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A B S T R A C T

This work investigates the accuracy, efficiency, and applicability of coarse-grained (CG) atomistic methods in
simulation of phonon dynamics. First, we compute and compare phonon dispersion relations in CG models with
those in atomically resolved models, using the concurrent atomistic-continuum (CAC). The CG atomistic models
using the CAC method are shown to reproduce long-wavelength phonons with great accuracy, while capturing
the dynamics of some short-wavelength phonons that are usually inaccessible to CG methods. We then present
CG simulation results of the propagation of heat pulses in Si with the interaction between atoms being modelled
with the Stillinger-Weber potential; the experimentally observed phonon-focusing patterns in the (1 0 0) and
(1 1 1) planes of Si crystals are reproduced. The accuracy and efficiency of the CAC method in CG simulation of
acoustic and optical phonon branches are quantified with respect to atomically-resolved molecular dynamics
simulations. The applicability and limitations of concurrent multiscale methods in the simulation of phonon
transport across atomistic-continuum interface are investigated. Possible ways to overcome the limitations are
discussed.

1. Introduction

Advances in time- and space-resolved experimental techniques have
created a need for computational methods to simulate phonon thermal
transport in complex materials systems at multiple spatial and temporal
scales. Such simulations are expected to provide additional insights for
interpretation of experimental observations. Although a variety of
computational methods have been developed over 30–40 years for si-
mulation of dynamic properties of materials, the classical Molecular
Dynamics (MD) method is essentially the only available method that
can simultaneously simulate the dynamics of defects and phonons
without the need to assume the underlying mechanisms. While MD
holds the promise of providing information to understand the dynamic
behavior of materials, state-of-the-art supercomputer MD simulations
can only practically handle about 109 atoms – this limits the number of
phonon modes present in the simulation, which is determined by the
number of unit cells in the MD simulation cell [1–3], and consequently
limits the maximum phonon wavelength. Thus, despite their powerful
role in defect dynamics, long-wavelength phonons cannot be captured
in a nanoscale MD simulation. Consequently, the need for coarse-
grained (CG) methods becomes necessary for simulations of the

dynamics of long wavelength phonons and their interactions with de-
fects that have microstructural features beyond the nanoscale.

If we adopt the definition of coarse graining as “the process of re-
presenting a system with fewer degrees of freedom than those actually
present in the system” [4], many mesoscale or multiscale methods are
coarse-grained (CG) methods. Chen et al. [5] divided the CG atomistic
methods into three categories: (1) reducing the order of particle re-
presentation of molecular structures [6–9], (2) coarse graining the de-
scription of the total energy of the system in terms of representative
atoms [10–13], and (3) reformulating the field representation of bal-
ance laws for multiscale materials description [14–19]. Most of CG
models for soft matter that are developed through eliminating fine
details of complex molecular structures belong to category (1), while
many energy minimization-based CG methods belong to category (2).
The formalisms of those methods and the resulting governing equations
either substantially alter the dynamics of phonons in the systems or are
only suited for equilibrium problems that do not involve the dynamics
of waves [20]. By contrast, the CG methods in category (3), e.g., the
microcontinuum field theories [21], have been shown to be able to
reproduce the dynamics of phonons with a trade-off between accuracy
and efficiency [16,22–24].
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The Concurrent Atomistic Continuum (CAC) method is a coarse-
grained (CG) atomistic method in the category (3). It coarse grains the
description of an atomistic system by reformulating and using the field
representation of balance laws. The CAC balance equations were for-
mulated as an extension of the Irving-Kirkwood’s statistical mechanical
theory of transport processes [25] to a two-level structural description
of materials [17,18]. It links and unifies atomistic to continuum de-
scriptions of crystalline materials with the atomic-scale crystal structure
and the atomic interactions being built into the formulation. As a result,
CAC serves as a tool for CG simulations or concurrent multiscale si-
mulations of material behavior at larger scales [17,18]. The current
version of CAC is implemented using the finite element method, with
which a material system can be modelled through discretization into
finite elements at various resolutions [26]. Although the size of the fi-
nite elements can vary from nanometers to microns, domains with
different resolutions in the computer model are governed by the same
set of conservation laws, with the interatomic potential being the sole
supplemental relation. The CAC method aims to complement atomistic
methods for the study of dynamic processes at the mesoscale, and it has
been demonstrated to be applicable to time-resolved simulations of
dislocations [26–31], fracture [32–35], phonon transport [36,37], dis-
location-grain boundary interaction [38,39], and phonon-defect inter-
actions [30,40].

The objective of this work is to investigate the accuracy, efficiency,
and applicability of CG atomistic method, using CAC as the re-
presentative CG tool, in simulation of phonon dynamics. Following the
introduction, Section 2 briefly introduces the CAC method; Section 3
outlines the procedures to calculate the phonon dispersion relations for
fully atomically resolved models and CG models; Section 4 presents the
calculation and simulation results of two specific systems: a one-di-
mensional diatomic chain described with the Lennard-Jones (LJ) in-
teratomic potential [41] and a three-dimensional Si crystal described
with the Stillinger-Weber potential [42]; the computed phonon dis-
persion relations are interpreted through simulation results of phonon
wave packets and heat pulses; the simulation results of phonon-focusing
phenomenon are compared with phonon-imaging experiments; the
paper ends with a summary and a detailed discussion on possibilities to
improve the applicability of CG methods in Section 5.

