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We show that all strongly non-degenerate trigonometric solutions of the associative Yang-Baxter
equation (AYBE) can be obtained from triple Massey products in the Fukaya categories of square-tiled
surfaces. Along the way, we give a classification result for cyclic A∞ -algebra structures on a certain
Frobenius algebra associated with a pair of 1-spherical objects in terms of the equivalence classes of
the corresponding solutions of the AYBE. As an application, combining our results with homological
mirror symmetry for punctured tori (cf. [17]), we prove that any two simple vector bundles on a cycle
of projective lines are related by a sequence of 1-spherical twists and their inverses.

Introduction

The associative Yang-Baxter equation (AYBE) is the equation

(0–1) r12(−u′, v)r13(u + u′, v + v′)− r23(u + u′, v′)r12(u, v) + r13(u, v + v′)r23(u′, v′) = 0,

where r : C2 → Matn(C) ⊗Matn(C) is a meromorphic function of two complex variables (u, v) in a
neighborhood of (0, 0) taking values in Matn(C) ⊗Matn(C), and Matn(C) is the matrix algebra. Here
we use the notation r12 = r ⊗ 1 ∈ Matn(C) ⊗Matn(C) ⊗Matn(C), etc. The equation (0–1) is usually
coupled with the skew-symmetry (also called unitarity) condition

(0–2) r21(−u,−v) = −r(u, v)

where r21 is obtained from r by the transposition of tensor factors a2 ⊗ a1 → a1 ⊗ a2 . Note that the
constant version of the AYBE was studied by Aguiar [2] in connection with infinitesimal Hopf algebras.

The AYBE is an analog in the world of associative algebras of the well-known classical Yang-Baxter
equation (CYBE),

[r12(v), r13(v + v′)] + [r12(v), r23(v′)] + [r13(v + v′), r23(v′)] = 0,

where r(v) is a meromorphic function in a neighborhood of 0 taking values in a Lie algebra g ⊗ g.
Solutions of the CYBE lead to Poisson-Lie groups and classical integrable systems (see for ex. [9], [7]).
There is a direct relation between the two equations in the case g = sln(C): if r(u, v) is a skew-symmetric
solution of the AYBE such that the limit r(v) = (pr ⊗ pr)r(u, v)|u=0 exists (where pr is the projection
away from the identity to traceless matrices), then r(v) is a solution of the CYBE for g = sln(C).

1

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 


It was discovered in [19] that solutions of the AYBE often arise from 1-Calabi-Yau A∞ -categories. More
precisely, assume we have such a minimal A∞ -category C and two sets of isomorphism classes of objects
in C , X and Y , such that for every pair of distinct objects x1, x2 ∈ X (resp. y1, y2 ∈ Y ), Hom∗(x1, x2) =

0 (resp. Hom∗(y1, y2) = 0). Furthermore, assume Hom6=0(x, y) = 0 (and so Hom 6=1(y, x) = 0) for
x ∈ X and y ∈ Y . Then dualising the triple product 1

m3 : Hom0(x2, y2)⊗ Hom1(y1, x2)⊗ Hom0(x1, y1)→ Hom0(x1, y2),

where x1, x2 ∈ X , y1, y2 ∈ Y , using the Calabi-Yau pairing, we get a tensor

rx1,x2
y1,y2

: Hom0(x2, y2)⊗ Hom0(x1, y1)→ Hom0(x1, y2)⊗ Hom0(x2, y1).

defined by

(0–3) 〈rx1,x2
y1,y2

(f22 ⊗ f11), g21 ⊗ g12〉 = 〈m3(f22, g12, f11), g21〉.

where fii ∈ Hom0(xi, yi), gij ∈ Hom1(yi, xj). Note that by the cyclicity of the A∞ -structure, this tensor
satisfies the following skew-symmetry condition:

(0–4) (rx1x2
y1y2

)21 = −rx2x1
y2y1

.

Now, let x1, x2, x3 (resp., y1, y2, y3 ) be distinct elements of X (resp., Y ). Then taking into account the
assumptions on X ,Y the relevant A∞ -relation involving m3 takes the form

(0–5) m3(m3(f33, g23, f22), g12, f11) + m3(f33,m3(g23, f22, g12), f11)−m3(f33, g23,m3(f22, g12, f11)) = 0,

where fii ∈ Hom0(xi, yi), gij ∈ Hom1(yi, xj). Note that here the first and the the third terms can be
immediately expressed in terms of the tensor rx1x2

y1y2 . To do this for the middle term, one has to use the
cyclic symmetry of the A∞ -structure, which gives

〈f31,m3(g23, f22, g12)〉 = 〈g12,m3(f31, g23, f22)〉.

Taking into account the cyclic symmetry, we can rewrite the above A∞ -relation as follows (see [19, Thm.
1]):

(0–6) (rx1x2
y1y3

)13(rx2x3
y2y3

)12 + (rx3x2
y1y2

)23(rx1x3
y1y3

)13 − (rx1x3
y2y3

)12(rx1x2
y1y2

)23 = 0.

This is viewed as an equation on

Hom0(x3, y3)⊗ Hom0(x2, y2)⊗ Hom0(x1, y1)→ Hom0(x2, y3)⊗ Hom0(x1, y2)⊗ Hom0(x3, y1)

Permuting the second and third factors in the tensor product, and swapping x1 with x2 and y1 and y2

(and also taking into account the skew-symmetry (0–4)), the equation (0–6) is equivalent to the following
equation

(0–7) (rx2x1
y2y3

)12(rx1x3
y1y3

)13 − (rx1x3
y1y2

)23(rx2x3
y2y3

)12 + (rx2x3
y1y3

)13(rx1x2
y1y2

)23 = 0.

1Our convention is that in an A∞ -category, we read the compositions from right-to-left (as in [24]). This affects
certain signs in computations. In particular, the A∞ -relations are given by:∑

m,n

(−1)|a1|+...+|an|−nmd−m+1(ad, . . . , an+m+1,mm(an+m, . . . , an+1), an, . . . a1) = 0
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We will call the equation (0–7) the general AYBE (or simply AYBE when no confusion can arise).2

It was further shown in [19] that in the case when C is the derived category of coherent sheaves on an
elliptic curve (or some of its degenerations) then there exist natural choices of X and Y as above, so
that all the spaces Hom0(x, y), x ∈ X , y ∈ Y , can be identified with the fixed finite-dimensional vector
space V . Furthermore, in this case X and Y have abelian group structures, and the obtained tensors
rx1,x2

y1,y2 : V⊗2 → V⊗2 depend only on the differences u = x2− x1 , v = y2− y1 , which leads to the equation
(0–1).

Note that different choices of trivialization of the Hom-spaces in the above construction correspond to
the natural equivalence relation on solutions of the AYBE introduced in [19]. Namely, given a function
ϕx

y with values in GLn(C), we can transform a solution rx1x2
y1y2 of (0–7) to the new solution

(0–8) r̃x1x2
y1y2

= (ϕx2
y1
⊗ ϕx1

y2
)rx1x2

y1y2
(ϕx1

y1
⊗ ϕx2

y2
)−1.

Our first result is that an analog of the above construction gives a bijection between formal solutions of
the general AYBE and a class of A∞ -structures. Namely, we will consider deformations of the formal
A∞ -category A = An defined below. Note that we use the sign conventions of [24], so that the double
compositions in the associated cohomology category differ from those induced by m2 by a sign.

Definition 0.0.1 The A∞ -category A = An has two objects X and Y , and the Hom-spaces

Hom(X,Y) = Hom0(X,Y) = Zθ1 ⊕ . . .⊕ Zθn, Hom(Y,X) = Hom1(Y,X) = Zη1 ⊕ . . .⊕ Zηn,

Hom0(X,X) = Z idX, Hom0(Y,Y) = Z idY , Hom1(X,X) = ZξX, Hom1(Y,Y) = ZξY .

The elements idX and idY act as strict units in the sense that

m2(a, idX) = a , m2(idX, a) = (−1)|a|a , m2(a, idY ) = a , m2(idY , a) = (−1)|a|a,

whenever composition with a ∈ A is non-zero, where |a| is the degree of a, and the other compositions
are given by

m2(ηα, θβ) = δαβξX, m2(θα, ηβ) = −δαβξY .

Note that one can view A as a graded category by defining the composition as:

a2 · a1 = (−1)|a1|m2(a2, a1)

We also define the symmetric perfect pairing on the Hom-spaces of A by

〈ηα, θβ〉 = −〈θb, ηa〉 = δαβ, 〈ξX, idX〉 = −〈idX, ξX〉 = 〈ξY , idY〉 = −〈idY , ξY〉 = 1.

Let k be a field. We are going to consider A∞ -structures on A ⊗ k, with given m2 , which are cyclic
with respect to this pairing. Recall that a strictly cyclic A∞ -category of dimension 1 is a strictly unital,
proper A∞ -category together with nondegenerate pairings

〈 , 〉 : hom∗(X,Y)⊗ hom1−∗(Y,X)→ k
2Our equation differs from [19, Eq. (1.2)] due to different conventions. The two equations become equivalent

if we replace rxx′
yy′ by rx′x

y′y .
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satisfying
〈a1, a2〉 = (−1)(|a1|−1)(|a2|−1)+1〈a2, a1〉

and the cyclic symmetry condition:

〈ak+1,mk(ak, ak−1, . . . , a1)〉 = (−1)(|ak+1|−1|)(|a1|+|a2|+...+|ak|−k)〈ak,mk(ak−1, ak−2 . . . , a1, ak+1)〉

An A∞ -functor f = (fn)n≥1 : A → B between cyclic A∞ categories is said to be cyclic if the following
hold:

〈f1(a2), f1(a1)〉 = 〈a2, a1〉

for any a2, a1 and ∑
k+l=n

〈fl(an, . . . , ak+1), fk(ak, . . . a1)〉 = 0

for any sequence of composable morphisms an, . . . , a1 with n ≥ 3.

For a commutative k-algebra R we denote by M∞(A ⊗ R) the set of cyclic, strictly unital, minimal
A∞ -structures on A⊗ R, up to a strict cyclic A∞ -equivalence (i.e., the one with f1 = id). Let us set

(0–9) P :=
∑

i,j

eij ⊗ eji ∈ Matn(k)⊗Matn(k),

where (eij) is the standard basis of Matn(k) defined by eij(ek) = δjkei if (ei)n
i=1 is a basis of kn . In other

words, P is the transposition operator given by:

P(x⊗ y) = y⊗ x.

