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ABSTRACT: Computational nucleic acid devices show great blank —-“’\p bind(1,22,0,D14) :-
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diagnosis and, ultimately, computational theranostics inside living
cells. This diversity of applications is supported by a range of
implementation strategies, including nucleic acid strand displace-

. . . —— N
ment, localization to substrates, and the use of enzymes with poly- N a2x //3
merase, nickase, and exonuclease functionality. However, existing ofp  linker a2* —aug top*  rbs top  blank a2 S,
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computational design tools are unable to account for these strategies v

in a unified manner. This paper presents a logic programming lan-

guage that allows a broad range of computational nucleic acid systems to be designed and analyzed. The language extends standard
logic programming with a novel equational theory to express nucleic acid molecular motifs. It automatically identifies matching
motifs present in the full system, in order to apply a specified transformation expressed as a logical rule. The language supports the
definition of logic predicates, which provide constraints that need to be satisfied in order for a given rule to be applied. The
language is sufficiently expressive to encode the semantics of nucleic strand displacement systems with complex topologies,
together with computation performed by a broad range of enzymes, and is readily extensible to new implementation strategies. Our

approach lays the foundation for a unifying framework for the design of computational nucleic acid devices.

KEYWORDS: strand graph, site graph, process calculus, programming language, DNA computing, molecular programming,

biological computation, logic programming

D evices made of nucleic acids that are capable of performing
computation are an active area of research, and also
demonstrate strong potential for real-world applications. Such
applications include smart probes for molecular biology
research," in vitro assembly and manufacturing of complex
compounds,?”4 high-precision in vitro diagnosis of disease®™®
and, ultimately, computational theranostics inside living
cells.”'® This diversity of applications has been supported by a
range of nucleic acid implementation strategies for carrying out
information processing at the nanoscale. These include
implementations based solely on nucleic acid hybridization
and strand displacement,''™'® and those that combine nucleic
acid strand displacement with localization to substrates.'” ™"’
Alternative implementation strategies incorporate enzymatic
reactions via the Polymerase-Exonuclease-Nickase (PEN) DNA
toolbox,?°™** transcriptionally encoded computation via
Genelet systems,””** and Ribocomputing logic circuits that
combine complex nucleic acid topologies with translational
machinery.>’

As the complexity of nucleic acid computational devices
continues to increase, modeling methods and their correspond-
ing software implementations are beginning to play an impor-
tant role in the design of such devices. In particular, the Visual
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DSD language was developed to model DNA strand displace-
ment systems,”® and subsequent versions incorporated a
hierarchy of behavioral abstractions,”””*® custom reactions,”’
localized interactions,” and complex topologies.”’ Alternative
methods and tools for generating the behavior of DNA strand
displacement systems have also been developed, including
Peppercorn®” and the DyNAMiC Workbench.” Methods have
also been developed for the computational design of PEN-DNA
toolbox systems,”* together with strategies for automating their
implementation.35 However, existing computational design
tools are unable to account for the current range of nucleic
acid implementation strategies in a unified manner, or to readily
incorporate new implementation strategies.

In this paper we present a logic programming language for
designing computational devices made of nucleic acids. Logic
programming is often summarized by the slogan “Algorithm =
Logic + Control”.*° In other paradigms such as imperative and
functional programming, an algorithm describes the control flow
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and operations that compute the desired output given some
input. In contrast, in logic programming the output is described
in terms of logic formulas (Logic) and inputs are defined in
terms of logical properties. Verifying that an input conforms to
this specification is the task of an accompanying logical inference
system, which computes a solution to the formulas in the pro-
cess (Control). This division of concerns shifts the burden of
programming to the inference system and lets programmers
focus on the formal definition of the problem. Logic
programming provides a powerful declarative framework in
which complex logic can be expressed in a clean and concise
manner. This allows users to construct custom extensions that
implement new hypotheses required for the specific system
being designed.

The syntax of our language is formally defined in the style of
process calculi and combines a syntax for nucleic acid strands,
which extends previous work on Strand graphs,31 with a syntax
for logic programs, based on Prolog. The semantics follows the
unification modulo equational theory approach: it adopts the
standard semantics of Prolog, plus a modular extension to its
unification algorithm by a novel equational theory of DNA
strands. A corresponding implementation of our language has
been integrated with the Visual DSD system. Our logic
programming langua%e can encode previous extensions to the
Visual DSD language, 729731 a5 well as new extensions including
enzyme interactions’’ and the encoding of kinetic rate
hypotheses,'® neither of which were previously supported in
Visual DSD. More importantly, our approach is extensible in
that new nucleic acid implementation strategies can be encoded
simply by defining new logic predicates. Thus, our work provides
a framework to model the largest set of nucleic acid information
processing systems to date.

In the remainder of the paper, we first present the underlying
logic inference system of our language, together with its
equational theory in terms of processes, patterns, and contexts,
using an encoding of DNA strand displacement predicates as an
example. We then demonstrate how our language can encode an
abstraction hierarchy of behaviors by merging fast reactions, and
show how hypotheses for assigning kinetic parameters to reac-
tions can be defined as logical predicates. This allows context-
specific hypotheses about rate constants to be expressed, which
can also be used to guide parameter inference. We then use our
logic programming language to encode nucleic acid implemen-
tation strategies that make use of polymerase, exonoclease, and
nickase enzymes. These general rules greatly simplify the
encoding of enzyme-based systems, for example by avoiding the
need to manually encode each enzyme operation, for all possible
species. We also encode implementation strategies that rely on
localization to a substrate. Finally, we demonstrate how complex
nucleic acid topologies can be encoded, including arbitrary
secondary structures at the domain level’' such as branches and
pseudoknots, and combined with translational machinery to
perform computation.S

B RESULTS

Logic Inference System. We developed an inference
system for our logic programming language based on SLDNF
resolution, which is widely used in logic programming languages
such as Prolog.’**”” We briefly summarize the semantics of
SLDNEF resolution using a simple logic program based on the
well-known Aristotelian syllogism “Socrates is human. All humans
are mortal. Therefore, Socrates is mortal.”

human ("Socrates") .
mortal (X) :— human (X).

This program has two Horn clauses: a fact stating that Socrates
is human, and a clause stating that for any X, if X is human then X
is also mortal. SLDNF resolution provides a logically sound
algorithm to verify that an atomic predicate A, also called goal, is
the logical consequence of a logic program. For our example, to
know whether Socrates is mortal we can query the system with
the goal mortal (“Socrates”).SLDNF resolution then
attempts to verify the goal using all declared facts and clauses in
the logic program. In this case the verification succeeds, since the
goal is indeed a consequence of the program. If the goal also
contains logical variables, SLDNF resolution finds all possible
instantiations of the variables such that the goal succeeds. For
our example, the system can find all mortals with the goal
mortal (X). In this case the only solution is X =
“Socrates".

The matching of predicates and terms in SLDNF resolution is
performed by a procedure called unification. This is a constraint
satisfaction algorithm that works on sets of equality constraints
of the form ¢, = t,, and finds an assignment 6 of logical variables
in terms t; and t, such that the two terms become identical, with
0(t,) = 6(t,). 1t can be viewed as a generalized form of pattern
matching, Unification works by iteratively decomposing equalities
over composite terms into equalities over their components. For
example, the equality mortal(“Socrates”) = mortal(X) is decom-
posed into an equality over predicate names, mortal = mortal, and
an equality over the arguments, “Socrates” = X. The first equality is
trivially true, while the second equality is solved by the assignment
0 (X) = “Socrates”. Unification succeeds with a solution & when all
of the equality constraints are satisfied.

Our programming language extends the standard SLDNF
resolution algorithm (see Methods), with three main modi-
fications. First, we simplified the treatment of negative
predicates to avoid a consistency problem with standard
SLDNF known as floundering. Floundering occurs when trying
to prove a negative predicate containing free variables. Such a
predicate does not have a finitely failed tree because it is
indeterminate, therefore forcing SLDNF to fail such cases can
result in inconsistencies.’® Unfortunately, floundering is an
undecidable property that cannot be verified statically. To cir-
cumvent this issue, during program execution we check that
negative predicates are fully instantiated and therefore have no
free variables. An example of a fully instantiated negative
predicate for our logic programis not mortal (“stone”).
Second, we modified the resolution strategy, which determines
the next node in the search tree to expand during resolution.
Standard SLDNF typically aims to find a single solution to a goal
in the fastest way possible, and therefore uses a depth-first search
(DFS) strategy. However, our language is used to fully explore
the possible behaviors of a system, rather than finding a single
behavior, so our resolution strategy employs a breadth-first
search (BFS) strategy. This has stronger guarantees than DFS
since it is complete, in the sense that a solution is always found if
one exists.”® As a consequence, the order in which clauses are
written in a program is not important, unlike other logic
programming languages such as Prolog. Also, since our search
strategy is BFS, we do not support extra-logical operators such as
cut (!) to curb backtracking during solution finding. Third and
most importantly, our language extends the standard unification
algorithm with a novel equational theory of nucleic acid strands,
using the unification modulo equational theory approach. Our
equational theory defines contexts and patterns that allow the
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identification and sound manipulation of general nucleic acid
motifs. The soundness of our method rests on the Double-Push
Out approach of graph grammar theory.”**” The following section
presents the equational theory of our language though an example.