2. The concurrent atomistic-continuum method

The CAC method is based on a unified atomistic-continuum for-
mulation that links atomistic and continuum descriptions of physical
quantities [17,18,43–46]. It reformulates the field representation of
conservation laws based on a two-level structural description of crys-
talline materials using the method of non-equilibrium statistical me-
chanics. In the CAC description, the lattice deformation is continuous
until structural discontinuities are produced by the nucleation of de-
fects, while the atomic deformation relative to the lattice at the subscale
is discrete. Through embedding discrete atoms within the lattice points,
CAC not only can reproduce acoustic phonons, but also can capture
optical phonons in polyatomic crystals, such as Si (a Si primitive unit
cell contains two atoms). By contrast, most of existing multiscale
methods neglect the internal degrees of freedom within unit cells by
considering a bulk unit cell approximation; the displacement field is
then homogeneous, which is generally referred to as the Cauchy-Born
rule. The lack of the description of relative atomic motion within a
lattice cell at the sub-structural level prevents these methods from si-
mulating optical phonons. The CAC balance equation of linear mo-
mentum for polyatomic crystalline materials can be written as [26,47]

+ = + = …u f fk
V

T v¨ , 1, 2, ,x
B

int ext (1)

where =u u x( ) is the displacement vector of the αth atom in a poly-
atomic unit cell at point x; is the number of atoms per unit cell; V is
the volume of the primitive unit cell at x; = m V/ is the mass

density of the αth atom; kB is the Boltzmann’s constant;
= =m m/ 1 ; T is the kinetic temperature; fext is the external force

field; f int is the internal force density, which is a nonlinear, nonlocal
function of relative displacements and can be obtained using the in-
teratomic potential for the material system.

For systems with a homogenous temperature field or a uniform
temperature gradient, the temperature term in Eq. (1) has the equiva-
lent effect of a surface traction on the boundaries or a body force in the
interior of the material [48]. Consequently, Eq. (1) can serve as the
governing equations for the material behavior of such systems. As a
field equation, Eq. (1) can be discretized at the scale of interest and
solved using the finite element method. The atomic displacement field
within a finite element (FE) can then be approximated using the finite
element shape function x( ) as

= …u x x U N( ) ( ) , 1, 2, ,m m npe (2)

where Um is the displacement vector of the th atom associated with
the th node of the mth element, and Nnpe is the number of nodes per
element. For a three-dimensional material system, the nodal displace-
mentsUm is a ×3 1 vector. The Galerkin weak form of Eq. (1) can thus
be expressed, with the term involving temperature in Eq. (1) being
denoted as f x( )T , as
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= …

x u x f x f x f xd
N

¨( )( ( ) ( ) ( ) ) 0,
1, 2, .

x m T

npe

( ) int ext

(3)

Substituting Eq. (2) into Eq. (3), we have
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or in matrix notation as

=M U F¨ ,m m (5)

where

=M xd ,
x( ) (6)

= +F f x f f x xd( ( ) ( )) .
xm T( ) int ext (7)

Eq. (6) describes a ×N Nnpe npe mass matrix, while Eq. (7) denotes a
force vector. For the sake of computational efficiency, we lump the
mass matrix using the row sum method to obtain a diagonal mass
matrix for = N1, 2, ...., npe, where Nnpe is the number of nodes per
element, as

= =M x xd d .
x x
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N

( )
( ) ( )

npe

(8)

Eq. (5) needs to be transformed into the isoparametric space to
pursue the solution. The mass and force matrices in the isoparametric
space are thus expressed, using J r( ) to denote the Jacobian, as

=M J rd ,
x
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( ) (9)
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Using Gaussian quadrature to numerically evaluate the integrals, we
obtain

=M J rd w V ,
r

lumped

µ

N

µ µ µ
( )

( )

ipe

(11)

= +

+

F f r f f r J r

f f f

d

w V

( ( ) ( ))

( ) ,

rm T

µ

N

µ µ T mµ µ

( ) int ext

int ext

ipe

(12)

Y. Li, et al. Computational Materials Science 162 (2019) 21–32

22



where wµ is the Gauss quadrature weight of the µth integration point,
µ is the value of shape function x( ) at the µth integration point, Vµ

is the volume of the unit cell at the µth integration point, and Nipe is the
number of integration points per element.

After numerical integration, Eq. (4), or equivalently Eq. (5), be-
comes a set of discretized governing equations with the finite element
nodal displacements as the unknowns to be solved. The accuracy, ef-
ficiency, and stability of the CAC method are then determined by the
two approximations: the displacement approximation (i.e., the shape
function) and the numerical integration (i.e., the Gauss quadrature).
Simulation results can be post-processed and visualized in terms of fi-
nite elements; finite element nodal displacements can also be mapped
back into atomic positions to plot the atomic trajectories. Since the only
constitutive relation is the nonlocal force-displacement relation, the
continuity between elements required in the traditional FE method can
be discarded. Consequently, nucleation and propagation of dislocations
and/or cracks can be simulated via the sliding and separation between
finite elements. Spontaneous nucleation and propagation of defects can
thus be simulated without the need of a special numerical treatment or
additional constitutive laws. Fig. 1 presents an atomistic model of a
crystalline material that is discretized into finite elements with a uni-
form mesh using the CAC method.