Theorem A. There is a natural explicit bijection between M∞(A ⊗ R) and the equivalence classes of
formal skew-symmetric solutions rx1x2

y1y2 of the general AYBE of the following type. We let x1, x2, y1, y2 to
be formal variables and consider

rx1x2
y1y2
∈ Matn(k)⊗Matn(k)⊗ R[[x1, x2, y1, y2]][(x2 − x1)−1(y2 − y1)−1]

of the form

(0–10) rx1x2
y1y2
≡ id⊗ id

x2 − x1
+

P
y1 − y2

{mod Matn(k)⊗Matn(k)⊗ R[[x1, x2, y1, y2]]},

such that (0–7) is satisfied in Matn(k)⊗Matn(k)⊗R[[x1, x2, x3, y1, y2, y3]][∆−1], where ∆ =
∏

i<j(xj−
xi)(yj − yi). The skew-symmetry is the equation (0–4). The equivalence between such solutions is given
by (0–8), with

ϕx
y ∈ Id + (x, y) ⊂ Matn(R)[[x, y]].

Considering the more general equivalences, where the constant term of ϕx
y is only required to be an

invertible matrix, corresponds to general cyclic A∞ -equivalences of the cyclic A∞ -structures.

The key idea in this theorem is to apply a version of the above construction of solutions of the AYBE
to a pair X , Y of formal deformations of objects X and Y in A. A technical point is that these formal
deformations are defined in the category of twisted objects over A, which is non-minimal. Because of
this one has to use certain triple Massey products instead of just m3 (see Sec. 1.2). In particular, the
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singular terms in the expansion of rx1x2
y1y2 are obtained naturally in this approach due to the definition of

the Massey products.

Recall that Belavin and Drinfeld in the seminal paper [4] classified nondegenerate3 solutions of the
classical Yang-Baxter equation for simple complex Lie algebras, up to some natural equivalence. They
showed that they can be either elliptic or trigonometric or rational, and further classified trigonometric
solutions in terms of some combinatorial data, involving so called Belavin-Drinfeld triples.

Similarly, one can pose the problem of classifying nondegenerate solutions r(u, v) of the AYBE (and of
its formal general version). Partial results in this direction we obtained in [19] and [20]. If r is strongly
nondegenerate (see Def. 1.4.3 and Prop. 1.4.4), the Laurent expansion of the solution at u = 0 has the
form

(0–11) r(u, v) =
1⊗ 1

u
+ r0(v) + . . .

Under this assumption, it was shown that the projection r0(v) of r0(v) to sln(C)⊗sln(C) is a nondegenerate
solution of the CYBE, and that if r0(v) is either elliptic or trigonometric then r(u, v) is determined by
r0(v), up to some natural transformations. Note that the Laurent expansion (0–11) appears naturally in
the construction of Theorem A. It was shown in [19] that all elliptic solutions of the CYBE extend to
those of the AYBE. In [22] Schedler observed that this is not the case for all the trigonometric solutions.
Extending this work, it was proved in [20] that nondegenerate solutions of the AYBE, with the Laurent
expansion at u = 0 of the form (0–11) and such that r0(v) is a trigonometric solution of the CYBE, admit
a classification in terms of the following combinatorial data (see also Sec. 2.3 below).

Definition 0.0.2 An associative Belavin-Drinfeld structure (S,C1,C2,A) consists of a finite set S , a pair
of transitive permutations C1,C2 : S→ S and a proper subset A ⊂ S such that for all a ∈ A, one has :

C1(C2(a)) = C2(C1(a)).

The reader familiar with the original Belavin-Drinfeld triples (defined in terms of Dynkin diagrams) may
notice that the above associative analog of this notion is more elementary (the original definition in [20]
is slightly different but is equivalent to the one above, see Sec. 2.3).

One can also ask which solutions of the AYBE can be realized by families (X ,Y) of objects in some
geometric 1-Calabi-Yau-categories. A natural source is provided by the derived categories of coherent
sheaves on elliptic curves and their degenerations. Then we can take as X a universal deformation of a
simple vector bundle, and as Y the family of the structure sheaves of points.

It turns out that all the solutions of the AYBE for which r0(v) is elliptic arise in this way from simple
vector bundles on elliptic curve, and can be explicitly computed in terms of elliptic functions (see
[19]). In [20], all the solutions coming from the nodal degenerations of elliptic curves, i.e., cycles of
projective lines (aka standard m-gons), were computed and were shown to be trigonometric. However,
it turned out, somewhat unexpectedly, that not all trigonometric solutions of the AYBE appear in this
way. Namely, it was also shown in [20] that the trigonometric solution of the AYBE, corresponding to

3this means that the tensor r(v) is nondegenerate for generic v
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the data (S,C1,C2,A), arises from a simple vector bundle on a cycle of projective lines if and only if the
corresponding transitive permutations C1 and C2 commute (equivalently, C2 = Ck

1 for some k).

This raised a natural problem of finding other 1-Calabi-Yau A∞ -categories and objects in them, which
would account for missing solutions. This problem is solved in the present paper by looking at appro-
priate Fukaya categories. Namely, starting from the data of an associative Belavin-Drinfeld structure
(S,C1,C2,A), we construct a square-tiled surface Σ with a local symplectomorphism

π : Σ→ T

to the square torus T. In the case A = ∅, Σ is just the n−fold covering space of the punctured torus T0

associated to the permutations C1,C2 (see Section 2 for the general case). Lifts of standard Lagrangian
curves in T to Σ give a pair of exact Lagrangians L1 and L2 in Σ such that

2⊕
i,j=1

HF∗(Li,Lj) ' A⊗ C.

Now, we have complex push-offs of the Lagrangians L1 and L2 forming 1-parameter families Lx
1 and

Ly
2 (see Definition 2.3.2). Taking these two families as families X and Y in our general construction of

solutions of the AYBE, we get such a solution that records triple products between (Lx1
1 ,L

y1
2 ,L

x2
1 ,L

y2
2 ).

We show that this gives exactly the trigonometric solution of the AYBE associated with (S,C1,C2,A).
More precisely, we have:

Theorem B. Let (Σ,L1,L2) be the square-tiled surface Σ and Lagrangians L1 and L2 associated with
an associative Belavin-Drinfeld structure (S,C1,C2,A). Then the tensor rx1,x2

y1,y2 obtained from the triple
products in the Fukaya category F(Σ) only depends on u = x2− x1 , v = y2− y1 and is a solution of the
AYBE over C given explicitly by the following formula (for an appropriate choice of basis):
(0–12)

r(u, v) =
1

exp(u)− 1

∑
i

eii ⊗ eii +
1

1− exp(−v)

∑
i

eii ⊗ eii

+
1

exp(u)− 1

∑
0<k<n,i

exp(
ku
n

)eCk
1(i),Ck

1(i) ⊗ eii +
1

exp(v)− 1

∑
0<m<n,i

exp(
mv
n

)ei,Cm
2 (i) ⊗ eCm

2 (i),i

+
∑

0<k,0<m;a∈A(k,m)

{
exp(−ku + mv

n
)eCm

2 (a),a ⊗ eCk
1(a),Ck

1Cm
2 (a) − exp(

ku + mv
n

)eCk
1(a),Ck

1Cm
2 (a) ⊗ eCm

2 (a),a

}
,

where we denote by A(k,m) ⊂ A the set of all a ∈ A such that Ci
1Cj

2(a) ∈ A for all 0 ≤ i < k, 0 ≤ j < m.

We note that the surface Σ has genus 1 (i.e., is a punctured torus) if and only if C1 and C2 commute.
This explains why only these solutions appeared from simple vector bundles on nodal degenerations of
elliptic curves, which are mirror dual to punctured tori (see e.g., [17]).

As an application of the viewpoint developed in this paper (combined with the results of [20]) we derive
the following result about simple vector bundles on cycles of projective lines.

Theorem C. Let C be a cycle of projective lines (the standard n-gon) over C. For any simple vector
bundle V on C there exists a composition Φ of 1-spherical twists and their inverses such that Φ(OC) ' V .

6



Here we use the notion of the twist autoequivalence associated with an n-spherical object introduced
in [27]. Recall that an n-spherical object E should satisfy Hom∗(E,E) = k ⊕ k[−n] (together with
an additional nondegeneracy condition). The corresponding twist autoequivalence TE fits into an exact
triangle

Hom∗(E,X)⊗ E → X → TE(X)→ . . .

In this paper we consider only 1-spherical objects and the corresponding twists.

Note that Theorem C is known in the case n = 1 by the work [6]. In this case the situation is very similar
to the case of elliptic curves. The case n > 1 is much more complicated: in this case one can still classify
all simple vector bundles on C (see [5]) but the relevant combinatorics is quite involved.

The idea of the proof of Theorem C is to consider the solution of the formal general AYBE associated with
the pair (O,V) (where V is sufficiently positive), and to use Theorem A which states that the subcategory
generated by O and V is determined by this solution. The point is that we know this solution of the
AYBE to be the same as for the Lagrangians L1,L2 in the symplectic surface Σ of genus 1 associated
with some associative Belavin-Drinfeld structure. We prove that in this situation the pair (O,V) (resp.
(L1,L2)) split generates the perfect derived category of C (resp., the Fukaya category of Σ). Thus, we
reduce the problem to a similar question about Lagrangians in the Fukaya category, where we can use
the action of the mapping class group.

The paper is organized as follows. In Section 1 we study the relation between formal solutions of the
general AYBE and A∞ -structures, in particular, proving Theorem A in 1.3. In addition, in Sec. 1.4 we
discuss the natural involution on solutions of the AYBE, which allows us to deduce the pole conditions
imposed in [20] for strongly nondegenerate solutions of the AYBE (see Prop. 1.4.4). Also, in Sec. 1.5 we
explain, basing on ideas of [25], the connection between solutions of the AYBE coming from algebraic
(or analytic) families of objects (see (0–3)) and the corresponding formal solutions from Theorem A.
Section 2 is devoted to the construction of trigonometric solutions of the AYBE from Fukaya products
on the square-tiled surfaces associated with Belavin-Drinfeld structures. In Section 3 we consider two
applications of Theorems A and B to vector bundles over a (nodal) cycle C of projective lines. One is a
criterion, in terms of some combinatorial data, for a pair of simple vector bundles on C to be related by
a Fourier-Mukai autoequivalence (see Theorem 3.1.4). Another is Theorem C, proved in Sec. 3.2.

Acknowledgments. Y.L. is supported in part by the Royal Society and the NSF grant DMS-1509141, and
would like to thank Denis Auroux for a helpful correspondence. A.P. is supported in part by the NSF
grant DMS-1400390, and would like to thank SISSA, where part of this work was done, for hospitality
and excellent working conditions. We are grateful to the referee for comments and suggestions.

1 A class of cyclic A∞-structures and formal solutions of the general AYBE

1.1 Twisted objects over complete rings

Let us quickly review the definition of the A∞ -category of twisted objects with coefficients in a complete
ring (see [11], [10], [16]), mostly following [24, Ch. 1] and [14, Sec. 7.6].
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Let C be a topological A∞ -category over a complete ring R. We assume that R is topologized by
a decreasing filtration (Rn), such that RmRn ⊂ Rm+n , and that the Hom-spaces in C are complete.
We will only consider twisted objects of the following kind: (X, δX), where X is an object of C and
δX ∈ R1 Hom1(X,X) is an element satisfying the Maurer-Cartan equation∑

n≥1

mn(δn
X) = 0.

