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ABSTRACT

The contribution of line-of-sight (LOS) peculiar velocities to the observed redshift of objects
breaks the translational symmetry of the underlying theory, modifying the predicted two-point
functions. These ‘wide-angle effects’ have mostly been studied using linear perturbation theory
in the context of the multipoles of the correlation function and power spectrum. In this work,
we present the first calculation of wide-angle terms in the Zeldovich approximation, which is
known to be more accurate than linear theory on scales probed by the next generation of galaxy
surveys. We present the exact result for dark matter and perturbatively biased tracers as well as
the small angle expansion of the configuration- and Fourier-space two-point functions and the
connection to the multifrequency angular power spectrum. We compare different definitions
of the LOS direction and discuss how to translate between them. We show that wide-angle
terms can reach tens of percent of the total signal in a measurement at low redshift in some
approximations, and that a generic feature of wide-angle effects is to slightly shift the Baryon

Acoustic Oscillation scale.
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1 INTRODUCTION

The clustering of galaxies observed in redshift surveys exhibits
anisotropies due to the contribution of line-of-sight (LOS) veloci-
ties to the measured redshift (Kaiser 1987; Hamilton 1992, 1998;
Peacock 1999; Dodelson 2003). This effect, known as redshift-
space distortions (RSD), enables us to constrain the rate of growth
of large-scale structure (Guzzo et al. 2008; Percival & White 2009),
test theories of modified gravity (Joyce et al. 2015), and probe the
constituents of the Universe such as massive neutrinos (Lesgourgues
& Pastor 2006; Weinberg et al. 2013).

When modelling the two-point statistics of redshift-space cluster-
ing, most analyses make the ‘plane-parallel approximation’, where
the direction of the LOS of each object in a pair is assumed to
be the same. This means the redshifts of the two objects receive
contributions from the same component of the velocity, which in-
creases the symmetry of the system and allows simple Fourier- and
configuration-space analyses. This approximation is usually excel-
lent on small scales and for deep surveys. However, for surveys
which are relatively shallow and probe large scales — or interferom-
eters whose primary beams cover large sky areas — there are ‘wide-
angle’ effects which need to be considered. There is a large literature
examining these effects within linear perturbation theory (Hamilton
1992; Hamilton & Culhane 1996; Zaroubi & Hoffman 1996; Hamil-
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ton 1998; Szalay, Matsubara & Landy 1998; Szapudi 2004; Datta,
Choudhury & Bharadwaj 2007; Papai & Szapudi 2008; Shaw &
Lewis 2008; Bonvin & Durrer 2011; Raccanelli et al. 2014; Slepian
& Eisenstein 2015; Yoo & Seljak 2015; Reimberg, Bernardeau &
Pitrou 2016; Castorina & White 2017) but relatively little analytic
work beyond linear theory. In this paper, we present an analysis of
wide-angle effects to lowest order in Lagrangian perturbation the-
ory, i.e. the Zeldovich approximation (ZA; Zel’dovich 1970). The
ZA is quite accurate on large scales, and provides a better modelling
of features in the spectrum such as baryon acoustic oscillations than
does linear theory (Tassev 2014a). It also contains more angular
structure than is present in linear theory, allowing us to examine in
more detail the impact of relaxing the plane-parallel approximation.
A calculation of non-linear wide-angle terms in standard (Eulerian)
perturbation theory beyond linear theory was presented in Shaw &
Lewis (2008). Our analysis differs from theirs in that we resum the
linear displacement fields and include the effect of biasing of haloes
and galaxies with respect to the dark matter field.

In this work, we shall focus on the ‘physical’ wide-angle terms,
arising from the projection of peculiar velocities on to a LOS that
varies across the sky, and their effect on the non-linear dynamics of
the matter and galaxy density fields. It is well known that a survey’s
selection function will introduce extra wide-angle terms (Kaiser
1987; Hamilton & Culhane 1996; Szalay et al. 1998; Castorina &
White 2017). The latter have been studied in linear perturbation
theory, but we are not aware of any formalism to include them
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Figure 1. The assumed geometry and angles. The two galaxies lie at s
and sy, with separation vector s = s — s and enclosed angle 6. We take
the LOS to be parallel to the angle bisector, d, which divides s into parts of
lengths st and s(1 — f). The separation vector, s, makes an angle ¢ with the
LOS direction, d.

beyond this regime. However, if the selection function is slowly
varying with redshift we expect higher order terms to be small.
The outline of the paper is as follows. In Section 2, we review
the formalism of RSD and the wide-angle eftects and outline the
geometry of the problem, including the bisector and end-point con-
ventions for defining the LOS. In this section, we also provide an
explicit connection between the 3D correlation function and power
spectrum multipoles and the multifrequency angular power spec-
trum (MAPS), showing explicitly that the angular structure arises
through projection and allowing computation of the MAPS beyond
the plane-parallel approximation. In Section 3, we describe how
to include wide-angle effects into the ZA for both the correlation
function (Tassev 2014b) and the power spectrum. The full result
is evaluated numerically in Section 3.1, whereas in Section 3.2 we
present a small angle expansion and the relation between the ZA,
linear theory and the different conventions for the LOS. We conclude
in Section 4 and discuss some technical details in the appendices.

2 WIDE-ANGLE EFFECTS

The study of ‘wide-angle’ effects in galaxy clustering has a long his-
tory. Here, we briefly review some important background material
and make connections between different conventions for the LOS
and different two-point clustering statistics. We shall adopt the no-
tation and conventions of Castorina & White (2017), which builds
upon the earlier work of Hamilton & Culhane (1996), Zaroubi &
Hoffman (1996), Szalay et al. (1998), and Papai & Szapudi (2008).