3. Phonon dispersion relations in atomically resolved models and
coarse-grained models

3.1. Phonon dispersion relations in atomically resolved models

Experimental techniques, such as neutron scattering, enable one to
deduce the phonon dispersion relations of a single crystal, which is the
frequency of the normal modes as a function of their wave vectors. To
obtain these normal modes of vibration based on the theory of crystal
dynamics, i.e., the Born and von Karman theory of crystal dynamics or
the dynamic theory of crystals by Born and Huang [49], two approx-
imations are necessarily: (1) the adiabatic approximation to assume
that the electrons accommodate themselves rapidly to the changing
nuclear coordinates, and (2) the harmonic approximation to ignore
higher powers of the nuclear coordinates. With the harmonic approx-
imation, the energy of a crystal in the harmonic approximation can be
expressed as,

= + = …u u u K uH M1
2

1
2

, ,  1, 2, ,
m

m m
m n

m mn n
T

, , ,

T

(13)

where M is the atomic mass of the th atom, um is the displacement
vector of the th atom within the mth unit cell that has position vector
Rm, K is the stiffness matrix; K can be computed from the second de-
rivative of the potential energy with respect to the separation distance
between Rm and Rn. Since the total energy is conserved, =dH dt/ 0, and
the equation of motion for the system can then be written as

=u K uM ¨ .m
n

mn n
, (14)

Assuming the general solutions for the displacements of th atom in
the unit cell m as a linear superposition of travelling waves, i.e.,

=u u k ri texp( [ · ]),
k

k km m
(15)

where uk is the displacement of the th atoms for the phonon with
wave vector k, and k is the angular frequency of the phonon with
wave vector k. The equations of motion can thus be written as

=u K k r r uM iexp[ ·( )] 0,k k k
n

mn n m
2

, (16)

or in matrix form as

=M D u( ) 0,k
2 (17)

where D is the dynamical ×3 3 matrix for each wave vector k. For Eq.
(17) to have a nontrivial solution, the determinant of the matrix
M D( )k

2 must be zero. The resulting frequency-wave vector ( kk )
relations are called phonon dispersion relations.

The dispersion curves are continuous. However, a finite sized crystal
permits only a discrete set of wave vectors, with the number of wave
vectors being equal to the number of the primitive unit cells in the
crystal. Thus, the number of phonon modes present in an MD simula-
tion is equal to the number of the degrees of freedom (DOFs) of the MD
model. Consequently, a finite-sized MD model cannot capture phonons
with wavelength longer than the dimensions of the MD simulation cell.

For a 3D crystalline MD model that has N particles, there are N3
DOF; this grants 3 N phonon modes with a uniform distribution of 3 N
phonon wave vectors over the entire Brillouin-zone. Since the number
of phonon modes is determined by the DOFs of the model, the wave-
lengths of phonons in a crystalline system are consequently limited by
the size of the simulation cell; the only exception is the wave vector
k=0, which represents a rigid body motion.

3.2. Phonon dispersion relations in CG models based on the CAC method

The phonon dispersion relations for a CG model can also be calcu-
lated using the theory of LD based on the discretized FE equations, e.g.,
Eq. (5), which describes the motion of FE nodes. In the harmonic ap-
proximation, the internal force at an integration point can be expressed
as

=
= … = … = …

f K U
µ N N

( ) ,
,  1, 2, , 1, 2, , 1, 2, ,

mµ n mnµ n

ipe npe

int , ,

(18)

where f( )mµint is the internal force density vector for the th atom at the
µth integration point of the mth element; K is the tangent stiffness
matrix, and Un is the nodal displacement vector of the th atom asso-
ciated with the th node of the nth element. In the absence of external
force and temperature, Eq. (12) becomes

=
= … = …

F K Uw V
µ N N

,
1, 2, , 1, 2, .

m µ µ µ µ n mnµ n

ipe npe

, ,

(19)

Substituting Eq. (19) into Eq. (5), we obtain the equation of motion
for the th atom associated with the th node in the mth FE as

=U K Uw V w V¨ .
µ

µ µ µ m
µ

µ µ µ
n

mnµ n
, , (20)

The periodicity of the finite element mesh then allows us to assume
the solution to Eq. (20) in the form of Bloch wave functions, i.e.,

=U U k Ri texp( [ · ]),
k

k km m
(21)

whereUk is the polarization vector of the th atom associated with the
Fig. 1. An atomistic model (left) and a coarse-grained model using the CAC
method (right).
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th node of themth element for the phonon with wave vector k, and Rm
is the position vector of the mth finite element (chosen to be located at
the first node of the element for the first atom as a convention), The
linearity of Eq. (20) allows us to solve one wave vector k at a time for
the phonon mode, i.e.,

=

( ) U

K k R R U

w V

w V i

~

~exp[ ·( )] 0,

k k

k

µ µ µ µ

µ µ µ µ n mnµ n m

2

, , (22)

In the matrix notation, this is written as

=M D U( ) 0,k
2 (23)

where D is the dynamic matrix. There are N3 npe solutions to Eq. (23),
and consequently we have N3 npe dispersion curves for a CG model.

