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ABSTRACT

We present an anisotropic analysis of baryon acoustic oscillation (BAO) signal from the Sloan
Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14
quasar sample. The sample consists of 147 000 quasars distributed over a redshift range
of 0.8 < z < 2.2. We apply the redshift weights technique to the clustering of quasars in
this sample and achieve a 4.6 per cent measurement of the angular distance measurement
Dy at z = 2.2 and Hubble parameter H at z = 0.8. We parametrize the distance—redshift
relation, relative to a fiducial model, as a Taylor series. The coefficients of this expansion are
used to reconstruct the distance—redshift relation and obtain distance and Hubble parameter
measurements at all redshifts within the redshift range of the sample. Reporting the result at
two characteristic redshifts, we determine Dy (z = 1) = 3405 = 305 (r4/rq, ia) Mpc, H(z
1) = 120.7 £ 7.3 (rq.5a/ra) km s~ Mpc ™" and Dy (z =2) = 5325 4 249 (rg/rq,ia) Mpc, H(z
2) = 189.9 +32.9 (rg.fq/rq) km s7! Mpc~!. These measurements are highly correlated. We
assess the outlook of BAO analysis from the final quasar sample by testing the method on a set
of mocks that mimic the noise level in the final sample. We demonstrate on these mocks that
redshift weighting shrinks the measurement error by over 25 per cent on average. We conclude
redshift weighting can bring us closer to the cosmological goal of the final quasar sample.

Key words: dark energy —distance scale —cosmology: observations.

a standard ruler to constrain the distance-redshift relation and the

1 INTRODUCTION

Baryon acoustic oscillations (BAO) in the distribution of the galax-
ies are a powerful tool to map the expansion history of the universe
via a ‘standard ruler’ in galaxy clustering (Peebles & Yu 1970; Sun-
yaev & Zeldovich 1970; Bond & Efstathiou 1987; Hu & Sugiyama
1996; Eisenstein & Hu 1998). Pressure waves prior to recombi-
nation imprint a characteristic scale in the matter clustering at the
radius of the sound horizon r; when the photons and baryons de-
couple shortly after recombination. The BAO manifests itself today
in the two-point matter correlation function as an ‘acoustic peak’
of roughly 150 Mpc. This feature of known length can be used as
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expansion history of the universe.

Different tracers of the underlying dark matter distribution have
been used successfully to measure the peak. These analyses include
galaxies (Alam et al. 2017), the Ly « forest (Delubac et al. 2015;
Bautista et al. 2017), voids (Kitaura et al. 2016), and quasar-Ly o
forest cross correlations (Font-Ribera et al. 2014). Since the first
detection of BAO (Cole et al. 2005; Eisenstein et al. 2005) in the
galaxy distribution over a decade ago, galaxy surveys (Blake et al.
2007; Kazin et al. 2010; Percival et al. 2010; Beutler et al. 2011;
Padmanabhan et al. 2012; Alam et al. 2017) have been driving the
measurement to ever increasing precision. Notably, Baryon Oscilla-
tion Spectroscopic Survey (BOSS; Dawson et al. 2013; Alam et al.
2015) as a part of the Sloan Digital Sky Survey III (SDSS-III; Eisen-
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stein et al. 2011) has enjoyed great success in making cosmological
distance measurements at the per cent level.

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) is a new redshift survey within SDSS-1V (Blan-
ton et al. 2017), the observations for which started in 2014 July. The
photometry was obtained on the 2.5-m Sloan Telescope (Gunn et al.
2006) at the Apache Point Observatory in New Mexico, USA. As
part of this programme, eBOSS observes quasars that are selected
to enable clustering studies. The quasar sample covers a redshift
range of 0.8 < z < 2.2. The final sample is forecasted to produce a
1.6 per cent spherically averaged distance measurement (Zhao et al.
2016). This paper uses the Data Release 14 (DR14) quasar sample
whose targeting and observation details are described in Abolfathi
et al. (2017).

Samples from current and future generations of BAO surveys
such as the eBOSS span a wide redshift range. To improve the res-
olution of distance—redshift relation measurement, traditional BAO
analyses usually split the samples into multiple redshift bins and
analyse the signals in these slices. One drawback of splitting the
sample into multiple redshift bins is that the signal-to-noise ratio in
each bin becomes lower, making the analysis more sensitive to the
tails of the likelihood distribution. Furthermore, signals from galaxy
pairs across disjoint bin boundaries are lost in such an analysis.
While some of these disadvantages may be overcome by properly
accounting for all the covariances among the slices, they add to the
complexity of the analysis. There is also no consensus on how to
optimally split the sample.

To solve the problems faced with binning outlined above, Zhu,
Padmanabhan & White (2015) introduced a set of redshift weights
to compress the BAO information in the redshift direction on to a
small number of ‘weighted correlation functions’. Applying the red-
shift weights to the galaxy pair counts efficiently preserves nearly all
the BAO information in the sample, leading to improved constraints
of the distance—redshift relation parametrized in a simple generic
form over the entire redshift extent of the survey. Zhu et al. (2016)
validated the redshift weighting method on BOSS DR12 galaxy
mock catalogues. Applying redshift weighting provides tighter dis-
tance and Hubble estimates over a sample’s redshift range compared
with the unweighted single-bin analysis. The method has also been
demonstrated to produce robust and unbiased BAO measurements.