2.1 Geometry
The geometry of a generic redshift-space configuration for the two-

point function is shown in Fig. 1. Three numbers are enough to prop-
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erly describe the system, and several possible choice of parametriza-
tion are available. The observer O is looking at two objects at s
and s,, separated by s = s; — 5, and the LOS d is defined as the
bisector of the angle 6 between s, and §,. The LOS and the sepa-
ration vector form an angle ¢, with cos (¢) = . We also define 1 €
[0, 1] through

si=d+(1—1t)s, sy,=d—ts. (@))]

The clustering is independent of the direction of d and of rotations of
s about d, thus the correlation function can be written as a function
of s, i, and d. We follow Reimberg et al. (2016) and define a small
parameter x = s/d < 1, as this will prove convenient later.
Castorina & White (2017) show that for the configuration in Fig. 1

S182 .. 5 4s12s§ , 0
d= S1+8), d°=-——=cos = 2
51+ 852 61 +5) (514 52)? 2 @
and
—l4ux+1+u2x2 1 ux p’x
1—t= Xt ———F- (3
2px 274 16

Another popular choice of coordinate system, which we call the
end-point parametrization, is to use one of the two galaxies, for
instance s, as the LOS. This is mostly motivated by the fact that
in this case estimators for the power spectrum multipoles can be
written as simple Fast Fourier Transforms (FFT) (Bianchi et al.
2015; Scoccimarro 2015; Hand et al. 2017). On the other hand one
loses the reflection symmetry around the observer, i.e. the redshift-
space correlation function is not invariant under s; — —s;. For this
choice of LOS wide-angle effects are much bigger than for the
midpoint or the bisector, and odd multipoles are also generated
(Reimberg et al. 2016; Castorina & White 2017). It is relatively
straightforward to go from one parametrization to another one using

xi
31'3"221—?(1—/1%)4—"' )
X
,u:p_l——zl(l—,uf)-f-“- 5
-~ s
e (14 570) + ©)

with ;; = § - §; and expansion parameter x; = s/s; < 1. We shall
develop the formalism within the bisector convention and discuss
how to transform to the end-point convention where appropriate.

2.2 Correlation function

It is common to express the correlation function as an expansion in
W via

Els,d, ) =) &s, d)Lo() (7)
14

= S W EP L), ®)
n

where £, indicates the Legendre polynomial of order ¢ and in
the second line we have expanded &,(s, d) in powers of the wide-
angle parameter, x = s/d. The lowest order terms are the familiar
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‘plane-parallel’ approximation. In linear theory (Hamilton 1992)
pp ) 2 1 2
& () =& (s) 1+§f+§f ,
4 4
reey — £0) _ T T
2 (8) =& (S)( 3/ 7f),
8
') =8"6 (507 ©)
35
with

k% dk
(0) _
¢ (s)_/ 272

and P(k) the linear theory power spectrum.

P(k)je(ks) (10)

2.3 Power spectrum

The definition of the redshift-space power spectrum requires some
care if we drop the plane-parallel approximation (Zaroubi & Hoft-
man 1996). What is always well-defined is the ‘local’, i.e. LOS-
dependent, power spectrum (Scoccimarro 2015; Reimberg et al.
2016),

Pk,d) = /d3s £(s, d)e ks (11)
which can be expanded in multipoles as
Plk.d) =" Pik.d)C; (k- d) (12)
4
= Z(kd)‘" PLe (k- ). (13)

In this case multipoles of the correlation function and of the power
spectrum are still related by a Hankel transform,

Pg(k,d)=4n(—i)f/szds Ge(ks) (s, d) (14)
and thus
P (k) = 4m (—i)* / s2ds (ks)" " (s) je(ks) (15)

with inverse

k2 dk
(n) _
£(s) = / e

In observations the most commonly used estimator for the power
spectrum multipoles has been proposed by Yamamoto et al. (2006):

R 2L+ 1) [dQ
Pl k) = @L+ )/—"df‘sld%2

x 5(s1>5(s2)e* sep (k- d), amn

(ks)™" P{" (k) je(ks). (16)

where Vis the survey volume, and the LOS can be either the bisector
or the midpoint. Taking the expectation value of this estimator yields
(Castorina & White 2017)

3
(Pl k) —(2L+1)/H&P(k d)L(k-d) (18)
d’d
=/7PL(k,d). (19)

At lowest order in x the expectation value of IBLY is simply P[(O)(k)
as in equation (15).

For computational reasons the estimator is more commonly de-
fined using the direction to one of the two galaxies as the LOS

PLFFr(k) (2L +1) / @dss &s,
X 8(s1)6(sz)e gy (k-5) (20)

which can be evaluated using FFTs (Bianchi et al. 2015; Scocci-
marro 2015; Hand et al. 2017), compared to brute force pair sum
required in equation (17). The ensemble average of the FFT esti-
mator can be related to the multipoles of the theoretical correlation
function defined using the bisector or the end-point as the LOS
following Castorina & White (2017), who have also shown that
wide-angle corrections to equation (20) are in general much bigger
than the one of equation (17). We shall denote the coefficients of
the expansion of the end-point-based Py (k, s1) in powers of (ks;)
as P{" (k) to distinguish them from the bisector-based Pl(")(k) of
equation (13).

2.4 Fourier-Bessel expansion and MAPS

A third representation of the two-point function is in terms of the
Fourier-Bessel (sFB) expansion (Fisher, Scharf & Lahav 1994; La-
hav et al. 1994; Heavens & Taylor 1995; Padmanabhan, Tegmark
& Hamilton 2001; Percival et al. 2004; Pratten & Munshi 2013;
Castorina & White 2017) or its configuration-space analogue, the
MAPS (Datta et al. 2007; see also Castorina & White 2017). The
latter has most commonly been used to describe fluctuations mea-
sured by wide-area, interferometric, 21 cm instruments (e.g. Shaw
etal. 2014).