4. Numerical results

4.1. Phonon dispersion relations of a one-dimensional diatomic chain

As discussed above, phonon dispersion relations can be calculated
using Eq. (17) for a fully atomistic representation and using Eq. (23) for
a CG representation. To compare the phonon dispersion relations for a
CG model with the underlying atomically resolved model, we first
consider a one-dimensional diatomic chain with periodic boundary
conditions, as shown in Fig. 2. The interaction between atoms is de-
scribed by the Lennard-Jones potential [50]. The atoms are separated
by 2.56 Å and the lattice constant is a=5.12 Å. The atomic masses of
the two types of atoms are 63.55u and 76.26u, respectively, where u is
the unified atomic mass unit.

4.1.1. The fully atomically resolved model
For the atomically resolved model, the displacement vectors in Eq.

(15) are expressed in terms of the position vectors of the unit cells, and
the unit cells can be chosen to have different sizes, the smallest of which
is the primitive unit cell. We calculate the phonon dispersion relations
of 1D diatomic chain model using a supercell that is 15 times the size of
a primitive unit cell (see Fig. 3a), and a supercell that is 5 times the size
of a primitive unit cell (see Fig. 3b), respectively, and compare them
with the primitive cell representation of the phonon dispersion rela-
tions. The displacements in Eq. (15) are thus represented in terms of
plane waves defined with two different cell coordinates. As a result of
the two different sets of unit cells and lattice vectors, the phonon modes
in the same atomistic model are represented by two different sets of
wave vectors and wavelengths. The smallest wavelength is 2a for the
primitive cell representation of the phonon dispersion relations, while it
is 30a (Fig. 3a) and 10a (Fig. 3b) for the supercell representations,
resulting in two different representations of the phonon dispersion re-
lations.

It can be seen from Fig. 3, there are two phonon branches in the
phonon dispersion relations calculated based on the primitive cell, with
the maximum wave vectors being π/a and the minimum wavelength
being 2a. By contrast, there are 30 (Fig. 3a) and 10 (Fig. 3b) phonon
branches in the supercell representations, with the maximum wave
vectors being π/15a (Fig. 3a) and π/5a (Fig. 3b), respectively, and the
minimum wavelength being 30a (Fig. 3a) and 10a (Fig. 3b), respec-
tively. Nevertheless, both primitive cell and supercell representations
cover the same range of frequencies and the same number of phonon
modes, with the total number of phonon modes being equal to the total
number of the DOFs of the system. For the supercells consisting of 15
(or 5) primitive unit cells, the translational symmetry defined by the
super cells leads to the folding of the phonon dispersion curves into the

supercell Brillouin zone that is 1/15 (or 1/5) of the primitive Brillouin
zone of the system [51]. This zone folding gives rise to the additional
optical-phonon-like modes. Among the 30 phonon branches in the su-
percell representation in Fig. 3a, the bottom and top curves represent
the same acoustic and optical phonons whose wavelengths are longer
than or equal to 30a in the primitive cell representations, the rest of the
optical-phonon-like branches represent the acoustic and optical pho-
nons with wavelengths smaller than 30a in the primitive cell re-
presentation.

4.1.2. CG models based on the CAC methods
For the CG models, the displacement vectors in Eq. (21) are the FE

nodal displacements. For comparison purposes, the finite element size
for each CG model is chosen to be the same as that of the supercell, and
the calculated phonon dispersion relations are also plotted in Fig. 3. It is
seen from Fig. 3 that the FE model shares the same size of the unit cell
in the reciprocal space as that of the supercell representation of the
atomistic model, and the smallest wavelength is also 30a (Fig. 3a) and
10a (Fig. 3b), respectively.

As can be seen from Fig. 3, CAC reproduces the phonon dispersion
curves for acoustic and optical phonons with wavelength longer than
30a (Fig. 3a) and 10a (Fig. 3b), respectively, in good agreement with
the atomistic models, except at the Brillouin zone boundaries of the CG
models, where phonons have zero group velocity, k/ , which means
that these phonons are standing waves [52].

CAC also reproduces some of the additional optical-phonon-like
modes, similar to some of the folded phonon branches in the supercell
representations. These additional phonon branches have the same fre-
quencies of the phonons that are represented with wavelengths shorter
than 30a in the primitive cell representation. By unfolding the wave
vector in the supercell representation into the wave vector in the pri-
mitive cell representation [51], we identify these additional optical-
phonon-like modes to be the acoustic phonons in the atomically re-
solved model with primitive unit cell representation that have wave-
lengths ranging from 2.3a to 2.5a and 7.5a to 10a. This means that
some short-wavelength phonons in the primitive cell representation can
be well approximated by the FE model.

