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We show that all strongly non-degenerate trigonometric solutions of the associative Yang-Baxter
equation (AYBE) can be obtained from triple Massey products in the Fukaya categories of square-tiled
surfaces. Along the way, we give a classification result for cyclic A, -algebra structures on a certain
Frobenius algebra associated with a pair of 1-spherical objects in terms of the equivalence classes of
the corresponding solutions of the AYBE. As an application, combining our results with homological
mirror symmetry for punctured tori (cf. [17]), we prove that any two simple vector bundles on a cycle
of projective lines are related by a sequence of 1-spherical twists and their inverses.

Introduction

The associative Yang-Baxter equation (AYBE) is the equation
(0-1) 2= rB3w+ v+ = P4 VP w,v) + i3, v VR0V =0,

where r : C* — Mat,(C) ® Mat,(C) is a meromorphic function of two complex variables (u,v) in a
neighborhood of (0, 0) taking values in Mat,(C) ® Mat,(C), and Mat,(C) is the matrix algebra. Here
we use the notation r'2 = r ® 1 € Mat,(C) ® Mat,(C) ® Mat,(C), etc. The equation (0—1) is usually
coupled with the skew-symmetry (also called unitarity) condition

(0-2) P (—u, —v) = —r(u,v)

where 2! is obtained from r by the transposition of tensor factors a; ® a; — a; ® ap. Note that the

constant version of the AYBE was studied by Aguiar [2] in connection with infinitesimal Hopf algebras.

The AYBE is an analog in the world of associative algebras of the well-known classical Yang-Baxter
equation (CYBE),

[F20), PP+ )1+ 72 0), P ONT+ FP e +V), rP o)) = 0,

where r(v) is a meromorphic function in a neighborhood of 0 taking values in a Lie algebra g ® g.
Solutions of the CYBE lead to Poisson-Lie groups and classical integrable systems (see for ex. [9], [7]).
There is a direct relation between the two equations in the case g = s/,(C): if r(u, v) is a skew-symmetric
solution of the AYBE such that the limit 7(v) = (pr ® pr)r(u, v)|,—o exists (where pr is the projection
away from the identity to traceless matrices), then 7(v) is a solution of the CYBE for g = s/,(C).


http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 

It was discovered in [19] that solutions of the AYBE often arise from 1-Calabi-Yau A, -categories. More
precisely, assume we have such a minimal A -category % and two sets of isomorphism classes of objects
in %, X and Y, such that for every pair of distinct objects x1,x; € X (resp. y1,y2 € V), Hom*(x1, x2) =
0 (resp. Hom*(y;,y2) = 0). Furthermore, assume Hom7é0(x, y) = 0 (and so Hom#(y, x) = 0) for
x € X and y € ). Then dualising the triple product !

m3 : Hom’(x2, y2) © Hom' (y1, x2) @ Hom®(x1, y1) — Hom’(x1, y2),
where x1,x; € X, y1,y2 € )V, using the Calabi-Yau pairing, we get a tensor

rj‘llfi : Homo(xz,yz) & Homo(x] ;1) — Homo(xl,yz) 0% Homo(xz,yl),

defined by

(0-3) (e (f2 ® fi1), 821 ® g12) = (M3(f22, &12, /1), 821)-

where f;; € Hom(x;, Vi), &ij € Homl(y,-,xj). Note that by the cyclicity of the A -structure, this tensor
satisfies the following skew-symmetry condition:

(0—4) (o) = e

yiy2 yayr®

Now, let x1,x2,x3 (resp., y1,¥2,¥y3) be distinct elements of X (resp., )). Then taking into account the
assumptions on X, ) the relevant A -relation involving ms takes the form

(0-5) m3(m3(f33, £23,/22), &12,/11) + mM3(f33, Mm3(g23, /22, £12), f11) — M3(f33, 23, M3(f22, g12,/11)) = 0,
where f;; € Hom%(x;, y;), 8ij € Homl(y,-,xj). Note that here the first and the the third terms can be

immediately expressed in terms of the tensor ry}32. To do this for the middle term, one has to use the

cyclic symmetry of the A, -structure, which gives

(f31,m3(g23, /22, 812)) = (g12, M3(f31, £23,/22))-

Taking into account the cyclic symmetry, we can rewrite the above A -relation as follows (see [19, Thm.
1:
(0-6) (i) B2 B pnmls s 2nands —

Y1y3 y2y3 y1y2 Y1y3 y2y3 y1y2

This is viewed as an equation on
Hom"(x3,y3) ® Hom®(x2, y2) ® Hom’(xy, y1) — Hom’(x2, y3) ® Hom®(x1, y2) ® Hom"(x3, y1)

Permuting the second and third factors in the tensor product, and swapping x; with x, and y; and y»,
(and also taking into account the skew-symmetry (0—4)), the equation (0-6) is equivalent to the following
equation

(0_7) (rxle 12(rx1x3 13 (},JC1X3)23(’)C2X3 12 + (,)czx3 13(,}(1x2 23 _ 0.

y2y3 yiy3 yiy2 Y2Y3 y1y3 yiy2

'Our convention is that in an A -category, we read the compositions from right-to-left (as in [24]). This affects
certain signs in computations. In particular, the A, -relations are given by:

Z(_1)|a1‘+m+|an|_”md—m+l(ada ey Apbm+1, mm(an—i-ma s 7an+l)7an7 .. Cl]) - 0

m,n



We will call the equation (0-7) the general AYBE (or simply AYBE when no confusion can arise).?

It was further shown in [19] that in the case when % is the derived category of coherent sheaves on an
elliptic curve (or some of its degenerations) then there exist natural choices of X and ) as above, so
that all the spaces Homo(x, y), x € X,y € ), can be identified with the fixed finite-dimensional vector
space V. Furthermore, in this case X and ) have abelian group structures, and the obtained tensors
2 s VO — V2 depend only on the differences u = x, —x1, v = y» — 1, which leads to the equation

(0-1).

Note that different choices of trivialization of the Hom-spaces in the above construction correspond to
the natural equivalence relation on solutions of the AYBE introduced in [19]. Namely, given a function

gof, with values in GL,(C), we can transform a solution rﬁ{ ;‘; of (0-7) to the new solution
(0-8) Tihi = (e @ N @ )7

Our first result is that an analog of the above construction gives a bijection between formal solutions of
the general AYBE and a class of A, -structures. Namely, we will consider deformations of the formal
Ao -category A = A, defined below. Note that we use the sign conventions of [24], so that the double
compositions in the associated cohomology category differ from those induced by m; by a sign.
Definition 0.0.1 The A, -category A = A, has two objects X and Y, and the Hom-spaces
Hom(X, Y) = Hom’(X,Y) = Z6, & ... ® Z6,, Hom(Y,X) = Hom"(Y,X) = Zn & ... ® Zn,,
Hom’(X, X) = Zidy, Hom’(Y,Y) = Zidy, Hom!(X,X) = Z&, Hom'(Y,Y) = Z&y.
The elements idy and idy act as strict units in the sense that
ma(a,idy) =a , midy, @) = (=Dla , my(a,idy) =a , midy,a) = (~1)a,
whenever composition with a € A is non-zero, where |a| is the degree of a, and the other compositions
are given by
m2(7a; 08) = 0aplx, M2(0a,np) = —dapsy-
Note that one can view 4 as a graded category by defining the composition as:
@ -ar = (=D my(az, ar)
We also define the symmetric perfect pairing on the Hom-spaces of A by
(N, 08) = — (O, Ma) = dap, (Ex,idx) = —(idy, &x) = (§y,idy) = —(idy, &y) = 1.

Let k be a field. We are going to consider A, -structures on A ® k, with given m,, which are cyclic
with respect to this pairing. Recall that a strictly cyclic A -category of dimension 1 is a strictly unital,
proper A, -category together with nondegenerate pairings

(,):hom*(X,Y) ® hom' *(Y,X) — k

2Our equation differs from [19, Eq. (1.2)] due to different conventions. The two equations become equivalent
if we replace rj?;f, by r;‘,;



satisfying
<a1’a2> — (71)(|a1|_1)(|42|_1)+1<a2’ Cll)
and the cyclic symmetry condition:

. ,a1)> = (_1)(‘ak+l|—1|)(|a1|+|a2|+.._+|ak|_k)<

(g1, mp(ag, ag—1, - - ey M(Ap—1, Ak—2 - - -, A1, A1)

An A -functor f = (f"),>1 1 &/ — & between cyclic A, categories is said to be cyclic if the following
hold:

(@), f' (@) = (a2, ar)

for any a;,a; and

Z <fl(an7 cee >ak+l)7 fk(aka cee al)> =0

k+Il=n

for any sequence of composable morphisms a,, . ..,a; with n > 3.

For a commutative k-algebra R we denote by M. (A ® R) the set of cyclic, strictly unital, minimal
Ao -structures on A ® R, up to a strict cyclic A, -equivalence (i.e., the one with §' = id). Let us set

(0-9) P:= ey ® ej € Mat,(k) ® Mat,(K),
ij
where (e;j) is the standard basis of Mat, (k) defined by e;j(er) = djce; if (e;)"_; is a basis of K". In other

words, P is the transposition operator given by:

Px®@y) =y®x.

Theorem A. There is a natural explicit bijection between M (A ® R) and the equivalence classes of
formal skew-symmetric solutions ryly} of the general AYBE of the following type. We let x1,x2,y1,y2 to

be formal variables and consider

ik € Mat,(k) @ Mat, (k) ® Rl[x1,x2, y1,y2]1l0v2 = x1) " (2 = y1) ']

y1y2
of the form
id®id P
0-100  E= + {mod Mat,(k) ® Mat,(k) @ R[[x1,x2, y1, 211},

X2 =X Y1—»

such that (0-7) is satisfied in Mat, (k) ® Mat,(K) ® R[[x1,x2, X3, V1, y2, 3]I[A™'], where A = Hi<j(xj —
x)(yj — yi). The skew-symmetry is the equation (0—4). The equivalence between such solutions is given
by (0-8), with

¢y € Id + (x,y) C Mat,(R)[[x, yl].

Considering the more general equivalences, where the constant term of ¢y is only required to be an
invertible matrix, corresponds to general cyclic A -equivalences of the cyclic A -Structures.

The key idea in this theorem is to apply a version of the above construction of solutions of the AYBE
to a pair X', ) of formal deformations of objects X and Y in .A. A technical point is that these formal
deformations are defined in the category of twisted objects over A, which is non-minimal. Because of
this one has to use certain triple Massey products instead of just ms (see Sec. 1.2). In particular, the



singular terms in the expansion of r}!}2 are obtained naturally in this approach due to the definition of

the Massey products.

Recall that Belavin and Drinfeld in the seminal paper [4] classified nondegenerate® solutions of the
classical Yang-Baxter equation for simple complex Lie algebras, up to some natural equivalence. They
showed that they can be either elliptic or trigonometric or rational, and further classified trigonometric
solutions in terms of some combinatorial data, involving so called Belavin-Drinfeld triples.

