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ABSTRACT 

Deep learning (DL) algorithms for morphological classification of galaxies have proven very 

successful, mimicking (or even improving) visual classifications. However, these algorithms 

relyonlargetrainingsamplesoflabelledgalaxies(typicallythousandsofthem).Akeyquestion for 

using DL classifications in future Big Data surveys is how much of the knowledge acquired 

from an existing survey can be exported to a new data set, i.e. if the features learned by the 

machines are meaningful for different data. We test the performance of DL models, trained 

with Sloan Digital Sky Survey (SDSS) data, on Dark Energy Survey (DES) using images for 

a sample of ∼5000 galaxies with a similar redshift distribution to SDSS. Applying the models 

directly to DES data provides a reasonable global accuracy (∼90 percent), but small 

completeness and purity values. A fast domain adaptation step, consisting of a further training 

with a small DES sample of galaxies (∼500–300), is enough for obtaining an accuracy >95 

percent and a significant improvement in the completeness and purity values. This 

demonstrates that, once trained with a particular data set, machines can quickly adapt to new 

instrument characteristics (e.g. PSF, seeing, depth), reducing by almost one order of 

magnitude the necessary training sample for morphological classification. Redshift evolution 

effects or significant depth differences are not taken into account in this study. 

Key words: methods: observational–methods: photometric–surveys–galaxies: structure. 

1 INTRODUCTION 

Astronomy is entering the Big Data era. We are experiencing a 

revolution in terms of available data due to surveys such as 

COSMOS (Scoville et al. 2007), SDSS (Eisenstein et al. 2011), 

DEEP2 (Newman et al. 2013), DES (DES Collaboration 2016), etc. 
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The close future is even brighter with missions like EUCLID 

(Racca et al. 2016) or LSST (LSST Science Collaboration et al. 

2017), offering photometric, quasi-spectroscopic data of 

millions/billions of galaxies. 

One key measurement severely affected by this Big Data 

transition is galaxy morphology estimated from images. Galaxies 

exhibit a great variety of shapes and their morphology is intimately 

related to their stellar content. In addition, the light profiles provide 

information about their mass assembly, interactions, accretion, 

quenching processes or feedback (e.g. Conselice 2003; Bournaud et 

al. 2014; Kaviraj 2014; Belfiore et al. 2015; Dubois et al. 2016). It 

is therefore crucial to have accurate morphological classifications 

for large samples of galaxies. 

Galaxy morphological catalogues have been usually based on 

visual classifications. Unfortunately, visual classification is an 

incredible time-consuming task. The size of present and future Big 

Data surveys, containing millions of galaxies, make this approach a 

near impossible task. One beautiful solution to this problem was the 

Galaxy Zoo project (Lintott et al. 2011), which involved more than 

100k volunteer citizens to morphologically classify the full SDSS 

sample and has now been extended to other higher redshifts and 

surveys (e.g. CANDELS survey, Simmons et al. 2016; DECaLS 

survey). However, with the next generation of surveys, we are 

reachingthelimitofapplicabilityoftheseapproaches.Itisestimated 

that about a hundred years would be needed to classify all data from 

the EUCLID mission with a Galaxy Zoo-like approach, unless the 

number of people involved is significantly increased. A question 

naturally arises: can human classifiers be replaced by algorithms? 

Automated classifications using a set of parameters that correlate 

withmorphologies,e.g.CAS-methods(Concentration-

AsymmetrySmoothness, Conselice 2003) or Principal Component 

Analysis (Lahav et al. 1995, 1996; Banerji et al. 2010, and 

references therein) have been attempted. However, the parameter 

extraction also requires large amounts of time. DL algorithms 

where, in contrast to classic machine learning algorithms, no image 

preprocessing is needed, have come to the rescue for image analysis 

of large data surveys. The use of convolutional neural networks 

(CNNs) to learn and extract the most meaningful features at pixel 

level have been shown to produce excellent results for pattern 

recognition in complex problems and are widely used by many 

technology giants such as Google. CNNs have demonstrated their 

success for morphological classification of galaxies in The Galaxy 

Challenge, 1  aKagglecompetitionforreproducingtheGalaxyZoo2, 

wherethetopthreealgorithmsusedCNNs(e.g.Dieleman,Willett& 

Dambre 2015). At higher redshifts, Huertas-Company et al. (2015) 

also showed that CNNs represent a major improvement with respect 

to CAS-based methods. 