To investigate the effect of the presence of the additional phonon
modes in the CG description, we perform a CAC simulation to pass
waves from a fully atomically resolved region to the FE region, using
the full interatomic potential. The 1D computer model consists of a
coarse-meshed FE region sandwiched between two fully atomically
resolved regions, with each element representing 15 primitive unit
cells. We then generate a longitudinal acoustic (LA) wave packet with
average frequency 5.1 THz, following the procedure outlined by
Schelling et al. [53]. The wave packet is centered at wave vector

a0.83 / , corresponding to a phonon mode with wavelength 1.2 nm
(=2.4a) in the atomically resolved model with primitive cell re-
presentation (marked by a solid black dot in Fig. 3a). The wave packet
is allowed to propagate from the atomic region on the left side of the
model into the FE region, and then to the atomic region on the right
side. Note that the size of the finite elements is 7.7 nm, which is much
larger than the phonon wavelength 1.2 nm. Nevertheless, the short-
wavelength composition of the wave packet in the atomic region is able
to propagate into and transmit across the FE region, as shown in Fig. 4.
The energy-transmission coefficient of the wave packet from the atomic
region to the FE region is found to be α=92.5%, while that from the
FE region to the atomic region is α=92.6%. These high energy-
transmission coefficients are enabled by the presence of the additional
high frequency phonons in the CG representation (marked by an open
circle in Fig. 3a) that have matching frequencies with the closely

Fig. 2. A one-dimensional diatomic chain with per-
iodic boundary conditions.
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approximated band of short-wavelength phonons in the atomistic re-
presentation.

To understand the mechanism by which short-wavelength phonons
from an atomically resolved region can propagate across the coarse-
meshed finite element region, we perform MD and CG simulation of a
one-dimensional diatomic chain with atomic motions associated with
the longitudinal phonon mode that has frequency 5.1 THz, respectively.
In Fig. 5(a) we present snapshots showing the nodal displacements in
the CG model and in Fig. 5(b) the atomic displacements in the MD
model. It is seen that the blue atoms associated with the first node of the
elements vibrate in exactly the same phase as the corresponding atoms
in the MD model. This is because the phonon modes in MD and CG have
the same frequency; in addition, the difference between their wave
vectors is an integer multiple of reciprocal lattice vector of the system in
the supercell representation. The transmission of the short-wavelength
phonon in the fully atomically resolved region to the CG region is en-
abled by the internal atomic motion associated with each finite element
node as well as by the discontinuities between finite elements in the
CAC method.

4.1.3. The effect of CG mesh size on the phonon dispersion relations
To investigate the efficiency and accuracy of CG models with respect

to the atomically resolved model, we first construct an MD model that
contains 50 unit cells with two atoms situated in each unit cell, as shown
in Fig. 2. The number of the DOFs of the MD model is 100 and the length
of the model is 25 nm. We then construct three CACmodels with length of
25 nm, 100 nm and 500 nm, respectively; each model is discretized with a
uniform mesh, having 2, 8 and 40 unit cells in each element, respectively.
The three CAC models thus all have the same DOFs as the MD model but
different mesh size and specimen length. The results are plotted in Fig. 6
and compared with the analytical LD results for an infinite crystal.

Fig. 6(a) shows that the acoustic and optical phonons present in the MD
model have wavelengths ranging from 1nm (=2a) to 25nm. Fig. 6(b)
shows that the acoustic and optical phonons present in the CAC model with
each element containing 2 unit cells covers the same phonon wavelengths as
the MD model, the CAC phonon dispersion relations also exactly match the
LD results for the same range of phonon wavelengths. This means that the
CAC model, if discretized with the finest mesh size, can reproduce the exact
phonon dispersion relations computed using MD. However, it is noticed that

Fig. 3. Phonon dispersion relations of a 1D diatomic chain model calculated with supercells consisting of (a) 15 primitive cells and (b) 5 primitive cells; dashed lines
indicate a primitive cell representation, and fine solid lines supercell representation; the results of CG models calculated using CAC are represented by the thick solid
lines for comparison. The reduced wave vector is defined as k k/ 0 with =k a/0 .

Fig. 4. Snapshots of the displacements during the CAC wave packet simulation of a 1D diatomic chain modelled by two fully atomically resolved regions at the two
ends and a CG finite element region in the center of the model; the wave packet is centered at a phonon mode with frequency 5.1 THz and wavelength 1.2 nm
(=2.4a). Only the finite element nodes are shown in the CG region.

Y. Li, et al. Computational Materials Science 162 (2019) 21–32

25



the phonons present in the MDmodel and those in the CAC model with two
unit cells per element are limited to wavelengths up to 25 nm.

In Fig. 6(c) and (d) we present the phonon dispersion relations for the
CAC models with a larger mesh size. It is seen that the CG computer models
can capture the phonons of longer wavelengths of both acoustic and optic
branches as the mesh size increases. The range of the wavelength increases
linearly with the size of the finite elements as the DOF are held fixed; and
the phonon dispersion relations for the long-wavelength phonons compare
very well with the LD results for an atomically resolved model. Thus, we can
model longer wavelengths while keeping computational expenses bounded.

4.2. Phonon dispersion relations for a three-dimensional Stillinger-Weber Si
crystal

4.2.1. Phonon dispersion relations and phonon modes present in a CG
model of Si

The second system investigated in this work is a three-dimensional
single crystal Si. The Stillinger-Weber potential is used to describe the

interaction between Si atoms. The system is modelled using the CAC
method and discretized with uniformly meshed rhombohedral-shaped
finite elements. The phonon dispersion relations are calculated for an
atomically resolved model and then for a CG model with 8×8×8 unit
cells represented per element. The results are plotted in Fig. 7 for wave
vectors along the [1 1 1] direction. It is seen from Fig. 7 that the CAC
model provides a good description for both acoustic and optical pho-
nons whose wavelengths are larger than 2L, where L=2.35 nm is the
element size, as compared with the LD results. In addition, there are an
additional 42 optical-phonon-like modes. They correspond to the folded
phonon branches of some of the short-wavelength acoustic and optical
phonons present in the atomically resolved model. These additional
phonon branches cover a wide range of the frequencies of the short-
wavelength phonons represented in the atomically resolved model with
the primitive cell representation that have wavelengths shorter than 2L.

