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ABSTRACT

The contribution of line-of-sight (LOS) peculiar velocities to the observed redshift of objects

breaks the translational symmetry of the underlying theory, modifying the predicted two-point

functions. These ‘wide-angle effects’ have mostly been studied using linear perturbation theory

in the context of the multipoles of the correlation function and power spectrum. In this work,

we present the first calculation of wide-angle terms in the Zeldovich approximation, which is

known to be more accurate than linear theory on scales probed by the next generation of galaxy

surveys. We present the exact result for dark matter and perturbatively biased tracers as well as

the small angle expansion of the configuration- and Fourier-space two-point functions and the

connection to the multifrequency angular power spectrum. We compare different definitions

of the LOS direction and discuss how to translate between them. We show that wide-angle

terms can reach tens of percent of the total signal in a measurement at low redshift in some

approximations, and that a generic feature of wide-angle effects is to slightly shift the Baryon

Acoustic Oscillation scale.

Key words: methods: analytical – cosmology: observations – cosmology: theory.

1 IN T RO D U C T I O N

The clustering of galaxies observed in redshift surveys exhibits

anisotropies due to the contribution of line-of-sight (LOS) veloci-

ties to the measured redshift (Kaiser 1987; Hamilton 1992, 1998;

Peacock 1999; Dodelson 2003). This effect, known as redshift-

space distortions (RSD), enables us to constrain the rate of growth

of large-scale structure (Guzzo et al. 2008; Percival & White 2009),

test theories of modified gravity (Joyce et al. 2015), and probe the

constituents of the Universe such as massive neutrinos (Lesgourgues

& Pastor 2006; Weinberg et al. 2013).

When modelling the two-point statistics of redshift-space cluster-

ing, most analyses make the ‘plane-parallel approximation’, where

the direction of the LOS of each object in a pair is assumed to

be the same. This means the redshifts of the two objects receive

contributions from the same component of the velocity, which in-

creases the symmetry of the system and allows simple Fourier- and

configuration-space analyses. This approximation is usually excel-

lent on small scales and for deep surveys. However, for surveys

which are relatively shallow and probe large scales – or interferom-

eters whose primary beams cover large sky areas – there are ‘wide-

angle’ effects which need to be considered. There is a large literature

examining these effects within linear perturbation theory (Hamilton

1992; Hamilton & Culhane 1996; Zaroubi & Hoffman 1996; Hamil-

� E-mail: ecastorina@berkeley.edu

ton 1998; Szalay, Matsubara & Landy 1998; Szapudi 2004; Datta,

Choudhury & Bharadwaj 2007; Pápai & Szapudi 2008; Shaw &

Lewis 2008; Bonvin & Durrer 2011; Raccanelli et al. 2014; Slepian

& Eisenstein 2015; Yoo & Seljak 2015; Reimberg, Bernardeau &

Pitrou 2016; Castorina & White 2017) but relatively little analytic

work beyond linear theory. In this paper, we present an analysis of

wide-angle effects to lowest order in Lagrangian perturbation the-

ory, i.e. the Zeldovich approximation (ZA; Zel’dovich 1970). The

ZA is quite accurate on large scales, and provides a better modelling

of features in the spectrum such as baryon acoustic oscillations than

does linear theory (Tassev 2014a). It also contains more angular

structure than is present in linear theory, allowing us to examine in

more detail the impact of relaxing the plane-parallel approximation.

A calculation of non-linear wide-angle terms in standard (Eulerian)

perturbation theory beyond linear theory was presented in Shaw &

Lewis (2008). Our analysis differs from theirs in that we resum the

linear displacement fields and include the effect of biasing of haloes

and galaxies with respect to the dark matter field.

In this work, we shall focus on the ‘physical’ wide-angle terms,

arising from the projection of peculiar velocities on to a LOS that

varies across the sky, and their effect on the non-linear dynamics of

the matter and galaxy density fields. It is well known that a survey’s

selection function will introduce extra wide-angle terms (Kaiser

1987; Hamilton & Culhane 1996; Szalay et al. 1998; Castorina &

White 2017). The latter have been studied in linear perturbation

theory, but we are not aware of any formalism to include them
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742 E. Castorina and M. White

Figure 1. The assumed geometry and angles. The two galaxies lie at s1

and s2, with separation vector s = s1 − s2 and enclosed angle θ . We take

the LOS to be parallel to the angle bisector, d, which divides s into parts of

lengths st and s(1 − t). The separation vector, s, makes an angle φ with the

LOS direction, d̂.

beyond this regime. However, if the selection function is slowly

varying with redshift we expect higher order terms to be small.

The outline of the paper is as follows. In Section 2, we review

the formalism of RSD and the wide-angle effects and outline the

geometry of the problem, including the bisector and end-point con-

ventions for defining the LOS. In this section, we also provide an

explicit connection between the 3D correlation function and power

spectrum multipoles and the multifrequency angular power spec-

trum (MAPS), showing explicitly that the angular structure arises

through projection and allowing computation of the MAPS beyond

the plane-parallel approximation. In Section 3, we describe how

to include wide-angle effects into the ZA for both the correlation

function (Tassev 2014b) and the power spectrum. The full result

is evaluated numerically in Section 3.1, whereas in Section 3.2 we

present a small angle expansion and the relation between the ZA,

linear theory and the different conventions for the LOS. We conclude

in Section 4 and discuss some technical details in the appendices.

2 W ID E-ANGLE EFFECTS

The study of ‘wide-angle’ effects in galaxy clustering has a long his-

tory. Here, we briefly review some important background material

and make connections between different conventions for the LOS

and different two-point clustering statistics. We shall adopt the no-

tation and conventions of Castorina & White (2017), which builds

upon the earlier work of Hamilton & Culhane (1996), Zaroubi &

Hoffman (1996), Szalay et al. (1998), and Pápai & Szapudi (2008).

2.1 Geometry

The geometry of a generic redshift-space configuration for the two-

point function is shown in Fig. 1. Three numbers are enough to prop-

erly describe the system, and several possible choice of parametriza-

tion are available. The observer O is looking at two objects at s1

and s2, separated by s = s1 − s2 and the LOS d is defined as the

bisector of the angle θ between s1 and s2. The LOS and the sepa-

ration vector form an angle φ, with cos (φ) ≡ μ. We also define t ∈

[0, 1] through

s1 = d + (1 − t) s, s2 = d − t s. (1)

The clustering is independent of the direction of d and of rotations of

s about d, thus the correlation function can be written as a function

of s, μ, and d. We follow Reimberg et al. (2016) and define a small

parameter x ≡ s/d � 1, as this will prove convenient later.