Nucleic Acid Equational Theory. We present the
equational theory of our logic programming language by usin
it to encode the elementary rules of DNA strand displacement,’
whose systematic use was pioneered in ref 40. DNA strand
displacement involves an invading single strand of DNA
displacing an incumbent strand, hybridized to a template strand.
The process is mediated by a short, single-stranded region of
DNA referred to as a toehold. It can implement a broad range of
computation, including any computation that can be expressed
as an abstract chemical reaction network,'? such as oscillations,
switches, population protocols, combinatorial logic and
sequential logic. Chemical reaction networks are known to be
Turing complete with an arbitrarily small probability of error,*!
due to the finite number of species involved. However, DNA
strand displacement systems can form potentially unbounded
polymers, and are therefore more expressive in that they have
been shown to be Turing powerful.**

We represent a nucleic acid system in our language as a
process, which is defined as a multiset of nucleic acid strands
(Table 1). The basic abstraction of our language is the domain,

Table 1. Syntax of Processes”

d::= xlat a1 X domain

k= xlint1 X bond, int > 0

t= int | string | x 1 x(Ty, ..., Ty) tag, N > 1, int > 0

= x1int1 X location, int > 0

si= d{t} @1 d{t} ' k@11 X site, with{t} and @! optional
Sii= Sy SN sequence of sites, N > 1
P::= <S> | <S> process, N > 0

“The syntax of processes in our language is based on the syntax of
strand graph processes,’’ extended with logical variables, tags, and
locations, for which x denotes a lower-case name and int denotes an
integer. Logical variables X are written in upper case and are replaced
with concrete values during logical inference. Tags t model various
properties of a domain, such as chemical modifications or tethering to
a substrate. Locations | are unique identifiers that pinpoint the
occurrence of a particular domain in a process, and are used to
distinguish between multiple occurrences of the same domain name.
A process is well-formed if each bond k occurs exactly twice in the
process, and only between complementary domains. Processes are
composed using the parallel composition operator (1), which indicates
that the order in which processes are specified is not significant. Note
that this is distinct from the short vertical bar (1), which is used in
programming language definitions to denote a set of possible
grammatical symbols. We consider processes equal up to reordering
of strands and renaming of bonds.

which represents a unique nucleic acid sequence. We assume
that a domain can bind to its complement but cannot interact
with any other domains in the system. In practice, this is
achieved by ensuring that distinct domains use noninterfering
nucleic acid sequences, for instance by relying on appropriate
coding strategies.13 We represent a domain with a lower-case
variable and annotate complementary domains with a star,
where x* denotes the Watson—Crick complement of domain x.
Toeholds are domains that are assumed to be short enough to
spontaneously unbind from their complement. A toehold is
labeled with a caret, written x”, where the complement of " is
x"*. We indicate that two domains x and x* are bound using the
notation x!i and x*!i, where i is a unique identifier called a bond,

which can be either a variable name or an integer. We define a
site s as a domain that is either bound or free, and a sequence Sas a
nonempty sequence of sites, ordered from the 5’ end to the 3’
end. A process P is a multiset of strands <S;> | ... | <S>,
separated by the parallel composition operator (1), where each
strand is a sequence enclosed in angle brackets. In addition, we
define a species as a set of strands bound to each other such that
they form a connected component. For convenience, we define
additional syntactic sugar that allows a species to be enclosed in
square brackets and preceded by a constant, which denotes the
species population.

For example, consider the following process, which relies on
DNA strand displacement to compute a join operation. A corre-
sponding graphical representation of the process is also shown.
(10 [<tb”™ b>]
| 10 [<tx” x>]

[ 100 [ <to™*!1 x*!2 tx"*!3 b*!4 tb"*>
| <b!4 tx"!3> | <x!2 to”™!1> 1)

10 _tx X 100 b tx X to

[ b* tx* x* to*
g

The process consists of a multiset of species, separated by the
parallel composition operator, where each species is enclosed in
square brackets and preceded by its population. The first species
is a single strand <tb” b>, consisting of a toehold tb" followed
by a domain b. Similarly, the second species is a single strand
<tx" x>. The third species is a complex consisting of a strand
<to™ 11 x*12 tx™13 b*!4 tb™*> bound to two shorter
strands <x!2 to”!1>and <b!4 tx " ! 3>. The bonds are
omitted in the corresponding graphical representation, since
they are only used to determine connectivity.

In addition to specifying the initial conditions of a system as a
process, our language allows logic predicates to be defined in
order to automatically generate system behavior. This is
achieved by extending the syntax of processes with logical
variables X (Table 1), where the wildcard “ " is the logical
variable that matches any term. Logical variables can then be
combined with patterns & (Table 2) to match a specific part of a

10 _tb b

Table 2. Syntax of Patterns and Contexts”

= <S> 1<S1818>18>1<8,1 @ pattern
Cyii= [JiIP1<SCy1SCyICyS>1CylCy context with N holes,
1<i<N

“A pattern 7 represents a specific motif that may occur in a process.
A context Cy is a “process with N holes”,* where each hole [-]; in Cy
is associated with a number i € N. A context Cy is well-formed if
it contains exactly N holes and each hole [-]; occurs exactly once.

We only consider well-formed contexts.

process. The pattern <S> matches a strand with exactly sequence
S, while the pattern <S matches a strand with sequence S at its 5’
end, and the pattern S> matches a strand with sequence S atits 3’
end. The pattern S matches a sequence that can be present
anywhere in a process, and the pattern S,> | <S, matches a nick
between two adjacent strands, where S,> and <S, represent the
two ends of the strands where the nick occurs. For example, the
pattern a! 1> | <b! 2 matches the nick in the double stranded
complex <d a!1l>1<b*!2 a*!1>|<b!2 c>. Note that the
order in which strands are written in a complex is not significant
for pattern matching, since processes are identified up to
reordering of strands. In general, the pattern S,> | <S, matches
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Table 3. Syntax of Logic Programs®

T:=  Xlint|floatstring| w1 Cy[m)...[my] 1 X[7]..[my]  term
! %(Ty ey Ty) 1 [Tiees Tnl 1 [Ty Ty # X]
A= x(Ty, ., Ty) atomic
predicate
L:= AlnotA literal
H:= A:—1L,.,Ly horn clause

“The syntax of our logic programming language extends the standard
syntax of Prolog with the patterns and contexts defined in Table 2.
As in Prolog, the main data structure is a term T, which can be an
integer int, floating point number float, a string enclosed in double
quotes, or a logical variable X. In addition, a term can be a pattern &
or a context Cy applied to N patterns, written Cy[7]...[7y]. The
context itself can also be a logical variable X, written X [x;]...[7y],
which is used to match any process that contains the patterns 7,...7y.
The structure x(T,...Ty) bundles together N terms under an identifier
x and defines named compound terms such as compl(d,, d,). The list

where the logical variable X stands for the rest of the list. An atomic
predicate or atom A has syntax x(t,,...ty), where x is an identifier. It is
generally used to describe properties or assign relationships to terms.
We assume that the sets of predicate identifiers and structure
identifiers are disjoint. A literal L is either an atom A or a negative
atom not A. A Horn clause or clause H has syntax A: — L,,..,Ly, and
can be read “A holds if L;...Ly hold”. The list of literals L; is possibly
empty. Atom A is called the head of H, and the list of literals is its
body. A clause with no literals is also known as a fact. Finally, a logic
program is a set of Horn clauses.

any two strands in a process such that the 3’ end of one strand
matches S, while the 5" end of the other strand matches S,. This
pattern does not require the strands to be adjacent to each other
or bound to a common strand, though this constraint can be
encoded explicitly for nicking enzymes (Figure 4). The empty
pattern @ does not match any strand, and is used to model the
creation and deletion of strands.

A pattern r is matched with a process P using the notion of a
context Cy (Table 2), defined as a “process with N holes”,*
where each hole [-];in Cy is associated with a number i € N. The
matching is performed by applying a context Cy to patterns
70170y, written Cy[ 7, ]...[y]. This fills each numbered hole [-];
in Cy with the corresponding pattern 7, For example, applying
the context C, = <d,d,[-], | <d,[-],d¢> to the patterns 7; = dgand
7, = dy> is written C,[d][d;>] and results in the process
<d,d,d;> | <d,dsd¢>. Note that only patterns of the same kind
can be replaced with each other: for example, a 3" end pattern
cannot be replaced with a nick pattern. The Methods provides
more details on the well-formedness conditions for pattern
substitution. To allow general logic predicates to be defined, our
language embeds these patterns and contexts in a general logic
programming language, by extending the standard syntax of
Prolog (Table 3).

We now illustrate how this language can be used to define
logic predicates that automatically generate the behavior of DNA
strand displacement systems. The following logic predicate
defines the conditions that need to be satisfied in order for
processes P1 and P2 to bind, producing the resulting process Q:

bind (P1,P2,0Q,D'i) :-

P1 = Cl [D], P2 = C2 [D'], compl(D, D'),
Q cl [D!'i] | Cc2 [D'!'i],
freshBond(D!i, P1|P2).

The predicate is satisfied if P1 matches a context C1 [D] and
P2 matches a context C2 [D’], such that D is complementary to

D’, as specified by the built-in predicate compl (D, D’). The
resulting process Q is obtained by replacing D with D!1i in
context C1, and replacing D’ with D"! i in context C2, written
C1l[D!i]1IC2[D’!1i].Furthermore, we require that the bond
1 is fresh in the sense that it should not occur anywhere in
processes P1 and P2. This is enforced by the built-in predicate
freshBond (D!i, P1 | P2). This example illustrates how
contexts are used to match specific patterns in a process and then
update these matched patterns directly in place. The use of
contexts in this way is a powerful abstraction for writing rules
that generate behavior."” If we apply this rule to our example
process defined previously, we obtain the following instantia-
tions of the logical variables:
Pl = <tb” b>,
Cl = <[.] b>, D = tb"
P2 = (<to™*!1 x*!2 tx"*!3 b*!4 thb"*>

| <b!4 tx"!3> | <x!2 to"!1> ),
C2 = (<to™*!1 x*!2 tx"*!3 b*!4 [.] >

| <b!'4 tx"!3> | <x!2 to"!1l> ), D' = tb"™*
Q = Cl[tb"!5] | C2[tb"*!5]
The resulting process Q is the complex that is produced when
P1 binds to P2 and is represented graphically as follows:

[ <tb™!5 b>

| <b!4 tx"!3>

| <x!2 to”™!1>

| <to™*!1 x*!2 tx"*!3 b*!4 thb"*!5>]

Y

tb b tx X to

g S

~ th* b* tx* x*  to*

Similarly, the following predicate defines the conditions that
need to be satisfied in order for process P to perform a strand
displacement step, resulting in the process Q:

displace(P,Q,E!j,D!'i) :-
P =C [E!j D] [D!i] [D"!i E’'!Jj],
Q=cC [E!j D!'i] [D] [D’!i E’'!5].