To confirm that these additional phonon modes in the CG descrip-
tion of Si describe the properties of the short-wavelength phonons in
the fully atomically resolved model, we build a 3D computer model that

Fig. 5. Snapshots of (a) FE nodal displacements in a
CG model, and (b) atomic displacements in a MD
model associated with phonons with frequency
5.1 THz, marked in Fig. 3 as open and solid circles,
respectively; The blue atoms embedded within the
first node of each element and the corresponding
atoms in the MD model, are marked by diamonds,
showing their identical phases. A=15a is the se-
paration distance between first nodes of the ele-
ments.

Fig. 6. Phonon dispersion relations, plotted as frequency vs. wavelength, for four different computer models of a diatomic chain with the same number of the DOFs:
(a) MD, (b–d) CAC, showing the trade-off between short and long-wavelength phonons simulated in CAC.
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consists of both atomically resolved regions and coarsely meshed finite
element regions in the [1 1 1] crystallographic direction, in which each
finite element represents 512 primitive unit cells. We then perform a
wave packet simulation with the wave packet being constructed based
on a longitudinal acoustic phonon with frequency 10.2 THz and wa-
velength 0.8 nm (marked by the circle on the dispersion curves in
Fig. 7). The wave packet is allowed to propagate in the [1 1 1] crys-
tallographic direction from the atomic region into the CG region and
then to the atomic region on the other side of the model. Snapshots of
the atomic displacements in the atomically resolved region and that of
the finite element nodal displacements in the CG region during the
wave pack propagation are presented in Fig. 8. The energy-transmission

coefficient of the wave packet from the atomic to the CG region is found
to be 97.1%, while that from the CG to the atomic region is 97.9%. The
high energy transmission coefficients again indicate that the CAC
method is able to reproduce the behavior of some short-wavelength
phonons present in the atomically resolved model.

4.2.2. The effect of CG mesh size on the phonon dispersion relations for
long-wavelength phonons

To investigate the effect of mesh size, we compare the phonon
dispersion relations for three CG Si models with each linear cubic ele-
ment containing 2×2×2, 8× 8×8, 15× 15×15 unit cells, re-
spectively, to the MD and LD results. Each of these CAC models has the
same 240 DOFs along the [1 1 1] direction as that of MD. In Fig. 9 we
compare the phonon dispersion relations, in terms of wavelength, for
the MD model and the CAC models to the analytical LD results.

It is seen from Fig. 9(a) and (b) that the MD model and the CAC
model with 2× 2×2 unit cells per element produces the same phonon
dispersion relations as that of the LD model for phonons whose wave-
length range from 0.6 nm to 37.6 nm. The wavelength range increases
as the element size used in the CAC model increases: the CAC model
that has elements representing 8× 8×8 unit cells captures phonons
with wavelength ranging from 5.0 nm to 150.5 nm, and the CAC model
that has elements representing 15×15×15 unit cells has phonons
with wavelength ranging from 9.4 to 282.2 nm. It can be seen in
Fig. 9(c) and (d) that the CAC phonons dispersion relations are in good
agreement with the LD results for long-wavelength phonons.

4.2.3. Phonon focusing in Si
Phonon focusing is referred to as the phenomenon by which the

ballistic heat flux emitted from a point source concentrates along cer-
tain directions of the crystal [54–57]. It is an important physical phe-
nomenon in the study of non-equilibrium ballistic phonon propagation.
The phenomenon can be understood by considering that the group
velocity and wave vector of phonons are not collinear for anisotropic
materials, and that a uniform distribution of wave vectors leads to a
non-uniform distribution of heat flux [55]; consequently some regions
receive very intense energy flux, while others receive very little.
Therefore, high energy flux occurs along particular directions. In this
section, we examine the accuracy and capability of CAC method in si-
mulating phonon dynamics through reproducing the phonon focusing
phenomenon in Si.

Fig. 7. Phonon dispersion relations for a CAC model of Stillinger-Weber Si with
rhombohedral elements along [1 1 1] direction compared with that of LD. Each
element contains 8× 8×8 unit cells with each unit cell containing two atoms.
Reduce vector is k k/ 0, where =k a(0.5, 0.5, 0.5)2 / Si0 , asi=5.431 Å.

Fig. 8. Snapshots of atomic and nodal displacements
during the wave packet simulation of Si for a long-
itudinal phonon with frequency 10.2 THz and wa-
velength 0.8 nm. The wave packet propagates from
the atomic region on the left side of the model,
passing through the CG region, to the atomic region
on the right side. The energy-transmission coeffi-
cients for the two interfaces are 97.1% and 97.9%,
respectively.
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The slowness surface is an important tool to study the phonon fo-
cusing phenomenon. It is a radial plot of the locus of the slowness
vectors for a given frequency and has the shape of the constant-fre-
quency surface in k-space. The slowness vector is defined as =s k/ ,
where k is wave vector, and is the phonon frequency. The group
velocity vector can be expressed as =V k/ , which is normal to the
constant frequency surface, as shown in Fig. 10. Therefore, when the
curvature (Gaussian curvature) of a region at the slowness surface
vanishes, it indicates that there are a large number of phonons with the
same group velocity along the directions at that region [57]. Corre-
spondingly, large energy flux takes place along these directions [58].
Thus, the properties of phonon focusing in a system can be theoretically
predicted according to its slowness surface.

