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Abstract. We study halo assembly bias for cluster-sized halos. Previous work has found
little evidence for correlations between large-scale bias and halo mass assembly history for
simulated cluster-sized halos, in contrast to the significant correlation found between bias and
concentration for halos of this mass. This difference in behavior is surprising, given that both
concentration and assembly history are closely related to the same properties of the linear-
density peaks that collapse to form halos. Using publicly available simulations, we show that
significant assembly bias is indeed found in the most massive halos with M ~ 105 M, using
essentially any definition of halo age. For lower halo masses M ~ 10'*M), no correlation is
found between bias and the commonly used age indicator ag 5, the half-mass time. We show
that this is a mere accident, and that significant assembly bias exists for other definitions
of halo age, including those based on the time when the halo progenitor acquires some
fraction f of the ultimate mass at z = 0. For halos with My ~ 1014M@, the sense of
assembly bias changes sign at f = 0.5. We explore the origin of this behavior, and argue
that it arises because standard definitions of halo mass in halo finders do not correspond to
the collapsed, virialized mass that appears in the spherical collapse model used to predict
large-scale clustering. Because bias depends strongly on halo mass, these errors in mass
definition can masquerade as or even obscure the assembly bias that is physically present.
More physically motivated halo definitions using splashback should be free of this particular
defect of standard halo finders.
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The clustering of tracers of cosmological large-scale structure, such as galaxies, quasars,
clusters, or voids, may be used to probe the clustering of the underlying matter field. The
clustering strength of any particular tracer does not exactly match the clustering of total
matter, but instead is generally biased relative to matter clustering [1, 2]. On large scales,
in the linear regime of structure formation for standard cosmologies with cold dark matter
and gravity described by Einstein’s general relativity, the bias for any tracer tends towards
a constant value that becomes independent of scale [e.g. 3, 4]. For dark matter halos, the
linear bias is a strong function of halo mass, with the most massive halos clustering far more
strongly than typical dark matter particles, while the smallest halos cluster less strongly
than typical particles [1, 3, 5]. Qualitatively, one may think of highly biased halos (b > 1) as
preferentially forming in regions of high density, while halos with low bias (e.g., b < 1) tend
to avoid high-density regions.

In addition to its mass dependence, halo bias can also depend on other halo properties
such as mass assembly history [6] or properties like concentration, spin, etc. [7]. Although
not as strong as the mass dependence, these secondary dependencies of halo bias can be quite
significant, in some cases leading to variations in linear bias of more than a factor of 2 for
halos of fixed mass. Because secondary bias can be quite significant, a number of studies
have explored the impact of such biases on the galaxy-halo connection; see ref. [8] for a recent
review of this topic and for a more comprehensive review of work on secondary biases. The
most well-studied of these secondary biases have been assembly bias, the dependence of bias
on mass assembly history (MAH), and the concentration bias, referring to the dependence
on halo concentration. In general, secondary biases exhibit significant mass dependence. For
example, the concentration bias actually reverses in sign as halo mass is varied, with high
concentration associated with high bias for small halos but with low bias for the largest
halos [9].

Much of this behavior in halo bias is not difficult to understand in the context of hierar-
chical structure formation [10]. Because halos tend to arise from peaks of the linear density
field [3, 11], the properties of halos are related to the properties of the corresponding initial
peaks. For example, peaks with steep slopes tend to produce halos with high concentration,
while peaks with shallow slopes tend to lead to halos with low concentration [e.g. 12]. Ad-
ditionally, because the linear density field is continuous, the slopes of initial peaks are also
correlated with their local environments. At fixed peak height, peaks with steep slopes tend
to be found in relatively lower density environments than peaks with shallow slopes, which
accounts for the concentration bias seen at high halo masses [10]. A similar argument may
be made using the excursion set ansatz [13]. However, this does not explain the opposite
behavior seen at low halo mass. At lower masses, another process starts to dominate over
the effect of peak slopes in producing concentration bias (and assembly bias). Among low-
mass halos below the nonlinear mass scale (M < M,), a significant fraction of order 20%
ceases to grow in mass, due to environmental effects. Because halo concentration is related
to assembly history [14], the halos that stop growing exhibit the highest concentrations. At
the same time, the environmental effects that shut down halo growth (e.g., strong tides or
high velocity dispersion) are also associated with high density regions. For this reason, at
low masses high concentrations become correlated with high local density, i.e. high bias [10],
see also [15]. This effect is unimportant at the very highest masses because the biggest halos
dominate their environments.

