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Abstract

The design of periodic elastoplastic microstructures for maximum energy dissipation is carried out using topology
optimization. While the topology optimization of elastic microstructures has been performed in numerous studies,
microstructural design considering inelastic behavior is relatively untouched due to a number of reasons which are addressed
in this study. An RVE-based multiscale model is employed for computational homogenization with periodic boundary
constraints, satisfying the Hill-Mandel principle. The plastic anisotropy which may be prevalent in materials fabricated
through additive manufacturing processes is considered by modeling the constitutive behavior at the microscale with
Hoffman plasticity. Discretization is done using enhanced assumed strain elements to avoid locking from incompressible
plastic flow under plane strain conditions and a Lagrange multiplier approach is used to enforce periodic boundary
constraints in the discrete system. The design problem is formulated using a density-based parameterization in conjunction
with a SIMP-like material interpolation scheme. Attention is devoted to issues such as dependence on initial design and
enforcement of microstructural connectivity, and a number of optimized microstructural designs are obtained under different

prescribed deformation modes.

Keywords Architectured microstructures - Nonlinear topology optimization - RVE-based multiscale models -

Computational homogenization - Anisotropic plasticity

1 Introduction

The properties of materials employed for engineering pur-
poses have an inherent dependence on their heterogeneous
composition. Indeed, at a certain scale, all materials have
heterogeneities which affect their engineering properties at
the scale of application. Recently, new classes of materials
known as architectured materials and mechanical meta-
materials have emerged in large part due to the rapid
development of additive manufacturing technologies which
allow improved feature control at smaller scales (Guo and
Leu 2013; Xu et al. 2015; Li et al. 2016). These materi-
als derive their properties through purposeful design of the
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geometry and composition of microstructures (Fleck et al.
2010; Lee et al. 2012; Christensen et al. 2015). One of the
most successful numerical design tools in computational
mechanics is topology optimization, which is used to deter-
mine the optimal layout of a limited amount of material
within a design domain in order to achieve the best design
performance (Bendsge and Sigmund 2003). This allows
for the simultaneous optimization of size, shape, and con-
nectivity and has seen topology optimization successfully
employed in a variety of design problems, including the
design of material microstructures (Cadman et al. 2013). An
important property for which material microstructures can
been designed is that of energy dissipation. For instance,
metallic foams are widely used to dissipate energy through
plastic deformations (Lefebvre et al. 2008). More recently,
architectured materials such as metallic micro-lattices have
been shown to be superior to metallic foams in their abil-
ity to dissipate energy (Schaedler et al. 2014; Rashed
et al. 2016). However, the application of topology opti-
mization to the design of material microstructures for energy
dissipation is a topic which has been largely unexplored, due
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to the difficulties inherent in forward and inverse problems
involving multiscale inelastic behavior.

Early works considering material microstructural design
through topology optimization approaches include those by
Sigmund and coworkers (Sigmund 1994, 1995, 2000), Gib-
iansky and Sigmund (2000) and Neves et al. (2000). In
these studies, the macroscopic elasticity tensors obtained
through computational homogenization are optimized to
attain extremal properties, i.e., maximum bulk and shear
moduli, negative Poisson’s ratio, etc. To carry out topol-
ogy optimization, the above studies utilize an asymptotic
multiscale model for computational homogenization (Ben-
soussan et al. 1978; Pavliotis and Stuart 2008) along with
a design parameterization which can be categorized as
density-based (Deaton and Grandhi 2014). Though success-
ful for elastic microstructural design, this paradigm has
not been used for the design of inelastic microstructures
due to the fact that multiscale models based on asymptotic
expansions are difficult to extend to problems with material
nonlinearities in a straightforward and general way. Indeed,
this has been mentioned as a major impediment to the
development of inelastic microstructural design techniques
(Osanov and Guest 2016) and has prompted alternative
approaches such as the use of finite periodic structures for
performing microstructural design (Carstensen et al. 2015).
An alternative microstructural design framework is outlined
in De Souza Neto et al. (2010) and Amstutz et al. (2010),
making use of RVE-based multiscale models for computa-
tional homogenization (Hill 1963, 1967; Mandel 1966) and
a level set design parameterization which exploits the topo-
logical derivative concept (Amstutz and Andra 2006; Giusti
et al. 2009). Again, this framework has only been applied to
elastic microstructures. In this case, the difficulty in extend-
ing the framework comes not from the multiscale modeling
approach but from the design parameterization. Hence, to
consider topology optimization for the design of inelastic
microstructures, both the multiscale modeling approach and
the design parameterization must be amenable to the use of
inelastic material models.

Unlike the asymptotic approach to multiscale modeling,
the RVE-based approach allows for the incorporation of
inelastic material models in a straightforward manner.
Moreover, this RVE-based approach can be given an
axiomatic variational framework (De Souza Neto and
Feijoo 2006; Blanco et al. 2016), making it especially
suitable for computational homogenization using finite
element analysis. Indeed, when performing computational
homogenization with nonlinear problems, the most common
approach is to employ RVE-based multiscale models with
finite element analysis (Geers et al. 2010; Saeb et al.
2016). In this way, macroscale constitutive quantities are
numerically obtained as volume averages of the constitutive
quantities obtained through the solution of an appropriately
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defined microscale problem. For these volume averages to
provide a meaningful macroscopic response, the microscale
problem must be defined over a domain that statistically
represents the characteristic microstructural heterogeneities.
This domain is known as a representative volume element
or RVE. Central to classical homogenization theories is
the concept of scale separation, wherein it is assumed
that field fluctuations in the material microstructure should
be smaller than the size of the RVE and that the RVE
should itself be much smaller than the scale of macroscopic
field fluctuations (Geers et al. 2010). Based on this, an
equilibrium boundary value problem is defined over the
RVE domain by applying suitable constraints on boundary
terms such that they satisfy a multiscale energetic criterion
known as the Hill-Mandel principle (Hill 1963, 1967;
Mandel 1966). Following the solution of this boundary
value problem, macroscopic constitutive quantities can then
be extracted by applying appropriate volume averages. This
approach does not restrict the constitutive behavior of the
RVE domain and thus provides an avenue for inelastic
microstructural design by considering an inelastic RVE
domain.

To facilitate the design of an RVE domain requires
parameterizing this domain in some way. While both
density-based and level-set design parameterizations have
been used for elastic microstructural design, the density-
based approach is more amenable to the consideration
of inelastic material models. This has been demonstrated
recently through studies which utilize density-based topol-
ogy optimization with a number of complicated inelastic
models (Zhang et al. 2017; Li et al. 2017a, b; Alberdi and
Khandelwal 2017; Alberdi et al. 2018b). On the other hand,
the level set approach has been mainly restricted to the realm
of linear elastic behavior as the shape derivatives which
are needed to drive design updates are difficult to obtain
in the case of inelastic materials. Shape derivatives have
been derived for an elastoplastic model in Aymeric et al.
(2018) using regularization techniques, but this approach
cannot be applied generally to different models in the way
that a density-based approach can. It should also be men-
tioned that microstructural topology optimization has been
investigated using different parameterization approaches—
namely Voigt and Reuss mixing rules and BESO—and
that these approaches have been applied to elastoplastic
microstructure design in Swan and Arora (1997) and Chen
et al. (2018), respectively. However, the generality and
flexibility of the density-based approach for handling vari-
ous material models and finite element formulations while
allowing for accurate sensitivity calculations (Alberdi et al.
2018b) makes it attractive for use in developing an inelastic
microstructural design paradigm.