Castorina & White (2017) show that for the configuration in Fig. 1

d =
s1s2

s1 + s2

(ŝ1 + ŝ2) , d2 =
4s2

1s
2
2

(s1 + s2)2
cos2 θ

2
(2)

and

1 − t =
−1 + μx +

√
1 + μ2x2

2μx
�

1

2
+

μx

4
−

μ3x3

16
+ · · · (3)

Another popular choice of coordinate system, which we call the

end-point parametrization, is to use one of the two galaxies, for

instance s1, as the LOS. This is mostly motivated by the fact that

in this case estimators for the power spectrum multipoles can be

written as simple Fast Fourier Transforms (FFT) (Bianchi et al.

2015; Scoccimarro 2015; Hand et al. 2017). On the other hand one

loses the reflection symmetry around the observer, i.e. the redshift-

space correlation function is not invariant under s1 → −s1. For this

choice of LOS wide-angle effects are much bigger than for the

midpoint or the bisector, and odd multipoles are also generated

(Reimberg et al. 2016; Castorina & White 2017). It is relatively

straightforward to go from one parametrization to another one using

ŝ1 · ŝ2 � 1 −
x2

1

2
(1 − μ2

1) + · · · (4)

μ � μ1 −
x1

2
(1 − μ2

1) + · · · (5)

x � x1

(
1 +

μ1x1

2

)
+ · · · (6)

with μ1 = ŝ · ŝ1 and expansion parameter x1 = s/s1 � 1. We shall

develop the formalism within the bisector convention and discuss

how to transform to the end-point convention where appropriate.

2.2 Correlation function

It is common to express the correlation function as an expansion in

μ via

ξs(s, d, μ) =
∑

�

ξ�(s, d)L�(μ) (7)

=
∑

�n

xnξ
(n)
� (s)L�(μ), (8)

where L� indicates the Legendre polynomial of order � and in

the second line we have expanded ξ �(s, d) in powers of the wide-

angle parameter, x = s/d. The lowest order terms are the familiar
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Wide-angle effects in the Zeldovich approximation 743

‘plane-parallel’ approximation. In linear theory (Hamilton 1992)

ξ
pp

0 (s) = ξ
(0)
0 (s)

(
1 +

2

3
f +

1

5
f 2

)
,

ξ
pp

2 (s) = ξ
(0)
2 (s)

(
−

4

3
f −

4

7
f 2

)
,

ξ
pp

4 (s) = ξ
(0)
4 (s)

(
8

35
f 2

)
, (9)

with

ξ
(0)
� (s) =

∫
k2 dk

2π2
P (k)j�(ks) (10)

and P(k) the linear theory power spectrum.

2.3 Power spectrum

The definition of the redshift-space power spectrum requires some

care if we drop the plane-parallel approximation (Zaroubi & Hoff-

man 1996). What is always well-defined is the ‘local’, i.e. LOS-

dependent, power spectrum (Scoccimarro 2015; Reimberg et al.

2016),

P (k, d) ≡

∫
d3s ξ (s, d)e−ik·s (11)

which can be expanded in multipoles as

P (k, d) =
∑

�

P�(k, d)L�

(
k̂ · d̂

)
(12)

≡
∑

n

(kd)−nP
(n)
� (k)L�

(
k̂ · d̂

)
. (13)

In this case multipoles of the correlation function and of the power

spectrum are still related by a Hankel transform,

P�(k, d) = 4π (−i)�
∫

s2 ds j�(ks) ξ�(s, d) (14)

and thus

P
(n)
� (k) = 4π (−i)�

∫
s2 ds (ks)n ξ

(n)
� (s) j�(ks) (15)

with inverse

ξ
(n)
� (s) =

∫
k2 dk

2π2
(ks)−nP

(n)
� (k) j�(ks). (16)

In observations the most commonly used estimator for the power

spectrum multipoles has been proposed by Yamamoto et al. (2006):

P̂ Y
L (k) ≡

(2L + 1)

V

∫
d�k

4π
d3s1d3s2

× δ(s1)δ(s2)e−ik·s
LL

(
k̂ · d̂

)
, (17)

where V is the survey volume, and the LOS can be either the bisector

or the midpoint. Taking the expectation value of this estimator yields

(Castorina & White 2017)

〈
P̂ Y

L (k)
〉

= (2L + 1)

∫
d3d

V

d�k

4π
P (k, d)LL(k̂ · d̂) (18)

=

∫
d3d

V
PL(k, d). (19)

At lowest order in x the expectation value of P̂ Y
L is simply P

(0)
� (k)

as in equation (15).

For computational reasons the estimator is more commonly de-

fined using the direction to one of the two galaxies as the LOS

P̂ FFT
L (k) ≡

(2L + 1)

V

∫
d�k

4π
d3s1d3s2

× δ(s1)δ(s2)e−ik·s
LL

(
k̂ · ŝ1

)
(20)

which can be evaluated using FFTs (Bianchi et al. 2015; Scocci-

marro 2015; Hand et al. 2017), compared to brute force pair sum

required in equation (17). The ensemble average of the FFT esti-

mator can be related to the multipoles of the theoretical correlation

function defined using the bisector or the end-point as the LOS

following Castorina & White (2017), who have also shown that

wide-angle corrections to equation (20) are in general much bigger

than the one of equation (17). We shall denote the coefficients of

the expansion of the end-point-based P�(k, s1) in powers of (ks1)

as P̃
(n)
� (k) to distinguish them from the bisector-based P

(n)
� (k) of

equation (13).

2.4 Fourier-Bessel expansion and MAPS

A third representation of the two-point function is in terms of the

Fourier-Bessel (sFB) expansion (Fisher, Scharf & Lahav 1994; La-

hav et al. 1994; Heavens & Taylor 1995; Padmanabhan, Tegmark

& Hamilton 2001; Percival et al. 2004; Pratten & Munshi 2013;

Castorina & White 2017) or its configuration-space analogue, the

MAPS (Datta et al. 2007; see also Castorina & White 2017). The

latter has most commonly been used to describe fluctuations mea-

sured by wide-area, interferometric, 21 cm instruments (e.g. Shaw

et al. 2014).

In this formalism, one describes the triangle of Fig. 1 in terms

of the two side lengths (s1 and s2) and the enclosed angle (θ ).