Note that here the left-hand side converges in Hom2(X,X). The Hom-space between two such objects
(X, δX) and (Y, δY ) is simply Hom(X,Y). There are natural A∞ -products (mt

n) for the twisted objects,
which are obtained by inserting the twisting elements δ any number of times wherever possible. More
precisely, mt

d is given by

mt
d(ad, ad−1, . . . , a1) =

∑
i0,...,id≥0

md+i0+...+id (δid
Xd
, ad, δ

id−1
Xd−1

, ad−1, . . . , a1, δ
i0
X0

)

(We follow the sign conventions of [24, Ch.1]).

Let us point out one additional feature of the A∞ -category of twisted objects: it easy to check that if we
start with a cyclic A∞ -category then the corresponding A∞ -category inherits the cyclic structure.

An A∞ -functor f = (fn)n≥1 : C → C ′ between A∞ -categories over R, as above, leads to an A∞ -functor
F = (Fn)n≥1 between their categories of twisted objects. Namely, (X, δX) maps to (F(X),F(δX)),
where

F(X) = f(X) , F(δX) =
∑

fn(δn
X).

The maps Fd on Hom-spaces between twisted objects is given by

Fd(ad, ad−1, . . . , a1) =
∑

i0,...,id≥0

fd+i0+...+id (δid
Xd
, ad, δ

id−1
Xd−1

, ad−1, . . . , a1, δ
i0
X0

)

1.2 Triple Massey products and a construction of formal solutions of the general AYBE

First, let us recall the general definition of the triple Massey product in an A∞ -category C following
[19], but with different sign conventions. For a triple of m1 -closed composable morphisms

X0
a1- X1

a2- X2
a3- X3

such that m2(a2, a1) = m1(h1), m2(a3, a2) = m1(h2), one sets

(1–1) MP(a3, a2, a1) = m3(a3, a2, a1)−m2(h2, a1)−m2(a3, h1) {mod Im(m1)},

which is well-defined as a coset for the image of

H|a1|+|a2|−1 Hom(X0,X2)⊕ H|a2|+|a3|−1 Hom(X1,X3) (m2(a3,?),m2(?,a1))- H|a1|+|a2|+|a3|−1 Hom(X0,X3).

The main result about such triple Massey products is that they are preserved under A∞ -functors: if
f : C → C ′ is an A∞ -functor then

f1(MP(a3, a2, a1)) = MP(f1(a3), f1(a2), f1(a1))
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in the appropriate quotient-group (see [19, Prop. 1.1]). In particular, if C ′ is a minimal model of C

obtained as a result of the homological perturbation procedure, then the Massey product MP(a3, a2, a1),
computed in C , agrees with mC ′

3 (a3, a2, a1) (since for a minimal A∞ -category our Massey product
reduces to m3 ).

Thus, the construction of solutions of the AYBE from two families of objects, presented in the introduction,
has a version for non-minimal cyclic A∞ -categories, linear over some commutative ring R. More
precisely, we have to replace in this construction m3 by the triple Massey product MP and assume that
cohomology of all the morphism spaces are projective R-modules (so that the homological perturbation
can be applied). One technical problem is that the cyclic property of the A∞ -structure is not necessarily
inherited by the minimal model. However, we have the following compatibility of the Massey products
with the cyclic structure.

Lemma 1.2.1 Suppose we are given a cycle of m1 -closed morphisms in a cyclic A∞ -category,

X0
a1- X1

a2- X2
a3- X3

a4- X0

such that
m2(a2, a1) = m1(h1), m2(a3, a2) = m1(h2), m2(a4, a3) = m1(h3).

Assume also that the corresponding Massey products MP(a3, a2, a1) and MP(a4, a3, a2) are univalued.
Then

〈a1,MP(a4, a3, a2)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈a4,MP(a3, a2, a1)〉.

Proof. Using (1–1), we see that it is enough to establish the following identities

〈a1,m3(a4, a3, a2)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈a4,m3(a3, a2, a1)〉,

〈a1,m2(a4, h2)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈a4,m2(h2, a1)〉,

〈a1,m2(h3, a2)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈a4,m2(a3, h1)〉.

The first two follow directly from the cyclic property of m3 and m2 (noting that |h2| = |a2|+ |a3| − 1).
For the last one, we first rewrite the left-hand side using the cyclic property of m2 :

〈a1,m2(h3, a2)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈h3,m2(a2, a1)〉 = (−1)(|a1|−1)(|a2|+|a3|+|a4|−1)〈h3,m1(h1)〉.

Next, we use the cyclic property of m1 :

〈h3,m1(h1)〉 = (−1)(|h1|−1)(|h3|−1)〈h1,m1(h3)〉 = (−1)(|h1|−1)(|h3|−1)〈h1,m2(a4, a3)〉.

It remains to apply the cyclic of m2 to the last expression to get the required identity.

Using Lemma 1.2.1, one can generalize the construction of the solutions of the AYBE to non-minimal
cyclic A∞ -categories provided the appropriate vanishing assumptions hold on the cohomology level.

We want to apply this construction to certain Massey products involving twisted objects over an A∞ -
structure on the category A (see Def. 0.0.1) More precisely, given a minimal cyclic A∞ -structure with
the given m2 on the category A⊗ R, where R is a commutative ring, we extend the coefficients to

R̃ := R[[x1, x2, y1, y2]][(x2 − x1)−1(y2 − y1)−1]
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and consider the following twisted objects of A⊗ R̃:

(1–2) Xi = (X, xiξX), Yi = (Y, yiξY ), for i = 1, 2.

Note that the Hom-spaces Hom(Xi,Yj) and Hom(Yj,Xi) are still concentrated in one degree and so have
trivial mt

1 . We denote by θij
α (resp., ηji

α ) the basis elements in Hom(X,Y) (resp, Hom(Y,X)) viewed as
elements of Hom(Xi,Yj) (resp., Hom(Yj,Xi)). On the other hand, Hom(X1,X2) and Hom(Y1,Y2) now
have a nontrivial differential:

mt
1(idX) = (x2 − x1)ξX, mt

1(idY ) = (y2 − y1)ξY ,

so the corresponding cohomology vanishes (due to the localization in the definition of R̃).

We consider the triple Massey product corresponding to the composable morphisms

X1
θ11
α- Y1

η12
β- X2

θ22
α′- Y2.

We claim that this Massey product is well-defined and univalued. Indeed, we have

mt
2(η12

β , θ
11
α ) = δαβξX =

δαβ
x2 − x1

·mt
1(idX),

mt
2(θ22

α′ , η
12
β ) = −δα′βξY =

δα′β
y1 − y2

·mt
1(idY ),

hence it is well-defined. The fact that it is univalued follows immediately from the vanishing of
H0 Hom(X1,X2) and H0 Hom(Y1,Y2). According to the formula (1–1) we have

MP(θ22
α′ , η

12
β , θ

11
α ) = mt

3(θ22
α′ , η

12
β , θ

11
α )−

δαβ
x2 − x1

·mt
2(θ22

α′ , idX)−
δα′β

y1 − y2
·mt

2(idY , θ
11
α )

= mt
3(θ22

α′ , η
12
β , θ

11
α )−

δαβ
x2 − x1

· θ22
α′ −

δα′β
y1 − y2

· θ11
α ,

where the last equality follows since our A∞ -structure on A ⊗ R is strictly unital, so the products mt
2

involving the identity remain the same as m2 . Therefore, we have:

(1–3) 〈MP(θ22
α′ , η

12
β , θ

11
α ), η21

β′ 〉 = 〈mt
3(θ22

α′ , η
12
β , θ

11
α ), η21

β′ 〉+
δαβδα′β′

x2 − x1
+
δα′βδαβ′

y1 − y2
.

Since the A∞ -category of twisted objects is still cyclic, one can show that the above triple Massey product
gives rise to a solution of the general AYBE over R[[x1, x2, x3, y1, y2, y3]][∆−1], which would prove one
part of Theorem A. Namely, one first shows that an analog of the A∞ -identity (0–5) holds for the Massey
products by passing to an equivalent minimal A∞ -structure, and then uses Lemma 1.2.1 to rewrite the
middle term. Even though this construction was what led us to Theorem A, we will use a different
argument in its proof (since we need to show both directions).
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1.3 Proof of Theorem A

To a minimal cyclic A∞ -structure on A ⊗ R we associate the element rx1x2
y1y2 ∈ Matn(k) ⊗Matn(k) ⊗ R̃

obtained from MP(θ22
α′ , η

12
β , θ

11
α ) by dualization. In other words,

(1–4) rx1x2
y1y2

=
∑

α,α′,β,β′

〈MP(θ22
α′ , η

12
β , θ

11
α ), η21

β′ 〉 · eβ′α′ ⊗ eβα.

Let us set
f x1x2
y1y2

:=
∑

α,α′,β,β′

〈mt
3(θ22

α′ , η
12
β , θ

11
α ), η21

β′ 〉 · eβ′α′ ⊗ eβα,

which is an element of Matn(k)⊗Matn(k)⊗ R[[x1, x2, y1, y2]]. We can rewrite (1–3) as

rx1x2
y1y2

= f x1x2
y1y2

+
1

x2 − x1
·
∑
α,α′

eαα ⊗ eα′α′ +
1

y1 − y2
·
∑
α,α′

eα′α ⊗ eαα′ =

f x1x2
y1y2

+
id⊗ id
x2 − x1

+
P

y1 − y2
,

In particular, the singular part of rx1x2
y1y2 has the required form. Also, the skew-symmetry equation (0–4) is

equivalent to
(f x1x2

y1y2
)21 = −f x2x1

y2y1
,

which can be deduced from the cyclic symmetry equation as follows:

(f x1x2
y1y2

)21 =
∑

α,α′,β,β′

〈mt
3(θ22

α′ , η
12
β , θ

11
α ), η21

β′ 〉 · eβα ⊗ eβ′α′

= −
∑

α,α′,β,β′

〈mt
3(θ22

α , η
12
β′ , θ

11
α′ ), η

21
β 〉 · eβα ⊗ eβ′α′

= −
∑

α,α′,β,β′

〈mt
3(θ22

α′ , η
12
β , θ

11
α ), η21

β′ 〉 · eβ′α′ ⊗ eβα = −f x2x1
y2y1

.

We claim that the general AYBE for rx1x2
y1y2 is equivalent to the A∞ -constraints in A ⊗ R applied to all

possible strings of composable elements

(1–5) ξf
Y1
, η31
α3
, ξe

X3
, θ33
β2
, ξd

Y3
, η23
α2
, ξc

X2
, θ22
β1
, ξb

Y2
, η12
α1
, ξa

X1
.