The predicate states that if the initial process P
matches a context in which the sequence D' !'iE’ !j is
bound to the sequence E ! j D on bond Jj and to the sequence D!
i onbond i, then the unbound domain D can replace the bound
domain D! i.ThesitesE!jand D! i are included as arguments
of the predicate, to record the bound domains at the beginning
and end of the displacement, respectively. Applying this
predicate to the above process results in the following, where
the bound domain b has been displaced:

[ <tb™!5 b!4>

| <b tx"!3>

| <x!2 to"!1>

| <to™*!1 x*!2 tx"*!3 b*!4 tb *!15>]

6
tb b [ X to
S tb* b* tx* x* to*

Note that this predicate only allows displacement to take place in
the 5’ to 3’ direction. As a result, we also need to define a symmetric
displaceL predicate for the 3’ to S’ direction (Figure 1).
Finally, the following predicate defines the conditions for
unbinding:
unbind(P,Q,D!i) :-
P =C [D!i] [D’'!'i], toehold(D),
Q = C [D] [D’], not adjacent (D'!'i,_,P).
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This encodes the assumption that only the toehold domains
are short enough to unbind, as specified by the built-in predicate
toehold (D), and relies on an additional predicate to check
that there are no bound domains adjacent to domain D:

adjacent (D!i,E!j,P) :-—

P =C [D!i E!j] [E'"!]J D"'i].
adjacent (D!'i,E!'j,P) :-

P =C [E!J D!i] [D'!i E’!3].

Note that this predicate takes the site D! 1 as an argument,
which contains both the domain D and its corresponding bond i.
Since the bond can only occur twice in a well-formed process,
this allows the inference system to pinpoint the specific domain
on which unbinding occurs in order to test for adjacent bound
domains, even if there are multiple occurrences of domain D in
the system.

We now combine the various predicates to automatically
generate the behavior of a nucleic acid system. In our language
we choose to represent this behavior as a chemical reaction
network (CRN), defined as a set of reactions, where each reaction
consists of a multiset of reactant species, a reaction rate and a
multiset of product species. To achieve this we follow the
approach presented in ref 44, which defines a method for
converting a process in an arbitrary biological programming
language to a CRN. The method requires the definition of a
species predicate, which converts a process in the language to a
multiset of species, together with the definition of a reaction
predicate, which generates the reactions that can occur involving
one or more species. We adapted this method to our logic
programming language, by defining a built-in species predicate
that converts a process P to a multiset of species, where a species
is a set of one or more strands that form a connected component,
and by allowing the programmer to define one or more custom

reaction rate R, and produces as output the product of the
reaction, specified as a process Q. The system then takes care of
splitting the process Q into individual products species, using the
built-in species predicate. Applying this approach to our example,
we can encode the rules of DNA strand displacement by defining
reaction predicates for binding, displacement, and unbinding of
strands, using our previously defined predicates.
reaction([P1;P2], "bind",Q) :- bind(P1,P2,Q,_).
reaction([P], "displace",Q) :- displace(P,Q,_,_).

reaction([P], "unbind", Q) :- unbind(P,Q,_).

In this case we define fixed rates for bind, displace, and unbind,
however the predicates can be further refined so that the rates
depend on the specific domains involved (Section S1.1). If we
apply these three predicates to the Join example, we automati-
cally generate a chemical reaction network of the system
behavior (Figure 1), where the strand <x to”> is produced only
if both strands <tb” b> and <tx” x> are present.

Although the rules in Figure 1 are sufficient to accurately
generate the desired behavior of our Join example, additional
predicates are needed in order for the same set of rules to
generate the complete behavior of a broad range of DNA strand
displacement systems. For instance, we also need to account
for the case in which adjacent complementary domains can
bind to each other, by defining an appropriate cover predicate
(section S1.1). In addition, since the division of a DNA sequence
into domains can be done arbitrarily, in order to maintain
biological accuracy we need to ensure that the displace, cover, and

bind predicates are extended to occur on a maximal sequence of
consecutive domains. We achieve this by defining corresponding
displaces, covers, and binds predicates, using a recursive encoding.
For example, the following displaces predicate defines a maximal
sequence of consecutive displacements:
displaces(P,R,E!j, [D#L]) :-

displace(P,Q,E!j,D!i), displaces(Q,R,D!i, L).
displaces (P,Q,E!]j, [D]) :—

displace(P,Q,E!j,D!i), not displace(Q,_,D!i,_).

There are two cases for the predicate: the base case and the
recursive case. The base case displaces (P,Q,E!7j, [D])
holds if the single displacement predicate displace (P, Q, E!
J,D!1i) also holds, where E!j and D! i denote the sites at the
beginning and end of the displacement, respectively, and no
further displacement is possible starting from site D! 1. The list

[D] contains the consecutive domains on which the displace-
ment takes place, where the list contains only a single domain D
in the base case. The recursive case displaces (P,R,E! 7,

[D#L]) holdsif process P can perform a single displacement to
become process Q, beginning at site E ! j and endingatsite D! 1,
and furthermore if process Q can itself perform multiple
displacements starting at site D! 1 along the list of domains L to
produce process R. The list [ D#L] adds the domain D to the list
of domains L. We define similar recursive predicates for the
symmetric case of the displace rule and for the cover and bind
rules (section S1.1). In the case of unbinding, since only toehold
domains are assumed to be short enough to unbind, we do not
consider unbinding along a maximal sequence of consecutive
domains. However, in some cases multiple consecutive toeholds
may still be short enough to unbind. To support this
functionality, we allow the user to specify unbinding rates for
specific sequences of consecutive domains (section S1.1).

Abstraction Hierarchy. Our logic programming language
also allows an abstraction hierarchy of behaviors to be defined, by
encoding assumptions about which reactions can be considered
sufficiently fast to be merged into a single step. We illustrate this
by encoding one of the semantic abstractions from ref 27.
To define a semantic abstraction, we label reactions as either fast
or slow and define the following predicate to merge fast reactions:
:— not fast ([P],_,_).

merge (P, R, V) :—
fast ([P],_,Q), not member (Q,V),
merge (Q, R, [Q#V]) .

This predicate assumes that only unimolecular reactions
involving a single species can be considered fast, since bimolec-
ular reactions are limited by the relatively slow rate of molecular
diffusion. The list V stores the list of processes corresponding to
each step of the merge. This is used to ensure that we do not
revisit the same process twice, in order to avoid getting trapped
in an infinite cycle of fast reactions. We then update the reaction
predicate to merge each slow reaction with a maximal sequence
of consecutive fast reactions as follows:
reaction([P1;P2], Rate, R) :-—-

slow ([P1;P2],Rate, Q), merge(Q,R, [(P1|P2);Q]).
reaction([P], Rate, R) :-—

slow([P], Rate, Q), merge(Q,R, [P;Q]).

merge (P, P, V)

In this way, changing which reactions are fast or slow changes
the semantic abstraction. If all reactions are labeled as slow then
this corresponds to the Detailed semantics of ref 27. For example,
the generated CRN in Figure 1 corresponds to the Detailed
semantics applied to the Join example. If all unimolecular
reactions are fast then this corresponds to the Infinite semantics
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bind(P1,P2,Q,D!i) :-—
Pl = Cl [D], P2 = C2 [D'], compl(D, D'), b X X w ¥ h x  to
Q =Cl1 [D!i] | C2 [D’!i], freshBond(D!i, P1|P2). § br b xx b o oF
displace (P,Q,E!j,D!i) :—
P =C [E!j D] [D!i] [D’!i E’'!j], 5 b
Q =C [E!j D!i] [D] [D’!'i E’!j]. — b _txo
displaceL(P,Q,E!j,D!i) :— !
P =C [D!i] [D E!j] [E’!j D’!i], th__b X OS] b b0 i X to
Q =C [D] [D!i E!j] [E'!j D''i]. tb*  b*  tx* x*  tox bind p* e R
unbind(P,Q,D!'i) :-
P =C [D!i] [D’!i], toehold(D), bind
Q = C [D] [D'], not adjacent(D!i,_,P). unbind
adjacent (D!'i,E!j,P) :- P = C [D!i E!j] [E’!j D'!i].
adjacent (D!'i,E!j,P) :—= P = C [E!J D!i] [D’!i E’!3j].
tb b b tx x 1o
reaction ([P1;P2], "bind",Q) :- bind(P1,P2,Q,_). tb*  b* b* tx* X* to*
reaction([P], "displace",Q) :- displace(P,Q,_,_).
reaction([P], "displace",Q) :- displaceL(P,Q,_,_).
reaction ([P], "unbind", Q) :- unbind(P,Q,_).
} tb b tx X
directive parameters [ <o b o unbind
bind = 0.003; displace = 1; unbind = 0.1 O
]
(10 [<tb" b>]
| 10 [<tx" x>]
| 100 [<to *!1 x*!2 tx"*!13 b*14 tbh *> x _tos

| <x!2 to”!1> | <b!4 tx"!3>] )

Figure 1. Logic program and automatically generated chemical reaction network for a DNA strand displacement example computing the Join of two

signals. (A) Logic program encoding binding, unbinding, and displacemen

t predicates, together with the initial conditions of the DNA strand

displacement system. (B) Graphical representation of the corresponding chemical reaction network generated by the logic program. The graph

consists of two types of nodes, representing species and reactions. Each speci

es node contains a graphical representation of a DNA complex. Each

reaction node displays the rate of the forward reaction on top and the rate of the reverse reaction, when present, on the bottom. Edges between a species

node and a reaction node that have an open arrowhead denote the products
denote the reactants, where solid arrowheads are used to denote a reversib
remaining species generated automatically by the logic program.