Similarly, one can pose the problem of classifying nondegenerate solutions r(u, v) of the AYBE (and of
its formal general version). Partial results in this direction we obtained in [19] and [20]. If r is strongly
nondegenerate (see Def. 1.4.3 and Prop. 1.4.4), the Laurent expansion of the solution at # = 0 has the
form

(0-11) r(u,v) = % +ro(v) + ...

Under this assumption, it was shown that the projection 7y(v) of ro(v) to sl,(C)®sl,(C) is anondegenerate
solution of the CYBE, and that if ro(v) is either elliptic or trigonometric then r(u,v) is determined by
ro(v), up to some natural transformations. Note that the Laurent expansion (0—11) appears naturally in
the construction of Theorem A. It was shown in [19] that all elliptic solutions of the CYBE extend to
those of the AYBE. In [22] Schedler observed that this is not the case for all the trigonometric solutions.
Extending this work, it was proved in [20] that nondegenerate solutions of the AYBE, with the Laurent
expansion at u = 0 of the form (0-11) and such that 7(v) is a trigonometric solution of the CYBE, admit
a classification in terms of the following combinatorial data (see also Sec. 2.3 below).

Definition 0.0.2 An associative Belavin-Drinfeld structure (S, C1, Cy,A) consists of a finite set S, a pair
of transitive permutations Cy,C, : S — S and a proper subset A C § such that for all a € A, one has :

Ci(Cx(a)) = Co(Ci(a)).

The reader familiar with the original Belavin-Drinfeld triples (defined in terms of Dynkin diagrams) may
notice that the above associative analog of this notion is more elementary (the original definition in [20]
is slightly different but is equivalent to the one above, see Sec. 2.3).

One can also ask which solutions of the AYBE can be realized by families (&X', )) of objects in some
geometric 1-Calabi-Yau-categories. A natural source is provided by the derived categories of coherent
sheaves on elliptic curves and their degenerations. Then we can take as X’ a universal deformation of a
simple vector bundle, and as Y the family of the structure sheaves of points.

It turns out that all the solutions of the AYBE for which 7y(v) is elliptic arise in this way from simple
vector bundles on elliptic curve, and can be explicitly computed in terms of elliptic functions (see
[19]). In [20], all the solutions coming from the nodal degenerations of elliptic curves, i.e., cycles of
projective lines (aka standard m-gons), were computed and were shown to be trigonometric. However,
it turned out, somewhat unexpectedly, that not all trigonometric solutions of the AYBE appear in this
way. Namely, it was also shown in [20] that the trigonometric solution of the AYBE, corresponding to

3this means that the tensor r(v) is nondegenerate for generic v



the data (S, Cy, C»,A), arises from a simple vector bundle on a cycle of projective lines if and only if the
corresponding transitive permutations C; and C, commute (equivalently, C, = C’f for some k).

This raised a natural problem of finding other 1-Calabi-Yau A, -categories and objects in them, which
would account for missing solutions. This problem is solved in the present paper by looking at appro-
priate Fukaya categories. Namely, starting from the data of an associative Belavin-Drinfeld structure
(S, C1,Cy,A), we construct a square-tiled surface > with a local symplectomorphism

T:X—T

to the square torus T. In the case A = (), X is just the n—fold covering space of the punctured torus T
associated to the permutations Cp, C, (see Section 2 for the general case). Lifts of standard Lagrangian
curves in T to X give a pair of exact Lagrangians L; and L, in X such that

2
@ HF*(L;, L) ~ A® C.

ij=1

Now, we have complex push-offs of the Lagrangians L and L, forming 1-parameter families L] and
L“; (see Definition 2.3.2). Taking these two families as families X and ) in our general construction of
solutions of the AYBE, we get such a solution that records triple products between (L}, Lﬁ' LY, Lﬁz).
We show that this gives exactly the trigonometric solution of the AYBE associated with (S, Cy, C5,A).
More precisely, we have:

Theorem B. Let (3, Ly, Ly) be the square-tiled surface Y. and Lagrangians Ly and L, associated with
an associative Belavin-Drinfeld structure (S, Cy, C2,A). Then the tensor ry|y: obtained from the triple
products in the Fukaya category F(X) only depends on u = x, — x1, v =y, —y1 and is a solution of the
AYBE over C given explicitly by the following formula (for an appropriate choice of basis):

(0-12) . .

r(u,v) = exp(u)—lzi:eii ® eii + [ D ei®@ e

i

1 ku 1 my
T exp — 1 > P ek @ i + exp) — 1 > e ey ® ey
0<k<n,i 0<m<n,i
ku + mv ku 4+ mv
+ Z { exP(_in Jecya,a @ €ck(a),ckCria) — exP(in )ec’;(a),cfcgl(a) ® ecgm),a},

0<k,0<m;acA(k,m)
where we denote by A(k,m) C A the set ofall a € A such that C| Cé(a) €Aforall0 <i<k,0<j<m.

We note that the surface > has genus 1 (i.e., is a punctured torus) if and only if C; and C, commute.
This explains why only these solutions appeared from simple vector bundles on nodal degenerations of
elliptic curves, which are mirror dual to punctured tori (see e.g., [17]).

As an application of the viewpoint developed in this paper (combined with the results of [20]) we derive

the following result about simple vector bundles on cycles of projective lines.

Theorem C. Let C be a cycle of projective lines (the standard n-gon) over C. For any simple vector
bundle V on C there exists a composition ® of 1-spherical twists and their inverses such that ®(O¢) ~ V.



Here we use the notion of the twist autoequivalence associated with an n-spherical object introduced
in [27]. Recall that an n-spherical object E should satisfy Hom*(E, E) = k & k[—n] (together with
an additional nondegeneracy condition). The corresponding twist autoequivalence Tg fits into an exact
triangle

Hom*(E,X)  E - X — Tp(X) — ...

In this paper we consider only 1-spherical objects and the corresponding twists.

Note that Theorem C is known in the case n = 1 by the work [6]. In this case the situation is very similar
to the case of elliptic curves. The case n > 1 is much more complicated: in this case one can still classify
all simple vector bundles on C (see [5]) but the relevant combinatorics is quite involved.

The idea of the proof of Theorem C is to consider the solution of the formal general AYBE associated with
the pair (O, V) (where V is sufficiently positive), and to use Theorem A which states that the subcategory
generated by O and V is determined by this solution. The point is that we know this solution of the
AYBE to be the same as for the Lagrangians L, L, in the symplectic surface > of genus 1 associated
with some associative Belavin-Drinfeld structure. We prove that in this situation the pair (O, V) (resp.
(L1, Ly)) split generates the perfect derived category of C (resp., the Fukaya category of ). Thus, we
reduce the problem to a similar question about Lagrangians in the Fukaya category, where we can use
the action of the mapping class group.

The paper is organized as follows. In Section 1 we study the relation between formal solutions of the
general AYBE and A -structures, in particular, proving Theorem A in 1.3. In addition, in Sec. 1.4 we
discuss the natural involution on solutions of the AYBE, which allows us to deduce the pole conditions
imposed in [20] for strongly nondegenerate solutions of the AYBE (see Prop. 1.4.4). Also, in Sec. 1.5 we
explain, basing on ideas of [25], the connection between solutions of the AYBE coming from algebraic
(or analytic) families of objects (see (0—3)) and the corresponding formal solutions from Theorem A.
Section 2 is devoted to the construction of trigonometric solutions of the AYBE from Fukaya products
on the square-tiled surfaces associated with Belavin-Drinfeld structures. In Section 3 we consider two
applications of Theorems A and B to vector bundles over a (nodal) cycle C of projective lines. One is a
criterion, in terms of some combinatorial data, for a pair of simple vector bundles on C to be related by
a Fourier-Mukai autoequivalence (see Theorem 3.1.4). Another is Theorem C, proved in Sec. 3.2.
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1 Aclassof cyclic A -structures and formal solutions of the general AYBE

1.1 Twisted objects over complete rings

Let us quickly review the definition of the A, -category of twisted objects with coefficients in a complete
ring (see [11], [10], [16]), mostly following [24, Ch. 1] and [14, Sec. 7.6].



Let & be a topological A, -category over a complete ring R. We assume that R is topologized by
a decreasing filtration (R,), such that R,R, C R,,1,, and that the Hom-spaces in 4 are complete.
We will only consider twisted objects of the following kind: (X, dx), where X is an object of ¥ and
dx € Ry Hom'(X, X) is an element satisfying the Maurer-Cartan equation

> ma(d%) =0.

n>1

Note that here the left-hand side converges in Hom?(X, X). The Hom-space between two such objects
(X, 0x) and (Y, dy) is simply Hom(X, Y). There are natural A, -products (m!) for the twisted objects,
which are obtained by inserting the twisting elements 6 any number of times wherever possible. More
precisely, m, is given by

t } : i Id—1 i
md(ad7 ad—1, - - - )al) = md+io+...+id(5)éld7 dagq, 5Xd71 ydd—1,--.,41, 6)?0)
iQyeenyig>0

(We follow the sign conventions of [24, Ch.1]).

Let us point out one additional feature of the A, -category of twisted objects: it easy to check that if we
start with a cyclic A -category then the corresponding A -category inherits the cyclic structure.

An A -functor f = (7),>1 : € — €’ between A -categories over R, as above, leads to an A, -functor
F = (F")u>1 between their categories of twisted objects. Namely, (X, dx) maps to (F(X), F(dx)),
where

FXO=§X) , F@x) =Y @
The maps F“ on Hom-spaces between twisted objects is given by

d _ } : d—+io+...4ig ¢ Sid ld—1 io
F (adaad*h"')al)_ f 0 d((SXdaad75Xd_]7ad71)'"aala(SXO)
i05+-sig >0

1.2 Triple Massey products and a construction of formal solutions of the general AYBE
First, let us recall the general definition of the triple Massey product in an A, -category € following
[19], but with different sign conventions. For a triple of m;-closed composable morphisms
Xo — X1 —2- X, —2 X5

such that my(az, ay) = my(hy), mp(az, ay) = my(hy), one sets
(1-1) MP(a3, az, a1) = m3(as, az, a1) — ma(ha, ar) — ma(as, )  {mod Im(my)},
which is well-defined as a coset for the image of

HI el Hom(Xo, Xp) @ HIeH11=1 Hom(xy, Xy) M@ 2m0A) glarl+elHal - Hom(xp, X;).
The main result about such triple Massey products is that they are preserved under A -functors: if
f: % — €' is an A, -functor then

f1(MP(a3, az, a1)) = MP(f' (a3), ' (a2), §' (a1))



in the appropriate quotient-group (see [19, Prop. 1.1]). In particular, if 4" is a minimal model of ¢
obtained as a result of the homological perturbation procedure, then the Massey product MP(as, as, ay),
computed in ¥, agrees with mcf/(a3,a2,a1) (since for a minimal A, -category our Massey product
reduces to ms3).

Thus, the construction of solutions of the AYBE from two families of objects, presented in the introduction,
has a version for non-minimal cyclic A -categories, linear over some commutative ring K. More
precisely, we have to replace in this construction m3 by the triple Massey product MP and assume that
cohomology of all the morphism spaces are projective R-modules (so that the homological perturbation
can be applied). One technical problem is that the cyclic property of the A, -structure is not necessarily
inherited by the minimal model. However, we have the following compatibility of the Massey products
with the cyclic structure.