Note that because of the cyclic symmetry these constraints are equivalent to the full A∞ -constraints.

Recall that our general AYBE takes place over the ring R[[x1, x2, x3, y1, y2, y3]][∆−1]. Over this ring we
can define twisted objects (Xi,Yi) for i = 1, 2, 3 as in (1–2). We extend the notation θij

α and ηji
β for basis

elements in the Hom-spaces to this case. Let us set for brevity

λij =
id⊗ id
xj − xi

, µij =
P

yi − yj
.

Thus, the AYBE takes the following form:

(f x2x1
y2y3

+ λ21 + µ23)12(f x1x3
y1y3

+ λ13 + µ13)13 − (f x1x3
y1y2

+ λ13 + µ12)23(f x2x3
y2y3

+ λ23 + µ23)12

+ (f x2x3
y1y3

+ λ23 + µ13)13(f x1x2
y1y2

+ λ12 + µ12)23 = 0.
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A straightforward calculation shows that the terms depending quadratically on (λij, µij) cancel out, so
this is equivalent to an equation of the form

(1–6) AYBE[f ] +
[
(f x2x1

y2y3
)12(λ13)13 − (λ13)23(f x2x3

y2y3
)12]+ . . . = 0,

where AYBE[f ] is the left-hand side of (0–7) with f instead of r , and the remaining terms similarly
combine the terms linear in λij and µij .

Now we claim that looking at the coefficients of the expansion of (1–6) in x1, x2, x3, y1, y2, y3 we get
precisely the A∞ -constraints for the strings (1–5). These constraints have the form

−
∑

f=f2+f1;c=c2+c1

m∗(ξ
f2
Y1
,m∗(ξ

f1
Y1
, ηα3 , ξ

e
X3
, θβ2 , ξ

d
Y3
, ηα2 , ξ

c2
X2

), ξc1
X2
, θβ1 , ξ

b
Y2
, ηα1 , ξ

a
X1

)

−
∑

e=e2+e1;b=b2+b1

m∗(ξ
f
Y1
, ηα3 , ξ

e2
X3
,m∗(ξ

e1
X3
, θβ2 , ξ

d
Y3
, ηα2 , ξ

c
X2
, θβ1 , ξ

b2
Y2

), ξb1
Y2
, ηα1 , ξ

a
X1

)

+
∑

d=d2+d1;a=a2+a1

m∗(ξ
f
Y1
, ηα3 , ξ

e
X3
, θβ2 , ξ

d2
Y3
,m∗(ξ

d1
Y3
, ηα2 , ξ

c
X2
, θβ1 , ξ

b
Y2
, ηα1 , ξ

a2
X1

), ξa1
X1

)

+ . . . = 0,

where the additional terms appear when one of a, b, c, d, e, f is zero, and have the form either m∗(. . . ,m2, . . .)
or m2(. . . ,m∗, . . .). Using cyclic symmetry, one can immediately check that the coefficients of
xa

1yb
2xc

2yd
3xe

3yf
1 in the three terms in −AYBE[f ] match the first three terms in the A∞ -constraint above.

Now let us show how the second term in (1–6) matches the terms with f = 0 in the A∞ -constraint. The
matching of the other terms is done similarly. First, we observe that

(f x2x1
y2y3

)12(λ13)13 − (λ13)23(f x2x3
y2y3

)12 =
1

x3 − x1
(f x2x1

y2y3
− f x2x3

y2y3
)12.

If we expand f x2x1
y2y3 in powers of x1 ,

f x2x1
y2y3

=
∑
n≥0

f x2,n
y2y3
· xn

1,

then the above expression becomes∑
n≥0

xn
1 − xn

3
x3 − x1

· (f x2,n
y2y3

)12 = −
∑

a,e≥0

xa
1xe

3 · (f x2,a+e+1
y2y3

)12.

Now one can easily check that this matches the contribution of the terms of the form

m2(ηα3 ,m∗(ξ
e
X3
, θβ2 , ξ

d
Y3
, ηα2 , ξ

c
X2
, θβ1 , ξ

b
Y2
, ηα1 , ξ

a
X1

))

in the A∞ -constraint.

Next, we claim that changing an A∞ -structure by a cyclic homotopy transforms the corresponding
solution of general AYBE to an equivalent one, as in (0–8), and that all equivalences appear in this way.
Namely, a cyclic homotopy (fn) gives rise to the formal series

ϕx
y :=

∑
a,b≥0

〈fa+b+1(ξb
Y , ηα, ξ

a
X), θβ〉 · xayb · eβα
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in Matn(R)[[x, y]]. Note that since f1 is the identity, the constant term of ϕx
y is equal to id ∈ Matn(R).

One can easily check that if (m′n) is obtained from (mn) by a cyclic homotopy (fn) then the corresponding
solutions of the general AYBE are related by (0–8).

Finally, we claim that a cyclic A∞ -equivalence (fn) is uniquely determined by the corresponding formal
series ϕx

y , which could be an arbitrary series with the constant term equal to the identity. Indeed, recall
that the condition for a strict A∞ -functor to be cyclic is that

(1–7)
∑

k+l=n

〈fl(an, . . . , ak+1), fk(ak, . . . , a1)〉 = 0

for any sequence of composable morphisms a1, . . . , an , where n ≥ 3. For our A∞ -category, the only
potentially non-trivial values of f∗ are

f∗(ξn
Y , ηα, ξ

m
X ), f∗(ξn

X, θβ, ξ
m
Y ), f∗(ξp

Y , ηα, ξ
n
X, θβ, ξ

m
Y ), f∗(ξp

X, θβ, ξ
n
Y , ηα, ξ

m
X ).

The constraints between them are given by (1–7) applied to the following two kinds of composable strings

(ξc
X, θβ, ξ

b
Y , ηα, ξ

a
X) and (ξc

Y , ηα, ξ
b
X, θβ, ξ

a
Y ),

where a + b + c > 0. The first of these strings gives the identity

〈ξ, f∗(ξc−1
X , θβ, ξ

b
Y , ηα, ξ

a
X)〉+ 〈f∗(ξc

X, θβ, ξ
b
Y , ηα, ξ

a−1
X ), ξ〉

−
∑

b1+b2=b,γ

〈f∗(ξc
X, θβ, ξ

b2
Y ), ηγ〉 · 〈f ∗(ξb1

Y , ηα, ξ
a
X), θγ〉 = 0,

where the first (resp., second) term appears only for a ≥ 1 (resp., c ≥ 1). We can rewrite these identities
in terms of the generating series

ϕ̃x
y :=

∑
b,c≥0

〈fb+c+1(ξc
X, θβ, ξ

b
Y ), ηα〉 · xcyb · eβα,

ψx1,x2
y :=

∑
a,b,c≥0

〈fa+b+c+2(ξc
X, θβ, ξ

b
Y , ηα, ξ

a
X), ξX〉 · xa

1ybxc
2 · eβα,

as follows:
(x1 − x2)ψx1,x2

y − ϕ̃x2
y · ϕx1

y − Id = 0.

Note that subtracting Id here corresponds to avoiding the case a = b = c = 0 in cyclic homotopy
equation. Setting x2 = x1 we deduce from this that

(1–8) ϕ̃x
y = −(ϕx

y)−1,

and so the above identity can be solved for ψx1,x2
y :

ψx1,x2
y =

Id− ϕx1
y (ϕx2

y )−1

x1 − x2
.

Similarly, the constraints associated with the strings (ξc
Y , ηα, ξ

b
X, θβ, ξ

a
Y ) boil down to (1–8) and to an

equation expressing all f∗(ξc
Y , ηα, ξ

b
X, θβ, ξ

a
Y ) in terms of the coefficients of ϕx

y .
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1.4 Involution on skew-symmetric solutions of the AYBE

In the following Proposition we define a natural involution on the skew-symmetric solutions of the general
AYBE (0–7), where the variables xi and yi could be either distinct elements of some sets X and Y , or
formal variables, as in Theorem A.

Proposition 1.4.1 Let rx1x2
y1y2 be a solution of the general AYBE with values in Matn(k)⊗Matn(k)⊗ R,

where R is a commutative k-algebra, satisfying the skew-symmetry condition (0–4). Set

r̂x̂1x̂2
ŷ1ŷ2

:= (rŷ1ŷ2
x̂2x̂1

)t · P,

where (a1 ⊗ a2)t = at
1 ⊗ at

2 (here at is the transpose of a matrix a) and P is given by (0–9), and in the
non-formal case the arguments x̂i (resp., ŷi ) take values in Y (resp., X ). Then

(i) r̂x̂1x̂2
ŷ1ŷ2

is again a solution of the AYBE satisfying the skew-symmetry condition. Furthermore, one has
ˆ̂r = r . If x̂i are ŷi are formal variables, and r has an expansion of the form (0–10) then so does −r̂x̂1x̂2

−ŷ1,−ŷ2
.

(ii) In the context of Theorem A, assume that rx1x2
y1y2 corresponds to an A∞ -structure on A⊗ R. Formally

setting X̂ = Y and Ŷ = X̂[1], θ̂α = ηα , η̂β = θβ , etc., we get a new A∞ -structure on A⊗ R. Then the
corresponding formal solution of the AYBE is precisely r̂ .

Proof. (i) Note that the map

Matn(k)⊗Matn(k)→ Matn(k)⊗Matn(k) : x 7→ P · x · P

is just the permutation of factors. Thus, the skew-symmetry condition can be rewritten as

Prx1x2
y1y2

P = −rx2x1
y2y1

.

Passing to the transposed matrices and making the substitution xi = ŷi , y2 = x̂1 , y1 = x̂2 , we derive that
r̂ also satisfies (0–4). The fact that ˆ̂r = r follows from the identity P · P = 1⊗ 1.

The AYBE equation for r̂ is the following equation for r :

(rx2x3
y1y2

)12,tP12(rx1x3
y3y1

)13,tP13 − (rx1x2
y3y1

)23,tP23(rx2x3
y3y2

)12,tP12 + (rx1x3
y3y2

)13,tP13(rx1x2
y2y1

)23,tP23 = 0,

where we set xi = ŷi , yi = x̂i . Using the skew-symmetry of r (and the fact that Pt = P) we can rewrite
this as

−P12(rx3x2
y2y1

)12,t(rx1x3
y3y1

)13,tP13 + P23(rx2x1
y1y3

)23,t(rx2x3
y3y2

)12,tP12 − P13(rx3x1
y2y3

)13,t(rx1x2
y2y1

)23,tP23 = 0.

or passing to the transpose,

−P13(rx1x3
y3y1

)13(rx3x2
y2y1

)12P12 + P12(rx2x3
y3y2

)12(rx2x1
y1y3

)23P23 − P23(rx1x2
y2y1

)23(rx3x1
y2y3

)13P13 = 0.