In a companion paper, Dom´ınguez Sanchez et al. (´ 2018, DS18 

hereafter), we combine the best existing visual classification 

catalogues with DL algorithms to provide the largest (670000 

galaxies from DR7-SDSS survey) and most accurate morphological 

catalogue to date. The catalogue includes two flavours: T-type, 

related to the Hubble sequence, and Galaxy Zoo 2 classification 

scheme. One of the main improvements with respect to previous 

                                                                 
1 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge 

works (Dieleman et al. 2015) is that only galaxies with robust 

classifications (large agreement between Galaxy Zoo classifiers) 

are used for training each task. This helps the models to detect the 

relevant features for each question and a smaller training sample is 

required for the models to converge. 

In spite of this improvement on the training approach, these 

algorithms still rely on large training sets (around 5000–10 000 

galaxies, depending on the classification task). A key question, in 

view of using DL-based algorithms to assess the morphologies of 

galaxies in future Big Data surveys, is therefore how much of the 

knowledge acquired from an existing survey can be exported to a 

new data set, i.e. can the features learned by an supervised process 

on a given data set be transferred to a new data set with different 

properties? And – if not – what is the cost of updating those features 

(in terms of new objects to be classified from the new data set)? 

This process, usually referred to as transfer learning or finetuning 

in the literature, is becoming popular for general image recognition 

(e.g. Bengio 2012; Yosinski et al. 2014; Tajbakhsh et al. 2016) and 

several recent works explore the optimal strategy to transfer 

knowledge (e.g. Guo et al. 2018; Kornblith, Shlens & Le 

2018;Sherminetal.2018andreferencestherein).However,transfer 

learning using astronomical data has not been yet fully explored. 

Somepreliminarytestshavebeenperformedbyourteamtoassess the 

performance of DL algorithms, trained with simulated data, on real 

data. In a recent paper (Tuccillo et al. 2017) we show that a DL 

machine trained on one-component Sersic galaxy simulations´ 

(with real HST/CANDELS F160W PSF and noise) can accurately 

recover parametric measurements of real HST galaxies with at least 

the same quality as GALFIT (Peng et al. 2002), but several orders of 

magnitude faster. It shows indications that DL is able to transition 

from simplistic simulations to real data without seriously impacting 

the results. 

In a recent paper, Ackermann et al. (2018) investigate transfer 

learning for galaxy merger detection by retraining CNNs first 

trained on pictures of everyday objects (i.e. ImageNet data set, 

Deng et al. 2009). In this work, we study transfer learning for 

morphological classification of galaxies between different 

astronomical surveys. To that end, we take advantage of the DL 

models trained with SDSS data to test their performance when 

applied to DES survey, with and without training on DES images. 

This is, to the best of our knowledge, the first work addressing the 

ability of DL models to transfer knowledge for different data sets. 

In a recent work, Perez-Carrasco et al. (´ 2018) provide a 

morphological catalogue of CLASH (Postman et al. 2012) galaxies 

by fine-tuning a CNN pre-trained on CANDELS survey (Grogin et 

al. 2011). They confirm the result presented in this paper: that 

transfer learning reduces the number of labelled images needed for 

training. 

The paper is organized as follows: in Section 2, we describe the 

SDSS-basedDLmodels,DESimages,andmorphologicalcatalogue 

used in this work; in Section 3, we explain our methodology; in 

Section 4, we discuss the results and in Section 5 we summarize our 

conclusions. 

2018 The Author(s) 
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2 DATA 

In this paper, we test the performance of DL models, trained with 

SDSS-DR7 data (Abazajian et al. 2009), on DES images. The 

morphological classification of DES galaxies comes from the 

DECaLS - Galaxy Zoo catalogue. In this section we describe the 

SDSS DL models, DES images, and the morphological catalogue 

used throughout the paper. 

2.1 Deep learning models trained with SDSS-DR7 data 

In DS18 we morphologically classify ∼670000 SDSS-DR7 galaxies 

with automated DL algorithms. The galaxies correspond to the 

sample for which Meert, Vikram & Bernardi (2015, 2016) provide 

accurate photometric reductions. Reader can refer to DS18 for a 

detailed explanation on the data and methodology but, in short, we 

use two visual classification catalogues, Galaxy Zoo 2 (GZ2 

hereafter, Willett et al. 2013) and Nair & Abraham (2010), for 

training CNNs with colour SDSS-DR7 images. We obtain T-types 

and a series of GZ2-type questions (disc/features, edge-on galaxies, 

bar signature, bulge prominence, roundness, and mergers) for a 

sample of galaxies with r-band Petrosian magnitude limits 14 ≤ mr 

≤ 17.77 mag and z < 0.25. The SDSS images are the standard cut-

outs downloaded from the SDSS DR7 server,2 with a resolution of 

0.396 arcsecpixel−1. 

