectrograph
with a cooled Si CCD array. Electroabsorption spectra were recorded using
monochromatic light from a Xe lamp incident at approximately 15° through the
ITO anode and detected in reflection from the metal cathode (i.e., a double pass in
the perovskite layer) with a Si photodetector and current pre-amplifier. A
sinusoidal dither was superimposed on the LED bias and the reflection signal was
detected synchronously using a lock-in amplifier. Transient EA was subsequently
carried out by fixing the incident wavelength to λ= 730 nm and using an
oscilloscope to monitor the EA signal resulting from a −2 V to 2 V square wave
with periods ranging from 10 ms and 2 s.

Analysis. PL transients were fit with an ABC rate model:23 dn=dt ¼�An� Bn2 � Cn3,
where n is the charge carrier density, t is time, A is the trap-assisted recombination
coefficient, B is the radiative bimolecular rate constant, and C is the Auger rate constant.
The fits in Fig. 3 were performed with a nonlinear least squares regression neglecting the
Auger C coefficient due to the low pump fluences (0.2 µJ cm−2) used for excitation.
Transient thermal modeling was carried out in Comsol MultiphysicsTM using the heat
transfer module. Uniform volumetric heat generation was assumed in the perovskite layer
according to the dissipated electrical power. The respective thermal conductivity and
heat capacity assumed for each layer are κ= 0.30Wm−1 K−1 and Cp= 241.9 J
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the internal field and undergo similarly high non-radiative recombination. c Adding a small background bias can reverse the equilibrium ion drift, reducing
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kg−1K −1 for MAPbI3, κ= 1.38Wm−1K −1 and Cp= 703 J kg−1K −1 for SiO2, and
κ= 238Wm−1K −1 and Cp= 900 J kg−1K −1 for aluminum.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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