In this formalism, one describes the triangle of Fig. 1 in terms
of the two side lengths (s; and s,) and the enclosed angle (6).
Expanding the -dependence in Legendre polynomials

2 20+1
£ = 0 Culsi, 3)Le(cos§) @1
=0

the coefficients, Cy, are the MAPS and their one-dimensional Han-
kel transform along s; and s, the angular power spectra

Collr, ko) = / s, / 2ds, Colsr. s)jelkisnjellasy) . (22)

So far most treatments of spherical power spectra have been con-
fined to linear theory, limiting their use in real data where one has
to deal with e.g. Fingers-of-God (Percival et al. 2004) and non-
linearities in the galaxy field (Pratten & Munshi 2013). This was
due to the very complicated expression the spherical coefficients of
the density fields take beyond linear theory.

However, we know from the 3D Cartesian analysis that at large
scales most of the power is confined in a few multipoles, L, and
thus the complex structure of the MAPS or angular power spectra
must predominantly result from projection effects. This is similar
to what happens with the CMB where only a few multipoles are
relevant at recombination and the rich structure we observe today
is due to LOS projection (Dodelson 2003). Let us try to see this
directly from equations (21) and (22). Inverting equation (21)

|
Co(s1,5) = 27r/ d(cos0) &(sy, s2)Le(cosh), (23)
-1

we see that if we approximate L (cos 6) with Jy(£6), valid for 6 <
1, then the Cy(sy, s7) is the LOS Fourier transform of P (k) with £
=k, d (Appendix A).
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In general the MAPS can be expressed as an integral over the
power spectrum. The full expression’ using the bisector definition
of d is extremely cumbersome, but it simplifies dramatically if we
instead use the end-point definition. Expanding the exponentials
using the Rayleigh expansion of the plane wave and combining
products of spherical harmonics using the Gaunt integral one can
show

dQy .
2 / d(cos8) L(cos ) / Tke’k'<S1—S2>LL(k-§l)
T

2
e[ A £ L\. .
=d4m Y @h+Di* @<0 0 O) Jillesn)jelkesy). (24
s
Thus our C; become

&$r .
Ci(sy, $0) = Zn/d(cose)[lg(COSQ)/76""(“_”)
(2m)?

x Y Pk, s)Lo(k - 5) 25)

L

¢ k2dk ) )

=S"F, | S Pukos)jatksy) jekss), 6)

T 22

where
2
e __ a—L L L A

Fy, =4n2r 4+ 1)i (0 0 0) . 27

The triangle condition of the 3j-coefficients makes the sum over A
finite, as [ — £| < L.

Note that we did not have to assume any specific model for
the power spectrum: equation (25) can be used to describe any
model of the angular correlation function. The final expression is
remarkably simple and shows how the structure at £ > L is only due
to projection along the direction to the two galaxies. The expression
for the angular power spectrum can be written in an even simpler
form,

Fl
Colkr k)= Tj:/szds Prka, 5) je(kys) ju(kas) (28)
L

and expanding P (k,, s) in powers of (k,s) (Reimberg et al. 2016;
Castorina & White 2017)

Fiy 5 I
Colki ko) = > 2P o) / s7ds (kas) ™" je(ki$) jp.(k2s)

Lin

= > M k) P k). 9

Lin

Hence, the sFB power spectrum is the product of the (3D) multipoles
of the power spectrum times a geometric term that can be expressed”
in terms of hypergeometric functions and does not depend on any
cosmological parameters. Note for small L and large ¢ the F},
are non-zero only for A & ¢ and the integral is highly peaked
around k; = k,.> The above expressions provide an exhaustive
description of the two point statistics for redshift surveys in spherical
coordinates, completing the description of Liu, Zhang & Parsons

'One proceeds by using the addition theorem and Rayleigh expansion of
the plane wave, then expands the Yy, using solid harmonics as in appendix
E of Castorina & White (2017), and simplifies the angular integrals using
3j-coefficients.

2The relevant expression is on p. 401 (section 13.4) of Watson (1966).
3For € # ). and n = 0 the off-diagonal terms in equation (29) decay as
min[(ki/k)*, (ka/k1)*] when € and X are large.
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(2016) for Intensity Mapping surveys and of Passaglia, Manzotti
& Dodelson (2017) for imaging surveys, neither of which included
RSD. The other main issue in spherical analysis is the estimate of the
covariance matrix. Since ¢ can easily go up to a few hundreds and the
power spectrum is estimated in tens of k-bins, the dimensionality of
the covariance makes the problem very quickly intractable (Percival
et al. 2004). Equations (25) and (29) offer a simple solution to this
problem, as the C, and the P, are linearly related to each other by
a matrix that can be ‘inverted’ to find an optimal data compression.
Given a survey geometry and galaxy selection function one needs to
measure only the ¢, k;, k, that maximize the signal and at the same
time keep the dimensionality of the problem low enough. We finally
point out that equation (29) provides an elegant and unbiased way
to remove systematics in the plane of the sky, e.g. fibre collision
in spectroscopic instruments (Hahn et al. 2017), that by definition
affect only the low-k, modes. The wavenumbers appearing on the
left-hand side are indeed radial Fourier modes, whereas the ones of
the right-hand side are 3D Cartesian modes.