We have presented the phonon dispersion relations for various CAC
models in Fig. 9 for Si. The group velocities in each direction can be
calculated according to the dispersion relations, which then can be used
to find the three-dimensional slowness surface of the CAC model of Si.

In Table 1, we present the CAC results of the slow transverse acoustic
(STA), the fast transverse acoustic (FTA), and the longitudinal acoustic
(LA) slowness surfaces. The slowness surfaces calculated by LD are also
presented for comparative purposes. The saddle regions of the slowness
surfaces, i.e., the dark shaded regions, are regions where the caustic or
high energy flux is supposed to be observed. It is seen from Table 1 that
CAC produces slowness surfaces for all the three modes at low fre-
quency in good agreement with LD. It follows from Table 1 that the STA
phonons in Si have phonon focusing patterns for (1 1 1) and (1 0 0)
surfaces, which indeed have been observed in experiments [59–61].

To reproduce the experimentally observed phenomenon of phonon
focusing, we construct two CAC computer models for the visualization
of phonon focusing in (1 1 1) and (1 0 0) planes. A 3D Si crystal is
discretized with a uniform finite element mesh, with each element
contains 8×8×8 unit cells. The two CAC models have dimensions of
640× 640× 16 nm3 and 860× 860× 9 nm3, respectively; each
model contains about 0.3 billion atoms.

Sharp phonon-focusing patterns captured in experiments are mainly
attributed to ballistic phonon propagation. High-frequency phonons are
susceptible to phonon-phonon scattering; low-frequency acoustic pho-
nons therefore play the major role. In order to reproduce the phonon-
focusing phenomenon, in this study a coherent phonon pulse [37,62]
with phonons centered at 0.18 THz is applied to mimic the coherent
excitation of ballistic non-equilibrium phonons. The coherent phonon
pulse is constructed from spatiotemporal Gaussian wave packets by
specifying the displacements of atoms in the heat source region ac-
cording to the phonon dispersion relations.

In Fig. 11(a) and (b) we present the experimentally-imaged phonon
focusing patterns [63,64]. In Fig. 11(c) and (d), we present the phonon
distribution patterns along [1 1 1] and [1 0 0] orientation on the upper
crystal surface obtained from the CAC simulations. The phonon fo-
cusing images in the CAC simulation reveal the threefold symmetry in
the (1 1 1) surface and twofold symmetry in the (1 0 0) surface of Si;
both agree well with the experimental observations. These simulation
results demonstrate that the CAC method can provide an accurate de-
scription of the non-equilibrium ballistic phonon propagation and is
capable of reproducing experimentally-observed phonon focusing
phenomena.

Fig. 9. Phonon dispersion relations for MD and CAC models of the Stillinger-Weber Si along the [1 1 1] direction: (a) MD model, (b–d) CAC models with each linear
cubic element containing 2× 2×2, 8× 8×8, 15× 15×15 unit cells, respectively.

Fig. 10. Geometrical relation between slowness vectors, slowness surface, and
group velocity.
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5. Summary and discussion

In this work we have calculated and compared the phonon disper-
sion relations in coarse-grained (CG) models using the CAC method
with that in atomically resolved models for a 1D diatomic chain and a
3D single crystal Si. The CG models are discretized and solved using
linear finite elements with a uniform mesh. Major results may be
summarized as follows:

(1) The CG models using the CAC method have phonon dispersion re-
lations consistent with atomically resolved models for phonons with
wavelengths longer than the characteristic length of the element.
The longest wavelength phonon that can be present in a CG model
increases linearly with the size of the finite elements for a system
modelled with the same number of DOF.

(2) The CG models are also shown to be able to capture some phonons
whose wavelengths are shorter than the finite element size and are
typically unobtainable in other CG approaches. This is confirmed by
wave packet simulations showing the propagation of short-wave-
length (1.2 nm for the diatomic chain and 0.8 nm for the Si model)
phonons from the atomically resolved region to the CG region with
a high energy-transmission coefficient, 92.5% for the diatomic
chain and 97.1% for the Stillinger-Weber Si. A comparison between
the atomic displacements in a MD model and the finite element
nodal displacements in a CG model reveals that this is enabled by
the internal atomic motion associated with each finite element node
and also the non-connectivity between neighboring finite elements.

(3) The phonon-focusing patterns in single crystal Si are reproduced by
CAC and are in good agreement with experimental images of
phonon focusing in Si. The slowness surfaces of Si calculated using
the CAC method are also shown to agree well with those computed
via LD.

These results indicate that the CG methods that use a field re-
presentation of balance laws, can complement MD for the study of the
dynamics of long-wavelength acoustic phonons, e.g., for materials or
processes in which long-wavelength phonons interact with defect
structures. The accuracy and efficiency of these CG methods are closely
related to the shape functions that approximate the displacement field
in each element. A special feature of the CAC method is that it can also
reproduce optical phonons in addition to some short wavelength pho-
nons determined by the lattice cell size embedded within each finite
element node. There are thus possibilities to improve the phonon re-
presentation of a CG model using the CAC method. For example, the

Table 1
Three-dimensional STA, FTA, and LA sheets of the slowness surface of CAC model of Si compared with the slowness surface calculated by LD.