Using the fact that P · P = 1, we can rewrite this as

−(rx1x3
y3y1

)13(rx3x2
y2y1

)12 + P13P12(rx2x3
y3y2

)12(rx2x1
y1y3

)23P23P12 − P13P23(rx1x2
y2y1

)23(rx3x1
y2y3

)13P13P12 = 0.

Now we use the identities P13P12 = P12P23 , P13P23 = P12P13 and the fact that x 7→ PijxPij acts as a
transposition (ij), to rewrite this as

−(rx1x3
y3y1

)13(rx3x2
y2y1

)12 + (rx2x3
y3y2

)23(rx2x1
y1y3

)31 − (rx1x2
y2y1

)12(rx3x1
y2y3

)32 = 0.
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Swapping 2 and 3 we get the equation

−(rx1x3
y3y1

)12(rx3x2
y2y1

)13 + (rx2x3
y3y2

)32(rx2x1
y1y3

)21 − (rx1x2
y2y1

)13(rx3x1
y2y3

)23 = 0.

Using the skew-symmetry to rewrite the middle summand we get the equation obtained from the AYBE
by the change of variables

(x1, x2, x3; y1, y2, y3) 7→ (x3, x1, x2; y2, y3, y1).

(ii) This follows from the cyclic symmetry. Namely, if we set y1 = x̂2 , y2 = x̂1 , xi = ŷi , for i = 1, 2,
and use the corresponding identification between the twisted objects, we see that the new solution comes
from the Massey products for the composable arrows Y2 → X1 → Y1 → X2 . Furthermore, it is given by∑

α,α′,β,β′

〈mt
3(η12

β , θ
11
α , η

21
β′ ), θ

22
α′〉 · eα′β ⊗ eαβ′ + . . . ,

where the other terms are standard singular parts. Using the cyclic symmetry we can rewrite this as∑
α,α′,β,β′

〈mt
3(θ22

α′ , η
12
β , θ

11
α ), η21

β′ 〉 · eα′β ⊗ eαβ′ + . . . .

This matches the formula for (rx1x2
y1y2 )t · P due to the identity

(eβ′α′ ⊗ eβα)t · P = eα′β ⊗ eαβ′ .

Corollary 1.4.2 Let r(u, v) be a solution of the AYBE with values in Matn(k) ⊗Matn(k), satisfying
the skew-symmetry condition (0–2). Then r(v, u)t · P is again a solution of the AYBE satisfying the
skew-symmetry condition.

Proof. Apply Proposition 1.4.1(i) to rx1x2
y1y2 = r(x1 − x2, y1 − y2).

Recall that the nondegeneracy condition on solutions of the AYBE imposed in [20] is that the tensor
r(u, v) ∈ Matn(k) ⊗Matn(k) is nondegenerate for generic (u, v). Now we are going to use the above
involution to show that the pole conditions for r(u, v), imposed in the classification result of [20], are
implied by the following stronger nondegeneracy condition, involving r(u, v) and r(u, v)t · P.

Definition 1.4.3 Let us say that an Matn(k) ⊗ Matn(k)-valued function r(u, v), meromorphic in a
neighborhood of (0, 0), is strongly nondegenerate if the tensors r(u, v) and r(u, v)t · P are nondegenerate
for generic (u, v).

Proposition 1.4.4 Assume N > 1. Let r(u, v) be a strongly nondegenerate skew-symmetric solution of
the AYBE (meromorphic in a neighborhood of (0, 0)). Then r(u, v) has a simple pole at u = 0 (resp.,
v = 0) with the polar term c · 1⊗1

u (resp., c′ · P
v ), where c and c′ are nonzero constants.
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Proof. First, we claim that the involution r(u, v) 7→ r̂(u, v) := r(v, u)t · P on skew-symmetric solutions
of the AYBE preserves the notion of strong nondegeneracy. Indeed, this immediately follows from the
observation that P · r · P = r21 , so it is nondegenerate if and only if r is nondegenerate.

Next, given r(u, v), a strongly nondegenerate skew-symmetric solution of the AYBE, we claim that
r(u, v) necessarily has a pole at u = 0. Indeed, assume r(u, v) is regular at u = 0. Then by [20, Lem.
1.2], we have an expansion r(u, v) = r0(v) + ur1(v) + . . ., where r0(v) = r(u, 0) is a nondegenerate
skew-symmetric solution of the AYBE. Then by [20, Thm. 0.2], r0(v) has a pole at v = 0, hence, r(u, v)
has a pole at v = 0. By [20, Lem. 1.3], this implies that r(u, v) has a simple pole at v = 0 with the polar
part c · P

v . Hence, r̂(u, v) has a simple pole at u = 0 with the polar part c · 1⊗1
u . Since r̂(u, v) is still

a nondegenerate skew-symmetric solution of the AYBE, by [20, Lem. 1.5], r̂(u, v) has a simple pole at
v = 0. Equivalently, r(u, v) has a simple pole at u = 0, which is a contradiction.

Thus, we know that r(u, v) has a pole at u = 0, or equivalently, r̂(u, v) has a pole at v = 0. By [20, Lem.
1.3], this implies that r̂(u, v) has a simple pole at v = 0 with the polar part c · P

v . Hence, r(u, v) has a
simple at u = 0 with the polar part c · 1⊗1

u . Now the assertion follows from [20, Lem. 1.5].

1.5 From algebraic/analytic to formal solutions of the general AYBE

In this section we want to consider the solutions of the general AYBE arising, as described in Introduction,
from two algebraic families of objects X and Y . We want to show how to pass from these solutions to
the corresponding formal solutions associated to picking one object in each family.

We will use the formalism from [25, Sec. 1] concerning families of objects in A∞ -categories.

Let A be an A∞ -category over k, and let X and Y be smooth affine curves over k, such that we have
perfect families of A -modulesM and N parametrized by X and Y . We assume that for x 6= x′ (resp.,
y 6= y′ ) one has Hom∗(Mx,Mx′) = 0 (resp., Hom∗(Ny,Ny′) = 0), that each Mx (resp., Ny ) is 1-spherical,
and that Hom(Mx,Ny) are concentrated in degree 0. Furthermore, we assume that Hom∗(p∗XM, p∗YN )
is a vector bundle over X × Y .

Recall (see [25, (1h)]) that one can associate with the families M and N the deformation classes

Def (M) ∈ Ω1
X ⊗ Hom1(M,M), Def (N ) ∈ Ω1

Y ⊗ Hom1(N ,N ).

Let U ⊂ X 2 ×Y2 be the complement to the diagonals ∆X ×Y2 ∪X 2 ×∆Y . Then over U we have the
induced families M(x1), M(x2), N (y1) and N (y2) (pull-backs from the families over X and Y ), such
that

Hom∗(M(x1),M(x2)) = Hom∗(N (y1),N (y2)) = 0.

Thus, we have a well defined triple Massey product

MP(x1, x2; y1, y2) : Hom0(M(x1),N (y1))⊗Hom1(N (y1),M(x2))⊗Hom0(M(x2),N (y1))→
Hom0(M(x1),N (y2)),

which is a morphism of vector bundles over U .
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On the other hand, let us fix points x0 ∈ X and y0 ∈ Y , and let us fix generators ξx0 ∈ Hom1(Mx0 ,Mx0)
and ξy0 ∈ Hom1(Ny0 ,Ny0). Assume that

Def (M)|x0 ∈ Ω1
X |x0 ⊗ Hom1(Mx0 ,Mx0) ' Ω1

X |x0

is nonzero, and similarly Def (N )|y0 ∈ Ω1
Y |y0 is nonzero. Then we can choose a formal parameter t near

x0 on X (resp., parameter s near y0 on Y ) such that Def (M) = dt in a formal neighborhood of x0

(resp., Def (N ) = ds near y0 ).

Let M̂x0 be the family over k[[t]] obtained fromM by restriction to a formal disk around x0 , and let N̂y0

be the similar family over k[[s]]. On the other hand, we have twisted objects (Mx0 , tξx0) and (Ny0 , sξy0),
over k[[t]] and k[[s]], respectively. These twisted objects produce the same deformation classes dt and
ds, so by the proof of [25, Prop. 1.21], we derive the existence of quasi-isomorphisms of families

M̂x0 ' (Mx0 , tξx0), N̂y0 ' (Ny0 , sξy0).

By the functoriality of Massey products, this implies that the formal expansion of the Massey product
MP(x1, x2, y1, y2) near x0 and y0 , is equal to the triple Massey product considered in the proof of Theorem
A.

Note that Def (M)|x0 can be identified with the usual class of the first-order deformation of Mx0 , associated
with M. In particular, in the situation when M is a universal deformation of Mx0 then Def (M)|x0 is
nonzero. This is the situation that occurs when we consider families of simple vector bundles (or structure
sheaves of points) on elliptic curves and their degenerations, as in [19], [20]. In the case of families of
Lagrangians in Fukaya category, we have a similar picture, with algebraic families replaced by analytic
families.

2 Trigonometric solutions of the AYBE from symplectic geometry

2.1 A square-tiled surface from Belavin-Drinfeld structures

In this section, starting from an associative Belavin-Drinfeld structure (S,C1,C2,A), we construct a
punctured Riemann surface Σ together with a non-vanishing holomorphic one-form α ∈ Γ(C,Ω1,0

C ).

Let us begin with a finite set S of n elements, and two permutations C1,C2 ∈ Aut(S) ∼= Sn such that the
subgroup 〈C1,C2〉 ⊂ Aut(S) is transitive. Let T be the square torus C/(Z ⊕ iZ) and let T0 = T \ {0}
be the punctured torus. Let us also consider the oriented curves, l1, l2 : [0, 1]→ T defined by:

l1(t) =
1− it

2
, l2(t) =

t + i
2

Let p0 ∈ T0 be the point (1 + i)/2, which is the unique point in l1 ∩ l2 . Consider the n-fold (unramified)
covering:

π : Σ0 → T0
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corresponding to the subgroup H ⊂ π1(T0, l1∩ l2) = 〈l1, l2〉 ∼= F2 given as the preimage of the stabilizer
of a point s0 ∈ S under the homomorphism ρ : π1(T0)→ Aut(S) defined by

ρ(l1) = C1 , ρ(l2) = C2.

Thus, we identify the set S with the fiber π−1(p0), so that the action of the generators l1 and l2 of
the fundamental group π1(T0, p0) on the fibre S is given by the permutations C1,C2 : S → S . We let
Li = π−1(li) be the multi-curves in Σ0 covering the circles li , so that L1 ∩ L2 = π−1(p0) = S .