Expanding the θ -dependence in Legendre polynomials

ξ (s1, s2) =

∞∑

�=0

2� + 1

4π
C�(s1, s2)L�(cos θ ) (21)

the coefficients, C�, are the MAPS and their one-dimensional Han-

kel transform along s1 and s2 the angular power spectra

C�(k1, k2) =

∫
s2

1 ds1

∫
s2

2 ds2 C�(s1, s2)j�(k1s1)j�(k2s2) . (22)

So far most treatments of spherical power spectra have been con-

fined to linear theory, limiting their use in real data where one has

to deal with e.g. Fingers-of-God (Percival et al. 2004) and non-

linearities in the galaxy field (Pratten & Munshi 2013). This was

due to the very complicated expression the spherical coefficients of

the density fields take beyond linear theory.

However, we know from the 3D Cartesian analysis that at large

scales most of the power is confined in a few multipoles, L, and

thus the complex structure of the MAPS or angular power spectra

must predominantly result from projection effects. This is similar

to what happens with the CMB where only a few multipoles are

relevant at recombination and the rich structure we observe today

is due to LOS projection (Dodelson 2003). Let us try to see this

directly from equations (21) and (22). Inverting equation (21)

C�(s1, s2) = 2π

∫ 1

−1

d(cos θ ) ξ (s1, s2)L�(cos θ ), (23)

we see that if we approximate L�(cos θ ) with J0(�θ ), valid for θ �

1, then the C�(s1, s2) is the LOS Fourier transform of P (k) with �

= k⊥d (Appendix A).

MNRAS 479, 741–752 (2018)
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744 E. Castorina and M. White

In general the MAPS can be expressed as an integral over the

power spectrum. The full expression1 using the bisector definition

of d is extremely cumbersome, but it simplifies dramatically if we

instead use the end-point definition. Expanding the exponentials

using the Rayleigh expansion of the plane wave and combining

products of spherical harmonics using the Gaunt integral one can

show

2π

∫
d(cos θ ) L�(cos θ )

∫
d�k

4π
eik·(s1−s2)

LL(k̂ · ŝ1)

= 4π
∑

λ

(2λ + 1)iλ−�

(
λ � L

0 0 0

)2

jλ(ks1)j�(ks2). (24)

Thus our C� become

C�(s1, s2) = 2π

∫
d(cos θ )L�(cos θ )

∫
d3k

(2π )3
eik·(s1−s2)

×
∑

L

PL(k, s1)LL(k̂ · ŝ1) (25)

=
∑

Lλ

F �
Lλ

∫
k2dk

2π2
PL(k, s1)jλ(ks1)j�(ks2), (26)

where

F �
Lλ = 4π (2λ + 1)iλ−�

(
� L λ

0 0 0

)2

. (27)

The triangle condition of the 3j-coefficients makes the sum over λ

finite, as |λ − �| ≤ L.

Note that we did not have to assume any specific model for

the power spectrum: equation (25) can be used to describe any

model of the angular correlation function. The final expression is

remarkably simple and shows how the structure at � > L is only due

to projection along the direction to the two galaxies. The expression

for the angular power spectrum can be written in an even simpler

form,

C�(k1, k2) =
∑

Lλ

F �
Lλ

4π

∫
s2ds PL(k2, s)j�(k1s)jλ(k2s) (28)

and expanding PL(k2, s) in powers of (k2s) (Reimberg et al. 2016;

Castorina & White 2017)

C�(k1, k2) =
∑

Lλn

F �
Lλ

4π
P̃

(n)
L (k2)

∫
s2ds (k2s)−nj�(k1s)jλ(k2s)

≡
∑

Lλn

M
(n)
�,L,λ(k1, k2)P̃

(n)
L (k2). (29)

Hence, the sFB power spectrum is the product of the (3D) multipoles

of the power spectrum times a geometric term that can be expressed2

in terms of hypergeometric functions and does not depend on any

cosmological parameters. Note for small L and large � the F �
Lλ

are non-zero only for λ ≈ � and the integral is highly peaked

around k1 = k2.3 The above expressions provide an exhaustive

description of the two point statistics for redshift surveys in spherical

coordinates, completing the description of Liu, Zhang & Parsons

1One proceeds by using the addition theorem and Rayleigh expansion of

the plane wave, then expands the Y�m using solid harmonics as in appendix

E of Castorina & White (2017), and simplifies the angular integrals using

3j-coefficients.
2The relevant expression is on p. 401 (section 13.4) of Watson (1966).
3For � �= λ and n = 0 the off-diagonal terms in equation (29) decay as

min[(k1/k2)�, (k2/k1)λ] when � and λ are large.

(2016) for Intensity Mapping surveys and of Passaglia, Manzotti

& Dodelson (2017) for imaging surveys, neither of which included

RSD. The other main issue in spherical analysis is the estimate of the

covariance matrix. Since � can easily go up to a few hundreds and the

power spectrum is estimated in tens of k-bins, the dimensionality of

the covariance makes the problem very quickly intractable (Percival

et al. 2004). Equations (25) and (29) offer a simple solution to this

problem, as the C� and the PL are linearly related to each other by

a matrix that can be ‘inverted’ to find an optimal data compression.

Given a survey geometry and galaxy selection function one needs to

measure only the �, k1, k2 that maximize the signal and at the same

time keep the dimensionality of the problem low enough. We finally

point out that equation (29) provides an elegant and unbiased way

to remove systematics in the plane of the sky, e.g. fibre collision

in spectroscopic instruments (Hahn et al. 2017), that by definition

affect only the low-k� modes. The wavenumbers appearing on the

left-hand side are indeed radial Fourier modes, whereas the ones of

the right-hand side are 3D Cartesian modes.

3 ZELDOVI CH APPROX I MATI ON

Almost all prior work on wide-angle effects used an Eulerian, linear

theory description of the two-point function. Instead, we shall base

our analytic model of wide-angle effects on first-order Lagrangian

perturbation theory – the ZA (Zel’dovich 1970). Despite the more

than 40 yr since it was first introduced, the ZA still provides one

of our most accurate models for the distribution of cosmological

objects. It has been applied to understanding the impact of non-

linearities on BAO (Noh, White & Padmanabhan 2009; Padman-

abhan, White & Cohn 2009; McCullagh & Szalay 2012; Tassev &

Zaldarriaga 2012b), to reconstruction (Tassev & Zaldarriaga 2012a;

White 2015), as the basis of an effective field theory (Porto, Sena-

tore & Zaldarriaga 2014; Vlah, White & Aviles 2015) and as a rapid

means of simulating large-scale structure (Doroshkevich et al. 1980;

Coles, Melott & Shandarin 1993; Pauls & Melott 1995; Sahni &

Coles 1995; Hidding, Shandarin & van de Weygaert 2014; Chuang

et al. 2015). The ZA can easily incorporate wide-angle effects, and

is quite accurate on the large scales where such effects are most

important. For a pedagogical introduction to the ZA and the ana-

lytic calculation of the correlation function see e.g. Carlson, Reid

& White (2013), White (2014), Tassev (2014b).