3 ZELDOVICH APPROXIMATION

Almost all prior work on wide-angle effects used an Eulerian, linear
theory description of the two-point function. Instead, we shall base
our analytic model of wide-angle effects on first-order Lagrangian
perturbation theory — the ZA (Zel’dovich 1970). Despite the more
than 40 yr since it was first introduced, the ZA still provides one
of our most accurate models for the distribution of cosmological
objects. It has been applied to understanding the impact of non-
linearities on BAO (Noh, White & Padmanabhan 2009; Padman-
abhan, White & Cohn 2009; McCullagh & Szalay 2012; Tassev &
Zaldarriaga 2012b), to reconstruction (Tassev & Zaldarriaga 2012a;
White 2015), as the basis of an effective field theory (Porto, Sena-
tore & Zaldarriaga 2014; Vlah, White & Aviles 2015) and as a rapid
means of simulating large-scale structure (Doroshkevich et al. 1980;
Coles, Melott & Shandarin 1993; Pauls & Melott 1995; Sahni &
Coles 1995; Hidding, Shandarin & van de Weygaert 2014; Chuang
et al. 2015). The ZA can easily incorporate wide-angle effects, and
is quite accurate on the large scales where such effects are most
important. For a pedagogical introduction to the ZA and the ana-
Iytic calculation of the correlation function see e.g. Carlson, Reid
& White (2013), White (2014), Tassev (2014b).

Following the usual approach we denote the Lagrangian position
of a fluid element by ¢, and its final (Eulerian) position by x =
q + ¥(q,t). This serves to define the displacement, ¥. To lowest
order in perturbation theory, i.e. the ZA,

3 .
W(g) = (;Tk)g et %&(k)- (30)
Within the ZA the transition to redshift space is straightforward,
and indeed this is one of the major advantages of Lagrangian per-
turbation theory in large-scale structure. For an object observed in
direction § the redshift-space displacement is related to the real-
space displacement by

Y(g) —> R¥(q) = (14 f35)¥(g). (€Y

For our purposes the important point to note is that § is g-
independent. This means that it is fixed in the integrals over d*q
that define the density field and correlation function (see below)
which makes the inclusion of wide-angle effects within the ZA very
straightforward (Tassev 2014b).

If we make the standard definitions that A = W(q,) — ¥(q,)
where ¢ =¢q1—¢q> and A; = (AA;) = X(q)8i; + Y(9)q:i4;.
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Ui = (Aidr) = U(g)qi, & = (6152) then

X(q) = / %P(k) E —2j‘,((';q)}, (32)
Y(g) = / %P(k) [—2jo(kq)+6jllil;‘“}, (33)
vig = | T PE Tk kg1, (34)
ta = | S P [Ritkg)] (35)

where P(k) is the linear theory power spectrum, and the redshift-
space correlation function can be written as

; &P -~
14+ S(A)(S’ d, p) = /dSq (271)3 eiki(@=s)i o=(1/DkiAs,ijk;

x [1+2ibikUy; + bi& + O(P)]

3
- / dg e~ (1/2(q=9)A7 (g =)
(2 )>/2 A1V

x [1—2b1g;U; + big + O(PP)] (36)
where
Ay = % (R1AR; + RyARy), 37
g = A (a5 —55). (38)
Us,i = ! ( Lij + RZ,ij) U;. (39)

2

In the above we have included biased tracers to lowest order in the
Lagrangian bias, following Matsubara (2008). This will be sufficient
for our purposes (see Matsubara 2008; Carlson et al. 2013; White
2014; Vlah, Castorina & White 2016 for the higher order terms).
The large scale, Eulerian bias is simply related to our Lagrangian
bias parameter (b;) through b =1 + b;.

At this point we have two routes forward, and we shall discuss
them in the next two subsections. Section 3.1 presents a numerical
calculation, whereas in Section 3.2 we will expand the Zeldovich
calculation to O(x?) to make contact with the linear theory solution.

3.1 Numerical evaluation

The first approach is to simply evaluate the integral in equation
(36) numerically. We start by considering the bisector definition of
d. Placing d along the 2-axis and orienting §; and §, in the x—z
plane the 3D integral is well behaved and converges rapidly for any
triangle configuration. A further numerical integral over p at fixed
s and d then gives & (s, d). We show this in Fig. 2 for £ =0, 2, and 4
for several values of d. In order to isolate the wide-angle behaviour
from the evolving dynamics we have assumed (unphysically) a fixed
ACDM model at z = 0.25 for each of these situations and set b,
= 0. In reality increasing depth (d) would also change the mean
redshift, the growth and the degree of non-linearity. These effects
can all be accounted for, on large scales, by the ZA. Figs 3 and 4
show the ratio of the correction terms to the ‘plane-parallel’ limit
(equation 9), and compares the corrections in linear theory and the
ZA. For the monopole and the quadrupole our results are close to
linear theory (presented in Castorina & White 2017), but for £ = 4

50: =T -
[ g ~~“~~
[ ’ [N
o [ e ....---========
= 40p 3
SN SN
& [/
2 30 L/ — d =500 Mpc/h
S i "\ — d =1000 Mpc/h
!itl\ 20k KX —d-o oo ]
oL R =0 -
\.:q : / = 2 ’..0 ' ente LJ
~ 10 L ——— —_— - ...-" ’ "“ |
.. t=4 . 1
____________________ ------'f'l-l-l-l!
0 foms" ) ) ) . | “‘o L]
20 40 60 80 100 120 140

s [Mpc/h]

Figure 2. The multipoles of the redshift-space, matter correlation function
(b = 1), computed from equation (36), with the bisector definition of the
LOS, for d = 500 ="' Mpc (blue), 12~ 'Gpe (red) and 102~" Gpc (green).
The differences are barely visible on this linear scale and the 10/2~! Gpc
lines form an excellent approximation to the plane-parallel or small-angle
limit (d — 00).

we find a bigger difference on BAO scales with respect to the linear
case.