2.2 Image data: Dark Energy Survey 

The images used to test how DL models can adapt to new surveys 

characteristics come from the Dark Energy Survey (DES; DES 

Collaboration 2016). DES is an international, collaborative effort 

designed to probe the origin of the accelerating Universe and the 

nature of dark energy by measuring almost the 14-billion-year 

history of cosmic expansion with high precision. The survey will 

map ∼ 300 million galaxies. This huge number demands to find 

automated methods for morphological classification of galaxies. 

DES is a photometric survey utilizing the Dark Energy Camera 

(DECam; Flaugher et al. 2015) on the Blanco-4m telescope at Cerro 

Tololo Inter-American Observatory (CTIO) in Chile to observe 

∼5000 deg2 of the southern sky in five broad-band filters, g, r, i, z, 

and Y (∼400 nm to ∼1060 nm) with a resolution of 0.263 

arcsecpixel−1. The magnitude limits and median PSF full width at 

half-maximum (FWHM) for the first year data release (Y1A1 

GOLD) are 23.4, 23.2, 22.5, 21.8, 20.1 mag and 1.25, 1.07, 0.97, 

0.89, 1.07 arcsec, respectively (from g to Y, see DrlicaWagner et al. 

2017 for a detailed description of the survey). In this work, we use 

standard DES cut-outs from the internal Y1A1 data release. 

2.3 Morphological catalogue: Dark Energy Camera Legacy 

Survey 

Unfortunately, there is no morphological classification available for 

DES galaxies to date. Instead, we take advantage of the Galaxy Zoo 

Dark Energy Camera Legacy Survey (DECaLS) morphological 

catalogue to assign a classification for DES galaxies. This is 

necessary for quantifying the performance of the DL models, as 

well as for labelling the training sample in the fine-tuning or domain 

                                                                 
2 http://casjobs.sdss.org/ImgCutoutDR7 

adaptation step (see Section 3). The DECaLS survey (Dey et al. 

2018) is observed with the same camera as the DES survey and with 

a similar depth (g = 24.0, r = 23.4, z = 22.5 mag at 5σ level), and so 

(average) observing conditions are very similar to the DES ones. 

The DECaLS Galaxy Zoo catalogue (private communication) 

contains morphological classifications for ∼32000 objects up to z ∼ 

0.15. The redshift range and most of the classification tasks are the 

same as for the GZ2 catalogue, which was used for training the DL 

models from DS18. Therefore, it is the perfect catalogue to test the 

performance of the SDSS-based DL models on DES images. The 

main difference of DES/DECaLS with respect to SDSS images is 

the use of a larger telescope and better seeing conditions, which 

allow to get deeper images (∼1.5 mag) with significantly better data 

quality than SDSS. This effect can be seen in Fig. 1, where we show 

six examples of galaxies as observed by SDSS and DES. 

The DES sample used in this work are the 4938 galaxies with a 

DECaLS - Galaxy Zoo classification (obtained with a match of 1 

arcsec separation). Note that, since our final aim will be to provide 

a morphological catalogue for DES, we use the DECaLS 

classification catalogue as the ground truth to test (and train) our 

models on DES images. Given the similarities between DES and 

DECaLS surveys, the Galaxy Zoo classifications will be identical 

or very similar, which allows us to perform this exercise. 

3 METHODOLOGY 

The objective of this paper is to assess if knowledge acquired by a 

DL algorithm from an existing survey can be exported to a new data 

set with different characteristics in terms of depth, PSF, and 

instrumental effects. This work aims to be a first proof of concept 

and not a full morphological classification catalogue. The redshift 

distribution of the DES galaxies used in this work is very similar to 

the SDSS (see 2.3), so no evolution effects are included: we are only 

changing the instrument and survey depth and spatial resolution. 

We leave for a forthcoming work a thoughtful study on the 

brightness and redshift effect on the models performance. 