Following the usual approach we denote the Lagrangian position

of a fluid element by q, and its final (Eulerian) position by x =

q + �(q, t). This serves to define the displacement, �. To lowest

order in perturbation theory, i.e. the ZA,

�(q) =

∫
d3k

(2π )3
eik·q ik

k2
δL(k). (30)

Within the ZA the transition to redshift space is straightforward,

and indeed this is one of the major advantages of Lagrangian per-

turbation theory in large-scale structure. For an object observed in

direction ŝ the redshift-space displacement is related to the real-

space displacement by

�(q) → R�(q) = (1 + f ŝŝ) �(q). (31)

For our purposes the important point to note is that ŝ is q-

independent. This means that it is fixed in the integrals over d3q

that define the density field and correlation function (see below)

which makes the inclusion of wide-angle effects within the ZA very

straightforward (Tassev 2014b).

If we make the standard definitions that � = �(q1) − �(q2)

where q = q1 − q2 and Aij = 〈�i�j 〉 = X(q)δij + Y (q)q̂i q̂j ,

MNRAS 479, 741–752 (2018)
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Wide-angle effects in the Zeldovich approximation 745

Ui = 〈�iδ2〉 = U (q)q̂i , ξ = 〈δ1δ2〉 then

X(q) =

∫
dk

2π2
P (k)

[
2

3
− 2

j1(kq)

kq

]
, (32)

Y (q) =

∫
dk

2π2
P (k)

[
−2j0(kq) + 6

j1(kq)

kq

]
, (33)

U (q) =

∫
dk

2π2
P (k) [−k j1(kq)] , (34)

ξ (q) =

∫
dk

2π2
P (k)

[
k2j0(kq)

]
, (35)

where P(k) is the linear theory power spectrum, and the redshift-

space correlation function can be written as

1 + ξ (s)(s, d, μ) =

∫
d3q

d3k

(2π )3
eiki (q−s)i e−(1/2)kiAs,ij kj

×
[
1 + 2ib1kiUs,i + b2

1ξ + O(P 2
L)
]

=

∫
d3q

(2π )3/2|As |1/2
e−(1/2)(q−s)A−1

s (q−s)

×
[
1 − 2b1giUi + b2

1ξ + O(P 2
L)
]
, (36)

where

As =
1

2
(R1AR2 + R2AR1) , (37)

gi = A−1
s,ij

(
qj − sj

)
, (38)

Us,i =
1

2

(
R1,ij + R2,ij

)
Uj . (39)

In the above we have included biased tracers to lowest order in the

Lagrangian bias, following Matsubara (2008). This will be sufficient

for our purposes (see Matsubara 2008; Carlson et al. 2013; White

2014; Vlah, Castorina & White 2016 for the higher order terms).

The large scale, Eulerian bias is simply related to our Lagrangian

bias parameter (b1) through b = 1 + b1.

At this point we have two routes forward, and we shall discuss

them in the next two subsections. Section 3.1 presents a numerical

calculation, whereas in Section 3.2 we will expand the Zeldovich

calculation to O(x2) to make contact with the linear theory solution.

3.1 Numerical evaluation

The first approach is to simply evaluate the integral in equation

(36) numerically. We start by considering the bisector definition of

d̂ . Placing d̂ along the ẑ-axis and orienting ŝ1 and ŝ2 in the x−z

plane the 3D integral is well behaved and converges rapidly for any

triangle configuration. A further numerical integral over μ at fixed

s and d then gives ξ �(s, d). We show this in Fig. 2 for � = 0, 2, and 4

for several values of d. In order to isolate the wide-angle behaviour

from the evolving dynamics we have assumed (unphysically) a fixed

�CDM model at z = 0.25 for each of these situations and set b1

= 0. In reality increasing depth (d) would also change the mean

redshift, the growth and the degree of non-linearity. These effects

can all be accounted for, on large scales, by the ZA. Figs 3 and 4

show the ratio of the correction terms to the ‘plane-parallel’ limit

(equation 9), and compares the corrections in linear theory and the

ZA. For the monopole and the quadrupole our results are close to

linear theory (presented in Castorina & White 2017), but for � = 4

Figure 2. The multipoles of the redshift-space, matter correlation function

(b = 1), computed from equation (36), with the bisector definition of the

LOS, for d = 500 h−1 Mpc (blue), 1 h−1Gpc (red) and 10 h−1 Gpc (green).

The differences are barely visible on this linear scale and the 10 h−1 Gpc

lines form an excellent approximation to the plane-parallel or small-angle

limit (d → ∞).

we find a bigger difference on BAO scales with respect to the linear

case.

A comparison of Figs 3 and 4 shows the influence of the bias

terms. Since we are treating the bias perturbatively, following Mat-

subara (2008), we expect this calculation to be most accurate at

large scales. In linear theory and in plane-parallel approximation,

biasing boils down to replacing f → f/b and ξ
(0)
� → b2ξ

(0)
� , which

implies that bias suppresses redshift-space effects for � = 0 and 2

but not for � = 4. Fig. 4 shows the ratio between the multipoles of

the correlation function in linear theory and the ZA for a tracer with

b = 1 + b1 = 2 to the ones in the plane-parallel limit. As expected,

for � = 0 the wide-angle contributions are suppressed compared to

the dark matter only case, but they are enhanced for � = 4 where

they can reach the 10 per cent level near the acoustic scale (s ∼

110 h−1 Mpc).

It is clear from equation (36) that the wide-angle effects enter

the bias terms differently than they do the matter terms. To further

investigate the effect of biasing on wide-angle RSD in the ZA,

Fig. 5 compares the full result for haloes and matter for � = 0,

2, 4. As discussed above, in the plane-parallel approximation the

hexadecapole of haloes and matter is the same in linear theory and

we therefore expect it to be more sensitive to wide-angle effects.

This is precisely what Fig. 5 shows.