A comparison of Figs 3 and 4 shows the influence of the bias
terms. Since we are treating the bias perturbatively, following Mat-
subara (2008), we expect this calculation to be most accurate at
large scales. In linear theory and in plane-parallel approximation,
biasing boils down to replacing f — f/b and ééo) — bzée(o) , which
implies that bias suppresses redshift-space effects for £ = 0 and 2
but not for ¢ = 4. Fig. 4 shows the ratio between the multipoles of
the correlation function in linear theory and the ZA for a tracer with
b =1+ b, = 2 to the ones in the plane-parallel limit. As expected,
for £ = 0 the wide-angle contributions are suppressed compared to
the dark matter only case, but they are enhanced for ¢ = 4 where
they can reach the 10 percent level near the acoustic scale (s ~
110 A~ Mpc).

It is clear from equation (36) that the wide-angle effects enter
the bias terms differently than they do the matter terms. To further
investigate the effect of biasing on wide-angle RSD in the ZA,
Fig. 5 compares the full result for haloes and matter for ¢ = 0,
2, 4. As discussed above, in the plane-parallel approximation the
hexadecapole of haloes and matter is the same in linear theory and
we therefore expect it to be more sensitive to wide-angle effects.
This is precisely what Fig. 5 shows.

Next we turn to the end-point approximation. Here, we hold s, and
s fixed and integrate over w; to define the multipoles &,(s, s1). This
is no more difficult than the bisector case, numerically, since we can
compute £(s1, §,) with ease for any triangle configuration. However,
since this breaks the symmetry inherent in the bisector definition
the corrections are larger. This is shown in Fig. 6 where we see the
corrections becoming tens of percent at large scales. In the end-
point approximation we also generate odd multipoles, comparable
in size with £ = 0, 4 multipoles above s = 120 A~ Mpc (Fig. 7).
The odd terms result from our choice of coordinate system, and
therefore are not real physical effects, and should not be confused
with relativistic dipoles present in the cross-correlation between two
different tracers (Bonvin, Hui & Gaztafiaga 2014; IrSi¢, Di Dio &
Viel 2016; Lepori et al. 2017). Nevertheless they should be taken
into account in the search for GR effects. The trends seen in Figs 6
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107y — Z4

— linear theory

10—2 L

€0(s)/E0"P (5)—1]

—— d =500 Mpc/h
‘s —-—- d=1000 Mpc/h

107

101+ 1

102

£2(s)/&2PP (5)-1]
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107 ¢

102

Ea(s)/E47P (s)—1]

1073
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s [Mpc/h]

Figure 3. The ratio of the multipoles of the redshift-space, matter correla-
tion function (b; = 0 or b = 1) for d = 500 2~! Mpc (solid) and 1 ~~! Gpc
(dashed) to the same multipoles in the plane-parallel approximation (equa-
tion 9). The blue lines show the ZA (equation 36) while the red lines show
linear theory (from Castorina & White 2017).

and 7 can be explained by expanding our expressions in powers of
x, as we shall do in the next section.

3.2 Small angle expansion

The second route is to expand the Zeldovich expression in equation
(36) in powers of x and look at the correction terms analytically in
order to gauge their structure. This is useful since it allows us to
better understand the differences with linear theory and in which
limits the latter is recovered. Again let us begin with the expressions
when d is taken to be the angle bisector. To this end, let us write

Ry = (14 f5:82); (40)
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Figure 4. Same as Fig. 3 but now for tracers with linear bias b = 2 (i.e. b;
=1).

_ (1 L - [d—ts]> @1
S ij
.n wn o diS 4 di
= (1+£4d),, + fx |ndsd; - %
fxr o A o~ 2 ~ A
+ e [8i8) — udid; — p3;d;i + 2u* — Ddid;]
+0(xY) (42)
=D ¥Ry, 43)

n

where we have used s = d? — 2tdsp + t2s? = d*(1 — 2txp +
t>x?) and the expressions in Section 2. Similarly

Ry =0+ f5i8); (44
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Figure 5. Comparison between the size of the wide-angle terms (in the ZA)
for dark matter (red) and tracers with b = 2 (blue).

n o di§ S
=(1 +fdd)l./. — fx {Md,-d,- — %

fx2 A o~ oA 5 N
+T [S,'Sj — [LS,'dj — /Ldel‘ +(2/L — 1)d,dj]

+ 0. (45)

Note that R{}’ = R{"), = —R}!); while R{?), = RY);. Since A; is
symmetric, we see that the O(x) terms in A vanish* (as we expect;
Szalay et al. 1998; Reimberg et al. 2016; Castorina & White 2017)

and we are left with

Asij = Asoij + X[ RO A R + 2R\ A RO+ -+ (46)

im nj

4A similar cancellation of the O(x) terms occurs in Uy, i.

747

where we have used R’ = R\ for n = 0 and 2. Note the x>
correction only has support for 1%, ', and ©?, but this couples to
the existing u-dependence of the x” terms to create a richer structure.
Again it is important to note that in the d*¢ integral defining 1 + &
the values of f; x, u, d , and §; are constant.

To continue with the approximations, in order to gain some an-
alytic intuition for the wide-angle effects, let us follow Matsubara
(2008) and decompose A;; = 2[228,-] + &;i(q@)] where we treat &;; as
small. This is not optimal on smaller scales (Carlson et al. 2013),
but will suffice to gain intuition on very large scales where the wide-
angle effects are largest. In the same spirit, we have also dropped
the term in equation (36) going as U;U;, which is O(PLZ).