Lemma 1.2.1 Suppose we are given a cycle of mj -closed morphisms in a cyclic A, -category,
Xo > X —2 X —2 X3 — X

such that
ma(az,ar) = my(hy), ma(as,az) = my(hy), mo(as,az) = my(hz).

Assume also that the corresponding Massey products MP(as3, a>,a;) and MP(a4, a3, a) are univalued.
Then
(a1, MP(ay, a3, @)) = (—Dlal=Dlaltlalal=b g, MP(a3, a5, a1)).
Proof. Using (1-1), we see that it is enough to establish the following identities
(a1, m3(as, as, az)) = (— D=Vl HalHal=D, mia3,a,a))),
(a1, ma(ag, hp)) = (—1)al=Dlaltlasltlad=D 4, s (hy, ay)),
<a1 7 mz(h3,a2)> — (_1)(\a,\71)(\a2\+|a3\+|a4|71)<a4’ ma(as, h1)>.

The first two follow directly from the cyclic property of m3 and m; (noting that |hy| = |az| + |az| — 1).
For the last one, we first rewrite the left-hand side using the cyclic property of m,:

<a1,m2(h3,a2)> _ (_1)(|a1|*1)(|a2|+|a3|+|ﬂ4|*1)<h3’mz(a27a1)> _ (_1)(|a1|*1)(|a2|+|a3|+|a4|*1)<h37ml(hl».
Next, we use the cyclic property of m;:
(h3, my(hy)) = (= DII=DAD () g (h3)) = (= DIEDISD (s (ay, a3)).

It remains to apply the cyclic of m; to the last expression to get the required identity. |

Using Lemma 1.2.1, one can generalize the construction of the solutions of the AYBE to non-minimal
cyclic A -categories provided the appropriate vanishing assumptions hold on the cohomology level.

We want to apply this construction to certain Massey products involving twisted objects over an A -
structure on the category A (see Def. 0.0.1) More precisely, given a minimal cyclic A, -structure with
the given my on the category A ® R, where R is a commutative ring, we extend the coefficients to

R := RI[x1,x2,y1,y211[(x2 — x1) " (v2 — y1) ™11



and consider the following twisted objects of A ® R:

(1_2) Xi = (X)xiéX)a Y, = (Yayié-Y)v fori = 172

Note that the Hom-spaces Hom(X;, ¥;) and Hom(Y}, X;) are still concentrated in one degree and so have
trivial m}. We denote by 9’ (resp., n’a) the basis elements in Hom(X, Y) (resp, Hom(Y, X)) viewed as
elements of Hom(X;, Y;) (resp., Hom(Y}, X;)). On the other hand, Hom(X1, X») and Hom(Y1, Y2) now
have a nontrivial differential:

m(idy) = (2 — x1)€x, midy) = (2 — y1)éy,
so the corresponding cohomology vanishes (due to the localization in the definition of R).
We consider the triple Massey product corresponding to the composable morphisms
922

ol n!
X; —2 Y, —’B>X2 Ly,

We claim that this Massey product is well-defined and univalued. Indeed, we have

0 )
mz(n L0MY = 6,p6x = o iﬁxl -mf (idy),

50/5

my (057, ) = —barply = o - mf(idy),

hence it is well-defined. The fact that it is univalued follows immediately from the vanishing of
H°Hom(X 1,X2) and H°Hom(Y 1, Y2). According to the formula (1-1) we have

5& . (50/ .
MP(ezza 775 ) 0] 1) mt3(022’ 77[3’ ) 0] 1) 75 ' mé(ei% ldX) - b ' mIZ(ldY> 9&1)
Xz — X1 yi—»n

922 606/5 X 011
o
— X1 yir—y2

22 11
_m3(0 ’anﬂ 70 )
where the last equality follows since our A, -structure on A ® R is strictly unital, so the products m}
involving the identity remain the same as m;. Therefore, we have:

5a55a/5/ n 50/,8501,8’
X=X yi—y2

(1-3) (MP(027, 05, 000, m3) = (m5(0%7, ng, 04D, m3) +

Since the A -category of twisted objects is still cyclic, one can show that the above triple Massey product
gives rise to a solution of the general AYBE over R[[x1, X2, X3, Y1, Y2, y3]][A*1], which would prove one
part of Theorem A. Namely, one first shows that an analog of the A -identity (0-5) holds for the Massey
products by passing to an equivalent minimal A -structure, and then uses Lemma 1.2.1 to rewrite the
middle term. Even though this construction was what led us to Theorem A, we will use a different
argument in its proof (since we need to show both directions).

10



1.3 Proof of Theorem A

X1X2

To a minimal cyclic A -structure on A ® R we associate the element 7y}, € Mat, (k) ® Mat, (k) ® R
obtained from MP(HZ,, 775 ,011) by dualization. In other words,

(1-4) = Y (MPOZ, L 00,05 - eprar @ ega
a7a/767/8,

Let us set
;C'lyxzz . Z <m3(0 /’nﬁ ,9&1),7)5}) “egrar @ egas
a7a/7B7/Bl
which is an element of Mat, (k) ® Mat,(k) ® R[[x1, X2, y1,¥2]]. We can rewrite (1-3) as
! 1
vs = s T X —x Z aa ® €arar + yi—y2 Z ea/a ® eqn =

a,a

a,a!
id®id P
+ 5
X2 =X Y1—»
In particular, the singular part of 7532 has the required form. Also, the skew-symmetry equation (0—4) is
equivalent to

X1X2
yiy2

X1 XD 21 Xp X1
yiy2 fyzh ’

which can be deduced from the cyclic symmetry equation as follows:

(]C)Xllxz)Zl — Z <m3(92/’ 775 7011)’ né}) “€8q ® eso

a7a/7ﬂ7ﬁl
= — Z <m3(9a ,77/3/, l%), T}él> €8¢ X €pa’
aya/7B7B/
- — Z <m3(022, 7’],3 ,011), 77%}> . 813/06/ X 6/306 = — ;22;11
a?alﬂg Bl

We claim that the general AYBE for ryl3? is equivalent to the A -constraints in A ® R applied to all
possible strings of composable elements

(1_5) fY] ) 7704; ) £Xqv eﬁza £Y3 ’ 770427 §X27 9,81 ) g}’za nal ’ gXI
Note that because of the cyclic symmetry these constraints are equivalent to the full A, -constraints.

Recall that our general AYBE takes place over the ring R[[x1,x2, X3, y1, V2, y3]11[A] . Over this ring we
can define twisted objects (X;, Y;) for i = 1,2, 3 as in (1-2). We extend the notation 67, and UZ for basis
elements in the Hom-spaces to this case. Let us set for brevity
id®id P
Nj = ——— pyj = :
Xj — Xi Yi—)Yj
Thus, the AYBE takes the following form:

s A1 ) D+ M3 ) = (G Ais ) PRED + das + )
+ (55 + Ao + ) P (57 + Az + p)® = 0.
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A straightforward calculation shows that the terms depending quadratically on (\;, ;) cancel out, so
this is equivalent to an equation of the form

(1-6) AYBE[f] + [(f3)?(\in)" = Q)P (30 "] +... =0,

where AYBEJf] is the left-hand side of (0-7) with f instead of r, and the remaining terms similarly
combine the terms linear in A; and j;;.

Now we claim that looking at the coefficients of the expansion of (1-6) in x1,x,x3,y1,¥2,¥3 We get
precisely the A -constraints for the strings (1-5). These constraints have the form

§ : p 1 d b
- m*(gj;fl I m*(gf)ll 9 7]043 I §§3 I 9527 €Y37 7]0427 55(22)7 5;(127 951 9 §Y27 77041 9 g;l(l)
f=htfise=cartc

f e e d b b
- Z m*(gYp77&37in7m*(&x;79527§Y3777a27§§(279,317§Y§)7€Y;777a17§§l(1)
e=ey+e1;b=by+b

' d d b
+ Z m*(gj)‘/l 9 77043 9 5}6(37 0627 £Y§7 m*(&)’;7 770&2 9 5)6(27 951 bl £Y27 77a1 ) 5;2)7 é?(ll)
d=dy+dy;a=ax+a
+...=0,
where the additional terms appear when one of a, b, ¢, d, e, f is zero, and have the form either m,.(...,my,...)

or mp(...,m,,...). Using cyclic symmetry, one can immediately check that the coefficients of
x‘{ylz’xgygxgy"l in the three terms in —AYBE[f] match the first three terms in the A, -constraint above.

Now let us show how the second term in (1-6) matches the terms with f = 0 in the A, -constraint. The
matching of the other terms is done similarly. First, we observe that

1
XX 12 13 _ 23 X2X3 12 _ XXl _ £X2X3 12
(10)72)’3 ()‘13) ()‘13) (fyz)’3 ) - X3 — X] Y23 fyzy3 ) .

If we expand f;3, in powers of x,

XoX] __ XM
»2y3 T 2 : »y3 b
n>0
then the above expression becomes

n
xll1 — X3 . (fxz,n)l2 _ “xe x27a+e+1)12
2 : Y23 - 2 : 173 " Vyays :

X3 — X
n>0 0 4,¢>0

Now one can easily check that this matches the contribution of the terms of the form
d b
m2(77a3 ) m*(f)%v 9527 £Y37 Moy s 5)6(27 0,31 ) sza Nauy s 5?(1))
in the A, -constraint.

Next, we claim that changing an A -structure by a cyclic homotopy transforms the corresponding
solution of general AYBE to an equivalent one, as in (0-8), and that all equivalences appear in this way.
Namely, a cyclic homotopy (f*) gives rise to the formal series

or = (T 00, €0, 08) - XY - ega
a,b>0
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in Mat,(R)[[x,y]]. Note that since fl is the identity, the constant term of c;J; is equal to id € Mat,(R).
One can easily check that if (m),) is obtained from (m,,) by a cyclic homotopy (f,,) then the corresponding
solutions of the general AYBE are related by (0-8).

Finally, we claim that a cyclic A -equivalence () is uniquely determined by the corresponding formal
series ¢y, which could be an arbitrary series with the constant term equal to the identity. Indeed, recall
that the condition for a strict A -functor to be cyclic is that

(1-7) > fan, .. a1, PFlar, .. a)) =0
k+i=n
for any sequence of composable morphisms ay, . ..,a,, where n > 3. For our A -category, the only

potentially non-trivial values of §* are

f*(§?777a7§)r?)7 f*(§;79ﬁ7§§’n)7 f*(gl;ﬂ?aug)}}veﬁa{?)’ f*(f}z’veﬂvé—gana7£§?)