A corollary of the argument explaining concentration bias is that very similar behavior
should be found in assembly bias. At high masses, the same peak properties that determine



halo concentration also determine halo assembly histories, and at low masses, the environ-
mental effects that lead to high concentration also arrest the growth of halo mass. The
expected assembly bias is indeed found in low-mass halos [6], but at higher masses, the evi-
dence is far less clear. Refs. [7, 16] found no significant assembly bias at high mass in their
simulations, and more recently, Mao et al. [17] argued that cluster-sized halos exhibit no de-
tectable assembly bias in ACDM simulations. If correct, this result would be remarkable and
would require a dramatic rethinking of halo formation in general. The prediction of assembly
bias follows from the continuity of the linear density field, given the known result that the
formation of the most massive halos closely follows the prediction of the spherical collapse
model [18] that formation occurs when the smoothed linear density reaches a critical value,
§ = 0. ~ 1.686 [10, 19]. Since the linear density field is indeed continuous, the prediction of
nonzero assembly bias at high mass would seem to be inescapable.

Motivated by this surprising claim, we investigate halo assembly bias for massive
cluster-sized halos in ACDM simulations. Since we focus on only the most massive ha-
los which tend to be rare, we utilize simulations with large volume. Most of the results
we present below are derived from the BigMDPL simulation [20], publicly available at
https://www.cosmosim.org [21]. This simulation is part of the MultiDark simulation suite,
and contains 38403 particles in a box of comoving side length of 2.5 h™! Gpc for a flat
ACDM cosmology with £, ~ 0.307, h = 0.6777, og = 0.8228 and ns = 0.96, corresponding
to particle mass m, = 2.36 x 10'*°h~1 M. We use the Rockstar [22] halo catalogs and merger
trees publicly provided at https://www.cosmosim.org. To derive mass accretion histories, we
follow the main branch of the Rockstar merger tree, using the mmp (most massive progenitor)
flag. As a sanity check, we have also examined other simulations, including the MDPL2
simulation from the same MultiDark suite, as well as a series of L = 640 h~! Mpc simula-
tions run for this investigation. As a check on the Rockstar results, we have computed halo
catalogs and merger trees using a different method for the 640 Mpc boxes, as described in
ref. [23]. In all cases, we find results consistent with the BigMDPL simulation results, so the
discussion below will focus on that simulation since it provides the best statistics due to its
large volume.

For the BigMDPL simulation, we measure the linear bias for halo samples by first
computing the halo-matter cross spectrum P,(k) and the matter auto-spectrum P, (k), and
then defining the bias b by a least-squares fit for P.(k) = b P, (k) for k < 0.1 h Mpc™'.
Because the matter field is not made publicly available for this simulation, as a proxy for
the matter field we use the set of all halos and subhalos with Mpea > 5 X 10"~ M in
the z = 0 Rockstar catalog. These halos should be nearly unbiased on large scales, but it
is worth noting that formally all of our quoted bias values really correspond to the ratio
b/btracer Where bypacer i the mean bias of our tracer population of subhalos.