Next we turn to the end-point approximation. Here, we hold s1 and

s fixed and integrate over μ1 to define the multipoles ξ �(s, s1). This

is no more difficult than the bisector case, numerically, since we can

compute ξ (s1, s2) with ease for any triangle configuration. However,

since this breaks the symmetry inherent in the bisector definition

the corrections are larger. This is shown in Fig. 6 where we see the

corrections becoming tens of percent at large scales. In the end-

point approximation we also generate odd multipoles, comparable

in size with � = 0, 4 multipoles above s = 120 h−1 Mpc (Fig. 7).

The odd terms result from our choice of coordinate system, and

therefore are not real physical effects, and should not be confused

with relativistic dipoles present in the cross-correlation between two

different tracers (Bonvin, Hui & Gaztañaga 2014; Iršič, Di Dio &

Viel 2016; Lepori et al. 2017). Nevertheless they should be taken

into account in the search for GR effects. The trends seen in Figs 6
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746 E. Castorina and M. White

Figure 3. The ratio of the multipoles of the redshift-space, matter correla-

tion function (b1 = 0 or b = 1) for d = 500 h−1 Mpc (solid) and 1 h−1 Gpc

(dashed) to the same multipoles in the plane-parallel approximation (equa-

tion 9). The blue lines show the ZA (equation 36) while the red lines show

linear theory (from Castorina & White 2017).

and 7 can be explained by expanding our expressions in powers of

x, as we shall do in the next section.

3.2 Small angle expansion

The second route is to expand the Zeldovich expression in equation

(36) in powers of x and look at the correction terms analytically in

order to gauge their structure. This is useful since it allows us to

better understand the differences with linear theory and in which

limits the latter is recovered. Again let us begin with the expressions

when d̂ is taken to be the angle bisector. To this end, let us write

R2,ij = (1 + f ŝ2ŝ2)ij (40)

Figure 4. Same as Fig. 3 but now for tracers with linear bias b = 2 (i.e. b1

= 1).

=

(
1 +

f

s2
2

[d − t s] [d − t s]

)

ij

(41)

=
(
1 + f d̂d̂

)
ij

+ f x

[
μd̂i d̂j −

d̂i ŝj + d̂j ŝi

2

]

+
f x2

4

[
ŝi ŝj − μŝi d̂j − μŝj d̂i + (2μ2 − 1)d̂i d̂j

]

+O(x3) (42)

≡
∑

n

xnR
(n)
2,ij , (43)

where we have used s2
2 = d2 − 2tdsμ + t2s2 = d2(1 − 2txμ +

t2x2) and the expressions in Section 2. Similarly

R1,ij = (1 + f ŝ1ŝ1)ij (44)
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Wide-angle effects in the Zeldovich approximation 747

Figure 5. Comparison between the size of the wide-angle terms (in the ZA)

for dark matter (red) and tracers with b = 2 (blue).

=
(
1 + f d̂d̂

)
ij

− f x

[
μd̂i d̂j −

d̂i ŝj + d̂j ŝi

2

]

+
f x2

4

[
ŝi ŝj − μŝi d̂j − μŝj d̂i + (2μ2 − 1)d̂i d̂j

]

+O(x3). (45)

Note that R
(1)
ij ≡ R

(1)
1,ij = −R

(1)
2,ij while R

(2)
1,ij = R

(2)
2,ij . Since Aij is

symmetric, we see that the O(x) terms in As vanish4 (as we expect;

Szalay et al. 1998; Reimberg et al. 2016; Castorina & White 2017)

and we are left with

As,ij = A∞,ij + x2[−R
(1)
imAmnR

(1)
nj + 2R

(0)
imAmnR

(2)
nj ] + · · · , (46)

4A similar cancellation of the O(x) terms occurs in Us, i.

where we have used R
(n)
ij = R

(n)
ji for n = 0 and 2. Note the x2

correction only has support for μ0, μ1, and μ2, but this couples to

the existing μ-dependence of the x0 terms to create a richer structure.

Again it is important to note that in the d3q integral defining 1 + ξ

the values of f, x, μ, d̂ , and ŝi are constant.

To continue with the approximations, in order to gain some an-

alytic intuition for the wide-angle effects, let us follow Matsubara

(2008) and decompose Aij = 2[
2δij + ξ ij(q)] where we treat ξ ij as

small. This is not optimal on smaller scales (Carlson et al. 2013),

but will suffice to gain intuition on very large scales where the wide-

angle effects are largest. In the same spirit, we have also dropped

the term in equation (36) going as UiUj, which is O(P 2
L).

Starting from our expression for the correlation function, equation

(36), we can pull the q-independent piece of exp [ − (1/2)kiAs, ijkj]

out of the integral. The plane-parallel term is

D
(0) = exp

[
−
2kiR

(0)
imR

(0)
mjkj

]
(47)

= exp
[
−k2
2(1 + f [f + 2]μ2

k)
]
, (48)

where μk = k̂ · d̂ . This agrees with the form derived in Matsubara

(2008) and can be rewritten as

D
(0) = exp

[
−k2

‖

2
‖ − k2

⊥
2
⊥

]
(49)

if k2
⊥ = k2(1 − μ2

k), k� = kμk, 
⊥ = 
, and 
� = (1 + f)
. This

term is responsible for the broadening of the BAO peak in the

correlation function. The O(x2) correction is

1 + x2
D

(2) = exp
[
−x2
2ki

(
R

(1)
in R

(1)
nj + 2R

(0)
in R

(2)
nj

)
kj + · · ·

]

(50)

� 1 +
x2f 2

4
k2
2[ν2 − 2μμkν + μ2

k]

−
x2f

2
k2
2

[
ν2 − 2μμkν − f μ2μ2

k + (2μ2 − 1)(1 + f )μ2
k

]

(51)

= 1 +
x2f

2
k2
2

[
μ2

k

(
1 +

3

2
f − [2 + f ]μ2

)

+ μμkν(2 − f ) − ν2

(
1 −

1

2
f

)]
(52)

= 1 +
x2f

2
k2
2

[
−2(1 − μ2

k) + f (1 + 7μ2
k)

6

+ L1(μ)L1(ν)μk(2 − f ) − L2(μ)
2

3
μ2

k(2 + f ) − L2(ν)
2 − f

3

]
,

(53)

where we have defined ν = k̂ · ŝ. Note that this suggests that the

broadening is opening angle dependent but that the correction is

generally small.