The constraints between them are given by (1-7) applied to the following two kinds of composable strings

(€51 05,60, 10, &%) and (£, 70, E%, 05, £,

where a + b 4 ¢ > 0. The first of these strings gives the identity

<§7f*(§}c(_la 0575?777047‘5?» + <f*(§)c(7‘9,37§1;777aa§;1(_1)a§>
- Z <f*(§§(aeﬁa§l;z)anw> . U*(fglana7€§)707> = 07

bi+by=b,y

where the first (resp., second) term appears only for a > 1 (resp., ¢ > 1). We can rewrite these identities
in terms of the generating series

(ﬁ; = Z <fb+c+1(£)c(7 657 Slb’)a 7704> : xcyb " €Bas
b,c>0

;17X2 = Z <fa+b+c+2(€)c(a eﬁa 51;7 Nas é?()v §X> ' x(llybxg : eﬁcw
a,b,c>0
as follows:

(1 — XU — G2 —1d =0,

Note that subtracting Id here corresponds to avoiding the case a = b = ¢ = 0 in cyclic homotopy
equation. Setting x, = x; we deduce from this that

(1-8) gy =—(gp7",

and so the above identity can be solved for ¢3'™?:

14— ' (o)~
X1 — X2 '

w;l X2

Similarly, the constraints associated with the strings (£5, 7q, @b(, 03,&y) boil down to (1-8) and to an
equation expressing all {*(£5, 174, &2, 03, &y) in terms of the coefficients of 7. |
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1.4 Involution on skew-symmetric solutions of the AYBE

In the following Proposition we define a natural involution on the skew-symmetric solutions of the general
AYBE (0-7), where the variables x; and y; could be either distinct elements of some sets X and ), or
formal variables, as in Theorem A.

Proposition 1.4.1 Let ry)y? be a solution of the general AYBE with values in Mat,(k) ® Mat,(k) ® R,
where R is a commutative K -algebra, satisfying the skew-symmetry condition (0-4). Set

it (P2 p,

BN Ry
where (a1 ® ax)' = a) ® ab (here d' is the transpose of a matrix a) and P is given by (0-9), and in the
non-formal case the arguments X; (resp., y;) take values in ) (resp., X ). Then

1) ?;:;‘; is again a solution of the AYBE satistying the skew-symmetry condition. Furthermore, one has
F=r.If X; are y; are formal variables, and r has an expansion of the form (0-10) then so does —?”ﬁ;? 5,

(ii) In the context of Theorem A, assume that ryly} corresponds to an A -structure on A ® R. Formally

setting X=vYand ¥ = X[1], éa = Na, g = O3, etc., we get a new A -structure on A ® R. Then the
corresponding formal solution of the AYBE is precisely 7.

Proof. (1) Note that the map
Mat, (k) ® Mat, (k) — Mat,(k) ® Mat,(k) : x— P-x-P
is just the permutation of factors. Thus, the skew-symmetry condition can be rewritten as

12p — _ XX
Pr)yclsz - r/yrzyl :

Passing to the transposed matrices and making the substitution x; = y;, y» = X1, y; = X, we derive that
7 also satisfies (0—4). The fact that 7 = r follows from the identity P-P=1® 1.

The AYBE equation for 7 is the following equation for r:

2x3\12,tpl12 1x33113,tp13 _ 102323,tp23 2x3\12,tp12 1x33\13,tpl13 1%23\23,tp23 __
(ri’clyz P (rjfm P (r§3y1) P (f;’syz) P _+_(,,;3y2 P (r}Yz)'|) P~ =0,

where we set x; = 9;, y; = &;. Using the skew-symmetry of r (and the fact that P’ = P) we can rewrite
this as

_ 12 3x\12,¢ 1x33113,tp13 23 2x11\23,t 2x3\12,tpl12 _ 13 3x14\13,¢ 1X27\23,tp23 __
P (rjfz)’I (r);wl P=+P (r;ycm (r§3}’2 P P (r;zya (rfzyl P~ =0.

or passing to the transpose,

_ 13 1X3 13 3X2 12pl2 12 2X3 12 2X] 23p23 _ 23 1X2 23 3X1 13pl3 _
P (’)ycm (r}yczyl Po+P (’§3y2 (r/yvl}'s P P (’)ycz)’l (r)yczyz P =0.

Using the fact that P- P = 1, we can rewrite this as

_ 1X3 13 3X2 12 13pl2 2X3 12 2X1 23p23 12_ 13p23 1X2 23 3X1 13pl13 12_
(r}yc3)‘1 (rjyczm +P-P (ryzyz (riflys PP PP (’)ycm (r)yczyz PP =0.

Now we use the identities P1*P12 = p12p23  pl3p23 — pI2pl3 444 the fact that x — PYxP¥ acts as a
transposition (ij), to rewrite this as

_(rx1X3)13(rx3x2)12 + (erX3)23(rx2x1 31 (r)clxz 12(,)53)(1 )32 —0.

Y31 ya2yi y3y2 y1y3 yay1 Y2Y3
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Swapping 2 and 3 we get the equation

7(,)61X3 12(,)(3)(2 13 + (rx2)C3)32(rx2xl 21 . (r)Cl)Cz 13(})(3)(1 23 — 0

Y31 y2y1 y3y2 y1y3 yay1 y2y3

Using the skew-symmetry to rewrite the middle summand we get the equation obtained from the AYBE
by the change of variables

(x1,X2,X3: Y1, Y2, ¥3) — (X3,X1,X25¥2,¥3,Y1)-

(i1) This follows from the cyclic symmetry. Namely, if we set y; = X, yo = X1, x; = §;, for i = 1,2,
and use the corresponding identification between the twisted objects, we see that the new solution comes
from the Massey products for the composable arrows Y, — X; — Y| — X;. Furthermore, it is given by

Z <m§(77é2, 0&1,77%}), ei%> . ea//g &® ea/gl 4+ ... s
a7a/7/87ﬁ/

where the other terms are standard singular parts. Using the cyclic symmetry we can rewrite this as

S (022,02, 00,72 - e © o+
a7a/7/87ﬁ/
X1X2\t

This matches the formula for (ry,35)" - P due to the identity

(eﬁ’a’ ® eﬁa)t P = e & enp .

Corollary 1.4.2 Let r(u,v) be a solution of the AYBE with values in Mat, (k) ® Mat,(k), satisfying
the skew-symmetry condition (0-2). Then r(v,u)" - P is again a solution of the AYBE satistying the
skew-symmetry condition.

Proof. Apply Proposition 1.4.1(i) to ryly? = r(x; — x2,y1 — y2). O
Recall that the nondegeneracy condition on solutions of the AYBE imposed in [20] is that the tensor
r(u,v) € Mat,(k) ® Mat,(k) is nondegenerate for generic (u,v). Now we are going to use the above
involution to show that the pole conditions for r(u,v), imposed in the classification result of [20], are
implied by the following stronger nondegeneracy condition, involving r(u,v) and r(u,v)" - P.

Definition 1.4.3 Let us say that an Mat,(k) ® Mat,(k)-valued function r(u,v), meromorphic in a
neighborhood of (0, 0), is strongly nondegenerate if the tensors r(u,v) and r(u,v)' - P are nondegenerate
for generic (u,v).

Proposition 1.4.4 Assume N > 1. Let r(u,v) be a strongly nondegenerate skew-symmetric solution of
the AYBE (meromorphic in a neighborhood of (0,0)). Then r(u,v) has a simple pole at u = 0 (resp.,
v = 0) with the polar term c - @ (resp., ¢’ - %), where ¢ and ¢’ are nonzero constants.
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Proof. First, we claim that the involution r(u,v) — #u,v) := r(v,u)’ - P on skew-symmetric solutions
of the AYBE preserves the notion of strong nondegeneracy. Indeed, this immediately follows from the
observation that P - - P = 2!, so it is nondegenerate if and only if r is nondegenerate.

Next, given r(u,v), a strongly nondegenerate skew-symmetric solution of the AYBE, we claim that
r(u,v) necessarily has a pole at u = 0. Indeed, assume r(u,v) is regular at ¥ = 0. Then by [20, Lem.
1.2], we have an expansion r(u,v) = ro(v) + ur;(v) + ..., where ro(v) = r(u,0) is a nondegenerate
skew-symmetric solution of the AYBE. Then by [20, Thm. 0.2], ro(v) has a pole at v = 0, hence, r(u, v)
has a pole at v = 0. By [20, Lem. 1.3], this implies that r(i«, v) has a simple pole at v = 0 with the polar
part ¢ - %. Hence, 7(u,v) has a simple pole at u = 0 with the polar part c - %. Since 7(u,v) is still
a nondegenerate skew-symmetric solution of the AYBE, by [20, Lem. 1.5], 7(«, v) has a simple pole at
v = 0. Equivalently, r(,v) has a simple pole at # = 0, which is a contradiction.

Thus, we know that r(u, v) has a pole at u = 0, or equivalently, 7(«, v) has a pole at v = 0. By [20, Lem.
1.3], this implies that 7(u, v) has a simple pole at v = 0 with the polar part c - %. Hence, r(u,v) has a
simple at u = 0 with the polar part c - %. Now the assertion follows from [20, Lem. 1.5]. O

1.5 From algebraic/analytic to formal solutions of the general AYBE

In this section we want to consider the solutions of the general AYBE arising, as described in Introduction,
from two algebraic families of objects X and ). We want to show how to pass from these solutions to
the corresponding formal solutions associated to picking one object in each family.

We will use the formalism from [25, Sec. 1] concerning families of objects in A, -categories.

Let &7 be an A, -category over Kk, and let X and ) be smooth affine curves over k, such that we have
perfect families of .7 -modules M and N parametrized by X and ). We assume that for x # x’ (resp.,
y # y') one has Hom*(M,, M,/) = 0 (resp., Hom™(Ny, Ny) = 0), that each M, (resp., N,) is 1-spherical,
and that Hom(M,, Ny) are concentrated in degree 0. Furthermore, we assume that Hom™(p* M, p}/\/ )
is a vector bundle over X’ x .

Recall (see [25, (1h)]) that one can associate with the families M and N the deformation classes
Def(M) € Q}, ® Hom'(M, M), Def(N) € Q}, ® Hom'(\V, N).

Let U C X2 x )? be the complement to the diagonals Ay x V2U X x Ay . Then over U we have the

induced families M(x1), M(x2), N(y1) and N (y2) (pull-backs from the families over X and )), such

that
Hom™ (M(x1), M(x2)) = Hom™ (N (y1), N(y2)) = 0.

Thus, we have a well defined triple Massey product

MP(x1, X251, ¥2) : Hom (M(x1), N(31)) @ Hom' (N (y1), M(x2)) @ Hom (M (x2), N(y1)) —
Hom (M(x1), N(v2)),

which is a morphism of vector bundles over U/.
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On the other hand, let us fix points xop € X and yg € ), and let us fix generators &, € Hom' (My,,My,)
and &,, € Hom'(Ny,, Ny,). Assume that

Def(M)]y, € QMXO ® Hom' (Myy, My,) ~ QIX\XO

is nonzero, and similarly Def(N)|,, € Q},|,, is nonzero. Then we can choose a formal parameter ¢ near
xo on X (resp., parameter s near yo on )) such that Def(M) = dt in a formal neighborhood of xj
(resp., Def(N') = ds near yj).