of the reaction. Edges with either no arrowhead or a solid arrowhead
le reaction. Species present initially are highlighted in bold, with the

of ref 27. For example, the generated CRN in Figure 2 corre-
sponds to the Infinite semantics applied to the Join example.
Intermediate semantic abstractions can be defined in a similar
fashion. The full set of DNA strand displacement rules is provided
in section S1.1, including rules for semantic abstractions. These
rules are general enough to be applied to a broad range of systems,
including most of the systems currently supported by the Visual
DSD language defined in ref 27. Previously, the rules of this
language were hard-coded in a corresponding implementation.
Instead, our logic programming approach allows these rules to be
defined by the user as high-level predicates in a logic program, and
easily modified and extended. Furthermore, the principle of
semantic abstractions is more general than strand displacement,
and can be similarly applied to a broad range of alternative
nucleic acid implementation strategies using our language.
Kinetic Rate Hypotheses. Our logic programming language
can also encode hypotheses that determine how kinetic rates are
assigned to reactions. Previous research'® used Bayesian inference
and model selection to compare different kinetic rate hypotheses,
in order to determine which hypothesis was most likely, given the
experimental data. Four new hypotheses were compared with a
Default hypothesis, in which the binding rate of a toehold was
determined purely by its DNA sequence.”” However, for the new
hypotheses the kinetic rates of the individual chemical reactions
needed to be manually encoded. Here, we demonstrate how our

logic programming language can encode kinetic rate hypotheses
as high-level logic predicates, to automatically generate chemical
reactions with consistent rates. We illustrate this using the
kinetic rate hypothesis selected in ref 15 to be most likely given
the data, in which parameters were assigned based on the
toehold sequence and its surrounding context, referred to as the
Unique Context hypothesis. In particular, the hypothesis made a
distinction between internal toeholds, defined as those with a
bound domain on either side, and external toeholds, defined as
those with a bound domain on one side only.

For simplicity, the code in Figure 1 assumed that all bind,
displace, and unbind reactions have the same rate. We first
extended this to encode the Default kinetic rate hypothesis,”’
which allows a separate rate to be assigned to each toehold and
provides support for default rates:

reaction([P1;P2], Rate, Q) :-
find(D, "bind", Rate), bind(P1,P2,0Q,D!i).
find (D, Type, Rate) : - rate (D, Type, Rate) .
find (D, Type, Rate) : -
default (D, Type, Rate), not rate (D, Type,_).
default (_, "bind",0.0003) .
rate (tb”, "bind", 0.0001) .
rate (tx”, "bind", 0.0002) .
rate(to”, "bind", 0.0003) .
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bind (P1,P2,Q,D!i) :—
Pl = Cl [D], P2 = C2 [D'], compl(D, D'), b tx X to
Q =Cl [D!i] | C2 [D’'!'i], freshBond(D!i, P1|P2). tb b oo
—_— / b tx* x* to*
. R Oy
displace(P,Q,E!j,D!i) :-
P =C [E!'j D] [D'i] [D''i E’'!j], T
Q =C (E!j D!i] [D] [D"'i E"!Jj]. bind
in
. . . bind
displaceL(P,Q,E!j,D!i) :-—
P =2C [D!i] [D E!j] [E’"!j D’'!i], J]
Q=2C [D] [D!'i E!'j] [E’!j D'!i].
tb b X to
tx X b tx
unbind (P, Q,D!i) :- —> |Stb* b tx* X* to*
P =C [D!i] [D’!i], toehold(D),
Q = C [D] [D'"], not adjacent (D!i,_,P). T
bind
adjacent (D!i,E!j,P) := P = C [D!i E!j] [E’!j D’'!i]. bind
adjacent (D!'i,E!j,P) := P = C [E!j D!i] [D’'!i E’!4].
slow([P1;P2], "bind",Q) :- bind(P1,P2,Q,_). th b tx X
fast ([P], "displace",Q) :- displace(P,Q,_,_). = N to
fast ([P], "displace",Q) :- displaceL(P,Q,_,_). th* b* tx* x* & —_—
fast ([P], "unbind", Q) :- unbind(P,Q,_). Ox
merge (P,P,V) :- not fast ([P],_,_).
merge (P, R, V) :-—
fast ([P],_,Q), not member (Q,V), merge(Q,R, [Q#V]).
reaction([P1;P2],Rate,R) :- slow([P1l;P2],Rate,Q), merge(Q,R, [(P1|P2);Q]).
reaction([P],Rate,R) :- slow([P],Rate,Q), merge(Q,R, [P;Q]).

}

directive parameters [ bind = 0.003; displace = 1; unbind

(10 [<tb” b>]

| 10 [<tx" x>]

| 100 [<to™*!1 x*!2 tx"*!3 b*!4 tb"*>
| <x!2 to”™!1> | <b!4 tx"!3>] )

0.1 ]

Figure 2. Logic program and automatically generated chemical reaction network for the Join example, with additional predicates for merging fast
reactions. (A) The logic program of Figure 1 is extended with predicates for distinguishing between reactions that are considered either fast or slow,
and for merging a maximal sequence of fast reactions. (B) Graphical representation of the corresponding chemical reaction network generated by the
logic program. In this network, binding, displacement, and unbinding reactions are merged into a single step.

The reaction predicate looks up the rate of the reaction using
the find predicate, which takes the domain D and the type of the
reaction, in this case "bind"”, and returns the corresponding
Rate. The programmer can specify a default bind rate for all
domains using the default predicate, and specific bind rates
associated with individual domains using the rate predicate.
A similar approach can also be used to associate unbinding and
displacement rates to specific domains.

To encode a more fine-grained kinetic hypothesis, in which
the binding rate depends not only on the domain but also on its
context, we can replace the existing bind predicate with context-
specific predicates that check whether a domain is on the 3’ end,
the 5" end, or flanked on either side, and assign different rates
accordingly (Figure 3). This simple example illustrates the
overall approach; however, more complex encodings will be
required in the general case. The key point is that the same
predicates can be applied to a broad range of systems, in order to
automatically assign kinetic parameters in a manner consistent
with the encoded hypothesis. These parameters can then
be fitted to data, for example using Bayesian parameter infer-
ence. In addition to assigning parameter variables in a con-
sistent manner, the same approach can be used to compute the
numerical rate values themselves, either using simple heuristics
such as the fraction of G-C nucleotide pairs, or by encoding

predicates for computing free energies directly, since our lan-
guage is sufficiently expressive to encode arbitrary computation.

Enzyme Interactions. Here we demonstrate the potential
of our logic programming language to encode the behavior of a
broad range of nucleic acid enzymes, by encoding the enzymes
of the Polymerase-Exonuclease-Nickase (PEN) DNA tool-
box”* 7?35 as logic predicates.

The DNA polymerase enzyme of the toolbox extends the 3’
end of a strand bound to a template, where the polymerase
predicate is defined as follows:
polymerase (P,Q,A!i,B!j) :-

P =C [Ali>] (B’ A’!i], compl(B, B'),

Q =C [A!'i B!j>] [B'!j A'!i], freshBond(B!j, P).

The predicate states that if site A! 1 occurs at the 3’ end of a
strand and is bound to a complementary sequence B'A’! 1, then
the 3’ end is extended by the polymerase enzyme, which creates
a complementary site B! j bound to the template on a fresh
bond j. We also allow the polymerase to displace domains
already bound to the template, to encode the behavior of the
strand displacing polymerase used in the toolbox:

polymerase (P,Q,A!i,B!j) :-
P =C [Ali>] (B! A’1i] [B!'j],
Q=C [A'i B!j>] [B'!3 A’!i] [B].
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. //Insert strand displacement predicates apart from bind
bindR(P1,P2,Q,D!i) :-

Pl = Cl1 [D], P2 = C2 [<D’ E’!j] [E!'j], compl(D, D'),

Q =Cl1 [D'i] | C2 [<D’!'i E’!'j] [E!3j], freshBond(D!i, P1|P2)

bindL (P1,P2,Q,D!i) :-
Pl = Cl [E'!j D'>] [E!j], P2 = C2 [D], compl(D, D'),
Q =Cl1 [E'!3 D’'!i>] [E!j] | C2 [D!i], freshBond(D!i, P1|P2)

bindM(P1,P2,Q,D!i) :-
Pl = Cl1 [(F'!'k D’ E’"!3J] [E!]j] [F!k], P2 = C2 [D], compl(D,D’
Q=2Cl [F''k D'!i E'!'j] [E!'J] [F'k] | C2 [D!i],
freshBond(D!i, P1|P2).

slow ([P1;P2],Rate,Q) :— find(D, "bindR",Rate),bindR(P1,P2,Q,_).
slow([P1;P2],Rate,Q) :— find(D, "bindL",Rate),bindL(P1,P2,Q,_).
slow([P1;P2],Rate,Q) :- find(D, "bindM", Rate),bindM(P1,P2,Q,_ ).
find (D, Type, Rate) : - rate (D, Type, Rate) .

find (D, Type, Rate) : - default (D, Type, Rate), not rate(D, Type,_) .
default (_, "bindR", 0.003). rate(to”, "bindR", "ktoR") .

default (_, "bindL", 0.003). rate(tb”, "bindL", "ktbL") .
default (_, "bindM", 0.006). rate(tx”, "bindM", "ktxM") .
}
directive parameters [ bind = 0.003; displace = 1; unbind =
(10 [<tb” b>]
| 10 [<tx" x>]
| 100 [<to"*!1l x*!2 tx"*!3 b*!4 tb"*>
| <x!2 to"!1> | <b!4 tx"!3>] )

B
b tx X to
b A
. Y
V
£ tb b X to
)y tx X [ b tx } — —
—>] | St*  b* tx* x* to*
ktxM
ktoR
tb b tx X
~tb* b* tx* x* X A
O
0.1 ]

Figure 3. Logic program and automatically generated chemical reaction network for the Join example, with additional predicates for encoding kinetic
rate hypotheses. (A) The logical program code is assumed to contain all of the predicates from Figure 2 apart from the bind predicate, which is replaced
by three context-specific binding predicates that check whether a domain is on the 3’ end (bindR), the S’ end (bindL) or flanked on either side (bindM),
and assigns different rates accordingly. (B) Graphical representation of the corresponding chemical reaction network. A different kinetic parameter is

used for a given domain in a given context.