We focus our analysis on the binary questions from the GZ2 

scheme, since they are the easiest to evaluate. We note that there is 

one model per question. The three classification tasks that we 

evaluate are: 

Q1: Galaxies with discs/features versus smooth galaxies. We 

consider as positive examples galaxies with disc or features (Y = 1 

in our input label matrix). Q2: Edge-on galaxies versus faceon 

galaxies. Edge-on galaxies are considered positive cases. Q3: 

Galaxies with bar signature versus galaxies with no bar presence. 

Barred galaxies are positive cases. 

3.1 Deep learning architecture 

The methodology used in this paper (in terms of training sample 

selection, model input, and DL model architecture) is exactly the 

same as in DS18, where the reader can find a detailed explanation 

about the procedure. In this study, we do not aim to maximize 

absolute model performance, but rather to study knowledge transfer 

on a well-known architecture. To facilitate the reader, in Table 1 we 

summarize the DL model architecture, which consists of four 

convolutional layers (with ReLU activation, Max Pooling, and 

dropout) and one fully connected layer (also referred to as the dense 
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layer). The total number of free parameters is 2602849 (see also 

figure 1 in DS18). 

To keep the methodology as similar as possible to DS18, the 

input for the models are the same as in DS18, i.e. 424 × 424 pixel 

size images (from DES in this case), which are down-sampled into 

(69, 69, 3) RGB matrices, with each number representing the flux 

per pixel at each filter (g, r, i). The flux values are normalized to the 

maximum value in each filter for each galaxy. The angular size of 

the images is variable, approximately 10 × R90, where R90 is the 

Petrosian radius of each galaxy (from SDSS). 

3.2 Training and transfer learning 

In order to assess how much knowledge from one survey can be 

exported to another, we carry out four experiments: 

(a) Apply the models trained on SDSS data directly to 

DESimages, without any further training or fine-tuning on DES 

data. 

(b) Load the weights trained on SDSS data and fine-tune 

them by training the models with a small DES sample (300–500 

galaxies). The training is performed for all the layers in the DL 

model. 

(c) Same as (b) but freezing all the layers (i.e. fixing the 

weights learned by SDSS) except for the fully connected layer. 

(d) TrainingthemodelsfromscratchusingaDEStrainingsampl

ewith the same size as in (b) and (c). 

WecomparetheseexperimentswiththeresultspresentedinDS18 for 

models trained and tested on SDSS data. Note that in this work we 

focus on knowledge transfer between different data sets, not 

features, such as bulge component or spiral arms. 

Table 1. DL model architecture. It consists of four convolution layers with 

different filter sizes (6, 5, 2, and 3, as shown in brackets) and one fully 

connected layer, also referred to as the dense layer. Dropout is performed 

after each convolutional layer (the reduction factor is shown in brackets) 

and MaxPooling is used after the second and third layers. The output shape 

and the number of free parameters in each layer are also shown. 

Layer type Output shape Num. parameters 

Conv2D (6 × 6) 

Dropout (0.5) 

(32, 69, 69) 

(32, 69, 69) 
3488 

0 

Conv2D (5 × 5) (64, 69, 69) 

(64, 34, 34) 
51264 

0 

MaxPooling 

Dropout (0.25) (64, 34, 34) 0 

Conv2D (2 × 2) 

MaxPooling 

(128, 34, 34) 

(128, 17, 17) 
32896 

0 

Dropout (0.25) (128, 17, 17) 0 

Conv2D (3 × 3) 

Dropout (0.25) 

(128, 17, 17) 
(128, 17, 17) 

147584 
0 

Flatten (36992) 0 

Dense (64) 2367552 

Dropout (0.5) (64) 0 

Dense (1) 65 

Total num. parameters  2602849 

between different tasks. This means that, for experiments (a) to (c), 

we use the SDSS models trained for each particular task. 

For test (a), the algorithm applies the weights learned by the 

SDSS models and returns a probability value for each task. For tests 

(b) to (d) the training procedure is identical to the one used in DS18. 

We train the models in binary mode. Data augmentation (as 

explained in DS18) is applied to the DES images to help avoiding 

overfitting. Balanced weights are used for Q2 and Q3 due to the 

uneven proportion of positive and negative examples for this two 

classes. We only use in the training DES galaxies with a robust 

classification, i.e. galaxies with a large agreement – a(p) – between 

Galaxy Zoo classifiers (roughly corresponding to P > 0.7 in one of 

the two answers) and with at least five votes. [Reader can refer to 

DS18 for a description of the agreement parameter, a(p).] This 

methodology has demonstrated to be a more efficient way to train 

the models, but it strongly limits the statistics of our train and test 

samples. For example, only 624 out of 4938 galaxies (∼13 percent) 

have Pedge-on > 0.7 and at least five votes. This number is even 

smaller (103, ∼2 percent) for the barred galaxies. 