Let M x, be the family over k[[]] obtained from M by restriction to a formal disk around x¢, and let j\A/’yO
be the similar family over k[[s]]. On the other hand, we have twisted objects (M, t§y,) and (N, s§,,),
over k[[#]] and k[[s]], respectively. These twisted objects produce the same deformation classes dr and
ds, so by the proof of [25, Prop. 1.21], we derive the existence of quasi-isomorphisms of families

My = (Myy, 164), Ny = (Nyy, 5E30)-

By the functoriality of Massey products, this implies that the formal expansion of the Massey product
MP(x1, x2, y1,y2) near xg and yy, is equal to the triple Massey product considered in the proof of Theorem
A.

Note that Def (M)|, can be identified with the usual class of the first-order deformation of M, , associated
with M. In particular, in the situation when M is a universal deformation of M,, then Def(M)|,, is
nonzero. This is the situation that occurs when we consider families of simple vector bundles (or structure
sheaves of points) on elliptic curves and their degenerations, as in [19], [20]. In the case of families of
Lagrangians in Fukaya category, we have a similar picture, with algebraic families replaced by analytic
families.

2 Trigonometric solutions of the AYBE from symplectic geometry

2.1 A square-tiled surface from Belavin-Drinfeld structures

In this section, starting from an associative Belavin-Drinfeld structure (S, Cy, C;,A), we construct a
punctured Riemann surface 3 together with a non-vanishing holomorphic one-form a € I'(C, QIC’O).

Let us begin with a finite set S of n elements, and two permutations C1, C, € Aut(S) = &, such that the
subgroup (Cy, Cp) C Aut(S) is transitive. Let T be the square torus C/(Z & iZ) and let To = T \ {0}
be the punctured torus. Let us also consider the oriented curves, /1,1 : [0, 1] — T defined by:

1—it t+i
L) = ——, ht)=—
1(1) 5o h=—

Let pg € Ty be the point (1 4 i)/2, which is the unique point in /; N /. Consider the n-fold (unramified)
covering:
T Z() — ’]To
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corresponding to the subgroup H C m1(To, 1 Nl) = (I1, 1) = F, given as the preimage of the stabilizer
of a point so € § under the homomorphism p : 7(Ty) — Aut(S) defined by

ply) =Cr, plh) = C.

Thus, we identify the set S with the fiber 7~ !(pg), so that the action of the generators /; and I, of
the fundamental group (7o, pg) on the fibre S is given by the permutations C,C; : § — §. We let
L; = 7~ 1(I;) be the multi-curves in X covering the circles /;, so that L1 N Ly = TF_l(p()) =S.

The assumption that the subgroup (Cj, C2) C Aut(S) is transitive guarantees that ¥ is connected. The
curves Ly and L, are connected if and only if both C; and C, are transitive permutations. We will
always require that ¢ is connected. If (S, Cy, C,) comes from an associative Belavin-Drinfeld data,
then C;, C, are required to be transitive permutations, however this condition is not strictly necessary in
what follows.

One can lift the flat metric on T to 3g. To visualise this metric on g, let us now give a more geometric
construction of the covering map 7 : 3y — To. Recall that T is obtained from the unit square in
[0, 1] x [0, 1] C R? by identifying the opposite sides. Ty is obtained from this by removing the corner
point. Now let us take n copies of the unit square (with corners removed) labeled the set S = {1,...,n}.
Given automorphisms C;,C, C &, = Aut(S), construct a surface Y as follows: 1) identify the right
edge of the i”* square with the left edge of j# square if C;(i) = j; 2) identify the bottom edge of the i
square with the top edge of the j”* square if C»(i) = j. It is because of this construction X is called a
square-tiled surface. The name was first suggested to Anton Zorich by Alex Eskin [29].

By the Riemann existence theorem ([8, Sec. 4.2.2]), the surface Yy can be completed to a surface f]o
and the covering map extends to a branched covering map:

T i() — T
ramified along the origin (0,0) € T. The preimage of the origin,

{p17p27 .. Pb} = %_1(0)

consists of a number of points, which is equal to the number of cycles in the cycle decomposition of the
commutator [Cy, C;] into disjoint union of cycles of varying lengths (from 1 to n). Indeed, the curves
Ly and L, divide the surface fo into polygons, such that the point p; is contained in a (2e(p;) + 2)-gon,
where e(p;) is the ramification index of the point p;.

We let by denote the number of k-cycles, so that we have n = > ;_, kb. We record the following
elementary computation, which follows from the above explicit description of ¥y as a union of b-
polygonal regions, or also by the Riemann-Hurwitz formula.

Proposition 2.1.1 The number of points in f)\o \ X is equal to b = ZZ:] bi. The Euler characteristic
of 3y is x(29) = —n. Consequently, the genus g is determined by the formula

x(2p)=2—-2g—b=—n.

In particular, g = 1 if and only if C; and C, commute. a
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Finally, we need to incorporate the proper subset A C § that appears in an associative Belavin-Drinfeld
structure (S, Cy, Cy,A). This data enters in determining a partial compactification of Xg.

Namely, recall that A is, by definition, a subset of the set of fixed points of the action of the commutator
[C1,C2] on S. In terms of the branched covering map 7 : f]o — T, the set of fixed points of the
commutator [Cy, C,] can be identified with the set of points p; in the preimage 771(0) which have
ramification index e(p;) = 1. Using this we can identify A with a subset of points p; where the map 7
is unramified. To be precise, an element a € A gives a square with corners

{a, Ca(a), C1Ca(a), C; ' C1Ca (@)},

which determines a point p, € 771(0) of ramification index 1 contained in this square. We define
Y, = ¥4 to be the partial compactification ¥y U {p,|a € A}. Note that the covering map 7 : X9 — Ty
extends to a local diffeomorphism:

m:%—T

Hence, the flat metric on T lifts to a flat metric on X so as to make 7 into a local isometry. From now on,
we will consider the square-tiled surface > equipped with this flat metric. Note that, for convenience,
we always normalize the metric on T so that the length of the curves /; and [, are 1.

Equivalently, we write C for the unique Riemann surface structure on 3 making 7 : ¥ — T into a
holomorphic map. In this case, we equip C with the one-form o = 7*dz, the pullback of the standard
non-vanishing holomorphic one-form on T.

Example 2.1.2 Figure 1 shows an example of this construction corresponding to S = {1,2,3,4},C; =
(1,4,2,3),C, = (1,2,3,4). The red curve L1 C Yy and the blue curve L, C ¥y depict the preimages
of the curves /1,l C Ty. The flat metric can be extended over the black labelled point without any
singularities. Thus, we can choose A to be either empty or include the unique black labelled point,
which corresponds to {3} - the unique fixed point of [C},C;]. If A = {3}, then correspondingly, we
compactify X by filling in the puncture labelled black.

1] T
L Lo

O——O0

N

kL

b

Figure 1: A square-tiled surface
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Figure 2: S = {1,2,3,4},C; = (1,2,3,4),C> = (1,3,2,4)

Remark 2.1.3 Topologically the punctured torus Ty can be seen as the plumbing of two cotangent
bundles T*I; = T*S' at one point /; N l,. Similarly, one can construct the surface ¥ as the plumbing
of T*L; and T*L, at n-points corresponding to L; N L,. The Figure 2 illustrates this construction in the
case of S = {1,2,3,4}, C, = (1,2,3,4), C, = (1,3,2,4).

2.2 A Fukaya category from Belavin-Drinfeld structures

Let (C, a) be the square-tiled surface obtained from an associative Belavin-Drinfeld structure as above.
Let 3 be the topological surface underlying C. The square 2 = o ® a € I'(C, (QIC’O)®2) determines a
non-vanishing quadratic form, which gives a flat Riemannian metric |2| on ¥ and a horizontal foliation
of tangent vectors v with (v,v) > 0. The Riemannian metric determines an area form* w and the
horizontal foliation determines a grading structure on X3, i.e a section of the projectivized tangent bundle
of S, which we view as an unoriented line field [ C T(3). We note that such line fields form a torsor for
C>(%, RP"), and the connected components of this group can be identified with H'(3;Z).

To work over C, one works with exact Fukaya categories as in [24]. Thus, we will need to choose a
primitive 6 for w, which exists since > is non-compact. We choose this so that the Lagrangians L; and

*Note that our symplectic form w is not convex at infinity. This is usually required in setting up Floer theory
in order to ensure that a maximum principle holds which guarantees that pseudo-holomorphic disks remain in a
compact region. However, in dimension 2, this holds for topological reasons. Alternatively, one could modify w
near infinity to make it convex. Either way, the outcome is unchanged and we will simply use the area form w.
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L, are exact. One can arrange this as follows: Choose any primitive 6y for w; find a closed 1-form
oo such that oo([L;]) = f L 0o, which exists since L; give independent non-trivial homology classes in
Hi(X); and let § = 6y — 0p. We also normalize the area form so that the geodesics L; and L, have
length 1.

We can now form a Z-graded triangulated 1-Calabi-Yau C-linear A, category, the Fukaya category
F(X) of (X,d0,8). The objects of F(X) are closed, exact, oriented curves L equipped with grading
structures and a rank 1 local system & — L. Recall that a grading structure on a curve L means a choice
of a homotopy class of a path from 7L to the line field /. If x € LN L' is a transverse intersection point,
the grading |x| is given by |«/7| + 1 where « is the net rotation from T,L — I, — T\L’. This lifts
the Z,-grading on the intersection points given by |(L -, L')/7| + 1 where L -, L’ is the local algebraic
intersection number of L and L’ at x associated to orientations of L and L.

Note also that on a circle there are precisely two spin structures corresponding to connected and discon-
nected double coverings of the circle. We implicitly fix a spin structure on each closed, exact Lagrangian
L C ¥. Changing the spin structure by the action of H'(S';Z,) = Z, is equivalent to modifying the
monodromy of the local system £ — L by the action of {£1} C C*. Therefore, the effect of changing
the choice of spin structure on L can be achieved by modifying the C* local system £. Spin structures
enter in defining orientations of various moduli spaces of holomorphic curves and they play a role in
determining the signs in various counts. In the case of Fukaya categories of 2-dimensional surfaces,
which is the only situation considered in this paper, there is a combinatorial method given in [23, Sec. 7]
that allows us to compute these signs. Throughout, in our explicit computations, we follow this method
to determine the signs without giving further explanation.

The morphism spaces in the Fukaya category are given by Floer cochain complexes:

CF*((L1,6), (L, &) = @D home(&ilx, &lx)

xeLiNLy

For brevity, we often suppress the local systems &; from the notation. The A -structure comprises a
collection of maps:

Mg : CF(Lj_1,Ly) ® ... ® CF(Ly, L) — CF(Ly, Ly)[2 — k]

For p; € Li_1 NL; and py € Ly N Ly, the components of these maps involving homc(fi,1|pi,£i|pi)
are defined by counting holomorphic disks with (k + 1)-boundary punctures such that the boundary
components are mapped to (Lo, Ly, ... L) in the cyclic order. Let us denote the moduli space of such
pseudoholomorphic disks u in the homotopy class [u] by M(pk, px—1, - - -, p1,po; [u]). If the index of
[¢] is fixed to be 2 — k and the regularity is arranged then Gromov-Floer compactness ensures that this
moduli space is a finite set of points, which we can then count (with signs). For p; € home¢(&i—1|p;, &ilp:)-
we set

(2_1) mk(pk) cee 7;01) — Z #M(pkvpkfla .++»P1,P05 [l/t]) . h018u S homC(§0|po) €k|po)7
[ul:ind([u])=2—%

where the term holy, is defined as follows. The boundary component of ¥ mapping to L; gives iso-
morphisms &;|,, — &, . Therefore, given elements p; € homc(&;—1|p;, &ilp,), using the isomorphisms
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provided by u, we can construct the composition:

h018u =prO...0p1 € hom(C(gO‘pov é—k’po)-

Note that exactness ensures that the sum in Equation (2-1) is finite, hence is well-defined.