Similar to the displaces predicate, we define a recursive poly-
merases predicate that allows a maximal sequence of domains to
be extended by the polymerase in a single step, until the end of
the template is reached:
polymerases (P, R,A!i, [B#L]) :—
polymerase (P, Q,A!i,B!j),
polymerases(Q,R,B!j,L).
polymerases (P,Q,A!i, [B]) :-—
polymerase (P,Q,A'!'i,B!7),
not polymerase(Q,_,_,_).

The exonuclease enzyme of the toolbox degrades an
unprotected single strand of DNA from the 5’ end, where the

base case of the exonuclease predicate is defined as follows:
exonuclease (P,Q,A, [A]) :—
P = C[<A>], unbound(A),
Q = C[nil], not protected(’d).
protected( _ {"O"}).

This states that if the process P contains a strand < A> consisting
of a single unbound and unprotected domain A, then the strand
is removed. Removal of a strand is encoded by replacing the
strand with nil, which represents the empty process 2.
Protection of a strand is encoded by the protected predicate,
written protected (A). The predicate makes use of tags t
(Table 1), which can be optionally associated with a domain d,
written d{t}, where a tag can be an integer, a string, a name or a
recursive structure x(T,... Ty). Here we assume that a given
domain A is protected from exonuclease degradation if it has a

phosphorothioate bond at its 5" end, represented by tagging the
domain with "O", written A{" Q" }. The recursive case of the
exonuclease predicate is defined as follows:
exonuclease (P, R, A@p, [A#L]) :-
P = C[<AQp B], unbound(d),
Q = C[<BQ@g], not protected(d),
exonuclease (Q,R,B@qg, L) .

This states that if the process P contains the pattern <AGp B
such that the domain A at the 5’ end is unbound and
unprotected, then the domain is removed and the predicate is
called recursively on the remaining 5" end B@q of the strand.
The predicate makes use of locations I (Table 1) that can be
optionally associated with a domain d, written d@I, where a
location can be a name, an integer or a logical variable. Locations
are used to distinguish between unbound domains with the same
name. In the case of bound domains we can simply use the bond
as the identifier, since no two domains with the same name can
have the same bond; however, for unbound domains an
additional location identifier is needed. The location is passed
in the recursive call to the exonuclease predicate, to allow a
maximal sequence of domains to be degraded in a single step.
Finally, the nickase enzyme of the toolbox introduces a nick
after a specific recognition site in a strand, where the nickase
predicate is defined as follows:
nickase (P, Q, [A]) :-—

recognition ([A]),

P =C [A!i B!7J] [B"!'5 A"!i],

O =C [Ali> | <B!3] [B'!3 A’1i].
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. // Insert strand displacement predicates
polymerase (P,Q,A!i, B!]j) :—

P =C [A!i>] [B’ A’!i], compl(B, B'),

Q =2C [A!'i B!'j>] [B'"!j A’"!i], freshBond(B!j, P).

polymerase (P, Q,A!i,B!j) :—
P = C [Ali>] [B'!j A’!i] [B!j],
Q =C [A!'i B!j>] [B'!j A"!i] [B].

polymerases (P, R,A!i, [B#L]) :-
polymerase(P,Q,A!i,B!j), polymerases(Q,R,B!j,L).

polymerases (P,Q,A!i, [B]) :-
polymerase (P, Q,A!i,B!j), not polymerase(Q,_,_,_).

exonuclease (P, R, A@p, [A#L]) :-
P = C[<A@p B], unbound(A),
Q = C[<B@qg], not protected(A),
exonuclease (Q, R, B@q, L) .

exonuclease (P, Q, ARp, [A]) :-—

P = C[<AQp>], unbound(A),

Q = C[nil], not protected(A).
protected( _ {"0"}).

nickase (P, Q, [A]) :— recognition([A]),
P =C [A!'i B!j] [B'!3 A"!i],
Q =C [A!'i> | <B!j] [B'!j A’!i].
recognition([a”]).

reaction([P], "polymerase", Q) :— polymerase(P,Q,_,_).
reaction ([P], "exonuclease", Q) :- exonuclease(P,Q,_,_).
reaction ([P], "nickase", Q) :- nickase(P,Q,_).

}

directive parameters [
bind = 4.3e-4; displace = 1;
unbind = 0.01; polymerase = 0.3;
=0.

nickase = 0.05; exonuclease 005;

10 [<b"*{"O"} a"*>]
1 [<a">]1)

exonuclease aN _br ary

bind
unbind

Figure 4. Logic program and corresponding chemical reaction network for enzyme computation. (A) The logic program contains predicates for strand
displacing polymerase, exonuclease, and nickase. It is also assumed to contain all of the logic predicates of Figure 1. The initial conditions consist of a
template strand with a phosphorothioate modification at the 5 end to protect from degradation, together with a single activator strand. (B) Chemical
reaction network generated from the logic program. The network demonstrates the main functionality of the three types of enzymes.

This states that if the process P contains a double stranded
region with consecutive bound sites A! 1 and B! j, then a nick s
introduced between the two sites, represented by the nicking
pattern A! i>|<B! j. The nick is only performed if domain A is
a recognition site for a nicking enzyme, represented by the
predicate recognition ([A]). In the general case a
recognition site can be a list of one or more consecutive
domains.

Figure 4 shows how the predicates for these enzymes can
automatically generate the behavior of a simple system,
consisting of a protected template and an activator strand.
The complete definitions of polymerase and nickase enzymes
are summarized in section S1.2. In addition, section S1.2.1
presents example predicates encoding the behavior of ligation
and restriction enzymes. These enzymes are not contained in the
PEN DNA toolbox, but are used in many molecular biology
processes such as Gibson Assembly.*®

We used our enzyme predicates to model a synthetic bio-
chemical oscillator called the Oligator,”® which was previously
implemented experimentally using the PEN DNA toolbox.

We modeled the system at two levels of abstraction: the domain
level and the nucleotide level. The system comprises three main
types of interaction: activation, inhibition, and degradation.
Activation follows from the amplification of a signal « in a
positive feedback loop. The signal is produced by a polymerase-
nickase reaction on a template strand T, which is composed of
two adjacent complementary copies of a. This is similar to the
template in Figure 4 but with sequence <a’*{"0"}a"*>,
where « is represented by the domain a*. When a binds to T},
polymerase extends « to aa, then nickase cuts the two signals,
similar to the bind, polymerase, and nickase reactions in Figure 4.
The operating temperature is chosen such that aa binds stably to
the template, but @ unbinds spontaneously. Inhibition occurs by
the chained production of two strands § and Inh, produced by
templates T, and T, respectively, where Inh then inhibits T). This
introduces the required delay to produce oscillations. Template T,
produces f after binding a signal a, similar to the template
<M {"O" }aM> in Figure 4, while template T; produces Inh
after binding 8. The strand Inh binds more strongly to T, than «
and is designed with a mismatching sequence at its 3’ end that
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// Insert strand displacement predicates
// Insert enzyme predicates
nickase (P, Q, [A1;A2]) :- recognition([Al;A2]),
P = C [Al!il A2!'i2 B!j] [B'!j A2'!i2 Al’'!il],
Q = C [Al!il A2!i2> | <B!Jj] [B’!j A2'!i2 Al’!il].

//Require at least 2 consecutive nucleotides to bind
default ([_;_#_], "bind", "ka") .

recognition(fal”™; a27]).

recognition([bl”; b27]).

}

(30 [<a2"*{"0"} al"* a2"* al"*>] // T1

| 5 [<b27*{"0"} bl"* a2”* al"*>] // T2

| 30 [<x"*{"O"} al”* a2"* b2"* bl"*>] // T3

| 1 [<al” a2">] // alpha

| 1 [<bl” b2">] // beta

| 1 [<a2” al” x">] ) // Inh

B o

+
a2
* * ka AN
a2 X+ _a2 a2 Sl — N
2
D

directive rules {
// Insert strand displacement and enzyme predicates
nickase (P, Q, [Al1;A2;A3;A4;A5])
P = C [Al!il A2!i2 A3!i3 A4!i4 A5!i5 N1 N2 N3 N4 B!j]

Q = C [Al!il A2!i2 A3!i3 A4!i4 AS5!i5 N1 N2 N3 N4> | <B!j]

default ([_; _; _;

recognition([c”*; a”; c™*; a”*; c"1).

}

(30 [<a™{ "O" } a” c¢” a” c"* a” ¢c” a"* ¢c” c"* a” a
| 5 [<c™*{ "O" } ¢c” a” a”™* ¢c"™* a”~ ¢ a“* ¢c” a” a"* a

1
1 [<a” a™* ¢™* a” ¢c"* a"* ¢” a” a“* ¢*"* ¢” >] // beta
1

30 [<a”™*{ "O" } a"* a” ¢~ a** ¢” ¢"* a” a” a”~ ¢” a” ¢** a”
[<a™* ¢” ¢c™* a” ¢c"* a** ¢~ a** ¢c"* a** a”* >] // alpha

[<a”™ ¢c™* a™* ¢c” a™* c¢c"* a"* a™* a"* c” c"* a” c¢"* a™* a”

:— recognition([Al;A2;A3;A4;A5]),
[B’!j N4’ N3’ N2’ N1’ AS5’!i5 A4’'!i4 A3’'!i3 A2'!i2 Al'!il],
[B’!3 N4’ N3’ N2’ N1’ A5’'!'i5 A4’!i4 A3’'!i3 A2’!'i2 Al’!il].

i i i _i _i i _ 1 _#1L1,"pind",0.0003). //Require at least 11 consecutive nucleotides to bind

c” a” ¢c’* a” ¢c” a** ¢” c'* a">] // Tl
c” a” c'*a”ct atr ¢t ¢t at>] // T2
ct at* c™* ¢” a” a’* ¢c™* a” ¢” a’* ¢ a” a**>] //T3

a“>] ) // Inh

S
a c* a* ¢ a* c* a* a* a* ¢ c* a c* a* a a 2
ka___\ a c* a* ¢ a* c* a* a* a* c __c* _a c* a*
N kdInRTone = =
+ a* ¢ a o a ¢ a a a o ¢ a < a
< o
a a c a c* a c a* c c* a a a c _a c* a c _at c _c* a
< D
> o

Figure 5. Logic programs for the synthetic Oligator,”® encoded at the domain and nucleotide levels. (A) Domain-level logic program, where each signal
is encoded as two consecutive domains. This is needed in order to implement the inhibition mechanism. For example, signal alpha is encoded as a1”
a2”. Separate recognition predicates are defined for alpha and beta. The full program code is provided in section $2.3. (B) Domain-level
inhibition reaction, in which the inhibitor strand Inh binds to the T1 template in order to inhibit amplification of alpha. (C) Automatically
generated chemical reaction network, which is analogous to the manually encoded CRN from ref 20. (D) Nucleotide-level logic program, where the
nucleotide t is encoded as a* and the nucleotide g is encoded as c*. Only a single recognition predicate is defined at the nucleotide level, which is
applicable to both alpha and beta. The full program code is provided in section S2.4. Importantly, the code generates the same CRN as the

domain-level logic program. (E) Nucleotide-level inhibition reaction.

prevents elongation by polymerase, thus inhibiting the produc-
tion of more . Finally, degradation is the continuous destruc-
tion of all species, except for the templates, by exonuclease.
Phosphorothioate bonds at the 5’ end of all templates prevent
exonuclease from degrading them. Note that only T}, T,, T, and
a are necessary to start the oscillatory system.