Starting from our expression for the correlation function, equation
(36), we can pull the g-independent piece of exp [ — (1/2)k;A;, iik;]
out of the integral. The plane-parallel term is
DO — exp [—Ezk;R@R(O?k ,} (47)

m mj

=exp [—K°2(1 + fIf +21up)] . (48)

where jix = k - d. This agrees with the form derived in Matsubara
(2008) and can be rewritten as

0 252 _ 1252
DV = exp [k} — k1 7] (49)

if kf_ =k — p.,%), k, =kug, ¥, = ¥,and ¥, = (1 + HX. This
term is responsible for the broadening of the BAO peak in the
correlation function. The O(x?) correction is

1+ x2D? = exp [—xZE% (RF”R(“ + 2R§,‘?R§5>) ki + - }

in “tnj

(50)
2 r2
~ 14 %lczzz[v2 — 2y + ]
2
- %1922 [V =2 — fulug +Qu* — DA + fui]
(51)
2
=1+ %1822 [ui (1 + %f -2+ f];ﬁ)
1
+ v — f) = v? <1 - Ef)] (52)
RN ey [—2(1 —u)+ fA+Tu))
2 6
2, 2—f
+ LiGOLI IR = f) = L2 + 1) = La(v)
(53)

where we have defined v = k& - §. Note that this suggests that the
broadening is opening angle dependent but that the correction is
generally small.

Continue by expanding &;(g) out of the exponential and doing
the d*q integral. The lowest order term regains the usual expression
(Kaiser 1987; Matsubara 2008)

Ok, Pk) =K P(k) (54

mn

kiRk; kR

=(1+ fup)?* Pk, (55)

while the first correction for the matter is x?P times

~ ~ 2 ~ ~ ~ ~
KO =— (k,« R§_;>kj) + 2k ROk, kRO, (56)
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Figure 6. Same as Fig. 3 but now using the end-point approximation d = §; instead of the bisector. The left-hand panels (for £ = 0, 2, and 4 from top to
bottom) show the matter predictions (b = 1) while the right-hand panels show the haloes with b = 2.

= —f7u; Guepe — vy
FO D x [V = 2+ @ - D)

1
~L{5 0= - s

— LywLiw) 2 (1= fui)

4 2
+ Cz(ﬂ)guz + L2031 - fui]} . (57

The bias terms are enumerated in Appendix B. It is however impor-
tant to note that the leading wide-angle correction to the bias terms,
equation (B4), is different than the one described above as it does

2
not receive a contribution o< (k,» Rf})k j) . Our expression, for the

MNRAS 479, 741-752 (2018)

matter, is thus

() &’k ik-s74(0)
EV(s,d, p) = we DV (k, )

x Pk) [K? + x*KP] (1+x°D?). (58)

The O(x) term is simply the normal Kaiser expression with P —
DO P. The O(x?) terms give the leading wide-angle correction.
Before we study the O(x?) terms let us quickly review the calcu-
lation to lowest order:
S N
5Qe+1) | ——-—e" L(5-d
&3 ( )/ Qn ) 4r (8 - d)

< DO, i) (1+ fu2)® Pk) (59)

2
_ 0+ 1t / ox POitks)
T

dQ
x / LDk ) (1 + f12) (60)

6102 Aepy 90 uo Jasn Asjaxiag ‘elulole) jo Alsiaaiun Aq L0vEE0S/ L 12/ 1L/6.710esqe-8|o1e/Seluw/wod dno-olwapeoe//:sdny woJl papeojumoq



Wide-angle effects in the Zeldovich approximation 749

50f
) — d =500 Mpc/h
S ——— d = 1000 Mpc/h
2 I
= 30
2 |
< 20
M L
f\lh :
~ 10}
O> 1 1 1 1 1
20 40 60 80 100 120 140
s [Mpc/h]

Figure 7. The dipole and octupole of the matter correlation function in the
case of the end-point approximation for s; = 5004~ Mpc and 14~ 'Gpc,
compared to the even multipoles in the flat-sky limit.

where p; = k-d. In the absence of the damping term, the d€2;
integral gives the usual multipoles ¢ = 0, 2, and 4 and one recovers
equation (9). The anisotropic damping also populates £ > 4. While
the results of the d€2; integral can be written in closed form, they are
not illuminating and so will be omitted (see e.g. Peacock & Dodds
1994, for further discussion).

Now we consider the O(x?) terms. For these terms &, has § de-
pendence not just through exp[ik - s] and £¢(5 - d) but also through
the 1 and v terms in equation (58). However, the terms are at most
quadratic in these variables. The O(x?) contribution to &, is

&k d§ .
2 1 2 ik-s a.
& 2 Q0+ 1)x Q) an e*S L5 - d)
xDV(k, i) P(k) {KODP + K} . (61)

Upon performing the integral over d§ using the expressions in
Appendix C, the contribution is of the form

k2dk
& > (2 + 1)x2/
272

dQ
x / o Dk, ), 62)

where the C{ are polynomials in g, We give the general expressions
for C¢ in Appendix C. As an example

=T (-p+ i - ud)
+ lfzk2>:2(1+fuk) (ISf +6lu; + f —2). (63)

The polynomials for high ¢ are long and we shall not reproduce
them here. Similar to the plane-parallel limit in equation (60) the
angular integral in equation (62) can be evaluated analytically, but
the resulting expression is not very illuminating. The important
point to note is that in general &, now contains contributions j (ks)
for L # ¢, as was the case for linear theory (see the discussion
in Castorina & White 2017). In fact, in the limit D® — 0 and
D® — 1 we regain the earlier, linear theory, results. This can be
seen as an alternative route to those results, first derived by Szalay
et al. (1998).

Table 1. The coefficients of the additional contributions to &, which are
generated by the use of the end-point approximation (d ~ 8;) as described
in the text.