In this study, the design of periodic elastoplastic microstruc-
tures for maximum energy dissipation is carried out using
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Fig. 1 Solid body with periodic microstructures and corresponding
RUC:s. Periodic regions of the boundary are shown for each RUC

topology optimization. Computational homogenization is
performed using an RVE-based multiscale model and peri-
odicity is enforced through Lagrange multipliers. Hoffman
anisotropic plasticity is employed to model the constitutive
behavior at the microscale and finite element discretiza-
tion is done using enhanced assumed strain elements to
avoid locking from incompressible plastic flow under plane
strain conditions. To parameterize the design problem, a
density-based approach is used and material behavior is
interpolated with a SIMP-like method (Bendsge and Sig-
mund 1999). Accurate sensitivity calculations are achieved
by using a path-dependent adjoint method. Attention is
devoted to issues such as dependence on initial design
and enforcement of microstructural connectivity, and a
number of optimized microstructural designs are obtained
under different prescribed macroscopic strains. It is also
shown that the consideration of plastic anisotropy leads
to optimized microstructural topologies which differ from
those obtained with the isotropic von Mises model. The
remainder of this paper is laid out as follows: Section 2
gives details on the computational homogenization per-
formed with an RVE-based multiscale model and Hoff-
man anisotropic plasticity, including the discretization using
EAS elements and enforcement of periodic boundary con-
straints with Lagrange multipliers. Section 3 discusses the
design parameterization, problem formulation and sensitiv-
ity analysis. Section 4 details numerical issues that may
arise when designing microstructures and illustrates tech-
niques to handle them. Sections 5 and 6 then present a
number of optimized microstructure topologies obtained
using anisotropic plasticity. Finally, Section 7 provides the
important conclusions.

2 Computational homogenization

For architectured materials with regular periodic microstruc-
tures, the microstructural heterogeneities can be identified
as belonging to a periodically repeating unit cell. In this
case, the representative unit cell (RUC) replaces the RVE
as the domain for the microscale problem. As this study
focuses on the design of such architectured microstruc-
tures, the microscale problem domain will be assumed to
be an RUC throughout. That is, the design problem will be
defined over an RUC and periodic repetition of the opti-
mized RUC will result in the optimized microstructure. The
concept of an RUC is illustrated in Fig. 1 where two dif-
ferent microstructures and their corresponding RUCs are
shown.

To perform computational homogenization, relations
which prescribe how to obtain the correct volume averages
of constitutive quantities are needed in addition to appro-
priate governing equilibrium equations for the microscale
problem, i.e., for the RUC. These homogenization relations
and equilibrium equations may be derived in a variety of
ways, but for the sake of brevity this section will focus on
the description of these equations rather than their deriva-
tion. Interested readers are directed to the following refer-
ences for details on the derivation and theoretical aspects
of RVE-based multiscale models (Hill 1963, 1967; Mandel
1966; de Souza Neto and Feijoo 2006; Saeb et al. 2016;
Blanco et al. 2016; Alberdi et al. 2018a).

2.1 Kinematics and volume averages

For an RUC domain Q2* (Fig. 1), the volume average of a
microscopic scalar, vector or tensor field f is obtained as

1

— dv 1
V o i (D
where V = fm dv is the total volume of the RUC,

including voids. Small deformation theory is considered
and the governing kinematical variable in this case is
the strain tensor ¢ = V*u where V*® is the symmetric
gradient operator and u is the displacement field. At the
microscale, the displacement field is considered to consist
of a homogeneous part driven by the macroscopic strain
tensor and a microscale fluctuation field resulting from the
heterogeneities, i.e.,

ux) =ex +i(x) V xeQH 2)

where & is the macroscopic strain tensor and #(x) is
the microscale displacement fluctuation field. Here and
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for the remainder of the paper quantities with an overbar
(M) represent macroscopic quantities. The homogenization
relation for the strain tensor is given as

1 1
= v e(x)dv = v QM(E—i— Via)dv 3)

QKr

where (2) was used in the second equality. It can be seen
that in the absence of microscale fluctuations, this relation
is trivially satisfied. Similarly, the homogenization relation
for the Cauchy stress tensor is

o=— o (x)dv 4

V Jaou

where 0 = X(¢) = X(¢ + V®u) and the function
Y depends on the constitutive model(s) governing the
microscopic constituents. It should be noted that there are
no requirements that the function X be elastic, i.e., inelastic
constitutive models can be canonically considered within
this framework with no loss of generality.

2.2 Hill-Mandel principle

For RVE-based multiscale models, an essential requirement
which must be satisfied in the transition between the scales
is that the average work done at the microscale should
be equivalent to the work done at the macroscale. This
energetic relationship is known as the Hill-Mandel principle
(Hill 1963, 1967; Mandel 1966) and is stated as

o:de =— o :dedv 5)
QH

Hence, to derive meaningful information from an RUC,
the stress and strain fields within it must satisfy (5). For
periodic metamaterials, this is satisfied if the RUC domain
is considered to be in self-equilibrium and the displacement
fluctuations on the RUC boundary are periodic. Self-
equilibrium of the RUC requires that

Vo=0 in Q" (©6)
For displacement fluctuations to be periodic on the RUC
boundary 9Q2*, this boundary is divided into opposing
regions dQ*~ and dQ*T such that 9Q* = QT U 9QH~
and 9Q*T N 9Q#~ = (. Periodicity requires that the

fluctuations #(xT) = aa(x™) for x* € IQ**T and x~ €
dQH*~. Making use of (2), this can be rearranged as

uxH —ux)=ze.(xT —x7) 7
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Figure 1 shows the periodic boundary regions for both
hexagonal and square RUC domains. Here, dQ2** and
0"~ are divided into opposing sides 852’; * and 89‘; B
where j = 3 for the hexagonal RUC and j = 2 for
the square RUC. Based on the above requirements, the
microscale problem for computational homogenization is
given as the following equilibrium boundary value problem
on a RUC: find the microscale displacement field u(x) such
that

Vo=0 in QF
u(xH —u@x")==el on IQ* 8)

where I = xT — x~ is the distance vector between
opposing boundary regions. From (8), it can be seen that the
deformation of the RUC is driven by the macroscopic strain
tensor €.

Remark: Rather than posing self-equilibrium and restricting
boundary terms to satisfy the Hill-Mandel principle as
is commonly done (Saeb et al. 2016), the Hill-Mandel
principle can be posed as an energetic criterion along
with kinematical constraints to derive the self-equilibrium
and stress homogenization relations as its consequences
(Blanco et al. 2016; Alberdi et al. 2018a). Regardless of
the derivation, the resulting RUC equilibrium boundary
value problem is the same, i.e. the application of periodic
boundary conditions to a given domain governed by linear
momentum balance in the absence of body forces and inertia
effects (8). This equilibrium boundary value problem may
also be derived through other homogenization approaches.