To start, we first examine halos with My, = 0.7 — 1 X 1015h*1M@. Previous work
has shown significant concentration bias for halos in this mass range, and the BigMDPL
simulation gives consistent results. Rank ordering the halos based on the concentration values
reported in the Rockstar catalogs, we measure mean linear biases for the subsets with the
highest 25% and lowest 25% of cyir. The quartile with highest cyir gives be—pnigh = 4.4 £0.08,
while the quartile with lowest concentration gives b._jow = 5.2 & 0.08, as expected for the
concentration bias at these high halo masses.

Next, we turn to assembly bias. Similar to the concentration split, we can split halos into
the oldest and youngest quartiles, using some definition of halo age. In previous literature |7,
17], the half-mass time ag 5 has been the most common definition of age. This is defined as the



scale factor when a given halo’s most massive progenitor first acquires a fraction f = 0.5 of
the final mass at z = 0. From the Rockstar merger trees, we can readily determine ay for any
fraction including f = 0.5. Halos with a small ay assembled fraction f of their mass relatively
earlier, and therefore may be considered to be older, while conversely halos with larger a y may
be considered to be younger. If we split halos in this mass range (M, = 0.7—1x10°h~ M)
then the top and bottom quartiles give bg_pign = 4.9£0.07 and b,_1ow = 4.6£0.07. Therefore
we do find significant assembly bias in high mass halos, with the expected sign, but the
amplitude is about half as strong as the concentration bias for the same halos. We find similar
results for even higher masses or from other simulations, albeit with larger uncertainties. It
is reassuring that this basic prediction of Gaussian statistics is confirmed, but the weaker
amplitude relative to concentration bias is somewhat surprising. One possibility is that ag.5
may simply be noisier than concentration. This quantity is derived by tracking M,; along
the merger tree, but M, itself is a noisy estimate of the true virialized mass in a halo for a
variety of reasons, including the presence of substructure, or the fact that the nominal virial
radius i, can be either larger or smaller than the actual virialized region around a halo, the
splashback radius [24, 25].

If the assembly bias seen using a5 is weak simply due to noise in the MAH, then we
could improve the significance by using the entire MAH to classify halos into ‘young’ or ‘old’.
As is well known, halo mass accretion histories exhibit a variety of behaviors [e.g. 14], so
there is little reason to expect an arbitrarily chosen number like ag 5 to capture the aspects
of halo assembly that relate to large-scale environment. However, since the entire MAH has
many degrees of freedom, it may not be immediately obvious what definition of age that we
should use instead of ag 5.

The approach that we use is to perform a linear operation on the MAH to assign a
single number to each halo, and then rank order based on that number. To choose what
linear operation to perform on the MAH, note that we can predict how the MAH should
change when we raise or lower the large-scale linear density, using Gaussian statistics and
the spherical collapse model. The starting point is again the spherical collapse result that
collapse occurs when the linear density smoothed over radius R exceeds the collapse threshold,
§(R) > 6.. The model predicts that the set of halos of mass M therefore should have
5(Ry) = O, where Ry, = (3M/4np,,)"/3 is the Lagrangian radius corresponding to mass
M in the notation of [12]. The linear density profile interior to Ry, determines the assembly
history of that halo [10]. Therefore, to predict how the assembly history changes when we vary
the large-scale environment, we simply need to know the expected value of §(R) at R < Ry, as
a function of the large-scale environmental density djong. This is readily determined from the
Gaussian statistics of the linear density field. In general, for Gaussian distributed quantities
X and Y with zero mean, the expected value of X conditioning on the value of Y is given by

(X|Y)=(XY)YY)lY. (1)

In our case, X consists of the interior profile §(R) for R < Ry, and Y consists of the pair of
quantities §(Ry,) = d. and dlong ON some large scale. For concreteness, we define djong as the
linear density smoothed with a top hat filter of radius 30 h~! Mpc.