LD slowness surface CAC slowness surface

3D STA sheet of the slowness surface for Si

3D FTA sheet of the slowness surface for Si

3D LA sheet of the slowness surface for Si

Fig. 11. Phonon focusing patters from phonon-imaging experiments (a) in the
(1 1 1) and (b) in the (1 0 0) planes of Si [60,63]; (a) reuses the figure in Ko-
lomenskii and Maznev’s paper [63]; (b) reuses the figure in Hauser et al.’s paper
[60]. CAC simulation results of phonon focusing (c) in the (1 1 1) and (d) in the
(1 0 0) planes of Si.
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accuracy of phonon dispersion relations can be increased through
higher-order shape functions. Fig. 12 compares the CAC results using a
linear shape function with that using a second-order shape function. As
can be seen from Fig. 12, the higher order shape function significant
increases the accuracy of the CG description.

Another capability of the CAC method is that it can control the de-
scription of short-wavelength phonons in the CG region through the
subscale structural description in the CAC formulation. As mentioned in
Section 2, CAC employs a two-level structural description of the mate-
rials, and connectivity between finite elements is not required in the CAC
method implemented by the finite element method. Since a unit cell that
contains a group of atoms is embedded within each element node, the
atomic-scale internal motions associated with a finite element node can
be fully described. In addition, relative motions between neighboring
nodes of elements are allowed. Consequently, short-wavelength phonons
whose wavelengths are smaller than the element size can enter into and
propagate in the CG region. Fig. 13 presents snapshots of atomic dis-
placements in a CAC simulation of a 1D diatomic chain. The CAC model
is constructed to allow phonons with wavelength around 3a (where a is

the lattice constant) to present or enter into a CG region. For this pur-
pose, the finite elements are designed to have a unit cell with size 3a, i.e.,
containing 6 atoms, embedded within each element node. A phonon
wave packet is constructed in the atomic region with average frequency
4.0 THz and wavelength 1.53 nm (=2.98a). It is seen from Fig. 13 that
the wave packet is able to propagate from the atomic region to the CG
region and then to another atomic region. The energy transmission
coefficient from the atomic region to the CG region is 97.3% while from
the CG region to the atomic region is 96.4%. Similar results are also
obtained for a CAC model with unit cells size 4a to allow phonons with
wavelength around 4a to pass from the atomic to the CG region.

This is an interesting feature, as it provides a way to simulate ac-
curately not only the dynamics of long-wavelength phonons but also
that of certain desired short-wavelength phonons in the CG region
modelled with a uniform FE mesh. Such a feature is especially useful for
simulation of phonon transport in materials with disparate length
scales, such as polycrystalline materials with micron-sized grains and
angstrom-sized GBs. By enabling the passage of short-wavelength
phonons from an atomically resolved region of, e.g., a GB, to a coarse-

Fig. 12. Frequency-wave vector relations for a 1D diatomic chain using CAC with each element containing 15 unit cells and with (a) a linear shape function and (b) a
second-order shape function; the CG relationship is compared with the LD results of the underlying atomically resolved model. Reduced wave vector k k/ 0 is used with

=k a/150 .

Fig. 13. Snapshots of atomic displacements in the passing wave simulation.
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meshed finite element region of single crystalline grain without wave
reflections by numerical interfaces, it offers a method to simulate
phonon transport at multiple scales. Developing guidelines for such
simulations, however, require systematical parametric study; it is thus
beyond the scope of this work.

It should be noted that developing concurrent multiscale methods for
dynamically coupled mechanical and thermal transport behavior is still a
great challenge. The lack of an appropriate phonon representation for the
CG continuum region leads to phonon mismatch between atomistic and
continuum descriptions. This phonon mismatch leads to the spurious wave
reflections at the atomistic-continuum (A–C) interfaces, especially for short-
wavelength phonon waves. It is the main obstacle standing in the way of
progress of dynamic multiscale methods. Extensive research efforts have
been devoted to addressing the problem through minimizing the wave re-
flection or absorbing heat at the A–C interface. However, it has been sug-
gested that simply minimizing or eliminating the fine scale waves at the A-C
interface would further lead to erroneous simulation results, the A–C in-
terface should allow the fine scale waves to pass [65]. Contrary to the ex-
tensive existing effects in absorbing waves and heat at the A–C interface, we
take a different path to approach this problem by enabling waves to pass the
interface. One approach recently proposed to pass short-wavelength pho-
nons from the atomic to the CG finite element region is to use shape
functions derived from lattice dynamics to combine linear shape functions
and Bloch wave functions [66]. The present work aims to provide a quan-
titative understanding of the problem of passing waves from the viewpoint
of phonon dispersion relations. It is our intent that the results of this work
will provide insights into the applicability and limitations of CG methods in
the simulation of phonon thermal transport as well as possible ways to
overcome the limitations, thereby paving the way to address the key chal-
lenge in developing concurrent multiscale dynamic methods so as to enable
multiscale simulation of phonon transport in heterogeneous materials.
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