2.3 Hoffmann plasticity

The boundary value problem in (8) is completed with
the prescription of the constitutive relations ¢ = X(&).
In this study, the Hoffman anisotropic plasticity model is
considered to describe the constitutive material behavior in
an RUC as materials produced by additive manufacturing
techniques may show anisotropy in plastic yielding (Frazier
2014; Cantrell et al. 2017). The Hoffman plasticity model
is an extension of the Hill orthotropic plasticity model
(Hill 1948) to account for different yield stresses under
tension and compression (De Souza Neto et al. 2011).
Orthotropy is defined by an orthonormal basis {€1, é», €3},
which coincides with a set of principal axes of orthotropy.
This orthonormal basis can be defined in terms of the global
Euclidean basis {ej, €2, e3} through the change of basis
matrix [g;;] such thate; = g;;€;, (i, j = 1, 2, 3). Along the
axes of orthotropy, the Cauchy stress and strain tensor are
given in matrix-vector form as

Q>

= Tla
— The ©)

®>
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where

Q>

2821831
2822832
2823833

2811821
2812822
2813823

r .2 2 2
gil 3%1 g?ﬁl
8122 g%z g%z
T, = |83 83 8%

811821
812822
813823

821831
822832
823833

r .2 2 2
812] g%l 8%1
852 3%2 g%2
T, = | 813 823 833

2811812 2821822 2831832 821812 + 11822 £31822 + 821832 31812 + £11832
2812813 2822823 2832833 822813 + 812823 832823 + 822833 832813 + £12833
| 2813811 2823821 2833831 £23811 + 13821 £33821 + 823831 &33811 + 813831 _

T
A A A A ~ A T
= [011 622 633 612 623 031] Lo =[o11 022 033 012 023 031 |,

T
A A A an aa A T
€= [811 €22 €33 2812 2823 2831] e =[en exn e33 2612 2603 2631 |,

2811831
2812832
2813833

811812 821822 831832 821812 + 811822 831822 + 821832 831812 + 811832
812813 822823 £32833 822813 + 812823 832823 + £22833 £32813 1+ 812833
L 813811 &23821 833831 823811 + 813821 &33821 + 823831 833811 + 813831

811831
812832
813433 (10)

Following the standard additive decomposition of the strain
tensor, ie., & = &° + &7, the Cauchy stress is given by
the following elastic constitutive equation along the axes of
orthotropy

& =C% (1D

In general, orthotropic plasticity may coincide with an
orthotropic elastic tensor c’. However, in th1s study, only
isotropic elasticity is considered so that C° is the matrix
form of the isotropic elasticity tensor Cf = 3kP,, +
2G]P’dev Here, « is the bulk modulus, G is the shear
modulus and P, £ 1I ® I and P, £ I — Py, are the
fourth order volumetrlc and symmetric deviatoric projection
tensors, respectively, where [I}]; 1 = %((SikSﬂ + 8i16 ).

The Hoffman yield function is defined along the axes of
orthotropy {ey, €, e3} as

$(6.0) = %&TP& 1476 — @) (12)

where ¢ () is a dimensionless relative yield stress which
defines the size of the yield surface in the six-dimensional
stress-space and ¢ is the vector form of the Cauchy stress
along the axes of orthotropy (9);. Linear isotropic strain
hardening is adopted in this study so that the dimensionless
relative yield stress ¢(«) is defined in terms of the
accumulated plastic strain o and given by

Kh
—)a (13)

Oy

;(a)=1+<

where K is the hardening coefficient and oy is the initial
yield stress. In (12), the matrix P and vector ¢ contain

constants pertaining to the yield stresses along different
orthotropic axes and are given as

c1+c3 —c1 —C3 000
—C1 ¢ +c1 —0 000
. —c3 —C2 c3+c20 0 0
P =2 0 0 0 cs 0 0
0 0 0 0 ¢50
L0 0 0 00 c

1 ( 1 n 1 1
‘=5 Al ~C Al ~C A
2\01,01; 0303 033033
1 ( -1 n 1 n 1
=73 Al ~cC Al ~c Al ~C
2\01,01) 030 33933
1 < 1 1 n 1
=5\ %t xc T 27 ac ~t Ac
2\01,01; 050 33933
1 1 1
c4 = , €5 = , €6
~0 2 ~0 2 ~0 2
(012) (023) (‘713)
AC ~t AC ~t ~AC ~t
_ %1% _ O~ 9% _ 033 — 933 14
1= 77 8= S 7c s 9=~ (14)
911911 02202 033033
where &i’i and 6/, denote the initial (i.e., when a = 0)

tensile and compressive direct yield stresses along the axes
of orthotropy ¢; and 67, 63 and 7; denote the initial yield
stresses in states of pure shear on the orthotropic planes.
If 6f) = 6{; = 63, = 6y, = 653 = 633 = ‘/3&102 =
ﬁ&% = \/56103 the von Mises isotropic yield function is
recovered.
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An associative flow rule is adopted to describe the evolution
of the plastic strain &7, i.e.

0 .
3P=y£=y(P6+q) (15)

whereas the evolution of the accumulated plastic strain « is
given by

2. .
&= ‘/géPTZéP (16)

<0, =20, y9p=0
y$ =0 (17)

where Z = diag[1 1 1 0.5 0.5 0.5 ]. The above flow rules
are completed by the KKT and consistency conditions (17),
which describe the plastic loading and unloading processes.
Details on the numerical implementation of this model using
the elastic predictor/plastic return-mapping algorithm are
omitted here, as they have been presented elsewhere (De
Borst and Feenstra 1990; Schellekens and De Borst 1990;
De Souza Neto et al. 2011). The interested readers are
directed to Appendix A in Ref. (Zhang et al. (2017)) for
details on the implementation of this model in the form
presented above.

Remark For all of the examples considered in this study,
the material parameters of the Hoffman model are as
follows: The initial yield stresses under tension along the
axes of orthotropy are set to 6, = &j; = o, and
61, = xoy where oy is the initial yield stress used in the
isotropic hardening model (13) and the scalar x determines
the ratio between tensile yield stresses along orthotropic
axes e; and e (or &3). The initial yield stresses under
compression in each orthotropic direction are set to 6;; =
w6}, where w is another scalar controlling the ratio between
compressive and tensile yield stresses. The initial yield
stresses in shear along the orthotropic planes are 68. =

ﬁ? (6; + 8;.].) , 1, j = 1,2, 3. From these parameters, it
can be seen that when w = 1 and x = 1 this will result
in the von Mises model. Finally, the axes of orthotropy
are considered to be rotated in plane from the Cartesian
coordinate system, resulting in a change of basis matrix [g;;]

which has the form

cos® —sinf 0
sinf cosf O (18)
0 0 1

[gij]l =
where 6 is the angle of in-plane rotation.

2.4 Discretization — EAS elements

In this study, computational homogenization is performed
using finite element analysis to discretize the RUC equilibrium

@ Springer

boundary value problem in (8). To handle the incompress-
ibility associated with plastic flow, this discretization is
carried out using enhanced assumed strain (EAS) elements,
following the process laid out in Simo and Rifai (1990).
Details on the construction of discrete approximations using
EAS elements are left out and attention is focused on the
resulting discrete form of the RUC equilibrium boundary
value problem. After discretization using the appropriate
approximating spaces, (8); gives

Fint =0 (19)
where
Nele P
Fin = e‘élFim
Fi, = Fi, (e, &) =f Blodv (20)
Qe

Here, Q#¢ is the domain of element e, u, is the nodal
displacement vector of element e and B is the element shape
function derivative matrix. .4 denotes the finite element
assembly operator, and n. is the total number of finite
elements in the domain. The Hoffman constitutive model
at the microscale ¢ = X(&) is evaluated in terms of
the enhanced strain ¢ £ Bu, + Ga&, where G is the
enhanced strain shape function matrix and &, is the element
level enhanced strain parameter. This study considers plane
strain problems where the RUC domain Q* is discretized
using four node quadrilateral elements with four enhanced
modes (Q1/E4 EAS elements), as proposed in Simo and
Rifai (1990).

To enforce the necessary orthogonality between
enhanced modes and stresses (Simo and Rifai 1990), addi-
tional residual equations are needed at the element level.
These equations are

iIe (uev &e) =0,

H, =f Glodv (1)
Que

e=1,2,..n4.

To eliminate the degrees of freedom &, from the global
system of equations, (21), is solved for each element to
obtain &, using the Newton-Raphson method (Kasper and
Taylor 1997, 2000). This necessitates the use of the element
level tangent matrix, given as

. _dH

@ da,  Joue
where Cr is is the algorithmic consistent tangent modulus
coming from the constitutive model. After the degrees of
freedom &, are solved for at the element level, the global
residual (19) is defined only in terms of the displacement
degrees of freedom.