Eq. (1) gives us the expected profile for a peak of size Ry, in a background overdensity
long, and if we know the linear growth factor D(a) as a function of a, we can translate that
peak profile into a mass assembly history by setting the collapse radius at each time a such
that §(R)D(a) = 6.. Since eq. (1) is linear in long, then for small fjone the response of the
halo MAH is also linear in djone. If we think of the MAH as a vector h, then its expected
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Figure 1. The different curves show stacked mass accretion histories for subsets of BigMDPL halos
with My, = 0.7 — 1 x 10*°h=t M. The curves corresponds to the halos with the highest 25% of ag 5
(brown), the lowest 25% of ag.5 (green), the top 25% of a4 (red), and bottom 25% of oy (blue). The
width of each curve corresponds to the 1 — o jackknife uncertainty on the mean MAH. As discussed
in the text, a4 is a better indicator of large-scale bias than ag.5, and it tends to split the halos more
strongly on their early assembly histories (f < 0.5) for this mass range.

linear response to djong may be written as h = const + g djong, where the vector g encodes the
linear response computed above. This immediately suggests a sensible choice for the linear
operation to perform on the actual MAH to assign an age to each halo: the inner product
between h and the expected response vector g. To define an inner product on the space of
possible assembly histories, however, we need some notion of a metric on that space, i.e. a
matrix to allow us to compute distances and dot products between vectors. One obvious
choice for this metric is the inverse covariance matrix of all MAH’s for halos in the mass bin
being considered, C,:l = ((hh) — (h)(h))~L.
Our procedure, therefore, is to define the ‘age’ of each halo from its MAH h as

ag = gT : Cgl : h? (2)

where g is computed from Gaussian statistics as described above, and Cgl is computed from
the ensemble of MAH’s of the halo mass bin under consideration. Defined in this way, halos
with high oy, are expected to be more highly biased than halos with low oy, as long as halos
are forming according to spherical collapse. When we apply this age definition to halos in
the same mass range (Myi; = 0.7—1 x 10152~ M) considered above, the bias of the high ay
quartile is by—pnigh = 5.040.07, while the low o quartile gives by—1ow = 4.530.07. Evidently,
using the entire MAH does enhance the amplitude of assembly bias, though the overall signal
is still slightly smaller than the amplitude of the concentration bias. In figure 1 we plot the
stacked MAH’s for the top and bottom quartiles of a4, along with stacked MAH’s for the
top and bottom quartiles of ag5. The MAH’s selected by «ay differ more at early times than
the MAH’s selected by ags.

Therefore, the highest mass halos do exhibit clear assembly bias, as required theoret-
ically. This may seem to contradict previous results [7, 17|, but note that so far we have
focused on halos with M ~ 10 M, whereas previous works studied smaller clusters with
M ~ 1014M@. Therefore, we next consider halos with My, =1 —2 X 1014h_1M@. When we
split these halos using ag.5, we do not find significant differences in the biases of the oldest or
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Figure 2. Plotted is the cross-correlation coefficient between the linear overdensity, smoothed on a
scale of 30 h~! Mpc, and the time when the halo acquires fraction f of its present-day mass, denoted
as. The blue curve corresponds to high-mass halos in the mass range M, = 1 — 2 X 10~ M,
while the red curve is for low-mass halos with M,;; =1 —2 X 1014h*1M@. The width of each band
corresponds to the 1 — o uncertainty, determined by jackknife.

youngest halos. This agrees with previous work, but is contrary to the results for the higher
mass sample.

To understand this change in behavior, in figure 2 we plot the cross-correlation coefficient
between the large-scale density and the mass accretion history. As above, the large-scale
density is defined as diong = 030, the overdensity smoothed over a scale of 30 h~! Mpc. We
characterize the MAH using ay, the scale factor when a halo reaches fraction f of its z = 0
mass. The cross-correlation coefficient is defined as

((af - a’f)(élong - Slong)> (3)
[{(ag — as)2)((Bong — Siong)?)]

where ay = (ay), 510ng = (Olong), and averages are computed over the sample of halos be-
ing considered. A positive cross-correlation means that increasing the large-scale density
increases ay, i.e. delays the time when the halo acquires mass fraction f.