In practice, when we do explicit computations, we will mark points by = on each Lagrangian circle, and
the contribution of a holomorphic disk will be weighted by the holonomy factor each time the boundary
of the disk passes through the marked point.

We also note that it was proven by Fukaya [12] that the Fukaya category of compact Lagrangians over R
(equivalently, over any field k of characteristic 0) has a model with a strictly cyclic A, -structure. The
existence of such a cyclic structure is important for the applicability of Theorem A to A, algebras that
we compute from Fukaya categories below. On the other hand, for the purpose of computation of triple
Massey products, we can use any model of the Fukaya category as triple Massey products are homotopy
invariant notions. We find it convenient to use the model of the Fukaya category as given in [23, Sec. 7].

2.3 Constructing solutions to the AYBE via Massey products in F(3.)

As was shown in [20], with every associative Belavin-Drinfeld structure (S, C1, C>,A) one can associate
a trigonometric solution of the AYBE. A slightly different looking definition of an associative Belavin-
Drinfeld structure was used in [20]. In the next lemma we show the equivalence of the Definition (0.0.2)
with the definition of the associative Belavin-Drinfeld structure in [20].

Let S be a finite set of n elements. We denote a transitive permutation as amap C : § — S and we write

Lo = {(s,C(s))|s € S} C S x S for its graph.

Lemma 2.3.1 Let S be a set equipped with a pair of transitive permutations C1,C, : S — S. Then
to give a proper subset A C S, such that (S, Cy,C,,A) is an associative Belavin-Drinfeld structure, is
equivalent to giving a pair of proper subsets I'1,I'y C I'c, such that (Cy x C)I'1 = I';.
Proof. We set
I'y ={(a,Ci(a)]a € A}, T2 ={(Ca(a),Ci(Cr(a))|a € A.}
One immediately sees that the condition
(G x C)(I') =1

is equivalent to C;Cr(a) = C2Cy(a) for every a € A. O

We prefer the form given in Definition 0.0.2 as it makes the symmetry with respect to switching C; and
C, more clear (cf. Proposition 1.4.1). In examples, it may be convenient to identify S = {1,...,n} such
that C1(i) = i + 1 (modulo n). One then thinks of C, as an n-cycle in the symmetric group &,,.

The commutator [Cy, C;] € 2, C &, plays a special role in the definition as the elements of the set A
correspond to a subset of the set of fixed points of the commutator [C;, C;]. We remark that it can be
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proven by induction that any element of the alternating group %, arises as the commutator [Cy, C3] of
two n-cycles in &,, (see Prop. 4 [13]).

Let Ag denote the algebra of endomorphisms of the C-vector space with the basis (e;);cs, so that
As ~ Mat,(C), where n = [S|. We denote by e;; € As the endomorphism defined by e;;(ex) = d;ce;. The
solution of the AYBE associated with (S, C;, C;,A) is given by

(2-2)
r(u, v) = exp(u) Z eii @ ejj + exp( ) Z eii @ ejj
1 1
a1 S etnan et by X e o
0<k<n,i 0<m<n,i
ku + mv ku 4+ mv
+ > { exp(— Jecyara @ ecka),chepa ~ XP(—— —)ecka) chepa) @ eC;"(a),a}7

0<k,0<m;a€A(k,m)

where we denote by A(k, m) C A the setof all a € A such that C‘i Cé(a) cAforall0 <i<k,0<j<m.
One can easily check that for a € A(k, m) one has C]f Ch(a) = Cg’C’l‘(a). Note also that A(k, m) can be
nonempty only if kK < n and m < n (since A is a proper subset of ), so our formula is equivalent to that
of [20, Thm. 0.1].

Let us denote by pr : Mat,(C) — sl,(C) the projection along C - 1. Let r(u,v) be a unitary solution of
the AYBE such that the Laurent expansion of r at u = 0 has form

(2-3) r(u,v) = % +row) +uri(v) +....

Then one can show that (pr ® pr)ro(v) is a unitary solution of the CYBE, nondegenerate if r(u,v) was
nondegenerate.

One of the main results of [20] is that every nondegenerate unitary solution of the AYBE for A = Mat,(C)
(where n > 1), such that the Laurent expansion of r at # = 0 has form (2-3) and (pr ® pr)ro(v) is a
trigonometric solution of the CYBE, is equivalent to one of the solutions (2-2).

We will next show that the above solutions to the AYBE can be recovered from Massey products in F(32).

Recall that given a combinatorial data of an associative Belavin-Drinfeld structure (S, C1, Cp,A), we
have constructed a symplectic 2-manifold (3, w) and Lagrangians L;,L, C X. Recall also that, w = w,
is the area form of a flat Riemannian metric g on ¥ and the Lagrangians L;, L, are geodesic curves of
length 1.

Definition 2.3.2 Given x, y € C we define the complex push-off L of L; (resp. Lﬁ of L) to be the
exact Lagrangian L; (resp. L) equipped with the complex rank 1 local system with monodromy e*
(resp. )

Now, we let X' to be the family of isomorphism classes of objects {L}} for x € C, and similarly, we

let Y to be the family of isomorphism classes of objects {L}} for y € C. For simplicity of notation,
we sometimes write x and y for the corresponding objects L} and L of F(X). We remark that since
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by construction L{ and L% are connected, gradable exact Lagrangians in 3, up to shift there are unique
grading structures on L} and L. We choose the shifts so that CF(LY, L) is supported in degree 0 for all
X, y.

Note that we can apply the discussion from Section 1.5 to deduce that the family of objects in the
Fukaya category over the formal disk, associated with an analytic family (L}) (resp. (L)) over C, is
quasi-isomorphic to the twisted object (L, x - &,) (resp. (L2,y - £1,)) as in Section 1.1. (A sketch of a
geometric proof of this also appears as [3, Lemma 4.1].)

Figure 3 shows the simplest example on Ty, where we have drawn four objects (x;,x2,y1,y2) in the
punctured torus, which corresponds to Belavin-Drinfeld data with S = {1}, C; = (1), C, = (1). Note
that the underlying exact Lagrangians of x; and x; (resp. y; and y,) are Hamiltonian isotopic, however
the monodromies of the complex local systems on them are different.

J \

X1 X2

Y2

Y1

N\ /-

Figure 3: Hamiltonian perturbations of L, and L, (equipped with orientations and C* -local systems)

Let us write CF(x1,x3) = Csg & Cs; and CF(y1,y2) = Cry @ Cr;. In Figure 3, we denoted degree
0 generators by hollow and degree 1 generators by black dots for these chain complexes. In what
follows, the signs come from the orientation of various moduli spaces, which we computed following the
prescription in [23, Sec. 7].

We can compute the Floer differential to be:
my(so) = —s1 + €2 Ms; € CF'(x1,x2)
my(to) = —t) + €27ty € CF'(y1, y2),

where the terms correspond to the two visible lunes in each case. Hence, for x; # x; and y; # y,, we
have HF(xl,XQ) = HF(yl,yz) =0.

We also have CF70(x, y) = 0 for all x, y. Therefore, as explained in the introduction, for distinct objects
x1,xp and yj, y2, the triple Massey product:

MP : CF%(x2,y2) ® CF'(y1,x2) ® CF%(x1,y1) — CF(x1,y2)
dualizes to a tensor

rin2 s CF(xy, y2) ® CFO(x1, 1) — CF(x1,y2) ® CFO(x2,y1)
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that satisfies the AYBE.

Our next result (stated as Theorem B in the introduction) is that the obtained solution of the AYBE is
precisely the trigonometric solution (2-2) associated with (S, Cy, C»,A).

Theorem 2.3.3 Let X be the square-tiled surface associated with an associative Belavin-Drinfeld struc-
ture (S, Cy, Ca,A). Then the tensor ry,’y2 obtained from the triple products in the Fukaya category F(X)
only depends on u = x; — x1, v =y, — y; and is a solution of the AYBE over C given precisely by the
formula (2-2).

Proof. The proof of this theorem follows from a direct computation of triple Massey products in the
Fukaya category F ().

For clarity, we first do the computation for the simplest case, that is when S = {p} is a single point and
A is empty. Let us label the generators as follows:

CF%(x2,y2) = C - pa, CF'(y1,%2) = C - q12, CF(x1,y1) = C - p11, CF’(x1,y2) = C - p12

Note that geometrically these generators correspond to the corners of the small square in the middle in
Figure 3. We are interested in computing the Massey product:

MP(p22, q12,p11) = m3(p22,q12, p11) — m2(h2, p11) — ma(p22, hy)
where hy € CFO(x1,x2) and hy € CFO(ya, y) satisfy m; (7)) = ma(q12, p11) and my(ha) = ma(p22, g12)-
From Figure 3, it is straightforward to compute:

ma(qi2,p11) = €27 -5y

m2(p22,q12) = 1

Therefore, we have

Again, from Figure 3, we can compute

ma(p22, 50) = p12
ma(to, p11) = €7 - pia

m3(p22, 912, P11) = P12

Therefore, letting u = x, — x1, v = y» — y1, we conclude that

u

MP(p = (144 @ Y (R
22,412, P11) = [t 2=\t o) P
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Since the points p;;, i,j = 1,2 canbe canonically identified with the intersection point § = LMLy = {r}.
we can view this tensor as

1 1
2—4 },)517)52 e
- N <exp(u> 1 exp(—v)) neen

(note that the dualization formula (0-3) brings in an extra overall sign).
In the case of general S but with A = (), consider the covering map
T E() — To

and the Lagrangians X; = 7~ '(x;) and Y¥; = 7~ !(y;) for i = 1,2. Let us identify the points of intersection
X; N'Y; by the set (e;);cs. Now, as before, we are interested in computing Massey products of the form

MP : HF'(X, Y2) ® HF' (Y1, X2) ® HF(X1, Y1) — HF'(X,, Y2)

Since Massey products are quasi-isomorphism invariants, we can compute each one with a convenient
Hamiltonian perturbation. Recall that we have the formula:

MP(e;, e;, €) = m3(e;, €, ) — ma(ho, €) — ma(e;, hy)
where my(hy) = ma(e;, €;) and ma(hy) = ma(ej, €).

We first observe that my(e;, ;) = 0 if i # j since there are no triangles that can contribute by construction,
and m3(e;, €j,€;) = O unless i = j or j = k, since A is empty.

Therefore, the only possibly non-trivial triple Massey products are of the form:
MP(CX(e)), e;,e;) fork=0,1,...(n—1)
MP(e;, e;, C5'(e;)) form=0,1...(n—1).