The RUC boundary value problem also requires enforc-
ing the periodic constraints (8)2. These are enforced point-
wise so that they are directly applied to degrees of freedom

GT[Cr1Gdv (22)
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on the discretized RUC boundary. The discrete form of (8);
yields the following constraints

Au—Le =0 (23)

where u is the vector of global displacement degrees of
freedom and in two dimensions & = [511 €2 2812 ]T. The
constraint matrix A relates degrees of freedom on opposing
regions of the RUC boundary while the matrix L contains
the distances /{ = x* —x~ and [, = y™ — y~ between these
opposing sides. For the i’ pair of boundary nodes, these
matrices have the form

. in 10-1 0
A'u —Le=|:01 O—]]

S 8 S 8
T T+

_[11 0 12/2] el

€22 =
05 1/2 B

0
|: 0 } 24)
The discrete constraint (23) can be enforced in different
ways including direct elimination (Saeb et al. 2016) and
Lagrange multiplier (Miehe and Koch 2002) approaches.
The Lagrange multiplier approach is adopted in this study,
so that the global system of equations which must be solved
for RUC equilibrium is

|0
10

Rl(u’ }’) :|
(25)

B [qu) +ATy}

R(””')z[ ~|lAu-Le

R>(u)

where p is a vector of Lagrange multipliers that enforce
periodic boundary constraints. As the constitutive models
used in this study consider nonlinear inelastic behavior, (25)
is a nonlinear algebraic system that is solved using the
Newton-Raphson method, requiring the Jacobian matrix

aR1 R,
u 9 Kr AT

J=19R, ok Z[A 0} (26)
u Jy

where K 7 is the global tangent stiffness matrix, defined as

Nele e
Kr = AK;
e=

K5 :/ BT CrBdv @27
Que

2.5 Macroscopic stress and tangent moduli

Using the above-described Lagrange multiplier enforcement
of the periodic constraints allows for the homogenized
Cauchy stress (4) to be obtained equivalently in terms of the
Lagrange multipliers y (Miehe and Koch 2002), i.e.,

. 1
og=——LTy

v (28)

where & = [E“ 02 012 ]T. Additionally, the homoge-
nized tangent moduli tensor C, which relates increments
of the homogenized Cauchy stress o to increments of the
homogenized strain tensor ¢, i.e. do = C : de, can be
obtained by linearizing (28), giving

n 1 0 n
do = ——LT Y gz (29)
V. 9

The derivative dy / 3% is calculated by linearizing (25) as

roR; OR; R,
dRi | _| ou @ du e | 2 [0
)= | o 3 ([ ]+ ok, 5=
L du dy 9%
Ky AT [ du 0 ~ [0
Ao L e =[]

Writing (30) compactly gives

dR = Jdii — Dde =0 31

where & = [u; y ]T and D = [ 0; —L]T, and it can be

seen that

dit = Sd& (32)

where § = J~'D, which is computed by solving the

corresponding linear system. Moreover, linearizing (28)

yields

~ | AN 1 7o~

do =——=D"da=——D"Sde (33)
\% \%

where (32) was used. Equation (33) thus shows that the

incremental homogenized tangent moduli tensor is

— 1

C=-=-D"Ss (34)
Vv

Note that for the considered Hoffmann plasticity model

in the RUC the incremental homogenized tangent moduli
tensor C evolves with the evolution of plasticity.

3 Design parameterization and sensitivity
analysis

In this study, a density-based design parameterization is used to
perform topology optimization. The details of this param-
eterization are given in this section along with the opti-
mization problem formulation and sensitivity information
needed for use with the gradient based optimizer.

3.1 Density-based design parameterization

A density-based parameterization assigns each element in a
discretized domain a density variable p, which represents
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whether the element is empty (o, = 0) or contains material
(pe = 1). This density variable is then relaxed to be
continuous, i.e. 0 < p, < 1, so that a computationally
intensive integer programming problem is transformed to a
more amenable nonlinear programming problem. However,
with this approach the success of the optimizer depends on
the interpolation scheme used to parameterize the material
behavior in terms of the element density variable p,.
These material interpolation schemes are used to steer
designs to different local minima in the case of non-convex
optimization problems and also to ensure that density
variables in the final design have values of 0 or 1 and
thus represent physically meaningful material (or void).
In this study, a SIMP-like interpolation scheme (Bendsge
and Sigmund 1999) is utilized, which for a given material
parameter A is

Ae = leo + (1 — €0)pt’1Ag (33)

where Ag is the parameter value for bulk material, €g is
a lower bound to characterize void elements and pg is a
penalization parameter. For the Hoffman plasticity model
utilized herein, interpolation of the elastic parameters (i.e.,
Young’s modulus E) is done with (35), while interpolation

of the plastic material parameters (5, 6/, &i(}) is done using

B, = [e1 + (1 —€1)pl" 1By (36)

where By is the plastic parameter value in bulk material
and €] and p; are again a lower bound and penalization
parameter, respectively. Choosing €9 # €1 and py # pi
allows for numerical convergence issues caused by large
plastic strains occurring in low density and void elements to
be avoided (Maute et al. 1998; Kato et al. 2015; Zhang et al.
2017). The lower bound values used in this study are €y =
1078 and €; = 10~*, while the penalization parameters p
and p; will be discussed in Section 4. The density variables
pe used for the above material interpolation are obtained as
a weighted average of the design variables of neighboring
elements following a standard density filtering procedure
which accounts for the periodicity of the RUC domain. In
this way, mesh-independency is ensured and topological
length scale can be controlled.

3.2 Maximum plastic work problem formulation

The intent of this study is to design elastoplastic microstruc-
tures which can dissipate the maximum amount of energy
with a prescribed amount of material under a deformation
mode specified by the macroscopic strain tensor €. For this
purpose, the total plastic work in a RUC is utilized. The total
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plastic work in the RUC over the entire history of loading is
given as

W”:// o : &Pdvdt (37)
r Jau

The optimization problem is then formulated to maximize
the plastic work subjected to a material volume fraction con-
straint and results in the following constrained optimization
problem

min - fo(x) = -wr

Nele

SLAI) =) pe®)ve = Vy <0

e=1

RE@ a1 ek k1 px) =0, k=1,2,...n
H @5, a5 k1 px) =0, k=1,2,...n
0<x<l1 (33)

where V is the total volume of the RUC design domain, v,
is the volume of element e and V is the prescribed volume
fraction. The vector x contains design variables which are
linearly mapped by the density filter to the vector p of
density variables.

The system represented in (38) is a PDE-constrained
optimization problem wherein constraint R¥ = 0 represents the
global RUC equilibrium equations and H* = 0 represents
the local element EAS elimination and integration point
constitutive equations. These constraints are enforced
implicitly through FEA in a nested approach where the
design variables x are updated by the optimizer and then
used in FEA. Once FEA has terminated, the objective
and constraint functions are evaluated. During FEA, the
initial value problems describing the evolution of internal
variables which characterize material history dependence
are evaluated by discretizing the deformation history into n
pseudo-time steps. Thus, the implicit constraints R* = 0
and H* = 0 are enforced at each pseudo-time step k. At
step k, internal variables are updated using previous step
and current step information and so the implicit constraints
are functionally dependent on this data, represented by a
set of global variables & and local variables ¢. Furthermore,
these constraints are dependent on the density variables
p through material interpolation (35 and 36). Hence, they
have the functional form shown in (38). While there is no
unique way to formulate the constraint sets RF and HF,
there is a minimum number of independent variables @
and ¢ which are necessary for evaluating the objective and
constraint functions. Beyond this minimum set, additional
variables may be considered so long as the appropriate
constraints are included in R* and H*. Additional variables
may be considered, for example, to simplify complex chain
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rule expansions of certain derivatives needed for sensitivity
analysis (Alberdi et al. 2018Db).