The assumption that the subgroup 〈C1,C2〉 ⊂ Aut(S) is transitive guarantees that Σ0 is connected. The
curves L1 and L2 are connected if and only if both C1 and C2 are transitive permutations. We will
always require that Σ0 is connected. If (S,C1,C2) comes from an associative Belavin-Drinfeld data,
then C1,C2 are required to be transitive permutations, however this condition is not strictly necessary in
what follows.

One can lift the flat metric on T0 to Σ0 . To visualise this metric on Σ0 , let us now give a more geometric
construction of the covering map π : Σ0 → T0 . Recall that T is obtained from the unit square in
[0, 1] × [0, 1] ⊂ R2 by identifying the opposite sides. T0 is obtained from this by removing the corner
point. Now let us take n copies of the unit square (with corners removed) labeled the set S = {1, . . . , n}.
Given automorphisms C1,C2 ⊂ Sn ∼= Aut(S), construct a surface Σ0 as follows: 1) identify the right
edge of the ith square with the left edge of jth square if C1(i) = j; 2) identify the bottom edge of the ith

square with the top edge of the jth square if C2(i) = j. It is because of this construction Σ0 is called a
square-tiled surface. The name was first suggested to Anton Zorich by Alex Eskin [29].

By the Riemann existence theorem ([8, Sec. 4.2.2]), the surface Σ0 can be completed to a surface Σ̂0

and the covering map extends to a branched covering map:

π̂ : Σ̂0 → T

ramified along the origin (0, 0) ∈ T. The preimage of the origin,

{p1, p2, . . . pb} = π̂−1(0)

consists of a number of points, which is equal to the number of cycles in the cycle decomposition of the
commutator [C1,C2] into disjoint union of cycles of varying lengths (from 1 to n). Indeed, the curves
L1 and L2 divide the surface Σ̂0 into polygons, such that the point pi is contained in a (2e(pi) + 2)-gon,
where e(pi) is the ramification index of the point pi .

We let bk denote the number of k-cycles, so that we have n =
∑n

k=1 kbk . We record the following
elementary computation, which follows from the above explicit description of Σ̂0 as a union of b-
polygonal regions, or also by the Riemann-Hurwitz formula.

Proposition 2.1.1 The number of points in Σ̂0 \ Σ0 is equal to b =
∑n

k=1 bk . The Euler characteristic
of Σ0 is χ(Σ0) = −n. Consequently, the genus g is determined by the formula

χ(Σ0) = 2− 2g− b = −n.

In particular, g = 1 if and only if C1 and C2 commute.

18



Finally, we need to incorporate the proper subset A ⊂ S that appears in an associative Belavin-Drinfeld
structure (S,C1,C2,A). This data enters in determining a partial compactification of Σ0 .

Namely, recall that A is, by definition, a subset of the set of fixed points of the action of the commutator
[C1,C2] on S . In terms of the branched covering map π̂ : Σ̂0 → T, the set of fixed points of the
commutator [C1,C2] can be identified with the set of points pi in the preimage π̂−1(0) which have
ramification index e(pi) = 1. Using this we can identify A with a subset of points pi where the map π̂
is unramified. To be precise, an element a ∈ A gives a square with corners

{a,C2(a),C1C2(a),C−1
2 C1C2(a)},

which determines a point pa ∈ π̂−1(0) of ramification index 1 contained in this square. We define
Σ = ΣA to be the partial compactification Σ0 ∪ {pa|a ∈ A}. Note that the covering map π : Σ0 → T0

extends to a local diffeomorphism:
π : Σ→ T

Hence, the flat metric on T lifts to a flat metric on Σ so as to make π into a local isometry. From now on,
we will consider the square-tiled surface Σ equipped with this flat metric. Note that, for convenience,
we always normalize the metric on T so that the length of the curves l1 and l2 are 1.

Equivalently, we write C for the unique Riemann surface structure on Σ making π : Σ → T into a
holomorphic map. In this case, we equip C with the one-form α = π∗dz, the pullback of the standard
non-vanishing holomorphic one-form on T.

Example 2.1.2 Figure 1 shows an example of this construction corresponding to S = {1, 2, 3, 4},C1 =

(1, 4, 2, 3),C2 = (1, 2, 3, 4). The red curve L1 ⊂ Σ0 and the blue curve L2 ⊂ Σ0 depict the preimages
of the curves l1, l2 ⊂ T0 . The flat metric can be extended over the black labelled point without any
singularities. Thus, we can choose A to be either empty or include the unique black labelled point,
which corresponds to {3} - the unique fixed point of [C1,C2]. If A = {3}, then correspondingly, we
compactify Σ0 by filling in the puncture labelled black.

l2

l1

Figure 1: A square-tiled surface
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Figure 2: S = {1, 2, 3, 4},C1 = (1, 2, 3, 4),C2 = (1, 3, 2, 4)

Remark 2.1.3 Topologically the punctured torus T0 can be seen as the plumbing of two cotangent
bundles T∗li ∼= T∗S1 at one point l1 ∩ l2 . Similarly, one can construct the surface Σ0 as the plumbing
of T∗L1 and T∗L2 at n-points corresponding to L1 ∩ L2 . The Figure 2 illustrates this construction in the
case of S = {1, 2, 3, 4}, C1 = (1, 2, 3, 4), C2 = (1, 3, 2, 4).

2.2 A Fukaya category from Belavin-Drinfeld structures

Let (C, α) be the square-tiled surface obtained from an associative Belavin-Drinfeld structure as above.
Let Σ be the topological surface underlying C . The square Ω = α ⊗ α ∈ Γ(C, (Ω1,0

C )⊗2) determines a
non-vanishing quadratic form, which gives a flat Riemannian metric |Ω| on Σ and a horizontal foliation
of tangent vectors v with Ω(v, v) > 0. The Riemannian metric determines an area form4 ω and the
horizontal foliation determines a grading structure on Σ, i.e a section of the projectivized tangent bundle
of S , which we view as an unoriented line field l ⊂ T(Σ). We note that such line fields form a torsor for
C∞(Σ,RP1), and the connected components of this group can be identified with H1(Σ;Z).

To work over C, one works with exact Fukaya categories as in [24]. Thus, we will need to choose a
primitive θ for ω , which exists since Σ is non-compact. We choose this so that the Lagrangians L1 and

4Note that our symplectic form ω is not convex at infinity. This is usually required in setting up Floer theory
in order to ensure that a maximum principle holds which guarantees that pseudo-holomorphic disks remain in a
compact region. However, in dimension 2, this holds for topological reasons. Alternatively, one could modify ω
near infinity to make it convex. Either way, the outcome is unchanged and we will simply use the area form ω .
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L2 are exact. One can arrange this as follows: Choose any primitive θ0 for ω ; find a closed 1-form
σ0 such that σ0([Li]) =

∫
Li
θ0 , which exists since Li give independent non-trivial homology classes in

H1(Σ); and let θ = θ0 − σ0 . We also normalize the area form so that the geodesics L1 and L2 have
length 1.

We can now form a Z-graded triangulated 1-Calabi-Yau C-linear A∞ category, the Fukaya category
F(Σ) of (Σ, dθ,Ω). The objects of F(Σ) are closed, exact, oriented curves L equipped with grading
structures and a rank 1 local system ξ → L . Recall that a grading structure on a curve L means a choice
of a homotopy class of a path from TL to the line field l|L . If x ∈ L∩L′ is a transverse intersection point,
the grading |x| is given by bα/πc + 1 where α is the net rotation from TxL → lx → TxL′ . This lifts
the Z2 -grading on the intersection points given by b(L ·x L′)/πc+ 1 where L ·x L′ is the local algebraic
intersection number of L and L′ at x associated to orientations of L and L′ .

Note also that on a circle there are precisely two spin structures corresponding to connected and discon-
nected double coverings of the circle. We implicitly fix a spin structure on each closed, exact Lagrangian
L ⊂ Σ. Changing the spin structure by the action of H1(S1;Z2) = Z2 is equivalent to modifying the
monodromy of the local system ξ → L by the action of {±1} ⊂ C× . Therefore, the effect of changing
the choice of spin structure on L can be achieved by modifying the C× local system ξ . Spin structures
enter in defining orientations of various moduli spaces of holomorphic curves and they play a role in
determining the signs in various counts. In the case of Fukaya categories of 2-dimensional surfaces,
which is the only situation considered in this paper, there is a combinatorial method given in [23, Sec. 7]
that allows us to compute these signs. Throughout, in our explicit computations, we follow this method
to determine the signs without giving further explanation.

The morphism spaces in the Fukaya category are given by Floer cochain complexes:

CF∗((L1, ξ1), (L2, ξ2)) =
⊕

x∈L1∩L2

homC(ξ1|x, ξ2|x)

For brevity, we often suppress the local systems ξi from the notation. The A∞ -structure comprises a
collection of maps:

mk : CF(Lk−1,Lk)⊗ . . .⊗ CF(L0,L1)→ CF(L0,Lk)[2− k]

For pi ∈ Li−1 ∩ Li and p0 ∈ L0 ∩ Lk , the components of these maps involving homC(ξi−1|pi , ξi|pi)
are defined by counting holomorphic disks with (k + 1)-boundary punctures such that the boundary
components are mapped to (L0,L1, . . .Lk) in the cyclic order. Let us denote the moduli space of such
pseudoholomorphic disks u in the homotopy class [u] by M(pk, pk−1, . . . , p1, p0; [u]). If the index of
[u] is fixed to be 2 − k and the regularity is arranged then Gromov-Floer compactness ensures that this
moduli space is a finite set of points, which we can then count (with signs). For ρi ∈ homC(ξi−1|pi , ξi|pi),
we set

(2–1) mk(ρk, . . . , ρ1) =
∑

[u]:ind([u])=2−k

#M(pk, pk−1, . . . , p1, p0; [u]) · hol∂u ∈ homC(ξ0|p0 , ξk|p0),

where the term hol∂u is defined as follows. The boundary component of u mapping to Li gives iso-
morphisms ξi|pi → ξi|pi+1 . Therefore, given elements ρi ∈ homC(ξi−1|pi , ξi|pi), using the isomorphisms
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provided by u, we can construct the composition:

hol∂u = ρk ◦ . . . ◦ ρ1 ∈ homC(ξ0|p0 , ξk|p0).

Note that exactness ensures that the sum in Equation (2–1) is finite, hence is well-defined.

In practice, when we do explicit computations, we will mark points by ? on each Lagrangian circle, and
the contribution of a holomorphic disk will be weighted by the holonomy factor each time the boundary
of the disk passes through the marked point.

We also note that it was proven by Fukaya [12] that the Fukaya category of compact Lagrangians over R
(equivalently, over any field k of characteristic 0) has a model with a strictly cyclic A∞ -structure. The
existence of such a cyclic structure is important for the applicability of Theorem A to A∞ algebras that
we compute from Fukaya categories below. On the other hand, for the purpose of computation of triple
Massey products, we can use any model of the Fukaya category as triple Massey products are homotopy
invariant notions. We find it convenient to use the model of the Fukaya category as given in [23, Sec. 7].