This paper applies redshift weighting to the BAO analysis of the
eBOSS DR14 quasar sample. These measurements complement the
analysis in Ata et al. (2017) and provide a first measurement of H(z)
from this sample. The paper has the following structure: Section 2
describes the redshift weights and BAO modelling for the corre-
lation functions. Section 3 describes the data sets and simulations
used in this paper. In Section 4, we present the implemented redshift
weighting algorithm and describe the fitting model. We present our
DR14 data and mock results in Section 5 and show the improve-
ment due to redshift weighting. We share an outlook of the BAO
constraints from the final quasar sample in Section 6. We emphasize
the efficacy of redshift weighting for such a sample. We summarize
our results with a discussion in Section 7.

2 THEORY

2.1 Distance-redshift relation

Following Zhu et al. (2015), we parametrize the distance-redshift
relation, relative to a fiducial cosmology, as a Taylor series. Denot-

ing the comoving distance by y(z), we have

x (2)
xr (2)

1
:a0(1+a1x+§a2x2+--.). ()

In the above parametrization, x Az) labels the fiducial comoving ra-
dial distance and x(z) = x {(z)/x (z0) — 1. Here, z¢ is a pivot redshift
chosen at convenience within the redshift range of the survey.

Calculating the Hubble parameter as the inverse derivative of the
comoving distance, we obtain a relation for H(z) as

Hy(2)
H(z)

Once the parameters o, 1, and higher order coefficients are in-
ferred from the sample, it is straightforward to recover the measured
distance-redshift relation and Hubble parameter from our expan-
sion. When the fiducial cosmology coincides with the true cosmol-
ogy, one will measure oy = 1 with «; and all other higher order
terms equal to zero.

Truncating the expansion to the first order is sufficient for recov-
ering the distance-redshift relation to sub-percent levels over the
redshift range of interest for an assortment of cosmologies. Even
for the rather extreme ), = 0.2 and ), = 0.4 cases, the errors are
less than 0.3 per cent over the redshift range of the eBOSS DR14
quasar sample 0.8 < z < 2.2. We will thus focus on « and «; and
drop all higher order terms in the BAO analysis presented in this
paper.

A simple relation exists between our parametrization and the (e,
€) or (o, o) parametrization (Padmanabhan & White 2008; Xu
et al. 2013) used in recent BAO analyses (Anderson et al. 2014;
Alam et al. 2017). In these analyses, the deformation of the separa-
tion vectors between galaxy pairs are parametrized by an ‘isotropic
dilation” parameter «(z) and an ‘anisotropic warping’ parameter
€(z). In the plane parallel limit, o and € are related to the comoving
distance and Hubble parameter by

3
=y 1+a1+(2a1+a2)x+5a2x2+-~- . 2)

Ho@]"
_ f
“= [ H@X) ] ®
_ Hf(Z)Xf(Z):|]/3_
«@= { H@x @) @

Together with equations (1) and (2), we can write «(z) and €(z) in
terms of «y and «;. Working to linear order in «;, we have

1 4
a@)=op [ 1+ a1 + zayx (&)
3 3
(2) = : + : (6)
€(2) = 30[1 30[1)6.

2.2 Redshift-weighted correlation function

Modelled on Tegmark, Taylor & Heavens (1997) as an extension of
Feldman, Kaiser & Peacock (1994), Zhu et al. (2015) developed the
general formalism for a set of redshift weights for BAO analyses.
The weights optimize the measurement of the parameters «y and
o in our distance-redshift relation parametrization. These weights
can be expressed as the product of two components as dWwy ;.
The first component is the commonly used FKP weights in galaxy
surveys

aw(@) = (r‘an+ 1

2
> dV(z), 7
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where P = 6000 /> Mpc ™ is the power spectrum evaluated at k ~
0.14Mpc™". This expression corresponds to the inverse variance of
the power spectrum in redshift slices.

The second component wy_; is a linear combination of 1 and x.
The specific linear combination depends on the parameter (¢ or
o, indicated by the subscript 7) and the multipoles (monopoles or
quadrupoles, indicated by £) in question. The redshift weights are
generalizations of the FKP weights produced by up-weighting the
regions where the signal is most sensitive to the model parameters,
in addition to balancing the quasars by number densities.

The fact that the weights wy ; are linear combinations of 1 and
x makes it convenient to compute and analyse correlation func-
tions weighted by 1 and x. We construct the ‘1-weighted” and ‘x-
weighted’ correlation functions as

1
fa0 = / AV 4. 2) ®)

1
Eox(r) = ﬁ/dW(Z)X(Z)&,g(r,Z) C)]

where N = f dW. The galaxy correlation function &, , = b’e 0m»
where b is the galaxy bias.

In these models, the integrals are over the redshift range of the
sample. They can be efficiently computed as summations over con-
tributions from discrete redshift slices. We follow the same proce-
dure as in Zhu et al. (2016) and compute the contributions from
redshift slices of width Az = 0.1 within the redshift range [0.8,
2.2]. In each redshift slice, given «¢ and «;, we compute «(z) and
€(z) according to equations (5) and 6 at different redshifts. This
feature is different from traditional analyses in which « and € val-
ues only at the ‘effective’ redshift of the sample are measured. We
will describe how « and € shift and distort the correlation function
in Section 2.3.2. Our model parameters oo and o, which we will
obtain directly from our fits to the measured &, provide constraints
on «(z) and €(z) given our perturbative model.