Continue by expanding ξ ij(q) out of the exponential and doing

the d3q integral. The lowest order term regains the usual expression

(Kaiser 1987; Matsubara 2008)

k̂iR
(0)
ij k̂j k̂mR(0)

mnk̂n P (k) = K
(0) P (k) (54)

= (1 + f μ2
k)2 P (k), (55)

while the first correction for the matter is x2P times

K
(2) ≡ −

(
k̂iR

(1)
ij k̂j

)2

+ 2k̂iR
(0)
ij k̂j k̂mR(2)

mnk̂n (56)

MNRAS 479, 741–752 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

7
9
/1

/7
4
1
/5

0
3
3
4
0
7
 b

y
 U

n
iv

e
rs

ity
 o

f C
a
lifo

rn
ia

, B
e
rk

e
le

y
 u

s
e
r o

n
 0

6
 M

a
y
 2

0
1
9



748 E. Castorina and M. White

Figure 6. Same as Fig. 3 but now using the end-point approximation d̂ ≈ ŝ1 instead of the bisector. The left-hand panels (for � = 0, 2, and 4 from top to

bottom) show the matter predictions (b = 1) while the right-hand panels show the haloes with b = 2.

= −f 2μ2
k (μkμ − ν)2

+ (1 + f μ2
k) ×

f

2

[
ν2 − 2μμkν + (2μ2 − 1)μ2

k

]

=
f

2

{
1

3

(
1 − [1 + f ]μ2

k − 3f μ4
k

)

− L1(μ)L1(ν) 2μk

(
1 − f μ2

k

)

+ L2(μ)
4

3
μ2

k + L2(ν)
2

3
[1 − f μ2

k]

}
. (57)

The bias terms are enumerated in Appendix B. It is however impor-

tant to note that the leading wide-angle correction to the bias terms,

equation (B4), is different than the one described above as it does

not receive a contribution ∝
(
kiR

(1)
ij kj

)2

. Our expression, for the

matter, is thus

ξ (s)(s, d, μ) =

∫
d3k

(2π )3
eik·s

D
(0)(k, μk)

× P (k)
[
K

(0) + x2
K

(2)
] (

1 + x2
D

(2)
)
. (58)

The O(x0) term is simply the normal Kaiser expression with P →

D(0)P . The O(x2) terms give the leading wide-angle correction.

Before we study the O(x2) terms let us quickly review the calcu-

lation to lowest order:

ξ� � (2� + 1)

∫
d3k

(2π )3

d2ŝ

4π
eik·s

L�(ŝ · d̂)

×D
(0)(k, μk)

(
1 + f μ2

k

)2
P (k) (59)

= (2� + 1)i�

∫
k2dk

2π2
P (k)j�(ks)

×

∫
d�k

4π
L�(μk)D(0)(k, μk)

(
1 + f μ2

k

)2
, (60)
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Wide-angle effects in the Zeldovich approximation 749

Figure 7. The dipole and octupole of the matter correlation function in the

case of the end-point approximation for s1 = 500 h−1 Mpc and 1 h−1Gpc,

compared to the even multipoles in the flat-sky limit.

where μk = k̂ · d̂ . In the absence of the damping term, the d�k

integral gives the usual multipoles � = 0, 2, and 4 and one recovers

equation (9). The anisotropic damping also populates � > 4. While

the results of the d�k integral can be written in closed form, they are

not illuminating and so will be omitted (see e.g. Peacock & Dodds

1994, for further discussion).

Now we consider the O(x2) terms. For these terms ξ � has ŝ de-

pendence not just through exp[ik · s] and L�(ŝ · d̂) but also through

the μ and ν terms in equation (58). However, the terms are at most

quadratic in these variables. The O(x2) contribution to ξ � is

ξ� � (2� + 1)x2

∫
d3k

(2π )3

dŝ

4π
eik·s

L�(ŝ · d̂)

×D
(0)(k, μk) P (k)

{
K

(0)
D

(2) + K
(2)
}

. (61)

Upon performing the integral over d2ŝ using the expressions in

Appendix C, the contribution is of the form

ξ� � (2� + 1)x2

∫
k2dk

2π2
P (k)

∑

L

iLjL(ks)

×

∫
d�k

4π
C

�
L(μk)D(0)(k, μk), (62)

where the C�
L are polynomials in μk. We give the general expressions

for C�
L in Appendix C. As an example

C
0
0 =

f

6

(
1 − [3 + f ]μ2

k − f μ4
k

)

+
f

12
k2
2

(
1 + f μ2

k

)2 (
[5f + 6]μ2

k + f − 2
)
. (63)

The polynomials for high � are long and we shall not reproduce

them here. Similar to the plane-parallel limit in equation (60) the

angular integral in equation (62) can be evaluated analytically, but

the resulting expression is not very illuminating. The important

point to note is that in general ξ � now contains contributions jL(ks)

for L �= �, as was the case for linear theory (see the discussion

in Castorina & White 2017). In fact, in the limit D(2) → 0 and

D(0) → 1 we regain the earlier, linear theory, results. This can be

seen as an alternative route to those results, first derived by Szalay

et al. (1998).

Table 1. The coefficients of the additional contributions to ξ � which are

generated by the use of the end-point approximation (d̂ � ŝ1) as described

in the text.

� L = 2 L = 4

0 x2
1/5 0

1 −3x1/5 0

2 −2x2
1/7 5x2

1/7

3 3x1/5 −10x1/9

4 3x2
1/35 −90x2

1/77

It is straightforward to convert these5 bisector-based results to

the case where d̂ is approximated by ŝ1, i.e. the end-point approx-

imation. The lowest order terms (equation 60) are unchanged and

for the terms in equation (62), which are already O(x2), we can

simply replace d with s1 (i.e. x → x1). The change μ → μ1 mixes

multipoles since

L�(μ) = L�(μ1) +
x1

2

√
1 − μ2

1L
1
�(μ1) −

x2
1

8
(1 − μ2

1)L2
�(μ1) (64)

through O(x2
1 ). This populates the odd �. Thus to the wide-angle

bisector terms we must add the terms in Table 1 times ξ
pp

L . De-

noting the end-point expansion with a tilde, as for P̃
(n)
� (k), we

have for example ξ̃0(s) = ξ0(s) + (x2
1/5)ξ

pp

2 (s) with ξ 0(s) the bi-

sector expression including the O(x2) terms and ξ
pp

2 the plane-

parallel limit. Since ξ
pp

2 < 0, the formulae above explain why in

Fig. 6 the end-point monopole is less affected by wide-angle effects

than the bisector-define monopole. Table 1 explicitly shows that

odd multipoles do not carry any other extra information, as they

are proportional to the multipoles in the plane-parallel limit, e.g.