¢ L=2 L=4
0 x%/5 0

1 —3x/5 0

2 —2x3/7 5x3/7

3 3x1/5 —10x1/9
4 3x2/35 —90x?/77

It is straightforward to convert these’ bisector-based results to
the case where d is approximated by §;, i.e. the end-point approx-
imation. The lowest order terms (equation 60) are unchanged and
for the terms in equation (62), which are already O(x?), we can
simply replace d with s; (i.e. x — x;). The change © — p; mixes
multipoles since

2
Lo) = Loun) + T4/ 1= utLhGu) = T = iDLiu) (64)
through O(x?). This populates the odd ¢. Thus to the wide—angle
bisector terms we must add the terms in Table 1 times &;”. De-
noting the end-point expansion with a tilde, as for PZ")(k) we
have for example &(s) = &(s) + (x?/5)&57 (s) with £o(s) the bi-
sector expression including the O(x?) terms and &7 the plane-
parallel limit. Since &7 < 0, the formulae above explain why in
Fig. 6 the end-point monopole is less affected by wide-angle effects
than the bisector-define monopole. Table 1 explicitly shows that
odd multipoles do not carry any other extra information, as they
are proportional to the multipoles in the plane-parallel limit, e.g.

Ei(s, 1) = —3/5x,E07(s).

3.3 Power spectrum

We can express the expectation value of the Yamamoto estimator for
the power spectrum as an integral over £(s, d, t) and use equation
(58) to study the impact of the wide-angle terms, on large scales and
to O(x?). Using d as the LOS, the Yamamoto estimator is simply
the Hankel transform of our correlation function multipoles:

(Plw) =L+ [ L s e, @ o, d. )

Ay d&°d oo
(2L+1)/ , d3 e ks, k- d)

XD E(s, LG - D) (65)
14
3
= (4m)(—i)" / %szds Julks)EL(s, ) (66)

as in equation (14). The lowest order terms simplify upon using the
completeness relation

§P(k — k). (67)

/ s*ds jo(ks)je(K's) = Zkk,

5The conversions also hold for the linear theory results presented in Casto-
rina & White (2017).
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The ds integral times the Bessel function ‘undoes’ the dk integral
times the Bessel function in equation (60) and

<PLY’(°)(k)> = QL+ )P k)

x / %D«”(k, wOLL) (14 i) (68)
which recovers the expression in Matsubara (2008). Note the well-
known exponential damping of the Zeldovich power spectrum. Ad-
ditional high-k power is generated by contributions which are iso-
lated to small r in configuration space. Various models for this miss-
ing power have been proposed, either heuristic (Eisenstein, Seo &
White 2007; Seo et al. 2008), based on the halo model (Mohammed
& Seljak 2014; Seljak & Vlah 2015) or on effective field theory
(Porto et al. 2014; Vlah et al. 2015, 2016).

At second-order plugging equation (62) into equation (14) does
not further simplify since the integral of j’s of different orders does
not vanish. We are thus left with
31/

3
(lw) s L+ e [ LS5 panOw. )

vV @)
x> Ch(uy) (4m) / s2ds ji(ks)j,(K's). (69)
J

The last integral, over ds, can be expressed analytically using hy-
pergeometric functions, but the final expression does not provide
any further insights.

The fast FFT estimator in equation (20) can be expressed in a
similar form using either the bisector or the end-point as the LOS.
The former has been presented in equation 32 of Castorina & White
(2017), while the latter can be obtained from equations 30 and 31
of Castorina & White (2017) using the mapping in equation (64)
and Table 1.

4 CONCLUSIONS

The physics of electromagnetic emission from moving objects,
which imprints a contribution from the LOS peculiar velocity on
to the observed redshift of extragalactic objects, breaks the trans-
lational invariance of our theories down to a rotational symmetry.
The induced effects, which become important in two-point clus-
tering statistics when the opening angle between the two points
becomes appreciable, go under the name of ‘wide-angle effects’.
Since these effects are largest on large scales, most earlier papers
have assumed Eulerian, linear perturbation theory in their analyses.
In this paper we have shown that wide-angle effects can be easily
handled within the context of Lagrangian perturbation theory, al-
lowing an efficient resummation of the linear displacements which
is particularly important for modelling BAO.

Beyond the plane-parallel approximation the two point function
is most easily expressed in terms of the correlation function or the
MAPS. We developed the relationship between these probes and
showed how the MAPS can be computed beyond linear theory.
We investigated the relationship of these statistics to the multipole
moments of the power spectrum computed with the Yamamoto
estimator, using either the bisector or end-point conventions for the
LOS direction.

We have compared our calculation, numerically and analytically,
to the earlier linear theory calculations. Except near the BAO peak,
where linear theory does a poor job, the size of the corrections for the
¢ = 0 and 2 multipole moments of the correlation function are very
similar in the ZA and in linear theory. For £ = 4 the corrections
predicted in the ZA are larger than the linear theory predictions.

MNRAS 479, 741-752 (2018)

The corrections are significantly larger if the end-point convention
is used to define the LOS than if the bisector approximation is made.

We note that it is relatively straightforward, if tedious, to extend
our analysis to higher order in (Lagrangian) perturbation theory.
This would allow a comparison of the size of the wide-angle terms
to those from second-order dynamics. What is much more difficult
is an extension of this work to schemes such as the streaming
model (e.g. Vlah et al. 2016, and references therein), in which a
fixed LOS is critical to the simplification of the final expressions.
However, on small scales the wide-angle terms are small while
on large scales the corrections to the dynamics are small. This
suggests a perturbative approach where the wide-angle corrections
are computed at low order (as we have done here) and used to correct
the more sophisticated model that is computed in the plane-parallel
approximation.
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APPENDIX A: FLAT-SKY APPROXIMATION
TO THE MAPS

In the main text we discussed the relationship of the MAPS, C, (s,
s2), to the correlation function and power spectrum. If we make
the small-angle, or flat-sky, approximation and define s, = su and

s; =s4/1 — pu? then

Ci(s1,82) =2 /d(cos@) E(s,d, w)Ly(cosH) (A1)