Our domain-level encoding of the Oligator is shown in Figure SA.
Note that instead of modeling a signal a as a single domain
a”, we model it as a sequence of two toeholds <al” a2”>.
Similarly, we model signal § as <b1” b2"> and signal Inh
as < a2’ al” x>, where x is used as the mismatching sequence.

This more fine-grained representation of signals is needed to
encode the inhibition mechanism (Figure SB). Templates
are modeled as a sequence complementary to the input and
output signals, and phosphorothioate bonds are modeled by
the tag "O" at the 5’ end of each template. The recognition sites
for nickase are @ and f, as defined in the two recognition
predicates. Note that in principle the signal @ could bind a2"*
on one T; template, and al”* on a second T, template,
recursively, resulting in the formation of template and signal
polymers. However, in practice such polymers are unstable
at the operating temperature of the experiments, because of
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the short length of the toehold. To avoid modeling such
spurious polymers, binding rates are only allowed for
sequences involving at least two domains, by writing
default ([_; # ],"bind”, "ka”).

Our framework can also express the Oligator directly at the
nucleotide level, using almost exactly the same set of logical
predicates, where binding takes place on a maximal sequence of
nucleotides. The DNA sequences of the Oligator signals and
templates are the following (taken from Supporting Information
of ref 20):

T A*A*CAGACTCGA-AACAGACTCGA-3'P

T,  G*C*ATGACTCAT-AACAGACTCGA-3'P

T3  T*T*ACTCGAAACAGACT-GCATGACTCAT-3'P
o TCGAGTCTGTT

B ATGAGTCATGC

Inh  AGTCTGTTTCGAGTAA

All sequences are defined from 5’ to 3’, where the asterisk ()
indicates a phosphorothioate modification, 3'P indicates a 3’
terminal phosphate modification used to block elongation, and
bold letters correspond to the recognition sequence of the
nicking enzyme Nt.BstNBL Italicized letters on T, and Inh
indicate their matching subsequences. The full logic program of
the nucleotide Oligator is provided in section S2.4, and the
initial conditions are shown in Figure SD. We model nucleotides
A and C with the toeholds a” and c”, respectively, where
complementary nucleotides T and G are modeled as a* and c*,
respectively. The structure of the encoding is similar to the one
in Figure 4, except that the nickase recognition site has 5 bases
instead of 2 domains. The default predicate ensures that
binding can only occur for sequences at least 11 bases long,
which is the length of the a and p species. Without this
assumption, partial bindings of templates and signals can form
polymers. Both the domain-level and nucleotide-level logic
programs produce the same chemical reaction network
automatically (Figure SC), consistent with the manually
encoded CRN of ref 20. One benefit of the nucleotide level
model is that it allows a more precise encoding of the nicking
site, where only a single recognition sequence is defined, which is
present in both a and f strands. More generally, the nucleotide
model can detect a broader class of errors than the domain
model, such as the presence of nicking sites in unintended
regions.

Localized Interactions. Recent work demonstrated how
nucleic acid components that are localized to a surface can be
used to perform computation.'” "’ Localized components can
also perform nanoscale locomotion, where nucleic acid strands
tethered to a surface form tracks that a nanomolecular device,
such as a walker, can traverse.”'®*’~>' Localization helps ensure
that only spatially proximal strands can interact with each other.
The interactions are determined by the geometry and
biophysical constraints of the system, which can be modeled
at varying levels of abstraction.”” One approach is to rely on the
programmer to specify which tethered components are close
enough to interact.’® In this approach, tethered strands are
labeled with tether(a,,...,ay), where each g; is a constant called a
location tag, and strands that share at least one location tag are
considered close enough to interact. We encode this approach
in our logic programming language by associating location
tags to a tethered domain. The predicate tethered (d,
[Al;...;AN]) associates tags Al, -, AN to the tethered
domain d, where each tag is represented as a string. Using this
approach, we only need to change the bind predicate in the
existing strand displacement semantics to encode localized
interactions:

bind(P1,P2,Q,D!i) :-
proximal (P1, P2)
Pl = Cl [D], P2 = C2 [D'], compl(D, D'),
Q = Cl [D!i] | C2 [D'!'i],
freshBond(D!i, P1|P2).

proximal (P1, P2) :-—
tethers(P1l, Tsl), tethers (P2, Ts2),
shared(Tsl, Ts2), pruning(P1l, P2).

The proximal predicate checks whether species P1 and P2
are close enough to interact, where the tethers predicate
identifies the tethers of the two species, and the shared
predicate checks whether one of the species is freely dif-
fusing with no tethers, or whether they are both tethered and
share at least one location tag. The full definitions of the
predicates are provided in section S1.3. In this encoding, the
pruning predicate checks that species P1 and P2 have at
most one tether each; however, more general encodings52 can
also be expressed.

To illustrate the approach, we present a logic program based
on a previously implemented cargo-sorting DNA robot'®
(Figure 6). A DNA origami surface contains two tethered
cargo strands, each with a cargo attached (cargolp and
cargo2p), where each cargo is tagged with a different
fluorophore. There are two tethered goal strands, each
complementary to one of the cargos. The goals are situated at
opposite ends of a line of intermediate tethered track strands
(trackl, track2, and track3) that form a track. The
cargos and the starting point of the robot are next to these track
strands. The task of the DNA robot is to transport each cargo to
its goal.

The robot takes random walks through the origami by
alternatively binding two foot toeholds from one tethered
strand to the next. It is also equipped with a hand toehold,
whose complement is situated on the cargo. When this toehold
binds to the cargo, a strand displacement reaction with the arm
domain detaches the cargo. Once picked up, the DNA robot
transports the cargo back to its corresponding tethered goal
strand and releases it again by strand displacement.

Complex Nucleic Acid Topologies. Initial versions of the
Visual DSD language focused on nucleic acid systems without
any branching structures.”””” However, many interesting
molecular devices require rich secondary structures such as
hairpins, branches, loops, and pseudoknots in order to function.
In subsequent work, a version of Visual DSD based on strand
graphs’" was proposed, in order to support such structures. The
strand graph language provided a syntax for encoding arbitrary
secondary structures at the domain level, together with a fixed
set of behavioral rules that was hard-coded in the language
implementation. Here we demonstrate that our logic program-
ming language is sufficiently general to encode the same com-
plex nucleic acid structures as strand graphs, together with the
logic predicates needed to automatically generate their corre-
sponding behavior. Importantly, our approach allows strand
graph behaviors to be combined with enzyme interactions and
other nucleic acid implementation strategies in a unified and
extensible manner.

We first encoded the full semantics of strand graphs®" in our
logic programming language (section S1.4). This includes more
general predicates that allow four-way branch migration and
three-way branch migration across junctions. To demonstrate
the combination of branching structures with additional
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Figure 6. Logic program of a cargo-sorting DNA robot,"® and a subset of the corresponding chemical reactions. (A) The DNA robot performs a
random walk over origami tracks by reversible strand displacement. (B) The robot picks up the cargo irreversibly. (C) The robot drops the cargo at its
goal track irreversibly. (D) Logic program, which uses the strand displacement predicates of section S1.1, replacing the bind predicate with its

localized counterpart.

implementation strategies, we focused on ribocomputing devices,’
which involve multiple hairpins and branched junctions,
together with additional translational machinery. A ribocomput-
ing device is a collection of transcribed RNA strands that
encode a logic circuit, where RNA molecules are provided as
inputs and protein translation generates the corresponding
output. The ribosome binding site (RBS) that triggers
translation is enclosed in a hairpin structure, which inhibits
translation by preventing access to the RBS, as long as the
hairpin remains closed. When present, input RNA mole-
cules activate a strand displacement reaction that opens the
hairpin, leading to translation of the protein output, which is
typically a reporter protein such as GFP or lacZ. Ribocomputing
logic gates have been reported” that implement AND, OR, and
NOT logic. In this scheme, AND logic is implemented via
partially complementary input sequences that must come
together to form a multiarm junction, which performs a strand

displacement reaction to open the hairpin occluding the RBS.
In the case of OR logic, the RNA containing the reporter
gene contains multiple hairpins, each of which occludes a
different RBS. Opening one of these hairpins via strand
displacement suffices to initiate translation of the reporter
protein. NOT logic is achieved by expressing a trigger RNA
that binds and opens the hairpin, but which contains toeholds
that enable the complementary input RNA to strip it away via
strand displacement, which allows the hairpin to close and
sequester the RBS. AND gates with up to four inputs and
OR gates with up to six inputs have been reported.” Further-
more, multilevel ribocomputing logic circuits were created with
up to 12 inputs,” demonstrating the potential complexity of
ribocomputing circuits. These circuits also have practical
applications, where simple ribocomputing switches have already
been used for tasks in biosensing for Ebola® and Zika® virus
diagnostics.
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. // Insert strand graph predicates here
reaction([P], "expression", Q) :-
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}
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Figure 7. Chemical reaction network and corresponding logic program code of the ribocomputing AND gate.” (A) Chemical reaction network.
(B) Corresponding logic program code, which uses the strand graph predicates from section S1.4.