We test the fine-tuned models on a sample of DES galaxies not 

used for training. Although this limits the statistics, specially in the 

case of Q3 (bar signature), it is important to properly evaluate the 

models. Since we need at least 300 galaxies for training Q3 (and the 

training sample should include a reasonable number of positive 

cases), we only have nine barred galaxies left for testing our models 

(see Table 2). The code used in this work is publicly available at 

 

Figure 1. Examples of six galaxies observed by SDSS-DR7 (left-hand panels) and DES survey (right-hand panels). The cut-outs are zoomed in to 1/2 of the 

size of the images used for training the models. They have a variable angular size of approximately 5 × R90, where R90 is the Petrosian radius of each galaxy 

(shown in each cut-out – in arcsec –, as well as their redshift). The galaxies are randomly selected from the common sample of the two surveys, with the only 

requirement of having high probability of being disc, edge-on, or barred galaxies. The better quality of DES images reveals with higher detail some galaxy 
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4 RESULTS AND DISCUSSION 

Weuseastandardmethodfortestingtheperformanceofourmodels: 

receiver operating characteristic (ROC) curve, true positive rate 

(TPR, also known as recall), precision (P), and accuracy values (e.g. 

Powers & Ailab 2011; Dieleman et al. 2015; Barchi et al. 2017). 

For binary classifications, where only two input values are possible 

(positive or negative cases), the true positives (TP) are the correctly 

classified positive examples. One can define, in an analogous way, 

true negatives, false positives, and false negatives (TN, FP, FN, 

respectively). The true positive rate (TPR), false positive rate 

(FPR), precision (P), and accuracy (Acc) are expressed as 

 TP FP 

TPR = + ; FPR = + 

(TP FN) (FP TN) (1) 

P = + ; Acc = + TP TP

 TN 

 (TP FP) Total 

TPR is a completeness proxy (how many of the true examples are 

recovered), precision is a contamination indicator (what fraction of 

the output positive cases are really positive), and accuracy is the 

fraction of correctly classified objects among the test sample. Since 

the output of the model is a probability (ranging form 0 to 1), a 

probability threshold (Pth) value must be chosen to separate positive 

and negative cases. The ROC curve represents the TPR and FPR 

values for different Pth. A perfect classifier would yield a point in 

upper left corner or coordinate (0,1) of the ROC space, (i.e. no false 

negatives and no false positives), while a random classifier would 

give a point along a diagonal line. 

In Fig. 2, we show the ROC curve for the three classification tasks 

studied in this work for the SDSS model applied to SDSS data (0), 

for the SDSS model applied to DES data without any training on 

DES (a), for the model fine-tuned on a small DES sample with 

https://github.com/HelenaDominguez/DeepLearning
https://github.com/HelenaDominguez/DeepLearning
https://github.com/HelenaDominguez/DeepLearning
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is caused by the small size of the barred test sample (see Table 2). 

transfer knowledge from the SDSS model [allowing all layers to be 

trained (b) or freezing all layers but the fully connected layer (c)], 

and for the model trained with a random initialization on a small 

DES sample (d). 

In Table 2, we show the TPR, precision, and accuracy values for 

the same experiments. For simplicity, we only list the values 

obtained for Pth = 0.5 (the standard value for separating positive and 

negative cases). Both the train and test DES samples are required to 

have a robust classification in the morphological catalogue (see 

Section 3). The number of galaxies used for training and testing 

(and the positive cases), are also given in Table 2. 

Our first main result is that, when applying the SDSS models 

directly to DES images, with no training at all on DES data, the 

accuracy values obtained are reasonable (>80 percent), reaching 93 

percent and 95 percent for Q2 and Q3. However, the accuracy can 

be misleading when few positive cases are included in the test 

Table 2. Performance of the models according to the TPR, precision, and accuracy values for the three classification 

tasks studied in this work. The experiment column specifies the approach used, as explained in Section 3.2. Ntrain is the 

number of galaxies used for training. When Ntrain = 0, it means the SDSS model is directly applied to DES data. Ntest are 

the number of galaxies used for testing the models (they fulfill the requirement of having a robust morphological 

classification, as the training sample), of which Npos are the positive cases (e.g. galaxies showing disc/features for Q1). 