ZZJT/LT)dcT) E(sL, sy, d)Jo(tw), (A2)

where @ = 2sin(f/2) ~ #. Changing arguments to s; — s, >~ s +
O@x*) and 1(s; 4 52) =~ d + O(x?) and writing £ = k. d so & =~
kle we find

dZSJ_ ik s
Co(sy, d) ~ o E(sy, s, d)e™0, (A3)

where we have used the Rayleigh expansion of the plane wave in
cylindrical coordinates and the azimuthal symmetry of the integral.
Thus the MAPS, in the flat-sky limit, is the 2D Fourier transform of
the correlation function. A further Fourier transform (in s,) returns
P (k). Alternatively the MAPS is the LOS Fourier transform of P(k,,,
k J_):

Co(sy, d) = /oo i”z P(k. =¢/d, ky)cos (ks) . (Ad)
0 od

For an alternative derivation, at the level of the fields, see the ap-
pendices of White et al. (1999), Datta et al. (2007), or White &
Padmanabhan (2017).

APPENDIX B: BIAS TERMS

The low-k expansion of the bias terms in equation (36) follows very
similar steps to the one for the matter terms presented in the main
text. The b? term does not carry any extra redshift-space dependence
and therefore is identical to the expansion of &; in equation (55).
The b, piece is also straightforward. Expanding U; ; to quadratic
order in x we get

Uni(q) = RJ'Ui (@) + RPU (9) = US(q) + U (@), (B1)

1 J

which we can then plug back into equation (36). At lowest order,

&k &dp
() iq-s (0) 3 iq-(p—k)
,d, ) =2b ——¢€'?"D d ——e'?7r
sbl (S M) l/(2ﬂ)3e / q/ (271)3e

xk; (5i_,‘ + faia.f) i%PL(P)

&k )
=2b | ——DVe15(1 2Py (k B2
1/(271)3 051+ 12 PL(6) (B2)
and we recover the familiar Kaiser result

Prye, 1) = (01 + bil + £u2)’ Puik) (B3)

upon recalling the large-scale (Eulerian) bias is b = 1 + b;. At
second order

Fh o P o
£2(s.d, ) :2b1x2/(2ﬂ)3e" /d3q/(2n)3e‘”” B

xDV%k (R +DORY) 1% Pu(p)
P

&k
= 2b;x? / (zﬂ)Se’k"PL(k)D(O)

X {g (v2 — 2y + (2;L2 — 1) uf)
+ DO (14 fud)] . (B4)

It is worth pointing out that leading order wide-angle contribution
calculated above differs from the dark matter one in equation (56)
even neglecting the expansion of the damping term. This is a new
feature of the ZA and it explains why the ZA is more different from
linear theory for haloes than it is for dark matter.

APPENDIX C: THE WIDE-ANGLE TERMS

As described in the main text, for the O(x?) terms, £, has § de-
pendence not just through expl[ik - s]and £,(5 - d) but also through
the © and v terms in equation (58). However, these are at most
quadratic in these variables. We rewrite each of the terms using e.g.
v2 = (1/3) + (2/3)L2(v) and uv = L£y()L1(v). The O(x?) terms
which are independent of 1+ and v go through as for the O(x°) terms,
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giving a Hankel transform of order ¢:
T .
P e L8 - d) =1i"ji(ks)Ly(k - d). (&)
T

The other terms are proportional to £,(v), L£,(u), and L£1(v)L ()
and will additionally give Hankel transforms of different orders: L
# {. Using the angular momentum addition theorem for Legendre
polynomials

2
Lol =3 <f)' e ) QL+ DL, ()

L

the Rayleigh expansion of a plane wave

ekt = i+ 1) juks) Lok - §), (C3)
4
and the addition theorem
Loy - i) = Zf—il zmj Yon ()Y, (R2), (C4)
one can show
/ g e* LG d) Ly (5 k)
_ ZL: (g g g)z(zL it k) Lol - ). (€5)

For each ¢ only a finite number of terms with L # ¢ contribute and
L is even. We also have

4 . A
/ﬁ LS ALy (5-d)
2
= Z (é g f;) QL+ Vit jtks)Lp(k - ), (C6)
3

which also contains only even L. Finally

)

¢ o1 J)Z(L 1 1)2 L
_ QL+ 1)(2J + )i
;<0 o o/\o o o

X jrks)Ly(k - d). (CT

Q>

& . A
/ée’k’sﬁg(f-d)ﬁl G-k)L G-
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The double sum is also finite and contains only even L’s. The O(x?)
contribution to &, is then

&k ds
2 iks ©
(2¢4 1)x @n ) am e Loy(u)D™ P(k)
{Too + TuLi()Li(v) + TooLo(p) + Tozﬁz(V)} (C8)

Sk L
:x2/(ZTPD<°>(k,uk)P(k)ZL:tLJL<kS>

x(20+ 1) {Too&zﬁe(ﬂk)

L1 J\(e 1 J\
+T“Z(2L+1)(2J+1)(O 0 o> (0 0 o> L)

J

2
¢ 2 L
+ T20(2L + 1)<0 0 0) ﬁL(Mk)
L 2 ¢\
+ T(2L + 1)(0 0 0) Ce(ﬂk)} , (C9)
where

Too = % (2 — 201+ flu} —6fuf

+ X1+ ] [(7f+2)uz+f—2}), (C10)
L I S S R T () I
To="1 (03— R5 L4 ful)’ 2+ 1103). (€12)

Tor = % Cl-rm - 1+l 2-71). €13

The triangle condition on the 3j symbols ensures that only a finite
number of terms contribute for any ¢, and it is straightforward
to compute C; of the main text from the above expressions. The
symmetry of the problem ensures that the dipole terms which one
might naively think appear in the sum in fact cancel exactly.

This paper has been typeset from a TX/IATgX file prepared by the author.
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