As figure 2 shows, there is no significant correlation between large-scale density and ag 5
for M ~ 10 Mg halos, but this appears to be an accident. If we use some other fraction,
like ag.o or ag.g, then we do find significant correlations. The early part of the MAH behaves
similarly to the behavior for the M ~ 10'Mg halos: younger halos are associated with
higher density. But the later part of the MAH, for f < 1, has the opposite correlation. The
cross-over happens to occur near f = 0.5, by accident. Note that this is dependent on the
mass of the sample. For even lower masses, the cross-over occurs at even smaller f, and for
higher masses it occurs at higher f (or does not occur at all in the most massive halos, as
shown in the blue curve in figure 2). Note that the significant correlations between large-scale
density and MAH that we find do not necessarily contradict the results of Mao et al. [17], who
found that the stacked MAH’s for halos with M ~ 10'4M, found in large-scale over-densities
were very similar to those found in large-scale under-densities. When we perform the same
exercise, we also find similar MAH’s with percent-level differences. However, that is exactly
the amplitude of difference that is expected. The amplitude of density fluctuations on large

corr(af, dlong) =



scales in the linear regime is small by definition, percent-level for the scales of interest here.
Because the expected level of assembly bias is of order unity, not order 100, these percent-
level overdensities on large scales should correspond to percent level variations in the MAH’s,
as observed.

The significant correlations at f # 0.5 imply that assembly bias is present in halos of
this mass range, i.e. there are correlations between large-scale density and assembly history.
Accidentally, ag 5 is insensitive to this assembly bias, however we can use other metrics for halo
age to find significant assembly bias. For example, we can once again use the ‘theoretical’
template o to select old or young halos, which does indeed give nonzero assembly bias.
Alternatively, we can derive the optimal definition of halo age to maximize the difference
in bias between old and young subsets. We do so by cross-correlating halo MAH’s with
their large-scale density. As before, we quantify the large-scale density as diong = 030, the
overdensity centered on a halo smoothed over a 30 h~' Mpc radius. Similarly, again let
us write h as the MAH for a halo. If 6 and h are Gaussian distributed then the optimal
definition of age for a halo with a MAH h is given by aop; = d' - (h — h), where

d= C}:1<(h - ’_l)(‘slong - Slong»- (4)

In other words, we take the inner product of each MAH with the part of the MAH correlated
with large-scale density, where the inner product over the space of MAH’s is defined using the
inverse covariance of MAH’s as the metric. Note that to avoid over-fitting, when evaluating
eq. (4) for each cluster, we exclude all halos in the spatial octant centered on that cluster
in computing the ensemble averages. In labeling this definition optimal, what we mean
is that this definition should maximize the difference in large-scale bias of the two samples,
using only the mass accretion histories, as long as the underlying assumption of Gaussianity is
approximately satisfied. Nongaussianity will make this definition sub-optimal for the purpose
of splitting halos into high-bias and low-bias subsets, but as long as we do detect assembly
bias any suboptimality does not impact our conclusions significantly.

Figure 3 shows the average MAH’s for the halos in this mass range, split into top and
bottom quartiles using agpt. The quartile with high agpe (red solid curve) has a mean linear
bias b = 2.2 £0.02, while the quartile with low aqpt (blue solid curve) has a mean linear bias
b= 2.0+0.02. As expected, there is significant assembly bias among halos in this mass range,
in that we can split halos into samples with higher or lower bias using only their MAH’s. It
is difficult to say which subset is older or younger: at low mass fractions, the blue subset is
significantly older, while at high mass fractions, the red subset is significantly older.