2.3 Fitting the correlation function

We fit the correlation function with the ESW template given in
Eisenstein, Seo & White (2007a).! We will outline the ESW tem-
plate below and explain its ingredients and how mis-estimate of
the cosmology distorts the correlation function and how to model
it. The fitting model is similar as in recent BOSS BAO analyses
(Anderson et al. 2014; Alam et al. 2017).

2.3.1 BAO modelling

Our template combines the supercluster infall of linear theory
(Kaiser 1987) and the Finger of God (FoG) effect from non-linear
growth of structure.

In Fourier space, we use the following template for the two-
dimensional non-linear power spectrum

Pi(k, 1) = (1 + Bu*)* F(k, jt, ;) Pay (k, p). (10

The (1 + Bu?)? term describes the Kaiser effect (Kaiser 1987) —
distortion caused by coherent infall of objects towards the cluster
centre. Here, B = f/b where f is the cosmological growth rate of

TAlso see White (2014) and Vlah, Castorina & White (2016) for a more
advanced perturbation theory-based template.
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structure and b is the large-scale bias. The F(k, u, ;) factor rep-
resents the FoG effect — elongation in the redshift space galaxy
distribution along the line-of-sight direction given rise by large ran-
dom velocities in inner virialized clusters. We model the FoG factor
(Park et al. 1994; Peacock & Dodds 1994) as

1

Fk, g, ) = ————,
(ke 20) = 0 5

an
where X, denotes the streaming parameter to account for the dis-
persion due to random peculiar velocities within clusters. See White
et al. (2015) for a comprehensive discussion of various streaming
models.

The ‘de-wiggled” power spectrum Py, in the template takes the
form

252 4 12 32
kyZy+ kX7

Py (k).
> + Pow(k)

Pay(k, p) = [Piin(k) — Paw (k)] exp [—

12

In the equation above, P, (k) is the linear power spectrum (Lewis,
Challinor & Lasenby 2000). P, (k) is the no-wiggle power spec-
trum (Eisenstein & Hu 1998) that removes the baryonic wiggles.
In the de-wiggled power spectrum template, the Gaussian damping
term models the degradation of the BAO due to non-linear structure
growth. Redshift space distortions make this damping anisotropic,
which is captured by different parallel and perpendicular stream-
ing scales X, and X, along and across the line of sight. In our
analyses, we fix ©; = 34~ Mpc and & = 6 h~! Mpc. These val-
ues are based on estimates of the streaming parameters (Crocce &
Scoccimarro 2006, 2008; Matsubara 2008) at median redshift of the
sample z = 1.5. We also vary these parameters and find the fitting
result to be insensitive to these choices.

The 2D power spectrum template can be decomposed into mul-
tipole moments as

2041 (!

Poo=—— [ Pl wLdudu, 13)
-1

where L, is the Legendre polynomial. The correlation function mul-

tipoles and power spectrum multipoles are Fourier transform pairs

and can be obtained as

.t kKd logk )
§oi =1 TPZ,I(k)]l(kr)- (14)

2.3.2 Modelling the mis-estimate of cosmology

The difference between the true and fiducial cosmology distorts the
calculated correlation function. We review how the distorted corre-
lation function can be modelled in terms of the ‘isotropic dilation’
and ‘anisotropic warping’ parameters o and €. The approach here
is the same as in section 2.2 of Zhu et al. (2016) and we refer the
readers to that paper for details. In summary, using o and €, we
model the ‘true’ quasar separation vector and line-of-sight angles,
relative to fiducial values, as

r=ar'/(L+ e (uh? + (1 + €21 = ()] (15)

u = coslarctan[(1 + e)_3 tan(arccos /Lf)]]. (16)

In the above equations, the superscript ‘f” denotes quantities mea-
sured in the fiducial cosmology.

Given «q and «, we can calculate a(z) and €(z) within the
redshift range of the sample. These « and € indicate how r and
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are distorted at different redshifts, allowing us to incorporate the
mis-estimate of the cosmology into model correlation functions.

3 DATA SETS

3.1 SDSS DR14 quasar sample

The observational data set is the eBOSS (Dawson et al. 2016) quasar
sample released as part of the SDSS-IV (Blanton et al. 2017). The
survey has an effective area of 1192 deg” in the Northern Galactic
Cap (NGC) and 857 deg” in the Southern Galactic Cap (SGC). The
quasar target selection is presented in Ross et al. (2012) and Myers
et al. (2015). Quasars that do not have a known redshift are selected
for spectroscopic observation. Spectroscopy is obtained through
the BOSS double-armed spectrographs (Smee et al. 2013). In our
DR14 sample, we applied veto masks as in Reid et al. (2016). To
correct for missing targets, redshift failures, fibre collisions, depth
dependency, and Galactic extinction, we utilize completion weights
and systematic weights according to Laurent et al. (2017) and Ross
etal. (2017).