ξ̃1(s, s1) = −3/5x1ξ
pp

2 (s).

3.3 Power spectrum

We can express the expectation value of the Yamamoto estimator for

the power spectrum as an integral over ξ (s, d, μ) and use equation

(58) to study the impact of the wide-angle terms, on large scales and

to O(x2). Using d̂ as the LOS, the Yamamoto estimator is simply

the Hankel transform of our correlation function multipoles:

〈
P Y

L (k)
〉

= (2L + 1)

∫
d�k

4π

d3d

V
d3s e−ik·s

LL(k̂ · d̂)ξ (s, d, μ)

= (2L + 1)

∫
d�k

4π

d3d

V
d3s e−ik·s

LL(k̂ · d̂)

×
∑

�

ξ�(s, d)L�(ŝ · d̂) (65)

= (4π )(−i)L
∫

d3d

V
s2ds jL(ks)ξL(s, d) (66)

as in equation (14). The lowest order terms simplify upon using the

completeness relation

∫
s2 ds j�(ks)j�(k′s) =

π

2kk′
δ(D)(k − k′). (67)

5The conversions also hold for the linear theory results presented in Casto-

rina & White (2017).
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750 E. Castorina and M. White

The ds integral times the Bessel function ‘undoes’ the dk integral

times the Bessel function in equation (60) and
〈
P

Y ,(0)
L (k)

〉
= (2L + 1)P (k)

×

∫
d�k

4π
D

(0)(k, μk)LL(μk)
(
1 + f μ2

k

)2
, (68)

which recovers the expression in Matsubara (2008). Note the well-

known exponential damping of the Zeldovich power spectrum. Ad-

ditional high-k power is generated by contributions which are iso-

lated to small r in configuration space. Various models for this miss-

ing power have been proposed, either heuristic (Eisenstein, Seo &

White 2007; Seo et al. 2008), based on the halo model (Mohammed

& Seljak 2014; Seljak & Vlah 2015) or on effective field theory

(Porto et al. 2014; Vlah et al. 2015, 2016).

At second-order plugging equation (62) into equation (14) does

not further simplify since the integral of j’s of different orders does

not vanish. We are thus left with

〈
P Y

L (k)
〉

� (2L + 1)x2

∫
d3d

V

d3k′

(2π )3
P (k′)D(0)(k′, μ′

k)

×
∑

J

CL
J (μ′

k) (4π )

∫
s2ds jL(ks)jJ (k′s). (69)

The last integral, over ds, can be expressed analytically using hy-

pergeometric functions, but the final expression does not provide

any further insights.

The fast FFT estimator in equation (20) can be expressed in a

similar form using either the bisector or the end-point as the LOS.

The former has been presented in equation 32 of Castorina & White

(2017), while the latter can be obtained from equations 30 and 31

of Castorina & White (2017) using the mapping in equation (64)

and Table 1.

4 C O N C L U S I O N S

The physics of electromagnetic emission from moving objects,

which imprints a contribution from the LOS peculiar velocity on

to the observed redshift of extragalactic objects, breaks the trans-

lational invariance of our theories down to a rotational symmetry.

The induced effects, which become important in two-point clus-

tering statistics when the opening angle between the two points

becomes appreciable, go under the name of ‘wide-angle effects’.

Since these effects are largest on large scales, most earlier papers

have assumed Eulerian, linear perturbation theory in their analyses.

In this paper we have shown that wide-angle effects can be easily

handled within the context of Lagrangian perturbation theory, al-

lowing an efficient resummation of the linear displacements which

is particularly important for modelling BAO.

Beyond the plane-parallel approximation the two point function

is most easily expressed in terms of the correlation function or the

MAPS. We developed the relationship between these probes and

showed how the MAPS can be computed beyond linear theory.

We investigated the relationship of these statistics to the multipole

moments of the power spectrum computed with the Yamamoto

estimator, using either the bisector or end-point conventions for the

LOS direction.

We have compared our calculation, numerically and analytically,

to the earlier linear theory calculations. Except near the BAO peak,

where linear theory does a poor job, the size of the corrections for the

� = 0 and 2 multipole moments of the correlation function are very

similar in the ZA and in linear theory. For � = 4 the corrections

predicted in the ZA are larger than the linear theory predictions.

The corrections are significantly larger if the end-point convention

is used to define the LOS than if the bisector approximation is made.

We note that it is relatively straightforward, if tedious, to extend

our analysis to higher order in (Lagrangian) perturbation theory.

This would allow a comparison of the size of the wide-angle terms

to those from second-order dynamics. What is much more difficult

is an extension of this work to schemes such as the streaming

model (e.g. Vlah et al. 2016, and references therein), in which a

fixed LOS is critical to the simplification of the final expressions.

However, on small scales the wide-angle terms are small while

on large scales the corrections to the dynamics are small. This

suggests a perturbative approach where the wide-angle corrections

are computed at low order (as we have done here) and used to correct

the more sophisticated model that is computed in the plane-parallel

approximation.
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APPENDIX A : FLAT-SKY A PPROX IMATION

TO TH E M A PS

In the main text we discussed the relationship of the MAPS, C�(s1,

s2), to the correlation function and power spectrum. If we make

the small-angle, or flat-sky, approximation and define s� = sμ and

s⊥ = s
√

1 − μ2 then

C�(s1, s2) = 2π

∫
d(cos θ ) ξ (s, d, μ)L�(cos θ ) (A1)

� 2π

∫
ω̃dω̃ ξ (s⊥, s‖, d)J0(�ω̃), (A2)

where ω̃ = 2 sin(θ/2) � θ . Changing arguments to s1 − s2 � s‖ +

O(x3) and 1
2
(s1 + s2) � d + O(x2) and writing � = k⊥d so �ω̃ �

k⊥s⊥ we find

C�(s‖, d) �

∫
d2s⊥

d2
ξ (s‖, s⊥, d)eik⊥·s⊥ , (A3)

where we have used the Rayleigh expansion of the plane wave in

cylindrical coordinates and the azimuthal symmetry of the integral.

Thus the MAPS, in the flat-sky limit, is the 2D Fourier transform of

the correlation function. A further Fourier transform (in s�) returns

P (k). Alternatively the MAPS is the LOS Fourier transform of P(k�,

k⊥):

C�(s‖, d) �

∫ ∞

0

dk‖

π d2
P (k⊥ = �/d, k‖) cos

(
k‖s‖

)
. (A4)

For an alternative derivation, at the level of the fields, see the ap-

pendices of White et al. (1999), Datta et al. (2007), or White &

Padmanabhan (2017).