2.3 Constructing solutions to the AYBE via Massey products in F(Σ)

As was shown in [20], with every associative Belavin-Drinfeld structure (S,C1,C2,A) one can associate
a trigonometric solution of the AYBE. A slightly different looking definition of an associative Belavin-
Drinfeld structure was used in [20]. In the next lemma we show the equivalence of the Definition (0.0.2)
with the definition of the associative Belavin-Drinfeld structure in [20].

Let S be a finite set of n elements. We denote a transitive permutation as a map C : S→ S and we write
ΓC := {(s,C(s))|s ∈ S} ⊂ S× S for its graph.

Lemma 2.3.1 Let S be a set equipped with a pair of transitive permutations C1,C2 : S → S . Then
to give a proper subset A ⊂ S , such that (S,C1,C2,A) is an associative Belavin-Drinfeld structure, is
equivalent to giving a pair of proper subsets Γ1,Γ2 ⊂ ΓC1 such that (C2 × C2)Γ1 = Γ2 .

Proof. We set

Γ1 = {(a,C1(a))|a ∈ A}, Γ2 = {(C2(a),C1(C2(a))|a ∈ A.}

One immediately sees that the condition

(C2 × C2)(Γ1) = Γ2

is equivalent to C1C2(a) = C2C1(a) for every a ∈ A.

We prefer the form given in Definition 0.0.2 as it makes the symmetry with respect to switching C1 and
C2 more clear (cf. Proposition 1.4.1). In examples, it may be convenient to identify S = {1, . . . , n} such
that C1(i) = i + 1 (modulo n). One then thinks of C2 as an n-cycle in the symmetric group Sn .

The commutator [C1,C2] ∈ An ⊂ Sn plays a special role in the definition as the elements of the set A
correspond to a subset of the set of fixed points of the commutator [C1,C2]. We remark that it can be
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proven by induction that any element of the alternating group An arises as the commutator [C1,C2] of
two n-cycles in Sn (see Prop. 4 [13]).

Let AS denote the algebra of endomorphisms of the C-vector space with the basis (ei)i∈S , so that
AS ' Matn(C), where n = |S|. We denote by eij ∈ AS the endomorphism defined by eij(ek) = δjkei . The
solution of the AYBE associated with (S,C1,C2,A) is given by
(2–2)

r(u, v) =
1

exp(u)− 1

∑
i

eii ⊗ eii +
1

1− exp(−v)

∑
i

eii ⊗ eii

+
1

exp(u)− 1

∑
0<k<n,i

exp(
ku
n

)eCk
1(i),Ck

1(i) ⊗ eii +
1

exp(v)− 1

∑
0<m<n,i

exp(
mv
n

)ei,Cm
2 (i) ⊗ eCm

2 (i),i

+
∑

0<k,0<m;a∈A(k,m)

{
exp(−ku + mv

n
)eCm

2 (a),a ⊗ eCk
1(a),Ck

1Cm
2 (a) − exp(

ku + mv
n

)eCk
1(a),Ck

1Cm
2 (a) ⊗ eCm

2 (a),a

}
,

where we denote by A(k,m) ⊂ A the set of all a ∈ A such that Ci
1Cj

2(a) ∈ A for all 0 ≤ i < k, 0 ≤ j < m.
One can easily check that for a ∈ A(k,m) one has Ck

1Cm
2 (a) = Cm

2 Ck
1(a). Note also that A(k,m) can be

nonempty only if k < n and m < n (since A is a proper subset of S), so our formula is equivalent to that
of [20, Thm. 0.1].

Let us denote by pr : Matn(C) → sln(C) the projection along C · 1. Let r(u, v) be a unitary solution of
the AYBE such that the Laurent expansion of r at u = 0 has form

(2–3) r(u, v) =
1⊗ 1

u
+ r0(v) + ur1(v) + . . . .

Then one can show that (pr⊗ pr)r0(v) is a unitary solution of the CYBE, nondegenerate if r(u, v) was
nondegenerate.

One of the main results of [20] is that every nondegenerate unitary solution of the AYBE for A = Matn(C)
(where n > 1), such that the Laurent expansion of r at u = 0 has form (2–3) and (pr⊗ pr)r0(v) is a
trigonometric solution of the CYBE, is equivalent to one of the solutions (2–2).

We will next show that the above solutions to the AYBE can be recovered from Massey products in F(Σ).

Recall that given a combinatorial data of an associative Belavin-Drinfeld structure (S,C1,C2,A), we
have constructed a symplectic 2-manifold (Σ, ω) and Lagrangians L1,L2 ⊂ Σ. Recall also that, ω = ωg

is the area form of a flat Riemannian metric g on Σ and the Lagrangians L1,L2 are geodesic curves of
length 1.

Definition 2.3.2 Given x , y ∈ C we define the complex push-off Lx
1 of L1 (resp. Ly

2 of L2 ) to be the
exact Lagrangian L1 (resp. L2 ) equipped with the complex rank 1 local system with monodromy ex

(resp. ey )

Now, we let X to be the family of isomorphism classes of objects {Lx
1} for x ∈ C, and similarly, we

let Y to be the family of isomorphism classes of objects {Ly
2} for y ∈ C. For simplicity of notation,

we sometimes write x and y for the corresponding objects Lx
1 and Ly

2 of F(Σ). We remark that since
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by construction Lx
1 and Ly

2 are connected, gradable exact Lagrangians in Σ, up to shift there are unique
grading structures on Lx

1 and Ly
2 . We choose the shifts so that CF(Lx

1,L
y
2) is supported in degree 0 for all

x, y.

Note that we can apply the discussion from Section 1.5 to deduce that the family of objects in the
Fukaya category over the formal disk, associated with an analytic family (Lx

1) (resp. (Ly
2)) over C, is

quasi-isomorphic to the twisted object (L1, x · ξL1) (resp. (L2, y · ξL2)) as in Section 1.1. (A sketch of a
geometric proof of this also appears as [3, Lemma 4.1].)

Figure 3 shows the simplest example on T0 , where we have drawn four objects (x1, x2, y1, y2) in the
punctured torus, which corresponds to Belavin-Drinfeld data with S = {1},C1 = (1),C2 = (1). Note
that the underlying exact Lagrangians of x1 and x2 (resp. y1 and y2 ) are Hamiltonian isotopic, however
the monodromies of the complex local systems on them are different.

??

?
?

x2x1

y2

y1

Figure 3: Hamiltonian perturbations of L1 and L2 (equipped with orientations and C× -local systems)

Let us write CF(x1, x2) = Cs0 ⊕ Cs1 and CF(y1, y2) = Ct0 ⊕ Ct1 . In Figure 3, we denoted degree
0 generators by hollow and degree 1 generators by black dots for these chain complexes. In what
follows, the signs come from the orientation of various moduli spaces, which we computed following the
prescription in [23, Sec. 7].

We can compute the Floer differential to be:

m1(s0) = −s1 + ex2−x1s1 ∈ CF1(x1, x2)

m1(t0) = −t1 + ey2−y1 t1 ∈ CF1(y1, y2),

where the terms correspond to the two visible lunes in each case. Hence, for x1 6= x2 and y1 6= y2 , we
have HF(x1, x2) = HF(y1, y2) = 0.

We also have CF 6=0(x, y) = 0 for all x, y. Therefore, as explained in the introduction, for distinct objects
x1, x2 and y1, y2 , the triple Massey product:

MP : CF0(x2, y2)⊗ CF1(y1, x2)⊗ CF0(x1, y1)→ CF0(x1, y2)

dualizes to a tensor

rx1,x2
y1,y2

: CF0(x2, y2)⊗ CF0(x1, y1)→ CF0(x1, y2)⊗ CF0(x2, y1)
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that satisfies the AYBE.

Our next result (stated as Theorem B in the introduction) is that the obtained solution of the AYBE is
precisely the trigonometric solution (2–2) associated with (S,C1,C2,A).

Theorem 2.3.3 Let Σ be the square-tiled surface associated with an associative Belavin-Drinfeld struc-
ture (S,C1,C2,A). Then the tensor rx1,x2

y1,y2 obtained from the triple products in the Fukaya category F(Σ)
only depends on u = x2 − x1 , v = y2 − y1 and is a solution of the AYBE over C given precisely by the
formula (2–2).

Proof. The proof of this theorem follows from a direct computation of triple Massey products in the
Fukaya category F(Σ).

For clarity, we first do the computation for the simplest case, that is when S = {p} is a single point and
A is empty. Let us label the generators as follows:

CF0(x2, y2) = C · p22 , CF1(y1, x2) = C · q12 , CF0(x1, y1) = C · p11 , CF0(x1, y2) = C · p12

Note that geometrically these generators correspond to the corners of the small square in the middle in
Figure 3. We are interested in computing the Massey product:

MP(p22, q12, p11) = m3(p22, q12, p11)−m2(h2, p11)−m2(p22, h1)

where h1 ∈ CF0(x1, x2) and h2 ∈ CF0(y2, y1) satisfy m1(h1) = m2(q12, p11) and m1(h2) = m2(p22, q12).

From Figure 3, it is straightforward to compute:

m2(q12, p11) = ex2−x1 · s1

m2(p22, q12) = t1

Therefore, we have

h1 =

(
ex2−x1

ex2−x1 − 1

)
· s0

h2 =

(
1

ey2−y1 − 1

)
· t0

Again, from Figure 3, we can compute

m2(p22, s0) = p12

m2(t0, p11) = ey2−y1 · p12

m3(p22, q12, p11) = p12

Therefore, letting u = x2 − x1 , v = y2 − y1 , we conclude that

MP(p22, q12, p11) =

(
1 +

eu

1− eu +
ev

1− ev

)
· p12 =

(
1

1− eu +
1

e−v − 1

)
· p12.
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Since the points pij , i, j = 1, 2 can be canonically identified with the intersection point S = L1∩L2 = {p},
we can view this tensor as

rx1,x2
y1,y2

=

(
1

exp(u)− 1
+

1
1− exp(−v)

)
e11 ⊗ e11(2–4)

(note that the dualization formula (0–3) brings in an extra overall sign).

In the case of general S but with A = ∅, consider the covering map

π : Σ0 → T0

and the Lagrangians Xi = π−1(xi) and Yi = π−1(yi) for i = 1, 2. Let us identify the points of intersection
Xi ∩ Yj by the set (ei)i∈S . Now, as before, we are interested in computing Massey products of the form

MP : HF0(X2,Y2)⊗ HF1(Y1,X2)⊗ HF0(X1,Y1)→ HF0(X1,Y2)

Since Massey products are quasi-isomorphism invariants, we can compute each one with a convenient
Hamiltonian perturbation. Recall that we have the formula:

MP(ei, ej, ek) = m3(ei, ej, ek)−m2(h2, ek)−m2(ei, h1)

where m1(h2) = m2(ei, ej) and m2(h1) = m2(ej, ek).