3.2 Simulations

We validate the redshift weighting method by implementing the
algorithm on 1000 mock catalogues. These catalogues simulate the
clustering of eBOSS DR14 quasars based on the ‘quick particle
mesh’ (QPM) method (White, Tinker & McBride 2014). Each N-
body simulation utilizes 2560° particles in a box of side length
5120 h~" Mpc. The simulations assume a flat A cold dark matter
(ACDM) cosmology, with €2,, = 0.31, Q,h? = 0.0220, h = 0.676,
ng = 0.97, and oy = 0.8. Each simulation is initialized by using
the second-order Lagrangian perturbation at z = 25. The catalogues
cover the redshift extent of 0.8 < z < 2.2 for both the NGC and
SGC of the eBOSS footprint. The halo occupation of quasars is
parametrized according to the five-parameter halo occupation dis-
tribution presented in Tinker et al. (2012).

Rotating the orientations of the 100 simulated cubic boxes, we
identify four configurations with less than 1.5 per cent overlap. This
enables us to produce 400 QPM mocks for both Galactic caps. Veto
masks are applied in the same way as for the data. FKP weights
(Feldman et al. 1994) are applied assuming Py = 6000/ > Mpc®.
Redshift smearing is applied according to Dawson et al. (2016). For
specifics of these eBOSS quasar mocks, we refer the readers to Ata
et al. (2017).

4 ANALYSIS

4.1 Computing the weighted correlation functions

We analyse the mock catalogues in a similar manner as previous
BOSS analyses (Anderson et al. 2014; Alam et al. 2017). In this
section, we focus on the steps involving redshift weighting. We
also point out that we do not apply density field reconstruction
(Eisenstein et al. 2007b), as it is not expected to be efficient or
significant for this sample because of the low density of quasars.
To compute the weighted correlation functions from the cata-
logues, we modify the Landy—Szalay estimator (Landy & Szalay
1993). In addition to weighting each quasar/random by the FKP
weight, we weight each quasar/random pairs by x to construct the
x-weighted correlation functions. Since a pair that contributes to the
BAO signal is close in redshift, we use the pair’s mean redshift to

calculate x. The weighted 2D correlation functions are given by

data _ lf)\B(rv M)_zb\ﬁ(ﬁ M)—f—l/?‘k(r,p,)
Ew (ra /'L) - RR(}” M) (17)

where BVD, BVR, and RR include the additional pair weight, whereas
RR in the denominator does not. We decompose the 2D correlation
functions and calculate the monopoles and quadrupoles as

20+1 !

£l (r) = — /l £ (r, L(u)dp. (18)
We consider two cases: an unweighted sample using only the FKP
weight and a weighted sample uses both the ‘1’ and ‘x” weights.
For both cases, we treat the quasar sample as a unified one without

splitting it into redshift bins.

4.1.1 The fitting model
‘We define our fitting model
§0(r) = Bogew(r) + Avu(r), (19)

where &,,,(r) is the weighted correlation function and A(r) is a
nuisance polynomial to marginalize out un-modelled broad-band
features. These signals include redshift space distortions and scale-
dependent bias. We assume

ap w1

Agw (r) = +aewa- (20)

We allow a multiplicative factor B2 ~ 1 to float to determine the
overall amplitudes of the monopole and quadrupole, while § adjusts
the relative amplitude between the two.

In our fiducial weighted fits, we use a total of 13 fitting pa-
rameters: oo, «1, B, By, By, and 8 nuisance parameters to ab-
sorb the broad-band features. We use the fiducial fitting range
48 < r < 184h~! Mpc with 8 2~! Mpc bins.

4.2 Parameter inference

We assume the likelihood function is a multivariate Gaussian. The
posterior distribution of «¢ and «¢; can be written as

plag, ay) o< efxz(‘)‘o’al)ﬂ o
where x? is given by
x*=DC'D", )

where C represents the covariance matrix and D is the vector dif-
ference between the data and model. We calculate C as the sample
covariance matrix from the mocks and apply the correction factor
(Hartlap, Simon & Schneider 2007; Percival et al. 2014) to account
for the skewness of the inverse Wishart distribution.

Given a and oy, we minimize the x> via a downhill simplex
algorithm (Nelder & Mead 1965) designed to handle the non-linear
parameters. We fit the linear nuisance parameters by a nested least-
squares. The simplex algorithm searches for the best-fitting param-
eters by finding the minimum y? within the non-linear parameter
space.

We calculate the likelihood surface through computing best-
fitting x 2 on a two-dimensional grid for 0.7 < ay < 1.3 and —0.5
< a; < 0.5 at spacings of 0.01 and 0.02, respectively. The like-
lihood surface enables one to calculate the distribution of « and
a1. The low signal-to-noise BAO feature of some mocks causes the
nuisance polynomial to dominate the model correlation function.
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Figure 1. The DR 14 quasar correlation function and the average QPM mock correlation functions. The black circles with error bars are the correlation function
multipoles from the DR14 sample. The top panels display the ‘unweighted’ monopoles (left) and quadrupoles (right); the bottom pair displays the ‘x-weighted’
ones. The associated error bars are 1o errors of the mocks. The solid black line passing through the black points show the best fitting to the DR 14 points with
relevant statistics on the top panels. The green bands in each on the figure represent the average monopoles (left) and quadrupoles (right) from the 400 mocks
with 1 standard deviation errors. The bands plotted are errors of an individual mock, which are /400 times larger than that of the average correlation function.
The ‘x-weighted” monopoles and quadrupoles show an inverted shape because of an overall negative weight.