The following logic program encodes the structure of the
ribocomputing AND gate (Figure 7):
( [<u* al*>] // input Al
| [<a2* u>] // input A2
| [<al a2!0 blank top~!1l rbs top~*!1
aug” a2*!0 linker gfp>] ) // AND gate

The first two strands represent input RNA strands Al and A2,
which can bind with each other on the common domain u. The
AND gate hides the ribosome binding site rbs in a hairpin
structure formed by the toehold top” followed by the domain
a2. The hairpin contains the start codon aug”, with an
additional blank domain as padding. Initially, the AND gate
only exposes a1, which binds input Al. This is still not sufficient
to open the hairpin, since a2 is still hybridized. Input A2 binds
to the intermediate domain u and forms a branch with an open
domain a2, which in turn displaces the domain on the hairpin to
open it. Because it is a toehold, the t op” domain is weak enough
to unbind spontaneously, leaving rbs exposed and allowing
green fluorescent protein to be produced by translation. Here we
do not model ribosome binding and translation explicitly, but
rather we encode both with the following rule, expressed in our
logic programming language:

reaction([P], "expression", Q) :-—
P = C [rbs@X _ aug”] [nil], not hidden(rbs@X, P),
Q = C [rbs _ aug”] [<gfp>].

The hidden predicate holds if the input domain, rbs in this
case, occurs in a closed loop (see section S1.4 for the full

definition). Protein translation is modeled by substituting the
empty pattern nil in P with a new strand <g£p> in Q. Figure 7
shows the resulting compiled reaction network of the ribocom-
puting AND gate. This example demonstrates how our logic
programming approach can encode, in a unified manner, the
translation interactions required by ribocomputing systems,
together with the RNA hybridization interactions required to
activate the switches that enable translation to proceed.

The syntax of our language also supports more intricate
systems that contain pseudoknotted structures. Figure 8 shows an
example of such a system, based on a localized DNA hybrid-
ization chain reaction (HCR)*’ system consisting of a track to
which six consecutive hairpins are bound. Here we present a
simplified version of this system with only two hairpins, for
illustration. Each hairpin has a toehold s”; on its stem and a
toehold s”,,; inside its hairpin loop, where i € [1..2] for our
simplified example. Toeholds s",,; are sequestered provided
hairpin i is closed. Strand <c1 s1”> triggers a chain reaction: it
binds to the stem of the first hairpin on toehold s1” and then
displaces domain c1, thus opening the hairpin. Toehold s2” is
now free and can bind to a subsequent hairpin stem, open it
by strand displacement and continue the chain reaction.
Following the chain reaction, the hairpin structures are bound
to each other and to the track, resulting in the formation of
pseudoknots. The logic program that captures the HCR example
is shown in Figure 8b. Interestingly, there is no need for custom
predicates to handle pseudoknots. The hidden predi-
cate automatically captures the fact that toeholds s; are
sequestered in the hairpins but not in the stems. Note that
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Figure 8. Chemical reaction network and corresponding logic program code for a localized DNA Hybridization Chain Reaction system.>®
(A) Chemical Reaction Network. (B) Corresponding logic program, which uses the strand graph predicates from section S1.4.

pseudoknots also have the effect of sequestering the domains
they contain.

Visualizing pseudoknotted structures is a challenging prob-
lem,* which in its most general form involves laying DNA
strands on topological figures such as toruses so that no edges
cross. In contrast, our approach simplifies the visualization of a
pseudoknotted structure by removing the bonds responsible for
the pseudoknots, and marking the affected domains with bond
identifiers, based on the syntax of processes (Table 1). Bonds are
eliminated recursively until no pseudoknot is present and the
resulting graph is planar. Affected domains are drawn in bold
font and display an exclamation mark together with a bond
identifier, suchas a2 ! 3 and a2*! 3 in Figure 8a. This indicates
that there is a bond between domains with the same bond
identifier. Future improvements can be made to represent the
bonds as lines instead of using identifiers. In addition, to avoid
overlapping strands in the visualization, we artificially separate
contiguous strands so that they can be placed more conveniently
on a plane, and connect the separated pieces by dashed gray
lines. Such lines have no biological meaning, but are merely a
visual clue signifying that domains connected by a dashed line
are contiguous.

Bl DISCUSSION

In this paper we presented a logic programming language that
can encode the behavior of complex nucleic acid systems using
logical predicates. We showed that, thanks to the manipulation
of motifs provided by patterns and contexts, our language can
express a wide range of biomolecular information processing
systems. We also demonstrated how previous incarnations of the
Visual DSD language27’29_31 can be encoded in this language in
a unified manner. This includes elementary strand displacement
rules together with a hierarchy of behavioral abstractions,”’
custom reactions,”” localized interactions,”® and complex
topologies’" including pseudoknots. Furthermore, our apgroach
supports new extensions including enzyme interactions”’ and
the encoding of kinetic rate hypotheses, " neither of which were
previously supported in Visual DSD. More importantly, our
approach is extensible in that new nucleic acid implementation

strategies can be encoded simply by defining new logic
predicates.

We envisage a number of usage scenarios for our logic pro-
gramming language. In the most common scenario, we
anticipate that the basic rules for nucleic acid strand displace-
ment will be included by default, and the user will add new
enzyme rules or kinetic hypotheses depending on the particular
implementation strategy. More broadly, we anticipate two
different classes of users: those who write predicates that define
particular nucleic acid implementation strategies, and those who
select from a set of existing predicates to model their systems of
interest. This will allow scientists not familiar with logic pro-
gramming to still take advantage of the enhanced customization
that our approach enables.

We briefly compare our logic programming approach with
Kappa,”>® which is a rule-based modeling language that
captures the interactions between agents via named sites.
A detailed comparison between Kappa and strand graphs has
already been provided in ref 31, which also holds for our logic
programming language, since it is expressive enough to encode
strand graphs. While Kappa rules define patterns that can be
matched to a system, our approach further allows the definition
of arbitrary logical predicates to be associated with a rule,
allowing increased generality. For example, our approach allows
a single binding rule to be applied for all domains that are
complementary, whereas Kappa would require a separate
binding rule to be written for each specific domain. Further-
more, our approach allows complex topologies to be expressed
using predicates, such as whether a domain is hidden inside a
hairpin, or is part of a junction of arbitrary size. A similar analysis
holds for other rule-based languages such as BioNetGen.””
An interesting area of future work would be to encode Kappa in
our logical framework, in order to extend the Kappa language
with arbitrary logical predicates.

The contribution of this paper is to generalize our previous
work on modeling DNA strand displacement systems”****" by
encoding these systems in a general-purpose logic-programming
language. In a similar vein, we note previous work on biological
modeling using the general-purpose Python programming
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language in the PySB system,”® which allows rule-based models,
equivalent to Kappa models, to be encapsulated in modules and
integrated with Python code. This approach allows model
composition to be achieved programmatically within Pythonina
highly flexible manner. However, it does not directly encode
support for logic programming predicates and their resolution.

In the specific context of DNA strand displacement reactions,
we note that other groups have developed alternative reaction
enumerators, such as Peppercorn® and the DyNAMIiC
Workbench.”> These enumerators make slightly different
choices from Visual DSD, for instance in their treatment of
fast reactions and resting complexes. Our logic programming
language presented here is sufficiently expressive to encode
these alternative reaction enumeration schemes and to compare
them in a unified framework.

Previous published work provided support for user-defined
chemical reactions to be specified in Visual DSD, in addition
to the automatically generated strand displacement reactions.
However, this approach required each individual reaction to be
written explicitly, and did not support high-level logical pred-
icates. For example, in order to encode a nickase enzyme the
programmer needed to manually identify each species that
should be capable of nicking, determine the resulting products,
and write out all of the corresponding chemical reactions. Further-
more, the manual process of identifying these additional reactions
is time-consuming and potentially error-prone. In contrast, our
logic programming approach allows a single nickase rule to be
defined for the appropriate nucleic acid motif, and then applies
this rule to all matching species, generating the corresponding
reactions automatically.

A prototype implementation of our logic programming
language has been integrated in Visual DSD and is freely
accessible at http://classicdsd.azurewebsites.net, together with a
collection of built-in Logic Programming examples. Note that the
performance of the web-based tool is limited, but is sufficient to
reproduce the results of the paper. All of the figures in this paper
were generated automatically from the software and saved as
SVG files, which in some cases were further modified to improve
their layout. This integration means that all of the existing
simulation and analysis methods present in Visual DSD are
supported by our logic programming language. We have also
implemented a backward compatibility layer to support pro-
grams written in the syntax of the previous version of Visual
DSD, referred to as Classic DSD. Programs that do not contain
the keywords directive rules will be executed as Classic DSD
programs. Conversely, adding these keywords to any Classic
DSD program allows the user to define a custom semantics by
providing their own semantic rules. Note that when a custom
semantics is defined, any rate constants associated with
specific domains in the program are ignored for consistency,
since the user-defined semantic rules determine both the
reactions that are generated and their corresponding rates. For
example, we define a custom find predicate to compute
reactions rates.

In terms of compilation time, for a selection of examples that
are also supported by previous versions of Visual DSD,”” our
logic programming language has an average penalty of
approximately 25%, including for the Join and Catalytic
examples. This is not unexpected given the generality of the
language. Although breath-first search is associated with poor
performance for general purpose programming, we have not
experienced prohibitive slowdowns in the examples we have
encountered thus far. Unsurprisingly, the nucleotide Oligator

presents the longest compilation time (~20 s). Future work will
involve further optimizations to our approach.