For ease of computation, we arrange that the holonomy contributions of the C* -local systems on L;
are divided equally to n parts, each contributing en for Ly and en for L, interlaced between the n
intersection points L; N L;. In other words, each time a holomorphic disk has boundary covering one of
these regions, there is an associated weight et or et , where the sign of the exponent is determined, as
before, according to whether the boundary orientation of the holomorphic disk matches that of L; or not.

The computation of MP(e;, e;, €;) is done in a completely analogous way to the above computation given
for n = 1, hence we have:

1 1
MP(e;, e;, €;) = < + > e;

l1—e* ev—-1
Next, we observe that there are two families of rectangles with boundary on (X1, Y2, X5, Y1) as illustrated
in Figure 4.
These contribute to m3 products of the form
m3(Cl(e), e, €) = 7 Cl(e)
fori=1,...,nandk=1,...,n—1 and

m3(e;, e;, Cy'(e;) = e C3'(e;)
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Figure 4: Horizontally (left) and vertically (right) extending rectangles

fori=1,...,.nandm=1,...,.n—1.

Furthermore, as before let CF(X;,X>) = Cso @ Cs; and CFO(Y,,Y,) = Cto & Cr;. We compute the
products:

my : CFY(Y1, X») ® CFY(X,,Y)) — CF(X1, X»)
ma(e;, €) = e s,
my : CFY(Xa, Y2) ® CF'(Y1,X2) — CF(Y1, Ys)
my(e;, e;) = 1p,
and
my(e;, s0) = ey,
ma(to, C'(er) = e e

Thus, we conclude that

MP(e;, Ck(e)), Ck(e)) = e <1+ ¢ )e,-

fori=1,...,nand k=1,...,n— 1 and

my e’
MP(e;, e, C5'(e;)) = e <1 t1o eV> 7 (€:)

fori=1,...,.nandm=1,...,n— 1.

Dualising to the tensor ry|y2, we get the terms:

1 1
Z_:(exp(u) —1 + 1 - exp(—v))eﬁ ®© ei
L 1
exp(u) — 1

(2-5) 1

my
exp(v) — 1 Z exp(— -)eicpi @ ecya.i

0<m<n,i

ku
Z exp(;)ecff(i%q(i) & €ji +
0<k<n,i

and we see that this agrees with the stated result in the case A is empty.
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Figure 5: The two rectangles for each a € A(m, k)

Finally, we will compute the contribution of rectangles when A is non-empty. When A is non-empty,
the rectangular regions with corners (a, Ci(a), C;Ca(a), C2(a)) are filled for each a € A. We get two
new contributions to the m3 product from such regions (See Figure 5). Furthermore, it may happen that
union of those regions also give new rectangles. A combinatorial way to encode this is to let A(k,m) C A
to be the set of all @ € A such that C’iCé(a) € Aforall 0 <i <k, 0 <j < m, then for each
a € A(k,m) we have the following contributions because of the filled rectangular region with corners
(a, C¥a), C¥Ch(a), CR(a)):

ku+mv

m3(C(a),a,Cy (@) =e » CyCH(a)

corresponding to the rectangle drawn on the left of Figure 5, and

_ kut-my

m3(Cha), CkCl(a), CX(a)) = —e~ + a
corresponding to the rectangle drawn on the right of Figure 5.

The signs that appear in the two formulae are affected by the orientations of the Lagrangians and we note
that unlike the appearance, there is no typographical error in what we wrote. The sign in the exponentials
are determined according to whether the orientation of the Lagrangians agree with the counter-clockwise
boundary orientation of the rectangle, and the overall sign is determined according to the orientation of
the moduli space which we computed as before using [23, Sec. 7].

Recall also that the dualization formula (0-3) brings in an extra overall sign. Thus, we conclude that in
the case of arbitrary A we have in addition the contribution of the following terms to r(u, v), indexed by
elements of the subsets A(k,m), k,m > 0:

ku + my ku + my
(2-6) Z { exp(——— ——)ecy(@.a © €cta,ciep@ — P —)ecka),ciep@ @ eC;"(a),a}
0<k,0<m;
aGA(k,n’:;

O

Remark 2.3.4 We would like to mention an alternative to the above computation. It may appear more
natural to take complex push-offs of L; and L, as follows. First, on Ty, let /| (resp. lﬁ) be the geodesic
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push-off of /; (resp. [>) such that the oriented area of the cylinder bounded by /; and £} (resp. /> and
B) is Re(x) (resp. Re(y)). We then set LY = 7~ 1) (resp. Ly = 7~ !(5)) equipped with a U(1)-local
system with monodromy ¢/™® (resp. ¢/!™0)). The simplest case is shown in Figure 6.

J \
X2 X1 L
L
2oy yl
ZaY yZ
* *
N\ r

Figure 6: Non-exact push-offs of L; and L, (equipped with orientations and U(1)-local systems)

However, there is a significant drawback in this approach. Namely, the push-offs L} and L{ are no
longer exact Lagrangians when Re(x), Re(y) # 0. Hence, we cannot guarantee a priori that the count of
holomorphic disks is finite (or convergent). Therefore, in this set-up one has to work over the Novikov
field

A= {Zaiq”'lai € Cya; =0fori<0,1; € R, t; — o0}

i€Z
and the formula (2-1) should be modified as
2-7) Welpk, - p) =Y #M@eDicts -1 po; [ul) - holy, - gl
[u]:ind([u])=2—k

With this in place, one can compute the corresponding Massey product simply by counting rectangles.
In the simplest case, that is when S = {p} is a single point and A is empty, computing the tensor
rf} ;2 boils down to counting rectangles with corners (p12,p22, q12,p11) in the counter-clockwise order
weighted by their areas. Interestingly, there are indeed infinitely many homotopy classes of rectangles that
contribute to this count. The smallest rectangle with corners in (p12, p22, q12,p11) has area Re(u)Re(v).
Other than this, there are two families of rectangles - namely, those that are horizontally or vertically
extending. Writing x; = a; + ia; and y; = b; + if3;, the horizontally extending ones are weighted

by eflle—angla—a)tla—a)bi=b) for | = 1,2,..., and the vertically extending ones are weighted by
eil(ﬁz—ﬁl)ql(bl—b2)+(01—a2)(b1—b2) forl=1.2
72y

The overall contribution of all these rectangles can be computed as:

o o0
,«y‘; :;C;(p“ Q pn) = _q(al—az)(bl—bz) (1 + Zeli(az—al)ql(m—az) + Z eli(ﬂz—ﬁﬂql(b]—bz)) (P12 @ par)
=1 =1

Since the points pjj, i, j = 1,2 can be canonically identified with the intersection point S = LiNL, = {p},
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we can view this tensor as

o o0
,)yfllgg - _q(al—az)(bl —b2) <1 + Zeli(az—al)ql(m—az) + Zeli(BZ_ﬁl)ql(hl_b2)> (e11 @ e11)
=1 =1

Now, we observe that the series expansion has positive radius of convergence equal to 1, hence in
particular specializing the Novikov parameter ¢ = ¢~ leads to the formula:

u V
1% _ ___—Re(wRe(v) € € __—Re(w)Re(v) 1 1
’/;1,}’2_ e <1+1_eu+1_ev>€1]®€1]—e (l—e”+e_v—1 el Keqn

This is remarkably in agreement with what we have computed before in formula (2—4) up to the overall
constant e~ReWReM) wwhich can be absorbed into the choice of basis. Similar computation can be done
in all cases. This gives a hint that in an appropriately defined Fukaya category, the two different ways
of pushing-off L; and L, should lead to quasi-isomorphic objects. (Compare with the discussion in [3,
Section 4.1].)

Remark 2.3.5 Since the A -relations hold in the Fukaya category by its general construction, Theorem
B gives a new proof of the fact that r(u, v) given by (2-2) satisfies the AYBE, which is proved in [20] by
a rather tedious calculation. On the other hand, in [20] it was also proven that for r(u, v) given by (2-2),

R(u,v) = <(62 AR ol ei)) r(u,v)

u —u v —v
ez —e2 +e2 —e2

satisfies the quantum Yang-Baxter equation (for fixed u):
RZMRP (v +V)RP (V) = RP(RP (v + V)R (v)

with the unitarity condition
R, WR* (u, —v) = 1 ® 1.

We do not know a conceptual explanation for this. It would be interesting to study this in the setting of
Fukaya categories.

We will need the following result in the proof of Theorem C.

Proposition 2.3.6 Let (S, Cy, C;,A) be an associative Belavin-Drinfeld structure, such that C| and C,
commute, and let (3, Ly, L) be the corresponding square-tiled surface with a pair of Lagrangians (where
3. is a punctured torus). Then (L1, L,) split generates the Fukaya category JF(3) of exact, compact
(graded) Lagrangians in X..

Proof. We first prove that (L, L,) split generate when A = () and 3 = ¥y. Without loss of generality,
suppose that S = {1,...,n}, C;(/) =i+ | and that C; = C’l‘ for some k which is prime to n. We can
draw the corresponding square-tiled surface as in Figure 7 (where the case of n = 5 and k = 2 is drawn).
Let My, M, ...,M, be n disjoint Lagrangians corresponding to curves of slope 1/k, drawn in green in
Figure 7.

Note that these Lagrangians have a natural grading structure (since our line field is given by the horizontal
foliation). It was proven in [17, Lem. 3.1.1] that the collection L, M1, M>, ..., M, split generates the
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Figure 7: Generators of the exact Fukaya category, (n,k) = (5,2)

exact Fukaya category. (This essentially follows from the fact that Dehn twists around Ly, M1, M>, ... , M,
generate the pure mapping class group of the n-punctured torus.)

Note that we have the following intersections in homology:

M;]-[Li]=1
M]-[Lr] =k
[Lo] - [Li] =n

In fact, by considering dual curves to M;, it is easy to see that

[Lo] = k[Li] + [My] + [M2] + - - - + [M,] € Hi(X0)

We claim that there is an exact triangle of the form:

(2-8) MieM, & ..o M, — L
(1] l
L,
where the maps M; — L?k are given by (c;, ¢i, ..., c;), with ¢; € CF'(M;, L), for each i, being the

generator corresponding to the unique intersection point. It is then clear the L; and L, split generate
F().

The exact triangle is an example of a surgery exact triangle proven in this case by Abouzaid in [1, Lemma
5.4]. It is technically easier to show that the following equivalent statement holds:

Cone(...Cone((ConeMy &M, ®...OM,) — L) = Ly)... — L) ~ L.

Indeed, we first do a surgery at each intersection point of L; and each M; and then we perform a new
surgery at the n intersection points of the obtained Lagrangian with a new copy of L;. We do this k times
(including the first surgery between L; and M;’s) until we arrive at an exact Lagrangian Hamiltonian
isotopic to L,. Note that in each isotopy class of homotopically essential (i.e. not null-homotopic) simple
closed curves, there is a unique exact Lagrangian up to Hamiltonian isotopy, so it suffices to check that
the end result of all the surgeries, which is an exact Lagrangian, is smoothly isotopic to L;.