To address this issue, we place a Gaussian prior on 8 centred at 0.4
with width 0.2. We also adopt a Gaussian prior on B} and B? at
1 with width 0.2. To suppress the unphysical downturns in x2, we
have applied Gaussian priors of width 0.1 centred around oy = 1
and width 0.2 centred around «; = 0. These priors do not dominate
our calculation of the likelihood of «g and «;. Their implications
are discussed in more detail in Section 5.

5 RESULTS

The fits to the mock correlation functions assume the QPM cosmol-
ogy as the fiducial cosmology using a pivot redshift zo = 1.8. The
fitting model and procedure are sketched out in Section 4.

Fig. 1 shows the DR14 quasar correlation functions and the av-
erage of these from 400 mocks. The DR14 quasar correlation func-
tions are indicated as points with error bars. The bands in the fig-
ure correspond to the 1o error for individual mocks. The mocks
are consistent with the DR14 points. The quadrupole moments
show significant noise. Despite the uncertainties, the monopole
moments demonstrate a clearly visible acoustic feature in both the
‘1-weighted’ and ‘x-weighted monopoles.

The thick black line is the best fitting to the DR14 data points
with relevant statistics labelled on the figure. In the fiducial case, we
measure ag = 1.001 4 0.051 and oy = —0.002 + 0.173. The ‘un-
weighted’ fits without redshift weighting yield o = 1.003 4= 0.041
and «; = —0.004 =+ 0.136. The distribution of &y and «; measured

MNRAS 480, 1096-1105 (2018)

from the DR14 quasar sample is shown in Fig. 2. For the DR14
sample, applying redshift weighting does not yield reduction in the
size of the error bars for the measured o and «;.

We test the robustness of our result by varying various aspects
of the fit including the fitting range, binning, streaming parameters,
and pivot redshift. The results all agree within 1o uncertainties.
Table 1 presents a summary of our fitting results. In the table, poly3
corresponds to fitting with a third degree nuisance polynomial of
the form A(r) = a;/r* + ay/r + a3. In addition, we perform an
isotropic BAO fit by setting o; = 0 and only allowing « to vary.
This analysis produces «p = 0.996 £ 0.031, consistent with the
result 0.994 + 0.037 in Ata et al. (2017). The small discrepancy
in the error could be due to differences in the applied priors, as
Ata et al. (2017) restricts to the prior range 0.8 < o < 1.2. In
our calculation of the likelihood, we use a larger prior range 0.7
< a9 < 1.3 and a Gaussian prior of width 0.1 centred around
oy = 1.

To validate our methodology, we fit 400 QPM mocks and measure
o and «;. Since we use the simulation cosmology as our fiducial
cosmology, we anticipate our measurements to agree with () = 1
and (o) = 0 within uncertainty if the measurements are unbiased.
A summary of the mock results can be found in Table 1. We indeed
verify our method to yield unbiased estimators of oy and «;.

The errors of oy and «; measured from the 400 QPM mocks
are indicated as blue points in Fig. 3. The orange points in the
background show the errors from the ‘unweighted’ fits. The fitted
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Figure 2. Distribution of o and o« from the DR14 fits. The left- and right-hand panels show the derived p(co) and p(« ) distributions, respectively. The red
dashed lines represent the distribution from fitting the ‘unweighted’ estimator; the blue solid lines correspond to the sharpened distribution we obtained from
applying redshift weighting. The mean and standard deviation of both distributions are labelled in the panels.

Table 1. BAO fitting results of the DR 14 quasar data and QPM mocks. Our
fiducial analysis assumes a pivot redshift of zop = 1.8 and a fitting range
of 48 < r < 184h~! Mpc with 84~! Mpc binning. The fiducial analysis
utilizes redshift weighting. The mock results shown here are the inverse
variance weighted average of the 400 QPM mock fits.

Model o o
DR14 results

Fiducial 1.001 £ 0.051  0.002 £0.173
Fiducial, unweighted 1.003 £ 0.041 —0.004 +0.136
Fitw/ £, =2 h~!' Mpc 1.004 +0.052 0.014 £0.172
(ZL,Z)=49) h~! Mpc 1.002 £ 0.051  0.007 £0.172
Fi w/ poly3 1.001 £ 0.048 —0.023 +£0.175
Fit w/o x-weighted quadrupole 1.006 £ 0.043  0.013 £0.134
a only 0.996 £ 0.031 -

48 <r <136 h~' Mpc 0.999 + 0.053 —0.015 £ 0.167
48 < r < 160 h~' Mpc 0.987 £ 0.061 —0.009 £ 0.193
Ar =4 h~"Mpc 0.997 £0.049  0.090 £ 0.165
Zpivot = 1.2 1.002 £ 0.072 —0.002 £ 0.131
Zpivot = 2 0.999 + 0.049  0.001 £0.179