APPENDI X B: BI AS TERMS

The low-k expansion of the bias terms in equation (36) follows very

similar steps to the one for the matter terms presented in the main

text. The b2
1 term does not carry any extra redshift-space dependence

and therefore is identical to the expansion of ξ ij in equation (55).

The b1 piece is also straightforward. Expanding Us, i to quadratic

order in x we get

Us,i(q) = R
(0)
ij Uj (q) + R

(2)
ij Uj (q) ≡ U

(0)
s,i (q) + U

(2)
s,i (q), (B1)

which we can then plug back into equation (36). At lowest order,

ξ
(0)
b1

(s, d, μ) = 2b1

∫
d3k

(2π )3
eiq·s

D
(0)

∫
d3q

∫
d3p

(2π )3
eiq·( p−k)

×ki

(
δij + f d̂i d̂j

)
i
pj

p2
PL(p)

= 2b1

∫
d3k

(2π )3
D

(0)eiq·s(1 + f μ2
k)PL(k) (B2)

and we recover the familiar Kaiser result

PL,s(k, μk) =
(
[1 + b1] + f μ2

k

)2
PL(k) (B3)

upon recalling the large-scale (Eulerian) bias is b = 1 + b1. At

second order

ξ
(2)
b1

(s, d, μ) = 2b1x
2

∫
d3k

(2π )3
eiq·s

∫
d3q

∫
d3p

(2π )3
eiq·( p−k)

×D
(0)ki

(
R

(2)
ij + D

(2)R
(0)
ij

)
i
pj

p2
PL(p)

= 2b1x
2

∫
d3k

(2π )3
eik·sPL(k)D(0)

×

[
f

4

(
ν2 − 2μμkν +

(
2μ2 − 1

)
μ2

k

)

+ D
(2)

(
1 + f μ2

k

)]
. (B4)

It is worth pointing out that leading order wide-angle contribution

calculated above differs from the dark matter one in equation (56)

even neglecting the expansion of the damping term. This is a new

feature of the ZA and it explains why the ZA is more different from

linear theory for haloes than it is for dark matter.

A P P E N D I X C : TH E W I D E - A N G L E T E R M S

As described in the main text, for the O(x2) terms, ξ � has ŝ de-

pendence not just through exp[ik · s] and L�(ŝ · d̂) but also through

the μ and ν terms in equation (58). However, these are at most

quadratic in these variables. We rewrite each of the terms using e.g.

ν2 = (1/3) + (2/3)L2(ν) and μν = L1(μ)L1(ν). The O(x2) terms

which are independent of μ and ν go through as for theO(x0) terms,
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giving a Hankel transform of order �:

∫
dŝ

4π
eik·s

L�(ŝ · d̂) = i�j�(ks)L�(k̂ · d̂). (C1)

The other terms are proportional to L2(ν), L2(μ), and L1(ν)L1(μ)

and will additionally give Hankel transforms of different orders: L

�= �. Using the angular momentum addition theorem for Legendre

polynomials

L�1
(μ)L�2

(μ) =
∑

L

(
�1 �2 L

0 0 0

)2

(2L + 1)LL(μ), (C2)

the Rayleigh expansion of a plane wave

eik·s =
∑

�

i�(2� + 1)j�(ks)L�(k̂ · ŝ), (C3)

and the addition theorem

L�(n̂1 · n̂2) =
4π

2� + 1

∑

m

Y�m(n̂1)Y �
�m(n̂2), (C4)

one can show
∫

dŝ

4π
eik·s

L�(ŝ · d̂)L2

(
ŝ · k̂

)

=
∑

L

(
L 2 �

0 0 0

)2

(2L + 1)iLjL(ks)L�(k̂ · d̂). (C5)

For each � only a finite number of terms with L �= � contribute and

L is even. We also have
∫

dŝ

4π
eik·s

L�(ŝ · d̂)L2

(
ŝ · d̂

)

=
∑

L

(
L 2 �

0 0 0

)2

(2L + 1)iLjL(ks)LL(k̂ · d̂), (C6)

which also contains only even L. Finally

∫
dŝ

4π
eik·s

L�(ŝ · d̂)L1

(
ŝ · k̂

)
L1

(
ŝ · d̂

)

=
∑

JL

(
� 1 J

0 0 0

)2(
L 1 J

0 0 0

)2

(2L + 1)(2J + 1)iL

×jL(ks)LJ (k̂ · d̂). (C7)

The double sum is also finite and contains only even L’s. The O(x2)

contribution to ξ � is then

(2� + 1)x2

∫
d3k

(2π )3

dŝ

4π
eik·s

L�(μ)D(0) P (k)

{
T00 + T11L1(μ)L1(ν) + T20L2(μ) + T02L2(ν)

}
(C8)

= x2

∫
d3k

(2π )3
D

(0)(k, μk) P (k)
∑

L

iLjL(ks)

×(2� + 1)

{
T00δL�L�(μk)

+ T11

∑

J

(2L + 1)(2J + 1)

(
L 1 J

0 0 0

)2(
� 1 J

0 0 0

)2

LJ (μk)

+ T20(2L + 1)

(
� 2 L

0 0 0

)2

LL(μk)

+ T02(2L + 1)

(
L 2 �

0 0 0

)2

L�(μk)

}
, (C9)

where

T00 =
f

12

(
2 − 2[1 + f ]μ2

k − 6f μ4
k

+ k2
2
[
1 + f μ2

k

]2 [
(7f + 2)μ2

k + f − 2
])

, (C10)

T11 = −
f μk

2

(
2[1 − f μ2

k] − k2
2
[
1 + f μ2

k

]2
[2 − f ]

)
, (C11)

T20 =
f

3

(
2μ2

k − k2
2
[
1 + f μ2

k

]2
[2 + f ]μ2

k

)
, (C12)

T02 =
f

6

(
2
[
1 − f μ2

k

]
− k2
2

[
1 + f μ2

k

]2
[2 − f ]

)
. (C13)

The triangle condition on the 3j symbols ensures that only a finite

number of terms contribute for any �, and it is straightforward

to compute C�
L of the main text from the above expressions. The

symmetry of the problem ensures that the dipole terms which one

might naively think appear in the sum in fact cancel exactly.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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