As with previous versions of Visual DSD, the semantics of our
logic programming language is defined as a compilation to
chemical reaction networks. As a result, for systems with large
numbers of molecular species and interactions it may be
infeasible to generate the corresponding reaction network in its
entirety. The networks generated from the systems in this paper
are on the order of tens of reactions, and many of the systems
that have been implemented in practice generate networks
of a tractable size. However, more detailed computational
models could potentially generate substantially more reactions.
To address this issue, it is possible to activate a Just-In-Time
(JIT) compilation mode by adding the keywords directive jit.
This mode allows the reaction network of a system to be
generated dynamically, by stochastically generating a single
simulation trajectory of the system, following the approach
outlined in ref 44. Future work could investigate the develop-
ment of analysis methods that reason directly on a system and its
corresponding rules, without the need to generate all possible
reactions.

Future work will also involve additional extensions to better
support nucleotide-level models, together with syntactic support
for non-nucleotide species such as GFP, which are currently
written as strands such as <gfp>. It would also be interesting to
better support the distinction between DNA and RNA strands,
for example by allowing tags to be associated with strands in
addition to domains. Future work could also investigate a more
formal definition of the language semantics, together with formal
proofs that precisely capture its expressive power with respect to
existing languages. A formal encoding of Kappa into our
language would also be interesting to explore. As a practical
matter, a useful future direction would be the inclusion of a
formal module system whereby particular sets of predicates can be
defined as self-contained modules and easily loaded into a model
with a single command. This would enable the creation of a
standard library of commonly used predicate sets for well-known
systems such as DNA strand displacement or the PEN-DNA
toolbox, and would also enhance communication of models
between researchers by providing a common interchange format
for their definitions. Other notable examples such as the
metastable DNA fuel®® can be encoded in our framework, but in
this case the semantics must take into consideration biophysical
constraints, that in this particular case keep the metastable fuel in
a kinetic trap. We speculate that a semantics that takes molecular
geometry into account, such as the one in ref 52 can be encoded
in our language and might be suitable in this case, but such a
discussion is out of the scope of the present paper.

B METHODS

SLDNF Resolution. Given a goal A, SLDNF resolution
instantiates the root of a search tree with A. It then tries to match
A with the head of a Horn clause C; in the logic program using
unification. For any match of C; with substitution 6, found by
unification, a new child to the root node is created, where A is
substituted with the body of C; after applying 6, Resolution
proceeds recursively on the children, until a leaf node with no
goals to expand is discovered and a solution @ is found, where 0 is
the composition of all substitutions 8; computed by unification
from the root to the leaf. If no clause matches a goal then
resolution fails, that node is discarded and another node is
chosen. In the general case, clause definitions in a logic program
can be recursive and may cause the SLDNF resolution to build
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an infinite tree. An example of a recursive logic program is the
factorial function, which can be encoded as follows:
factorial (0, 1).
factorial (N, M) :-—

N > O,

N’ is N - 1,

factorial (N, M’),

M is M’ * N.
The first line of the program encodes the fact that factorial of Ois 1,
and is the base case of the program. The subsequent clause
computes the factorial of a positive number N recursively in
terms of N — 1. The SLDNF resolution tree therefore has N + 1
nodes from root to leaf. Resolution fails for negative numbers,
since the predicate N > 0 (which is parsed as a predicate greater
(N, 0)) does not hold in such cases. Without this predicate,
SLDNF resolution would create an infinite resolution tree.
SLDNF can also prove negative predicates, using what is known
as negation-as-failure. A negative predicate holds when its
SLDNF tree is finite and all of its nodes result in failed goals.
If the SLDNF tree is infinite, SLDNF will not terminate even if
all of its goals fail.

Language Semantics. We briefly summarize the semantics
of our logic programming language. Unification of domains and
bonds proceeds by syntactic decomposition. Patterns ;... can
be substituted by patterns 7}...7 of a similar kind in a context.
For example, a sequence S;S, can be replaced by S;> | <S, to
model nicking by nickase, and a strand <S> can be replaced by @
to model degradation by exonuclease. 3" and 'S5 ends are only
replaced by the same kind of pattern.

Context substitution follows the Double Pushout (DPO)
approach from the theory of graph grammars.’® In DPO, graph
transformations are sound as long as no dangling edge is
removed, and no node is added and removed at the same time.
The first condition translates to checking that a bond is always
removed from both of the domains it connects, and that pat-
terns are substituted with similar patterns. The second condition
is always satisfied by well-formedness: by definition of our
contexts no two holes can overlap, therefore no part of a system
can be added and removed at the same time. Unification fails at
run-time whenever a predicate violates these conditions.

There are many ways in our syntax to express what is nominally
the same process. For example, process <a!0 b!1> | < b*!1 a*10> is
essentially the same process as <b*!3a*12> | < a!2b!3>, except for
the fact that bond 0 is called 2, bond 1 is called 3, and the order of
the strands is inverted. In order to ignore such syntactical
differences and focus on the semantics, our theory also allows
equations P = Q to hold when the processes P and Q are
equivalent, written P = Q. We allow standard process calculus
equivalences, such as commutativity (P | Q = Q | P), distributivity
(P1(QIR)=(PIQ)IR)and absorption (P10 = P). Processes are
also considered equivalent up to renaming of bonds.

The surrounding context in which a logical variable occurs is
often sufficient to identify its kind. For example, X in X [7,] is a
context variable; D in D!i is a domain variable. If this is not
possible, we assume that the variable has the most general kind
possible in the syntax. For example, we say that D in D@/ is a site
variable rather than a domain variable.

Contexts are the core mechanism to programmatically
identify and manipulate DNA motifs. Motifs are identified
when a clause defines equality constraints of the form P =
X[m,]-++[#,]. Our unification theory solves such equations by
finding all well-formed contexts Cy and variable substitutions 6

for the logical variables in 7.7y such that P = Cy[0(7)]-
[6(x,)]. In our theory = is not a congruence: we do not allow
equations such as P = X[m] ..[my] | Q for efficiency reasons,
much like how unification for arithmetic operations is handled in
Prolog.

Process Canonical Form. Process equivalence implies that
the same process can be written in many different forms.
To verify whether two processes P and Q are equivalent, we
define the canonical form of a process as a function canon(—)
such that canon(P) = canon(Q) if and only if P = Q. The practical
advantage of such a function is that an implementation of our
logic programming language can store all processes in canonical
form and just test them for equality during reaction
enumeration. The algorithm that calculates the canonical form
of a process is a variation of the coinductive bisimulation algo-
rithms for concurrent process algebras such as CCS,” together
with sorting ideas inspired by McKay’s algorithm for graph
isomorphism.”” We call our algorithm the bisimulation sort.

At the beginning of bisimulation sort, strands are sorted
lexicographically, that is, strands are compared point-wise based
on their sites, and are sorted by domain names, site kind (e.g,,
whether they have a bond or not) and overall length. Because of
a-equivalence, bond names are not used at this stage.
Lexicographically equivalent strands are grouped together into
an equivalence class. The output of this initial setup is thus an
ordered set of lexicographically sorted strands. The end goal of
bisimulation sort is to sort each strand inside these equivalence
classes in a canonical form as well, so that the whole process is
then canonical.

Although some sites are indistinguishable from others based
on their names or kind alone, they might be distinguished by
their context. For example, a process might contain two lexicog-
raphically equivalent strands (i.e., same domain names, same site
kinds and same length), but one strand might have a site d!0
bound to the single domain strand <d*!0> , while the other
strand might have a domain d!l at the same position as the
former strand, but bound to a different, bigger complex, such as
<d*11 e¥12 > | <e!2>.

As a further example, <a!0 b!l1> and <a!2 b!3> are lexi-
cographically equivalent in <a!0 b!1> | <a!2 b!3> | <b*!3 g*12
b*!1 a*10>, but <a!0 b!1> is bound at the 3’ end of <b*!3 a*!2
b*!1 a*!10>, while <a!2 b!3> is bound at the S’ end. This is
another kind of distinction that defines a unique canonical
form.

Finally, sometimes strands cannot be differentiated by the
context. For example in <a!0 a*!1> | <a!l a*10> , the two
strands are not only lexicographically equivalent, but they are
also perfectly complementary and symmetrical: any permutation
of bonds produces the same system. In such cases the order of
strands and bond names are uninfluential. Our bisimulation sort
algorithm is a variant of the Paige-Tarjan block refinement
algorithm [ref 61, chapter 6] to find strands equivalent up to
bond names.

Bisimulation sort computes the canonical form coinductively,
by continuing to split blocks until no more splitters are available.
If a block contains two or more strands, these strands are
isomorphic. After this sorting phase is finished, all bonds are
renamed in increasing order of appearance in the sorted strands.

Compilation Performance. We report the average
compilation time for the logic programming examples presented
in the text. We measured the time it takes to parse, compute,
and output the chemical reaction network of each example,
averaged over 10 iterations, running on an Intel Xeon ES-1620
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processor with four cores @ 3.60 GHz. As a comparison, we also
compared the compilation time of the Join and Catalytic
examples in the previous version of Visual DSD, both in Infinite
and Detailed mode (Table 4). In comparison with the previous

Table 4. Compilation Times

logic DSD  visual DSD
example (s) (s)

ribocomputing OR 5.8653
ribocomputing AND 22722
localized HCR 4.784
cargo-sorting robot (classic DSD semantics, no 9.7368

merging)
cargo-sorting robot (strand graphs semantics, 6.6322

merging)
Oligator 3.1413
Oligator, nucleotides 22.2991
join, infinite 1.9866 1.4772
join, detailed 1.7183 1.5080
catalytic (infinite) 1.9654 1.370S
catalytic (detailed) 1.754S 1.3741

version of Visual DSD, our implementation shows a compilation
time penalty of approximately 25%. This penalty is not unexpected,
given the generality of the language. There is also room for
improvement, given that we prioritized soundness over perform-
ance during the compiler implementation. In an earlier
implementation of our language, performance analysis using a
profiler highlighted two bottlenecks in the system. After resolv-
ing these, we gained a 10-fold improvement in performance.
We conjecture that further improvements are possible.
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