Mock results
Fiducial 0.992 +£0.052  0.001 £0.141
Fiducial, unweighted 0.998 +0.054 0.014 £ 0.157
Fitw/ £, =2 h~!' Mpc 0.993 £ 0.054 0.003 £0.144
ZL,Zp=49) h~! Mpc 0.992 +0.052  0.003 £0.141
Fit w/ poly3 0.991 £ 0.053  0.001 £0.147
Fit w/o x-weighted quadrupole 0.993 £0.052  0.001 £0.143
48 < r < 136 h~' Mpc 0.988 £+ 0.055 —0.006 £+ 0.143
Zpivot = 1.2 0.991 + 0.067 —0.014 £0.115
Zpivot = 2 0.993 £ 0.050 —0.001 £ 0.146
‘4x” Mock results

‘4x” mocks, fiducial 0.995 +0.028  0.001 £ 0.077
‘4x’ mocks, unweighted 0.996 + 0.031  0.017 £0.105
4x” mocks, Zpivor = 1.2 0.993 + 0.040 —0.001 £ 0.060
*4x” mocks, Zpivor = 2 0.996 + 0.026  —0.001 £+ 0.081

DR14 data point is also displayed. The mock o and «; errors are
representative of the DR14 errors.

We compare the o, and o,, obtained from the ‘unweighted’
and ‘weighted’ analysis mock by mock. Among the 400 mock
measurements, 221 produce an improved o,,, and 275 show an
improved o,, when we apply the redshift weights. These values

0.30

0.25 1

0.20 1

& 0.15

0.10 T Mocks, unweighted
: Mocks, weighted

0.05 1 1 ¢ DR14, unweighted
| Y% DR14, weighted

0.00 : — : : :

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Oag

Figure 3. The oy, and oy, values measured from the 400 mocks and from
the DR14 sample. The blue triangles correspond to the ‘weighted” measure-
ment errors and the orange triangles are the ‘unweighted’ values. The errors
denoted by the horizontal and vertical dashed lines are the errors of the
inverse variance weighted average of the mock results, multiplied by /400
for ease of comparison with individual mock points. Our DR14 oy, and oy,
are labelled as the red star (‘weighted’) and diamond (‘unweighted’). The
DR14 point situates within the locus of mock points.

correspond to 55 per cent and 69 per cent of the mocks. Given the
magnitude of these percentages, it is not surprising that redshift
weighting does not yield smaller o, and o, errors for the current
DR14 sample.

Overall, however, redshift weighting does shrink the measured er-
ror bars. We aggregate the mock measurements of oy and &y through
inverse variance weighting to minimize the variance of the weighted
average. Each mock measurement of « and o is weighted in in-

verse proportion to its variance. We obtain this weighted average
as & = % The summation is performed over the 400 mocks.
The error of @ is given by (@) = 1/, /> aiz This error is scaled

by +/400 for ease of comparison with errors from individual mock
measurements. The aggregated mock statistics are presented in Ta-
ble 1. We observe a decrease in o,, from 0.157 without redshift
weights to 0.141 with redshift weights. This change corresponds to
a 10 per cent decrease. We will further comment on the magnitude
of this improvement in Section 6.
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Table 2. Constraints on Dy(rq, ia/ra) and H(rg/rq fiq) measured from the
DR14 quasar sample from our analysis with redshift weighting. Also listed
are the derived spherically averaged distance measurements Dy (rq, ia/7d)
from our Dy, and H measurements. The measurements at different redshifts
are correlated.

Redshift DM(rd, ﬁd/rd) H(rd/rd, ﬁd) Dv(rd, ﬁd/rd)*
(Mpc) (km s~ Mpc™!) (Mpe)
0.8 2876 + 304 106.9 £4.9 2646 £ 205
1.0 3405 4 305 1207 £17.3 3065 + 182
1.5 4491 £+ 272 161.4 £30.9 3840 £ 182
2.0 5325 4249 189.9 £+ 32.9 4356 + 300
22 5606 £ 255 232.5 £ 54.6 4514 £+ 359

The joint likelihood distribution of «( and «; allows us an esti-
mate to be made of the joint distribution of x and H. To perform
this calculation, we first draw random variables from the joint dis-
tribution of «g and «;. We reconstruct the distance-redshift relation
x (2) and Hubble parameter H(z) from equations (1) and (2) with the
drawn o and «;. This approach enables us to obtain an estimated
joint distribution of x and H. It is then straightforward to calculate
statistics of x and H. Since these x and H measurements at different
redshifts are derived from the same model of the distance-redshift
relation, they are highly correlated. To use our result for cosmolog-
ical comparisons, it is advisable to directly use the joint likelihood
distribution of «( and «; we measured.

Our parametrization of the distance-redshift relation and Hub-
ble parameter allows one to obtain constraints for both across the
redshift range of the sample. In Table 2, we produce Dy and H
measurements at several redshifts. We also derive spherically aver-
aged distance measurement Dy from our Dy, and H measurements.
The measurements at these redshifts are highly correlated. We thus
report the correlation matrix for Dy, and H at only two redshifts z;
= 1 and z, = 2 below as

Dy(zi) H(zi) Du(z2) H(z2)

1 025 072 0.66\ Dy(z1)

_ 1 —-0.48 0.85 | H(zy)
C= 1 0.00 DM(Zz) (23)

1 H(zy).

The correlation between Dy (z = 1) and Dy,(z = 2) is quite substan-
tial, as is the correlation between H at z = 1 and z = 2. However,
at both redshifts, the correlation between Dy, and H is low. This
behaviour is not necessarily the case for a different choice of z; and
2». There is a tradeoff between the correlation of Dy, and H at the
same redshift and the correlation between z; and z,.