3.3 Path-dependent adjoint sensitivity

The sensitivity calculations needed for gradient based
optimization are carried out using the adjoint method as
the number of design variables far exceeds the number
of response functions considered (Strang 2007; Alberdi
et al. 2018b). For sensitivity information to be accurate,
the implicit constraints R = 0 and H* = 0 at every
pseudo-time step during FEA must be considered. Thus,
the sensitivity analysis inherits the path-dependence of the
material response through these constraints. If a response
function f — which can represent an objective or constraint
function — is evaluated using the state of a path-dependent
material, it depends on the entire deformation history and so
has the functional form

fx)y=Fa@', ...a" c', .. c" p(x) (39)

For sensitivity analysis, the derivative with respect to the
design variables x is sought and the application of the
density filter is accounted for by applying the chain rule.
Thus, the derivative df/d p must be calculated. To calculate
this using the adjoint method, an augmented function f is
first constructed as

F=r@+ Y W R Y p B (40)
k=1 k=1

where A% and p* are the adjoint variables associated with
constraints R* and H*, respectively. As these constraints
are enforced to be 0, d f /dp is equivalent to df/dp.
Expanding d f /d p using the chain rule gives

df _df 9F 2”: OF dﬁk+ IF dck
ack dp

dp —dp  dp = \oik dp
n k k ~k k ~Ak—1
IR 3R* da IR* da

+Z)‘kT ot
Pt ap  aa" dp  da dp
AR* dck IR dck!
ack dp  dck—1 dp

+Z”:Mkf dH" N dH* dit® . oH* di*!
po dp  oak dp  ak! dp
dH* dck  9H* dck! D
ack dp  dck—1 dp

By manipulating the above equation, the implicit deriva-
tives dit* /dp and dc*/dp can be eliminated by choosing
adjoint variables which satisfy the following adjoint system

oF oR" oH"
e e A |
nth step : u ou ou
oF r OR" r OH"
+ A" n =0
dac™ dac™ * e
E +xk+1T IR 1<+173Hk+1
auk ank a*
G ORY g o B
+AF —+n — =0
kth Step . 8u 8u
’ k+1 k+1
E + kk+1T dR M,k+1T JH""
ack ack ack
k k
T oR % oH _
t2 ack * ack 0
k=n-1,..,2,1 42)

This system is solved by starting at step n and ending at step
1 and after its solution, (41) is simplified as

df df oF IR* IH*
AP RN ol PUSE S L ICE)
dp dp op P op op

Thus, the following derivatives are needed to evaluate (42)
and (43):

dRF aH*

ap ap

aR* aH* OF

aak an* ap
k ok

For R*: | OR" por gk. ] 3H" por p: ] 2E (44)

PP PP oa*

IRk dH* IF

dck dck de

dRF aH*

dck—1 dck—1

For the Hoffman plasticity model using EAS elements, the
set of local variables ¢ is taken as

T
k _ [ .k k17 i ok — [k ok ko ko sk
¢ =[cf .. e, ] with ¢f = [cel €y, oy Co, ae]

(45)

where c’e‘r = o'];r sé’f O‘]e(, AVek, ] is the set of internal
variables chosen to represent the coupled constitutive
equations. It should be noted that this set is larger than the
minimum necessary set, but is chosen because including
extra terms reduces some chain rule expansions in the
derivatives needed for sensitivity. For this choice of ck, the
corresponding local constraint set H* and its derivatives
are discussed in Ref. Zhang et al. (2017) and so are not
elaborated upon here, but are provided in Appendix A for

completeness.
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The set of global variables a* and corresponding global
constraints R¥ are chosen based on the system in (25)
representing RUC equilibrium. That is,

k k

~k u X k Rl]
u —= ; R" = =

[rk] [R’é

k i . .
where F¢, =Y " Blo% w, and w; is the weight of the
' integration point. The derivatives of R¥ with respect to

the global variables & are

int

Auk — Le

Nele &
Al F¢ + AT }’k
e=

(46)

T = @7)
u

bl

IR ~ OR* _[0 AT}

Tl A0

while the derivative 9R¥/dp = 0. The derivatives of R¥
with respect to ¢ are

k
aRk N aRk nj{ <8Fl€nt> .

Py =0 ek = | e=1\ dck
k k k
aant — 8ant 8Fl?nt (48)
dck 8c]f BC’,‘lele

The term 0F et

lm/ac’/‘. is nonzero only when e = j and is
given as

ok k k k k k
aFl%ﬂI |: 8Fz€nt aant aant BFfm aant :|

dck dck ack,  dck  ack, ek
k k
dF¢ dF¢
— =[wBl 0 0 0]; —F=0 (49)
BCer aae

As the derivative of the volume fraction constraint fi in
(38) is trivial, it is omitted here. The remaining response
function is the objective function fj. Thus, the derivatives of
F which are needed in this study require derivatives of the
total plastic work WP. The trapezoid rule is used to evaluate
WP, giving

Nele Nipt n
wr=3" (Z ( Gw’ (f +ot): (of - sfr“»))
k=1

e=1 \r=1

and from this it can be seen that the only nonzero derivative
is

ow?r awrP gwr awr )
k= Bc]f 8015 8cﬁde with

aw?r |:3W1’ owP gwP gw?r 8Wp:| 1)

ok k k k k ~k
dck deg,  dcg, Ocg, dcg,  da,
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where dW” /& = 0 and 9WP/dck is

for k =n

e = [H(e = )ur (et 4ot w0 0]

for k=1,2,...n—1

i E G A I AR I )
(52)

Implementation of the above described sensitivity analysis
is verified numerically in Appendix B.

4 Density-based RUC design

In this section, some of the issues that arise when using
topology optimization to design an RUC are discussed
and approaches to handle these issues are presented.
For illustrating these issues, von Mises plasticity without
rotation is considered, i.e., the scaling factors xy and w
are set to 1 and the angle 6 = 0. All of the topology
optimization examples in this section and throughout the
remainder of the study utilize the following settings:
elastic material parameters are set to £ = 2500 and
v = 0.38 while the hardening coefficient K" = 125
and is normalized by the yield stress oy, = 20 (see
(13)). RUC equilibrium (25) is solved using an adaptive
step-size Newton-Raphson method (Crisfield 1991) with
convergence criterion based on the global energy residual,
abs (RTAﬁ) < 107'2, Optimization is performed using
the Method of Moving Asymptotes (MMA) (Svanberg
1987) with default algorithmic parameters. A continuation
scheme is utilized to gradually increase the penalization
parameters po and p; from values of 3 and 2.5 to
values of 5 and 4.5, respectively, using an increment of
0.2 every 20 optimization iterations. Optimization is then
terminated after 300 total iterations. The volume fraction
used throughout is Vy = 0.4. Both the optimization and
FEA are performed using an in-house Matlab based finite
element library CPSSL-FEA developed at the University of
Notre Dame.

4.1 Initial density distribution

When using a density-based design parameterization, the
initial design for a given domain is usually taken as a
homogeneous distribution of element density variables set
to the value of the prescribed volume fraction. In this
way, there is no predefined topology that could bias the
optimizer toward a certain local optima. This strategy is
successful in structural design as the displacement field will
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Fig.2 Three initial density
distributions for square RUC
design domain

a) Checkerboard

be non-uniform throughout the domain due to the prescribed
boundary data. A non-uniform displacement field leads
to non-uniform sensitivity values which are used by the
optimizer to improve the density distribution, resulting
eventually in an optimized design. In computational
homogenization, the entire RUC domain is deformed
as a whole by the macroscopic strain tensor. Thus,
the displacement field is non-uniform only if the RUC
contains microstructural heterogeneities. A uniform initial
density distribution will correspond to a homogeneous
microstructure and therefore will result in a homogeneous
microscale displacement field and uniform sensitivity
values. In this case, the optimizer will be unable to improve
the design. In order to have non-uniform sensitivity values
in the RUC domain, the initial density distribution must
thus be non-uniform. However, using a non-uniform initial
density distribution biases the topology towards a certain
local optima dictated by the initial distribution. This is not

b) Centered hole ¢) Four holes

a debilitating problem, but the designer must be cognizant
of this issue. Indeed, in the level set design parameterization
often used to perform topology optimization, there is also a
dependence on initial design, and this has not stopped the
method from being useful (van Dijk et al. 2013).