Galaxies used for training are not included in the testing sample. This explains the scarcity of barred galaxies used for 

testing the models with DES training. 

Question  Experiment Ntrain Ntest Npos TPR Prec. Acc. 

 (0) SDSS–SDSS 5000 3370 674 0.93 0.91 0.97 

Q1 (a) SDSS–DES 0 2409 797 0.48 0.92 0.81 

Smooth/Disk (b) SDSS–DES fine-tuned 500 238 78 0.95 0.91 0.95 

 (c) SDSS–DES fine-tuned (FCL) 500 238 78 0.96 0.78 0.90 

 (d) DES–DES 500 238 78 0.81 0.77 0.85 

 (0) SDSS–SDSS 5000 2687 396 0.98 0.80 0.96 

Q2 (a) SDSS–DES 0 2851 536 0.91 0.76 0.93 

Edge-on (b) SDSS–DES fine-tuned 500 738 187 0.96 0.86 0.95 

 (c) SDSS–DES fine-tuned (FCL) 500 738 187 0.97 0.77 0.92 

 (d) DES–DES 500 238 78 0.97 0.70 0.89 

 (0) SDSS 10000 1806 169 0.76 0.79 0.96 

Q3 (a) DES 0 1768 61 0.57 0.35 0.95 

Bar sign (b) SDSS–DES fine-tuned 300 86 9 0.89 0.73 0.95 

 (c) SDSS–DES fine-tuned (FCL) 300 86 9 1.0 0.5 0.89 

 (d) DES–DES 300 86 9 1.0 0.1 0.1 

 

Figure 2. True positive rate (TPR, i.e. fraction of well-classified positive cases) versus false positive rate (FPR, i.e. fraction of wrongly classified positive 

cases) for different Pth values for the three classification task studied in this work, as stated in the legend. We show the performance of the DL models for the 

four experiments explained in Section 3.2 [labelled (a) to (d), colour-coded as shown in the legend], as well as the results of the models trained with SDSS 

galaxies and applied to SDSS images (blue dashed line). The number of galaxies used in the training for each question for the SDSS and DES samples are 

shown in the legend. The knowledge transfer from SDSS plus fine-tuning provides results comparable to the SDSS–SDSS models, but the training sample 

size can be reduced at least one order of magnitude. The ‘apparent’ better performance of the fine-tuned DES models with respect to the SDSS–SDSS one for 

Q3 
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sample and it is important to consider completeness and purity of 

the classification. These quantities are strongly dependent on the 

classification task. For example, for Q1 the precision value is very 

high (92 percent), but the completeness is less than 50 percent. On 

the other hand, the SDSS model recovers 91 percent of the DES 

edge-on galaxies, but the precision value for this task is 76 percent. 

For Q3, both the completeness and purity values obtained with the 

SDSS model are small (0.57 and 0.35, respectively). This indicates 

that bar identification is a very sensitive task to resolution and 

depth, while, on the other hand, inclination is less dependent on the 

survey characteristics. 

 

Figure 3. The three FP cases of barred galaxies, according to the DES-

finetuned model (b). The numbers shown in the cut-outs are the predicted 

Pbar given by our model. The cut-outs are zoomed in to ∼ 1/2 of the input to 

the models (approximately 5 × R90). There is a clear bright central structure 

in all of them, which may be difficult to distinguish from a true bar, even 

for non-expert human classifiers. 

The second main result is that, after a fast domain adaptation step 

(i.e. training the models with a small sample – less than 500 – of 

highly reliable DES galaxies), the models are able to adapt to the 

new data characteristics and quickly converge, providing results 

comparable to the ones obtained for the SDSS models applied to 

SDSSdata(seeTable2andFig.2).Wetestedtheperformanceofthe 

models with DES training samples of different sizes and we found 

that the presented here are an optimal trade-off between models’ 

results and training sample size. The accuracy values are ≥ 0.95 for 

all the classification tasks. For both Q1 and Q2 the completeness 

reaches at least 95 percent and the purity values are 91 percent and 

86 percent, respectively. The TPR and precision values for Q3 are 

smaller (0.89 and 0.73, respectively), but are severely affected by 

the test sample statistics. In fact, the model recovers eight out of 

nine barred galaxies (TP) and there are only three FP cases. After 

visual inspection, we found that the FN case is not a real barred 

galaxy but a bulge-dominated galaxy. On the other hand, only one 

of the three FP cases have Pbar > 0.6 according to model (b), and 

that galaxy shows a bright central feature which could be a distorted 

bar or a dust lane (see Fig. 3). 