One striking property of the red curve in figure 3 is that the mean MAH nearly plateaus
at late times, a > 0.85. This lack of growth in halo mass is quite surprising for cluster-sized
halos. Even if the physical mass distribution around the cluster remains static in time,
the nominal virial mass will grow simply due to the decrease in the mean matter density
as the universe expands, an effect called pseudo-evolution [26]. For a static mass profile
M (r) around a halo, pseudo-evolution gives a minimum growth rate of dlog My, /dloga =
(dlog pyir/dloga) x [1+3/(dlog p/dlogr| =, )], where p(r) = 3M(r)/(4mr), and pyir =
Avyirpm for virial overdensity Ayi [27] and mean matter density pm, = Qpmperit. Since these
clusters tend to have somewhat low concentrations, e.g. cyiy ~ 6, then for NF'W outer profiles
we would expect dlog My, /dloga > 0.5 even if the density profiles around the halos remain
static in time. Of course, the outer profiles of these halos can be steeper than NFW, due
to the splashback feature [24], but that steepening would only affect the pseudo-evolution
rate of My, when the splashback radius is rg, S 7vir, which only occurs for high accretion
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Figure 3. BigMDPL halos with M;, = 1 — 1.1 x 1014h=1 M. Plotted are the stacked (average)
MAHs for isolated halos in the top (red solid curve) and bottom (blue solid curve) quartiles of agpt
as defined in eq. (4). The width of each curve corresponds to the 1 — o jackknife uncertainty on the
mean MAH. We have used a narrow mass bin in order to enforce that both subsets have the same
average mass at z = 0. For comparison, the dash-dot red curve illustrates the behavior M o %2, the
growth rate expected for pure pseudo-evolution of the high a,p¢ sample.

rates [25]. For the low growth rates shown in the red curve (dlog M, /dloga ~ 0.18),
the splashback radius should be outside ryi;, implying that the NFW profile should be a
reasonable approximation. We will return to this topic later, but for now, the point is that
the observed growth rate in this subset of clusters is even less than the minimal pseudo-
evolution rate for static mass distributions. In order for the average Myi to grow so slowly
with time, mass must be physically removed from within r, for at least some fraction of the
clusters in the red subset.

One possible explanation for this could be that many of the halos in the red subset
are in extreme environments capable of stripping mass from these cluster-sized halos. To
check for this, we search for more massive neighbors (M, > 2 X 1014h_1M@) within a few
Mpc of these clusters. We find that only a tiny, percent-level fraction of the halos (excluding
subhalos) have massive nearby neighbors capable of tidally stripping the clusters.

If tides are unimportant, then some other explanation is required to account for the
slow growth in M;. To clarify the origin of this behavior, we plot in figure 4 the average
(stacked) phase space density for the two subsets of high and low aqpi. Using the catalog
of all Rockstar halos and subhalos with Mpea > 5 X 10'*h~t M), we compute the mass in
neighboring objects as a function of distance and radial velocity relative to each cluster. For
the clusters being considered, with M,;; =1 —1.2 x 1014h_1M@ at z = 0, the virial radius is
approximately 7vi; = 0.97h~! Mpc. Figure 4 immediately explains why the high Qopt subset
has stopped growing in M, since a ~ 0.85: that subset of clusters has a large portion of
splashback material [24, 25] beyond the nominal 7i,. Much of that mass just outside iy
was previously inside the virial radius one crossing time in the past, which corresponds to
a ~ 0.85. Therefore, mass has indeed been removed from within r;, for these clusters, but
not because of tidal stripping, but instead merely because this recently accreted mass is on
wide orbits that extend beyond ryi,. Although we do not have access to the particle data
for this simulation, we can estimate the amount of this extra mass using the population of
neighboring halos and subhalos as a proxy for dark matter mass. Very roughly it appears
that the splashback mass for the high a,pt sample is larger than M, by about 60%.
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Figure 4. Phase space diagrams around BigMDPL halos with M, = 1 — 1.2 x 10"h~ M. The
color corresponds to the mass in neighbors (in units of h~!Mg) at each pixel in the space of r and
vr. We have used a somewhat wider mass bin than in figure 3 in order to improve the statistical
uncertainties. The top panel is for the low aqpy, corresponding to the blue curve in figure 3, while the
bottom panel is for high agpt, corresponding to the red curve in figure 3. For this mass range, ryi; is
depicted by the vertical dotted white line at slightly less than 1 A~ Mpc. Comparing the two panels,
we can see that the sample in the lower panel has a significant amount of bound, virialized mass near
splashback located just outside ry;;.