The effect of initial density distribution is illustrated
through numerical studies utilizing a square RUC design
domain (see RUC 2 in Fig. 1) of dimensions 1000 by 1000
discretized into an 80 x 80 mesh of plane strain Q1/E4
EAS elements. For this design domain, three initial density
distributions are considered as shown in Fig. 2. The first
initial distribution consists of a checkerboard pattern of
16 x 16 element squares, the second has a hole with a radius
of 8 elements in the center of the RUC and the third has
four holes with 5 element radii each centered in one of the
four quadrants of the RUC. The contrast between density
values in the initial designs also affects the sensitivity values
and throughout this study, the density values in the lighter

Fig.3 Optimized

Checkerboard

Centered hole

microstructures obtained for von

Four holes

Mises plasticity under simple
shear using three different initial
density distributions and
different filter radii
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(b) Macroscopic stress-strain behavior

Fig.4 Optimization convergence history and {12}-component macroscopic stress-strain response for optimized RUC topologies subject to simple

shear using three different initial density distributions and ry,;, = 4 X my

regions of the RUC shown in Fig. 2 are set to be one tenth
of the values of the darker regions.

To illustrate how the initial density distribution can influ-
ence the optimized topologies obtained, the three distri-
butions shown in Fig. 2 are used to perform topology
optimization for an RUC subject to a prescribed macro-
scopic strain tensor € = [0 0 0.2], which corresponds
to a simple shear deformation. Figure 3 shows the optimized
microstructures obtained by using two different filter radius
values. The optimized microstructures shown consist of a
3 x 3 array of RUCs and a red dashed line is used to outline
the optimized RUC domain. The filter radii considered are
Fmin = 2 X my and ry,;,, = 4 X mg where my is the size of
an element in the uniform mesh and the total plastic work in
the RUC domain is also reported.

When using a filter radius r,,;,, = 2 X my, it can be seen
that the optimized topologies are similar, but the topology
obtained using the centered hole initial density distribution
has the best performance. The optimized topology obtained
using the four hole initial density distribution (Fig. 3c)

unsurprisingly appears to be a 2 x 2 repetition of that
in Fig. 3b, while the optimized topology using the
checkerboard initial distribution (Fig. 3a) appears to be the
same as in Fig. 3b but with additional thin cross bar features.
Because the topology in Fig. 3c has smaller features in
the RUC, the smearing effect of the filter is exaggerated,
as there are more locations where there is an interface
between solid and void elements. This, in turn, causes less
total plastic work to be dissipated within the RUC due
to the interpolation scheme reducing the plastic work of
intermediate density elements. Hence, while the topology in
Fig. 3c is a scaled down version of that in Fig. 3b, the total
plastic work dissipated within the RUC is less. For a similar
reason, the thinner cross bar features in Fig. 3a cause this
design to be less optimal than that in Fig. 3b.

When the filter radius is increased to ry,;, = 4 X my,
the topologies obtained using the checkerboard (Fig. 3d)
and centered hole (Fig. 3e) initial distributions converge,
while that obtained using the four hole initial distribution
(Fig. 3f) remains a scaled down version of this topology.

Fig.5 Optimized
microstructure and plastic work
density distribution within RUC
for von Mises plasticity under
uniaxial compression using four
hole initial density distribution
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Fig.6 Optimized 3

microstructure and plastic work

density distribution within RUC 25

for von Mises plasticity under ’

uniaxial compression using four e ———————— 2

hole initial density distribution

. . —0
with constraint on Cyy,, 15
| I000400000000000000400000040000000400000000000000400400000000008 1

0.5
0

WP =5.285 x 10°

Hence, by controlling feature size through the density
filter, pathological issues related to the emergence of thin
features which hinder the performance of the design can be
reduced and the same topology can be obtained when using
different initial density distributions. This convergence
can be observed also in the optimization convergence
history and macroscopic stress-strain response of the {12}-
component shown in Fig. 4a, b, respectively. Convergence
to the same design may not be the case under different
macroscopic deformation modes, but a filter radius of
min = 4 X mg seems to allow unique topological features
to develop while also helping to avoid less desirable local
minima defined by thin features. Hence, this filter radius is
employed for the remainder of the examples in Sections 4
and 5.

4.2 Microstructural connectivity

Another important issue when designing energy dissipating
microstructures with voids is that of microstructural
connectivity. This issue results again from the fact that
RUC domain is deformed as a whole by the prescribed
macroscopic strain tensor, hence the deformation is agnostic
as to whether disparate regions of the domain are connected
by material. For example, Fig. 5 shows the optimized

Fig. 7 Optimized microstructure for Hoffman plasticity with v = 2
and x = 4 under uniaxial compression using checkerboard initial
density distribution

microstructure obtained using the four hole initial density
distribution subject to a uniaxial compression deformation
mode with & = [ —0.1 0 0]. While this RUC topology
maximizes the use of material for energy dissipation, as seen
through the even plastic work density distribution within the
RUC, the resulting microstructure is not connected in the
vertical direction and hence is useless. This issue may occur
under different macroscopic deformation modes and thus
requires a technique to remedy it.

The connectivity issue is typically not observed in
elastic microstructure design, as the objective is to optimize
the elasticity tensor to obtain extremal stiffness values
while maintaining different kinds of macroscopic elastic
symmetry (isotropy, square symmetry, orthotropy, etc.).
Hence, connectivity does not become an issue since an
unconnected microstructure would have negligible entries
in the elasticity tensor and thus not meet stiffness
requirements. With this in mind, enforcing some sort of
stiffness constraint seems like a viable way to ensure
connected microstructures. Stiffness is reflected in the
entries of the initial homogenized tangent moduli tensor

C", i.e., the homogenized tangent moduli tensor of the

RUC when in the elastic regime. To obtain C, the tangent
stiffness matrix K7 in the Jacobian J of (34) is replaced
with the elastic stiffness matrix K g, given as

Nele

Kp = AKS
e=1

K¢ =/ BTCEBdv (53)
Que

where CE is the linear elasticity tensor, assumed in this
study to be isotropic at the microscale and interpolated
using (35). With this in hand, constraints can be directly
formulated on entries of C~ to ensure stiffness in certain
directions. This approach provides flexibility to the designer

. . o . —0
as constraints can be applied to individual entries of C
or to combinations of entries. For instance, to ensure
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Fig.8 Plastic work density

distributions within deformed Hoffman — Compression

Von Mises — Compression Von Mises — Shear

optimized RUC domains subject
to uniaxial compression.
Comparison between design
optimized for uniaxial
compression using Hoffman
plasticity withw =2 and x =4
and designs optimized for
uniaxial compression and simple
shear using von Mises plasticity

(o]

[}

H

N

g1 i
P P
|
e

(a) WP = 1.095 x 10°

10 10
8 8
6 6
4 4
2 2
0 0
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connectivity under uniaxial compression, the entry C,5y,
can be constrained to be a certain fraction of the component

—0 .
(Cllll’ 1.€.

—0 —0
Coom = aoCyyy 54

where ag is a prescribed ratio. Enforcing constraints of this
type requires computing the sensitivity of the entries of C".