In analyzing the BAO from the BOSS DR 12 galaxy mock cat-
alogues, Zhu et al. (2016) reported that the distance and Hubble
parameter measurements are insensitive to the choice of pivot red-
shifts. Our mock measurements confirm this finding.

At different pivot redshifts, a large error in « is usually compen-
sated by a smaller error in «;, and vice versa. Table 1 lists fitting
results at three different pivot redshifts zo = 1.2, 1.8, and 2. Select-
ing zo = 2 yields the smallest o, but has the largest o, . Conversely,
zo = 1.2 yields the largest o,, but has the smallest o,,. When re-
constructing Dy, and H constraints from « and «, the error from
the two parameters compensate one another and makes the distance
and Hubble parameter constraints insensitive to the choice of the
pivot redshift.

We compare our results with recent measurements of Dy, and
H. Fig. 4 displays our Dy and H measurements along with the

MNRAS 480, 1096-1105 (2018)

ACDM prediction from Planck (Planck Collaboration 2016). Our
distance and Hubble parameter measurements are in agreement with
the Planck results within the 1o uncertainty. We also show simi-
lar measurements in the literature: the BOSS DRI12 results from
Alam et al. (2017), the BOSS Ly « from Bautista et al. (2017),
and the cross correlation of Ly o forest and quasars from Font-
Ribera et al. (2014). These measurements provide both distance
and Hubble parameter measurements at the effective redshift of
their respective samples. Additional spherically averaged distance
measurements (Dy) are 6dFGS Beutler et al. (2011), SDSS MGS
Ross et al. (2015), WiggleZ Kazin et al. (2014), and eBOSS DR14
isotropic BAO Ata et al. (2017). In particular, the DR14 isotropic
BAO result (labelled as ‘DR14-Iso’ in Fig. 4) analyses the same
sample as our work and reports a spherically averaged distance
measurement of Dy(z = 1.52) = 3843 £ 147 (rasa/ra) Mpc. As a
comparison, we derive spherically averaged distance measurement
from our Dy, and H measurements at the same redshift and obtain
Dy(z =1.52) = 3871 £ 157 (r4/rq5a) Mpc without redshift weight-
ing and 3860 % 204 (74, ia/ra) Mpc with redshift weighting. These
measurements are all consistent with Ata et al. (2017) measure-
ment. In addition, we note that our Hubble parameter measurement
spans a redshift range (0.8 < z < 2.2) that has not been measured
in previous redshift surveys.

6 FINAL SAMPLE OUTLOOK

The DR14 quasar sample covers 1192 deg? and 852 deg® of NGC
and SGC regions. This solid angle is approximately a quarter of the
final footprint of 7500 deg? for clustering quasars. The quadruple
increase in footprint will result in reduced noise in the final sample.
In this section, we assess the outlook of BAO measurements as
would be obtained from the final eBOSS sample.

To mimic the noise level in the final sample clustering quasars, we
average the correlation functions from every four mock catalogues.
This simple averaging serves to reflect the quadruple increase in
footprint. After the averaging, we obtain 100 averaged mock corre-
lation functions (labelled ‘4x’ mocks) from the original 400 QPM
mocks. We indeed observe greatly reduced noise in these ‘4x’ mock
correlation functions.

We analyse the aforementioned 100 ‘4x’ mock correlation func-
tions with the same method described in Section 4. The fitting results
of these mocks are unbiased (see Table 1). Fig. 5 presents the errors
04, and o,, measured from the 100 ‘4x” mocks. We aggregate the
mock measurements of oy and «; by calculating the inverse vari-

;i /oZ,
EE a2,
100 ‘4x” mocks. The error of & is given by o(&) = 1/, /> é We

ance weighted average by & = . The summation is over the

scale this error by /100 for ease of comparison with individual ‘4x’
mock errors. The vertical and horizontal dashed lines in Fig. 5 show
these statistics. The error o4, decreases from 3.1 per cent to 2.8 per
cent. Similarly, the weighted analysis gives an error of o4, of 7.7
per cent, compared to a 10.5 per cent without redshift weighting.
These results correspond to a 10 per cent improvement in o and a
27 per cent improvement in o .

Among the 100 ‘4x’ mock measurements, 83 have an improved
04, and 89 show an improved o,, when we apply the redshift
weights. This behaviour can be clearly seen in Fig. 6. The dashed
line in the figure corresponds to a straight line of unit slope. The
majority of points fall below this equality line. Redshift weighting
produces improved measurement errors for more than 80 per cent
of the ‘4x” mocks, demonstrating that although redshift weighting
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Figure 4. Our DR14 Dy, and H measurements from ‘unweighted’ and *weighted’ analyses compared to the Planck flat- ACDM predictions. All error bands
and error bars correspond to 1 standard deviation errors. Our DR14 measurements (green bands) are consistent with the Planck results (grey bands) within
uncertainty. We emphasize that the Dy, and H measurements at different redshifts are highly correlated. We also show several recent measurements for
comparison, some of which are spherically averaged BAO distance measurements (Dy). See texts for descriptions of these additional measurements.
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Figure 5. The oy, and oy, values measured from the ‘4x’ mocks. The
measurements without redshift weighting are denoted by blue crosses, while
the ones with redshift weighting are denoted by red circles. The vertical and
horizontal dashed lines correspond to the error of inverse variance weighted
mean of &g and | from the mocks, multiplied by /100 for easy comparison
with individual ‘4x” mock points.

does not yield smaller oy, and o,, for the current sample, it will
likely be efficient for the final quasar sample.