Therefore, the physical explanation for the slow mass growth in the red curve of figure 3
may actually be quite mundane. Simply put, these clusters have been assigned the wrong
masses. Their actual physical masses are larger than the quoted virial masses, and therefore
it is no surprise that they are more highly biased. The problem is that the virial mass
definition used in most halo finders does not actually measure the bound, virialized mass
around a halo (i.e., the mass within the splashback radius), but instead measures the mass
within an arbitrarily chosen density threshold. Relatedly, the quoted masses in the catalog
account only for material within a spherical surface, whereas the actual splashback surfaces
around simulated halos can deviate significantly from spherical shapes [28, 29]. The problem
we described above may not be specific to the Ay;, definition of halo mass, but instead could
arise for other similarly arbitrary definitions like 200c or 200m. Indeed, if we repeat the same
calculation for halos selected in bins of Magg,,, we again find that the high-op; sample with
high bias has a significant amount of mass located just outside r200,,. Adopting even lower
density thresholds to produce even larger halo radii could suffer the opposite problem of
overestimating halo masses, due to uncollapsed mass prematurely being included in the halo,



leading to halos with Lagrangian densities well below the spherical collapse threshold. This
would similarly generate spurious assembly bias. ref. [30] discusses other issues associated
with arbitrary halo definitions and assembly bias. A more physically correct halo mass
definition using the splashback feature should avoid such problems and thereby mitigate
this spurious behavior in assembly bias. Fortunately, implementations of splashback halo
masses for simulations now exist [28, 29], so it should be possible to avoid this problem in
future analyses.

This issue with mass definitions may also explain why the assembly bias signal found
using mass accretion histories was somewhat weaker than the signal found using halo con-
centrations, even though mass assembly history and density profile are both related to the
same properties of the initial peaks that collapse to form halos. The splashback radius can
be larger or smaller than the arbitrarily chosen overdensity radii like 7y or regp used in halo
finders, depending on the physical accretion of mass onto halos, meaning that at all times
there are errors in the derived halo boundary and halo mass. In principle, these errors could
possibly generate enough noise in the derived MAH’s to erase some of the assembly bias
signal that is physically present.

One question that may arise is why the effect of halo mass definitions does not also
corrupt the assembly bias signal for higher masses (e.g. M ~ 10° M) the way that it does
for lower mass clusters. It is certainly possible to find clusters in this higher mass range whose
apparent MAH’s exhibit the plateau shown in figure 3, but their proportion appears to be far
smaller among 10'5 M, clusters than it is among 104 M, clusters. We have not explored this
question in detail, but a plausible explanation may simply be that clusters with such high
mass are much more rare, corresponding to ~ 3o fluctuations of the linear density, rather
than ~ 20 fluctuations. Any cluster with M.;, ~ 10'°M,, that has a significant amount of
mass outside 7y, would therefore be an even more massive cluster and would correspond
to an even rarer fluctuation. The fraction of such objects therefore should be smaller at
M ~ 10 M, than at 10 M, simply because the mass function is so much steeper at the
higher mass.

In conclusion, high mass halos do indeed exhibit assembly bias as theoretically expected.
Measuring the amount of assembly bias in simulated halos turns out to be affected by the
same problem that bedevils attempts to detect assembly bias in real galaxies and clusters:
any small errors in determining halo mass can completely overwhelm the intrinsic assembly
bias, simply because of the strong dependence of bias on halo mass. In simulations, this
challenge may be overcome using physically motivated halo definitions, but it remains to be
seen if the observational challenges to detecting this effect in real clusters can be overcome.
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