The sensitivity of @O with respect to density variable p; can
be obtained from (34) as

p; V

—0
1 -1 1
0C _ 1 ppdd™ ) 1 dd

N (55)
ad Pj \% d Pj

where the matrix § = J~! D is only computed once while
the term 0J/dp; is computed for each element design
variable as

nete (9K

3 A ( E) .
_— = e=1 8p/ Wlth
p; 0 0

aCE
IK% / BT —Bdv, j=e
3,0/' J .

; 0, j#e

To illustrate the enforcement of the stiffness constraint in
(54), the RUC subject to uniaxial compression with four
hole initial density distribution is again considered. Figure 6
shows the result of enforcing the constraint with ay = 0.1.
It can be observed that the topology is well connected
as minimum initial stiffness in the 2-direction is directly
enforced. Moreover, plastic work is distributed in the
horizontal members, as expected. Of course, this approach
will also depend on the problem at hand and requires a
priori knowledge of which entries of @0 are needed for
connectivity of a given problem. However, it provides a
viable route through which microstructural connectivity can
be enforced.

@ Springer

5 RUC designs with anisotropic plasticity

In this section, plastic anisotropy is considered using the
same square RUC domain as in the previous section.
Optimized topologies are compared to those obtained
using von Mises plasticity in Section 4 under the
same deformation modes. Additionally, optimized RUC
topologies with anisotropic plastic parameters are obtained
under a more complex deformation mode and with
macroscopic elastic orthotropy enforced. This orthotopy is
enforced by prescribing lines of geometric symmetry in the
RUC domain as has been done for elastic microstructures in
previous studies, e.g., Neves et al. (2000).

5.1 Uniaxial compression

The uniaxial compression case given by setting s =
[-0.1 0 0] and optimized using von Mises plasticity in
Section 4.2 is now considered with plastic anisotropy. The
scaling parameters w and y are set to 2 and 4, respectively.
Results are obtained using the checkerboard initial density
distribution and Fig. 7 shows the optimized microstructure
with RUC outlined by red dashed lines.

It is immediately obvious that this optimized microstruc-
ture is quite different from that in Fig. 5, as it is well
connected without needing any constraints. This is caused

Fig. 9 Optimized microstructure for Hoffman plasticity with v = 2,
x = 2 and 6 = m/4 under simple shear using centered hole initial
density distribution
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distributions within deformed

Hoffman

475
Von Mises

optimized RUC domains subject
to simple shear. Comparison
between design optimized for
simple shear using Hoffman
plasticity withw =2, x =2
and 0 = 7 /4 and design
optimized for simple shear using
von Mises plasticity

(a) WP = 1.381 x 106

9 10
‘ 5

(b) WP = 1.311 x 10°

by the anisotropic scaling factors x and w which increase
the values of initial yield stresses 6], and 6. While this
makes yielding more difficult to initiate, it also means that
the plastic work done after yielding is greater due to the high
yield stresses. Hence, the topology evolves so as to exploit
this phenomenon, which can be seen in the distribution of
plastic work density within the deformed optimized RUC
domain in Fig. 8a. Also shown in Fig. 8 is the distribution of
plastic work density within the RUCs optimized for uniax-
ial compression (i.e., the topology from Fig. 6) and simple
shear (i.e., the topology in Fig. 3e) using von Mises plastic-
ity and analyzed using Hoffman plasticity with @ = 2 and
x =4.

From the total plastic work values reported in Fig. 8,
it can be seen that the topology optimized for uniaxial
compression using Hoffman plasticity with w = 2 and x =
4 (Fig. 8a) performs significantly better than the other two
topologies (Fig. 8b, c). The reason for this is the parameters
w = 2 and x = 4 which cause the value of the yield
stress 67, to be large. This makes yielding more difficult in
members which are oriented so as to be compressed along

this direction, as can be observed in the horizontal members
of Figure 8b. Thus, orienting the members so that they are
compressed at an angle allows for more yielding to occur,
which is seen in the higher plastic work density values in
Fig. 8a. However, orienting the members at too great an
angle can cause them to deform such that these members
experience less compression, resulting in less plastic work.
This is seen in Fig. 8c. Hence, the topology shown in Fig. 7
has evolved so as to exploit the physics of the problem,
demonstrating that this physics is well captured during the
optimization process.

5.2 Simple shear

Next, the simple shear deformation mode defined by e =
[0 0 0.2] and optimized using von Mises plasticity
in Section 4.1 is again considered. Plastic anisotropy is
simulated by setting the Hoffman model parameters to w =
2, x = 2and 8 = /4, and the optimized microstructure
obtained using the centered hole initial density distribution
is shown in Fig. 9.

Fig. 11 Optimized
microstructures for Hoffman

Checkerboard unconstrained

Centered hole with orthotropy

plasticity withw =2, x =1
and 6 = 0 under combined
compression and shear using
checkerboard initial density
distribution and centered hole
initial density distribution with
elastic orthotropy enforced

(b)
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Fig. 12 Optimized

microstructures for Hoffman Checkerboard unconstrained Checkerboard with OI'thOtI‘Opy

plasticity with different

parameters under combined
compression and shear using \
checkerboard initial density

distribution with and without
elastic orthotropy enforced

N

Comparison with Fig. 3e reveals that a different design
is obtained when anisotropy is considered, most noticeable
in the lack of symmetry of the angled members. In the
optimized topology of Fig. 9, the members going from
the upper left corner to the lower right corner are thicker
than the members going from the upper right corner to the

lower left corner. Moreover, these members are alternatingly
staggered at their intersections. While these differences
are somewhat subtle, they have a large impact on the
deformation of the RUC and the resulting plastic work. This
can be better understood by looking at the deformed RUC
domain and the plastic work density distribution therein,

Fig. 13 Two initial density
distributions for hexagonal RUC
design domain

a) Centered hole initial b) Two hole initial
distribution distribution
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Fig. 14 Optimized

microstructures for three cases Von Mises unconstrained

Hoffman unconstrained Hoffman with orthotropy

using a hexagonal RUC domain
under simple shear.
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which is shown in Fig. 10a. It is clear that this topology
experiences bending deformations caused by the staggering
of the angled members and that much of the plastic work is
distributed in regions experiencing this bending. Compare
this to the RUC optimized for simple shear using von Mises
plasticity (i.e. the topology from Fig. 3e) which is analyzed
using o = 2, x = 2 and § = n/4 and shown in
Fig. 10b. Clearly, this topology experiences less bending,
which negatively affects its performance as indicated by the
total plastic work values reported in Fig. 10.

Again, the reason for these differences can be attributed
to the Hoffman parameters w, x and 6. As discussed in
Section 5.1, the parameters @ and y cause the value of the
yield stress &1, to be large. However, because of 6 the basis
{e1, &>, e3} along which the yield stresses are defined is no
longer aligned with the global Euclidean basis {e1, e>, e3}.
Instead, e; and e, are rotated by an angle of 7 /4 in plane
(see the illustration of these basis vectors in Fig. 10). Thus,
the applied shear deformation causes members aligned with
€] to experience tension while members aligned with e,
experience compression. In Fig. 10b, the members aligned
with e, are able to yield more easily than those aligned
with e; because of the increased tensile and compressive
yield stresses along e; being scaled by x. In Fig. 10a,
the same effect is present, but the members experience
bending in addition to axial deformations, which increases
the plastic work in these members. In both cases, there
is high plastic work at the intersections between members
due to the interactions of stresses at these locations. This
example further illustrates how the physics of the problem
is accounted for during optimization to produce optimized
topologies that can effectively exploit it.