The corresponding picture is drawn in Figures 8 and 9 below for n = 5,k = 2 case, from which it is
clear how the general case works.
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Figure 8: Ty, © Tar, © Tagy © Ta, © Tig(Li)
G S G Gl G
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Figure 9: Cone(Cone((M; ® My ® M3z ® My ® Ms) — Ly) — Ly) ~ L,

Note that by Seidel’s exact triangle [26], the first iteration can be identified as

Cone(Mi M, & ...OM,) = L1) ~ 7y, 0Ty, © ... 0 Tag, (L1).

When A # (), if the puncture between M; and M, is closed, then they become isotopic hence give
equivalent objects. (Of course, one has to isotope them with a finger move so as to make both of them
exact Lagrangians). The same argument as above, with the understanding that some of the M; represent
equivalent objects, shows the exact triangle (2—8) remains valid. Hence, L and L, again split generates
F(X). O

3 Application to vector bundles over cycles over projective lines

3.1 Simple vector bundles on cycles of projective lines

In this section we work over an algebraically closed field k of characteristic # 2. Let C = U;’;()l Cjbea
cycle of n projective lines (also known as the standard n-gon). We identify each C; with the standard
copy P! in such a way that the point co € Cj is glued to the point 0 € Cj;1 (we identify indices with
Z./n).

Recall that, up to isomorphism, all simple vector bundles on C are obtained by the following construction
(see [5]), which has as an input an integer valued matrix m = (mﬂ-),-zlj,”’ rj=0,....n—1 and a nonzero constant
A € k*. The corresponding vector bundle V = V*(m) is defined by setting

Vig,=V; = Op(m)) & ... & Opi(m)

and by making the following identifications Vj|o, =~ Vjy1]o: for all j except for j = n — 1 we use the
standard trivializations of the corresponding bundle O(m) at 0 and at oo (given by xi' and x7'), while
forj=n—1, weuse

A-C: Vn—1|oo — V0|0a
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where C is the transitive permutation matrix e; — e;—; (where the indices are in Z/rZ. The obtained
vector bundle of rank r is simple if and only if a certain condition on m is satisfied. Namely, let us unroll
the matrix m into an rn-periodic sequence by setting

dgntj =m_,, Jj,q € 2,0 <j <n.

The conditions are: (1) for every i,7,j one has \mﬁ — mi,| < 1; (2) for every g, not divisible by r, the
rn-periodic sequence (dg,; — d;) is not identically 0 and the occurrences of 1 and —1 in it alternate.

Recall that one of the results of [20] is an explicit computation of the trigonometric solution of the
AYBE associated with a pair (V,O,), where V = VAm) is a simple bundle on C and p is a smooth
point. The answer is given by the trigonometric solution corresponding to a certain associative Belavin-
Drinfeld structure ABD(V, p), which we will describe now. Without loss of generality we can assume
that p € Cy = C,,. Let us define the complete order < on the set of indices Z/rZ = {0,1,...,r — 1}
as follows: i < i’ if the sequence (dj—in — dj_irp)j=0,1,... 1s nonzero and the first nonzero term in it is
negative (the fact that it is a complete order follows from the condition (2) above). We define the transitive
permutations C; and C, on Z/rZ by letting C; send each non-maximal element with respect to the
above complete order to the next element, and by C,(i) = i — 1. Finally, we define a subset A C Z/rZ
to be the set of i such that i — 1 < C1(i) — 1 and mﬁ = mé, for 0 < j < n. By [20, Thm. 5.3], in fact C;
is a power of Cp, and the solution of the AYBE associated with a natural family of deformations of V
and p is the solution (2-2) associated with

ABD(V,p) := (Z/r, Cy, C2, A).

Now the arguments of Section 1.5 imply that the formal solution of the general AYBE associated with
the pair (V,p) is equivalent to (2-2), viewed as a formal solution. By Theorem A, this implies that the
A -subcategory, split generated by V and O,, depends only on ABD(V, p). Here to apply Theorem A
(with R = k) we need to equip the A, -algebra of endomorphisms of V & O, with a cyclic structure with
respect to a natural pairing coming from the Serre duality. The existence of such a cyclic structure can
be proved similarly to [21, Sec. 4.8] (using the assumption that characteristic is not equal to 2). Namely,
first, using a 1-spherical twist we can replace V @& O, with a vector bundle, and then, use Proposition
4.8.2 and Lemma 4.8.4 of [21]. In the characteristic zero case one can instead use the criterion of
Kontsevich-Soibelman [15, Thm. 10.2.2] (see [21, Rem. 4.8.3]).

Definition 3.1.1 We say that a vector bundle W on P' is of positive (resp., nonnegative) type if
W~ @;:1 Opi(a;) with all a; > 0 (resp., a; > 0). Now let V be a vector bundle on C. We say that V
is of positive (resp., nonnegative) type if each restriction V|¢, is of positive (resp., nonnegative) type. In
the case n = 1 we require this property for f*V, where f : P! — C is the normalization map.

Recall that a collection of objects (O;) split generates a triangulated category T if the minimal triangulated
subcategory 7' C T, closed under direct summands and containing all O;, is the entire 7T .

Proposition 3.1.2 Let V be a simple vector bundle on C of positive type. Then the pair (Oc, V) split
generates Perf(C).
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Proof. Let us pick smooth points py, . .., p,, one on each component of C. Note that V(—p; — ... —p,)
is of nonnegative type.

Assume first that the rank of V is > 1. Hence, by Lemma 3.1.3(i) below, there exists an injection of O¢
into V(—p; — ... — pn). Let us consider the composed injective morphism

f:0c—=0Oclpr+...4+p)—V,

where the first arrow is given by the canonical section of O¢(p; + ... + p,) vanishing at the divisor
p1 + ...+ pn. Then the coherent sheaf coker(f) has nonzero torsion at each of the points p1,...,p,.
Thus, we have an exact sequence

n
0— &P T — coker(f) + F — 0
i=1
where 7; is a nonzero sheaf supported at p; and F is locally free near each py,...,p,. Such a sequence
necessarily splits, so each 7; is a direct summand of coker(f). This shows that the subcategory, split
generated by O¢ and V contains 7y, ..., 7,. Furthermore, each 7; has a direct summand of the form
Opip; With some m; > 1. It remains to note that the objects (Oc, Op p;,-- -, Om,p,) split generate
Perf(C). Indeed, this can be checked similarly to [17, Lem. 3.3.1]: starting from O¢ and using the exact
sequences of the form
0 — L(=m;p;) = L = Oypp, — 0,

we derive that all the negative powers of the ample line bundle O¢(>_ m;p;) belong to the subcategory
split generated by our objects. The fact that all negative powers of an ample line bundle generate Perf(C)
is proved in [18, Thm. 4].

In the case when V is a line bundle, of positive degree on each component, by Lemma 3.1.3(i), we can
find a global section s : O¢ — V which does not vanish at the nodes. Its restriction to every component
of C vanishes at some smooth point p;. Then coker(s) will again have a nonzero torsion part at each p;,
and the above proof goes through. O

Lemma 3.1.3 (i) Let W be a simple vector bundle on C of nonnegative type. Assume in addition that
either W has rank > 1, or has positive degree. Then there exists an injective morphism O¢ — W, which
is an embedding as a subbundle near the nodes.

(ii) Let V be a simple vector bundle of positive type, p € C a smooth point. Let us denote by E(V, p)
the universal extension

0 — Ext'(V,Oc(p))* ® Oc(p) = E(V,p) = V — 0.
Then E(V, p) is the result of applying to V the inverse twist with respect to O¢(p). In particular, E(V, p)

is still a simple vector bundle.

Proof. (1) We use the fact that W has the form W = V)‘(m), where all mﬂ > 0. Note that the condition
that W is simple and has rank > 1 implies that m{ > 0 for at least one pair (i,j). To define a global
section of W we need to choose a global section s} € HO(Cj, O(nt}) for each (i, ) in such a way that they
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are compatible with the gluing over C; N Cjy;. We claim that we can make these choices in such a way
that each sﬂ is nonzero at 0 and oco. Indeed, in the case when mﬂ > 0 we can arrange AJ, to have arbitrary
values at 0 and oo, while in the case m{ = 0, one of these values determine the other. Now looking at
the way the gluing is defined for V*(m) we see that the existence of at least one positive ! guarantees
the existence of a global section which is nonzero at all the nodes.

(ii) This follows from the vanishing Hom(V, O¢c(p))* ~ H 1(V(—p)) = 0 that holds since V(—p) is of
nonnegative type. Note that by Serre duality, any line bundle on C is 1-spherical. O

Now we are going to consider the associative Belavin-Drinfeld structure ABD(E(V, p), p) associated to
E(V,p) and p.

Theorem 3.1.4 Let V and V' be simple vector bundles on C of positive type. Assume that for some
smooth points p,p’ € C one has an isomorphism

ABD(E(V, p),p) ~ ABD(E(V', p), p))

of associative Belavin-Drinfeld structures. Then there exists a Fourier-Mukai autoequivalence ® of
Perf(C) given by a kernel in D*(C x C), such that ®(O¢) ~ O¢ and &(V) ~ V',

Proof. By Lemma 3.1.3(ii), the inverse twist with respect to O¢c(p) sends the pair (O¢, V) to the pair
(0p, E(V,p)[1]). Similarly, the twist with respect to Oc(p) sends (Oc, V') to (O, E(V,p)[1]). By
Theorem A, the isomorphism of the corresponding associative Belavin-Drinfeld structures implies that
the subcategories, split generated by (O¢, V) and (O¢, V') are related by an equivalence ® in such a way
that ®(O¢) ~ O¢ and ®(V) ~ V’. By Proposition 3.1.2, ® is actually an autoequivalence of Perf(C), or
more precisely, of its A, -enhancement. Such an autoequivalence is always given by a kernel on C x C
which could be a complex of quasicoherent sheaves (see [28]). The fact that it belongs to the bounded
derived category of coherent sheaves follows from [17, Lem. 3.5.1]. O

3.2 Proof of Theorem C

It is enough to consider the case when V is of positive type. Indeed, starting from an arbitrary bundle we
can apply twists at smooth points to replace V with V(N(p; + ... + p»)), which is of positive type for
large N.

By Lemma 3.1.3(ii), the inverse twist with respect to Oc¢(p) transforms the pair (Oc, V) to (O, E(V, p)[1]).
As was shown in [20], the solution of AYBE, associated with the pair (E(V, p), O,), is a trigonometric so-

lution (2-2), corresponding to an associative Belavin-Drinfeld structure (S, C1, C»,A) in which C, = C’f

for some k. Hence, by Theorem A, Theorem B and Proposition 2.3.6, the subcategory in D’(C) split

generated by the pair (O¢, V) is equivalent to the Fukaya category of some square-tiled surface of genus

1, in such a way that O¢ and V correspond to the Lagrangians L; and L,. Note that in establishing this

equivalence we apply Theorem A, so we pass to formal solutions of the AYBE, as explained in Section

1.5.
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Now we recall that the Dehn twists with respect to the graded Lagrangians Ly, My, ..., M, generate the
pure mapping class group (see the proof of Proposition 2.3.6). Hence, there exists a composition of these
Dehn twists and their inverses that takes L; into L,. Under the above equivalence, this corresponds to a
composition ¢ of 1-spherical twists and their inverses that takes O¢ into V. |
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