Regarding the comparison between experiments (b) and (c), the 

results are slightly better for all tasks when training both the 

convolutional filters and the fully connected layer, rather than 

training the fully connected layer alone. Given the ‘simplicity’ of 

the CNN used (only four convolutional layers), most of the trainable 

weights actually come from the fully connected layer (235232 

versus 2367617 for the convolutional layer and the fully connected 

layer, respectively). Despite this, the performance of the models 

after fine-tuning all the layers is improved. It has been suggested in 

the literature (e.g. Yosinski et al. 2014) that the firstlayer features 

of deep neural networks are general, in the sense that they can be 

applied to many data sets and tasks. The results from this work 

indicate that the features learned by the convolutional layers are in 

fact important to improve the classification. Note that Yosinski et 

al. (2014) work is based on different classification tasks using the 

same input images, while in this work we want to transfer 

knowledge between different surveys. Our results suggest that the 

differences arising from different data sets (i.e. the survey image 

characteristics) have an effect on the features learned by the CNN, 

and not only by the dense layer. 

To better understand the impact of transfer learning from the 

SDSS models, we train the models with the same DES training 

sample as in the previous exercises, but now with a random weight 

initialization. As expected, the performance of the models trained 

from scratch is worst than the performance of the models after 

finetuning. This demonstrates that using an SDSS initialization 

leads to a better local minimum during training. However, the 

results are strongly dependent of the task being trained. For 

example, the accuracy for Q2 is 89 percent and the ROC curve is 

comparable to (even above) the one obtained when applying the 

SDSS models to 

theDESdatawithouttraining(a).Ontheotherhand,amodeltrained with 

such a small sample is unable to learn and separate the features 

related to the presence of a bar, as can be seen from the ROC curve 

shape and Table 2. This reveals that CNNs efficiency is related to 

the difficulty level of the classification task being trained 

(identifying edge-on galaxies is a much easier exercise than 

detecting bars). 

Another interesting point is the fact that the models trained with 

a small DES sample provide similar results to the SDSS models 

applied to DES data without fine-tuning (except for Q3, as 

previouslydiscussed).Itsuggeststhattransferlearningisequivalent to 

a small training step. Note that, for Q1, the area below the ROC 

curve of model (a) – dark green – is larger (i.e. better performance) 

than the one for model (d) – light green –, although the accuracy 

and TRP values are smaller. This is because the values in Table 2 

are given for Pth = 0.5, while the optimal performance for model (a) 

is obtained by setting Pth = 0.1. This means that the knowledge 

transferred for different data sets needs to be recalibrated. 

5 CONCLUSIONS 

In this paper, we demonstrate that deep-nets can transfer knowledge 

from one survey to another and quickly adapt to new domains and 

data characteristics such as depth, PSF, and instrumental effects. 

The combination of transfer learning and fine-tuning boosts the 

models performance and allows for a significant reduction of the 

training sample size. 

The fact that the training sample (and therefore the a priori 

labelled galaxies) can be reduced by an order of magnitude, once 

the models are trained with a different data set, is a major discovery 

in order to apply DL models to future surveys, such as EUCLID or 

LSST. It means that we will be able to recycle models from previous 

surveys (within the same redshift distribution), preventing from the 

huge effort of visually classifying a large sample of galaxies from 

that particular survey. 

It is beyond the scope of this paper to test the effect of the models 

on more complicated aspects of galaxy surveys, such as redshift 

evolution. We leave for a forthcoming work this mandatory step to 

release a reliable morphological catalogue, which will certainly be 
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an add-on value to DES. Also, a major advance of extremely deep 

future surveys will be the detection of features which are invisible 

in surveys such as SDSS or DES (e.g. tidal features and debris). 

Machines trained on shallower data are unlikely to produce robust 

results on very deep images. We plan to carry out a thorough study 

inthisrespectusingcosmologicalhydrodynamicalsimulationssuch as 

Horizon-AGN (Kaviraj et al. 2017) in a future work. 
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