5.3 Combined compression and shear

The optimized RUC topologies obtained thus far have been
subject to simple deformation modes, i.e., simple shear or
uniaxial compression. In this section, a more complex defor-
mation mode combining compression and shear is applied

to the RUC and different anisotropic plastic parameters are
considered. The deformation mode is defined by the macro-
scopic strain tensor € = [ —0.06 —0.04 0.04] and the
Hoffman model parameters are first set to w = 2, x = 1
and 6 = 0. The optimized microstructure obtained using
the checkerboard initial density distribution is shown in
Fig. 11a.

It can be seen that this microstructure is well connected
but is not as ordered as the microstructures obtained
previously. In order to obtain a more ordered microstructure,
the same deformation mode and anisotropic parameters are
considered, but macroscopic elastic orthotropy is enforced.
The optimized microstructure obtained in this case using
the centered hole initial density distribution is shown in
Fig. 11b where it can be seen that this microstructure is
much more well-ordered. Next, the scaling factor w is kept
at a value of 2 while the scaling factor x is set to 2 and
two values of the angle 6, 0 and 7 /4, are considered. The
optimized microstructures obtained for these cases using the
checkerboard initial density distribution with and without
macroscopic elastic orthotropy are shown in Fig. 12.
Comparing these topologies to those in Fig. 11 illustrates
how different anisotropic parameters can substantially affect
the optimized microstructural designs and how enforcement
of macroscopic elastic symmetry provides a way to control
the order and symmetry of these microstructures.

6 Hexagonal RUC design

To illustrate how a different RUC domain can be canonically
incorporated within the design framework presented herein,
a hexagonal RUC design domain (see RUC 1 in Fig. 1)
is considered for topology optimization. Each side of the
hexagonal domain has a dimension of 1000 and 6400 non-
uniform Q1/E4 EAS elements are used for discretization.
The filter radius used for topology optimization with this
RUC design domain is set to 50 and two different initial
density distributions are considered, as shown in Fig. 13a
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and b. The first distribution consists of a square hole with
side length of 16 elements while the second consists of two
square holes with side length of 8 elements centered in the
top and bottom half of the domain. The lighter regions of
the RUCs in Fig. 13a, b contain density values which are
one tenth of the density values in the darker regions.

This RUC is subject to a simple shear deformation mode,
again with & = [0 0 0.2]. For each of the two initial
density distributions, three different cases are considered.
In the first case the Hoffman model parameters are set

tow = 1, x = 1and &6 = 0 to recover von Mises
plasticity, while in the second case the Hoffman model
parameters are setto w = 4, x = 2and 6 = 7w/4. In

the third case, the Hoffman parameters are again v = 4,
x = 2 and 6 = /4 and macroscale elastic orthotropy is
enforced by prescribing geometric lines of symmetry. The
best performing optimized microstructure obtained from the
two initial density distributions is shown in Fig. 14 for each
case, with the optimized RUCs outlined by red dashed lines.
The microstructures obtained in this case are significantly
different from those obtained with square RUCs. This
example demonstrates how different RUC design domains
can be chosen to obtain optimized microstructures.

7 Conclusions

In this study, topology optimization is used to design peri-
odic elastoplastic microstructures for the purpose of energy
dissipation. The combination of an RVE-based multiscale
model for computational homogenization and a density-
based design parameterization allows for a consistent
handling of material nonlinearities from both the analysis
and design update perspectives. While optimized topologies
are sensitive to the choice of initial density distribution, this
can be mitigated through appropriate use of the density fil-
ter. Additionally, certain problems may produce optimized

microstructural topologies which are unconnected. A strat-
egy to remedy this issue is presented and shown to result
in discrete and well-connected optimized RUC topologies.
The Hoffman plasticity model is used to simulate the plastic
anisotropy which may be present in microstructures fab-
ricated using additive manufacturing techniques, and it is
demonstrated how this anisotropy leads to optimized RUC
topologies which differ from those obtained using isotropic
von Mises plasticity. Moreover, both square and hexago-
nal RUC design domains are utilized to obtain optimized
microstructures.

The techniques laid out in this study provide a foundation
for investigating the design of material microstructures
with inelastic behavior using topology optimization. In this
regard, there is a significant amount of work that can be
done to improve upon and extend these techniques. For one,
multi-material design parameterizations can be included to
design inelastic microstructural composites. Additionally,
extension to the finite deformation regime is desirable for
designing microstructures under more realistic deformation
modes. Finally, due to the computational burden of
solving coupled nonlinear multiscale problems, extension
to concurrent multiscale design appears to be a significant
challenge and will require innovative approaches.
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Appendix A: Sensitivity derivatives
for Hoffman model

This appendix presents the derivatives needed for sensitivity
analysis using the Hoffman plasticity model which were

Fig. 15 Square RUC domain
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originally derived in Ref. Zhang et al. (2017). These
derivatives are based on the discrete form of the evolution
equations which come from the numerical implementation
using an elastic predictor/plastic return-mapping algorithm.
As this implementation has been detailed in prior studies
(De Borst and Feenstra 1990; Schellekens and De Borst
1990; De Souza Neto et al. 2011), it is not presented
herein. Interested readers are directed to Appendix A in
Zhang et al. (2017) for details on the elastic predictor/plastic
return-mapping algorithm.

For the choice of ¢X shown in (45), the corresponding
local constraint set H* is

k
k e,
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The terms 0 H ]j‘ / 8u]e‘ are nonzero only when j = e and are
calculated as
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The derivatives d H*/dc* and d H* /ack—! have the same
structure, i.e.
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since cf.‘ and c/; are independent and Hf and H are
uncoupled when i # j. The nonzero sub-matrices have the

form
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" oH ’;l oH ’;I The derivative with respect to the element density variables
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The derivatives 8C° /3, 3P /3pe, 3q/dpe, 92 /dpe and
3¢ /9p, come from the material interpolation.

Appendix B: Sensitivity verification

The sensitivity analysis outlined in Section 3.3 is verified in
this Appendix by comparing the values computed using the
analytical adjoint method with those obtained numerically
using the central difference method (CDM). The CDM
calculates the sensitivity of a response function F with
respect to a design variable x, as

dF(x) _ F(x+ Ah)— F(x — Ah)

ax, 2Ah
where x is the full vector of design variables and Ah is a

vector with entries of zero except at the index corresponding
to x., where the entry is the perturbation value Ah.

(73)
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Fig.16 Comparison of sensitivity values obtained using the adjoint method and CDM with Ah = 1073 for two cases of Hoffman plasticity under

simple shear

The perturbation value for CDM used in the following
verification study is Ah = 1075,

The example used for sensitivity verification is a square
RUC domain discretized into a 10 x 10 mesh of plane strain
Q1/E4 EAS elements with a thickness of 1. The discretized
domain and element numbering are shown in Fig. 15a. The
size of the domain is set to 1000 by 1000 and the elastic
material parameters are £ = 2500 and v = 0.38. The
hardening coefficient K" = 125 and is normalized by the
yield stress oy = 20.

The density distribution used for this example is shown
in Fig. 15b, where the density values within the square
inclusion are p;, = 0.2 while the outer density values are
pour = 0.7. The penalization parameters poy and p; are
set to 3 and 2.5, respectively. No filter is utilized so that
in this case dF/dx = 0F/dp. The RUC is subject to a
simple shear deformation by prescribing the macroscopic
strain tensor as € = [0 0 0.2]. Two verification cases
are run using this example. In case 1, the scaling factors yx
and w are set to 1 and the angle 6 = 0, resulting in the von
Mises model without rotation. In case 2, w = 4, x = 2 and
0 = m/4. Figure 16 shows the sensitivity values calculated
using the two cases of material parameters. From here it can
be seen that the sensitivity values match closely, verifying
the correct implementation of the path-dependent adjoint
sensitivity analysis from Section 3.3.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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