The gains from redshift weighting in the ‘4x” mocks are much
more significant than in the original QPM mocks. This result oc-
curs because some mocks among the 400 individual QPM mocks
are quite noisy and possess a weak BAO feature. As a result,
these weak BAO detections lead to non-Gaussian likelihood sur-
face. While redshift weighting is powerful at turning a ‘mediocre’
measurement into a ‘good’ one, it cannot turn a ‘bad’ measurement
(anon-detection of the BAO feature, for example) into a ‘mediocre’
or ‘good’ measurement. These noisy mocks thus render redshift
weighting not as effective. After averaging, the ‘4x’ mocks have
better signal-to-noise ratio and enhanced BAO features. In fitting
the ‘4x’ mocks, the number of weak and non-detections is signif-
icantly reduced an redshift weighting thus becomes much more
efficient in tightening the error bars. The substantial gains demon-
strated in the ‘4x’ mocks suggest redshift weighting will play an
important role in unlocking the full potential of the BAO constraints
from the final quasar sample.

4x mocks
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S} ( : LY
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o °
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Figure 6. The weighted and unweighted oy, and oy, values measured from
the 100 ‘4x” mocks. The dashed line in the figure corresponds to a straight
line of unit slope. The majority of points lie below the dashed line, suggesting
redshift weighting is likely to be efficient for the final quasar sample.

7 DISCUSSION

The DR 14 quasar sample covers a wide redshift range from z = 0.8
to 2.2. To analyse the BAO information in such a large range without
sacrificing signal-to-noise ratio by splitting the sample into redshift
slices, redshift weighting (Zhu et al. 2016) is a natural choice. We
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have presented in this paper an anisotropic BAO analysis of the
BOSS DR14 quasar sample using this technique.

We first model the distance-redshift relation as a Taylor expan-
sion. Estimating the coefficients of this expansion allows us to
reconstruct Dy(z) and H(z) within the range of redshifts of the
sample.

We establish the effectiveness of redshift weighting in producing
unbiased optimized constraints from a set of mock catalogues. With
the same methodology, we analyse the BOSS DR 14 quasar sample
and achieve improved Dy, and H constraints in fitting the BAO
feature in the sample. Our Dy, error ranges from 4.6 per cent at z
= 2.2 to0 10.5 per cent at z = 0.8. Our H error ranges from 4.6 per
cent at z = 0.8 to 23.5 per cent at z = 2.2.

To examine what will be possible when the final quasar sample
becomes available, we generate a new set of mock catalogues with
smaller noises by averaging every four of the original DR14 mocks
to approximate the final eBOSS quasar sample. We analyse these
averaged mocks with the same methodology and observe that red-
shift weighting offers significant improvement in the measurement
errors over the single-bin analysis without redshift weighting. This
demonstration suggests redshift weighting is important to unlocking
the full BAO information within the sample.

The power of redshift weighting lies in its optimal use of the
information without splitting the sample into redshift slices. Al-
though one can retain sensitivity to redshift by repeating traditional
analyses on multiple slices and properly accounting for covariance
between slices, redshift weighting provides a more efficient and
straightforward implementation.

The method is especially useful when the survey covers a wide
range of redshifts. Its success on the set of mock catalogues that
mimic the final quasar sample shows promise that the method will
be extremely useful for upcoming surveys like the Dark Energy
Spectroscopic Instrument (DESI; DESI Collaboration 2016a,b). An
anisotropic BAO analysis with similar redshift weighting techniques
in Fourier space will appear in Wang et al. (in preparation). They op-
timize the measurements by deploying redshift weights constructed
for the BAO signal in the quasar power spectrum. Different from
how this work utilizes the redshift weights, Wang et al. (in prepara-
tion) assign the weights to individual quasars instead of weighting
quasar pairs. Apart from this difference, the methodology is sim-
ilar to Zhu et al. (2016) and this work. Different from the result
of this work, Wang et al. (in preparation) find applying redshift
weighting on the DR14 sample produces improved measurement
over the traditional single-bin analysis. This difference may be due
to the difference in methodology and noise properties of the power
spectrum and the correlation function. Despite this difference, the
results reported in both works are fully consistent with each other
within uncertainty. Besides these works, similar analysis methods
inspired by the BAO redshift weights have been proposed to con-
strain redshift space distortions (Ruggeri et al. 2016) and primordial
non-Gaussianity (Mueller, Percival & Ruggeri 2017) in upcoming
surveys. Redshift Space Distortions measurements on the DR14
sample utilizing a similar methodology will appear in Ruggeri et al.
(2018) and Zhao et al. (in preparation). Redshift weighting can bring
us closer to realizing the full capabilities of these surveys as we aim
towards an ever increasing understanding of the expansion history
of the universe.
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