We first observe that m2(ei, ej) = 0 if i 6= j since there are no triangles that can contribute by construction,
and m3(ei, ej, ek) = 0 unless i = j or j = k , since A is empty.

Therefore, the only possibly non-trivial triple Massey products are of the form:

MP(Ck
1(ei), ei, ei) for k = 0, 1, . . . (n− 1)

MP(ei, ei,Cm
2 (ei)) for m = 0, 1 . . . (n− 1).

For ease of computation, we arrange that the holonomy contributions of the C× -local systems on Li

are divided equally to n parts, each contributing e
u
n for L1 and e

v
n for L2 , interlaced between the n

intersection points Li ∩ Lj . In other words, each time a holomorphic disk has boundary covering one of
these regions, there is an associated weight e±

u
n or e±

v
n , where the sign of the exponent is determined, as

before, according to whether the boundary orientation of the holomorphic disk matches that of Li or not.

The computation of MP(ei, ei, ei) is done in a completely analogous way to the above computation given
for n = 1, hence we have:

MP(ei, ei, ei) =

(
1

1− eu +
1

e−v − 1

)
ei

Next, we observe that there are two families of rectangles with boundary on (X1,Y2,X2,Y1) as illustrated
in Figure 4.

These contribute to m3 products of the form

m3(Ck
1(ei), ei, ei) = e

ku
n Ck

1(ei)

for i = 1, . . . , n and k = 1, . . . , n− 1 and

m3(ei, ei,Cm
2 (ei)) = e

mv
n Cm

2 (ei)
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Figure 4: Horizontally (left) and vertically (right) extending rectangles

for i = 1, . . . , n and m = 1, . . . , n− 1.

Furthermore, as before let CF(X1,X2) = Cs0 ⊕ Cs1 and CF0(Y1, Y2) = Ct0 ⊕ Ct1 . We compute the

products:

m2 : CF1(Y1,X2)⊗ CF0(X1, Y1) → CF0(X1,X2)

m2(ei, ei) = e
ku
n s1,

m2 : CF0(X2, Y2)⊗ CF1(Y1,X2) → CF0(Y1, Y2)

m2(ei, ei) = t1,

and

m2(ei, s0) = e1,

m2(t0,Cm
2 (ei)) = e

mv
n e1

Thus, we conclude that

MP(ei,Ck
1(ei),Ck

1(ei)) = e
ku
n

(
1 +

eu

1− eu

)
ei

for i = 1, . . . , n and k = 1, . . . , n− 1 and

MP(ei, ei,Cm
2 (ei)) = e

mv
n

(
1 +

ev

1− ev

)
Cm

2 (ei)

for i = 1, . . . , n and m = 1, . . . , n− 1.

Dualising to the tensor rx1,x2
y1,y2

, we get the terms:

(2–5)

∑
i

(
1

exp(u)− 1
+

1

1− exp(−v)
)eii ⊗ eii

+
1

exp(u)− 1

∑
0<k<n,i

exp(
ku
n

)eCk
1(i),Ck

1(i) ⊗ eii +
1

exp(v)− 1

∑
0<m<n,i

exp(
mv
n

)ei,Cm
2 (i) ⊗ eCm

2 (i),i

and we see that this agrees with the stated result in the case A is empty.
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Figure 5: The two rectangles for each a ∈ A(m, k)

Finally, we will compute the contribution of rectangles when A is non-empty. When A is non-empty,

the rectangular regions with corners (a,C1(a),C1C2(a),C2(a)) are filled for each a ∈ A. We get two

new contributions to the m3 product from such regions (See Figure 5). Furthermore, it may happen that

union of those regions also give new rectangles. A combinatorial way to encode this is to let A(k,m) ⊂ A
to be the set of all a ∈ A such that Ci

1Cj
2(a) ∈ A for all 0 ≤ i < k , 0 ≤ j < m, then for each

a ∈ A(k,m) we have the following contributions because of the filled rectangular region with corners

(a,Ck
1(a),Ck

1Cm
2 (a),Cm

2 (a)):

m3(Ck
1(a), a,Cm

2 (a)) = e
ku+mv

n Ck
1Cm

2 (a)

corresponding to the rectangle drawn on the left of Figure 5, and

m3(Cm
2 (a),Ck

1Cm
2 (a),Ck

1(a)) = −e−
ku+mv

n a

corresponding to the rectangle drawn on the right of Figure 5.

The signs that appear in the two formulae are affected by the orientations of the Lagrangians and we note

that unlike the appearance, there is no typographical error in what we wrote. The sign in the exponentials

are determined according to whether the orientation of the Lagrangians agree with the counter-clockwise

boundary orientation of the rectangle, and the overall sign is determined according to the orientation of

the moduli space which we computed as before using [23, Sec. 7].

Recall also that the dualization formula (0–3) brings in an extra overall sign. Thus, we conclude that in

the case of arbitrary A we have in addition the contribution of the following terms to r(u, v), indexed by

elements of the subsets A(k,m), k,m > 0:∑
0<k,0<m;
a∈A(k,m)

{
exp(−ku + mv

n
)eCm

2 (a),a ⊗ eCk
1(a),Ck

1Cm
2 (a) − exp(

ku + mv
n

)eCk
1(a),Ck

1Cm
2 (a) ⊗ eCm

2 (a),a

}
(2–6)

Remark 2.3.4 We would like to mention an alternative to the above computation. It may appear more

natural to take complex push-offs of L1 and L2 as follows. First, on T0 , let lx1 (resp. ly2 ) be the geodesic
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push-off of l1 (resp. l2 ) such that the oriented area of the cylinder bounded by l1 and lx1 (resp. l2 and
ly2 ) is Re(x) (resp. Re(y)). We then set Lx

1 = π−1(lx1) (resp. Ly
2 = π−1(ly2)) equipped with a U(1)-local

system with monodromy ei Im(x) (resp. ei Im(y) ). The simplest case is shown in Figure 6.

??

?

?

L1x2 x1

L2

y1

y2

Figure 6: Non-exact push-offs of L1 and L2 (equipped with orientations and U(1)-local systems)

However, there is a significant drawback in this approach. Namely, the push-offs Lx
1 and Ly

1 are no
longer exact Lagrangians when Re(x),Re(y) 6= 0. Hence, we cannot guarantee a priori that the count of
holomorphic disks is finite (or convergent). Therefore, in this set-up one has to work over the Novikov
field

Λ = {
∑
i∈Z

aiqti |ai ∈ C, ai = 0 for i� 0, ti ∈ R, ti →∞}

and the formula (2–1) should be modified as

(2–7) mk(ρk, . . . , ρ1) =
∑

[u]:ind([u])=2−k

#M(pk, pk−1, . . . , p1, p0; [u]) · hol∂u · q
∫

u ω.

With this in place, one can compute the corresponding Massey product simply by counting rectangles.
In the simplest case, that is when S = {p} is a single point and A is empty, computing the tensor
rx1,x2

y1,y2 boils down to counting rectangles with corners (p12, p22, q12, p11) in the counter-clockwise order
weighted by their areas. Interestingly, there are indeed infinitely many homotopy classes of rectangles that
contribute to this count. The smallest rectangle with corners in (p12, p22, q12, p11) has area Re(u)Re(v).
Other than this, there are two families of rectangles - namely, those that are horizontally or vertically
extending. Writing xi = ai + iαi and yi = bi + iβi , the horizontally extending ones are weighted
by eil(α2−α1)ql(a1−a2)+(a1−a2)(b1−b2) for l = 1, 2, . . ., and the vertically extending ones are weighted by
eil(β2−β1)ql(b1−b2)+(a1−a2)(b1−b2) for l = 1, 2, . . . .

The overall contribution of all these rectangles can be computed as:

rx1,x2
y1,y2

(p11 ⊗ p22) = −q(a1−a2)(b1−b2)

(
1 +

∞∑
l=1

eli(α2−α1)ql(a1−a2) +
∞∑

l=1

eli(β2−β1)ql(b1−b2)

)
(p12 ⊗ p21)

Since the points pij , i, j = 1, 2 can be canonically identified with the intersection point S = L1∩L2 = {p},
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we can view this tensor as

rx1,x2
y1,y2

= −q(a1−a2)(b1−b2)

(
1 +

∞∑
l=1

eli(α2−α1)ql(a1−a2) +

∞∑
l=1

eli(β2−β1)ql(b1−b2)

)
(e11 ⊗ e11)

Now, we observe that the series expansion has positive radius of convergence equal to 1, hence in
particular specializing the Novikov parameter q = e−1 leads to the formula:

rx1,x2
y1,y2

= −e−Re(u)Re(v)
(

1 +
eu

1− eu +
ev

1− ev

)
e11 ⊗ e11 = e−Re(u)Re(v)

(
1

1− eu +
1

e−v − 1

)
e11 ⊗ e11

This is remarkably in agreement with what we have computed before in formula (2–4) up to the overall
constant e−Re(u)Re(v) which can be absorbed into the choice of basis. Similar computation can be done
in all cases. This gives a hint that in an appropriately defined Fukaya category, the two different ways
of pushing-off L1 and L2 should lead to quasi-isomorphic objects. (Compare with the discussion in [3,
Section 4.1].)

Remark 2.3.5 Since the A∞ -relations hold in the Fukaya category by its general construction, Theorem
B gives a new proof of the fact that r(u, v) given by (2–2) satisfies the AYBE, which is proved in [20] by
a rather tedious calculation. On the other hand, in [20] it was also proven that for r(u, v) given by (2–2),

R(u, v) =

(
(e

u
2 − e

−u
2 ) · (e

v
2 − e

−v
2 )

e
u
2 − e

−u
2 + e

v
2 − e

−v
2

)
r(u, v)

satisfies the quantum Yang-Baxter equation (for fixed u):

R12(v)R13(v + v′)R23(v′) = R23(v′)R13(v + v′)R12(v)

with the unitarity condition
R(u, v)R21(u,−v) = 1⊗ 1.

We do not know a conceptual explanation for this. It would be interesting to study this in the setting of
Fukaya categories.

We will need the following result in the proof of Theorem C.

Proposition 2.3.6 Let (S,C1,C2,A) be an associative Belavin-Drinfeld structure, such that C1 and C2

commute, and let (Σ,L1,L2) be the corresponding square-tiled surface with a pair of Lagrangians (where
Σ is a punctured torus). Then (L1,L2) split generates the Fukaya category F(Σ) of exact, compact
(graded) Lagrangians in Σ.

Proof. We first prove that (L1,L2) split generate when A = ∅ and Σ = Σ0 . Without loss of generality,
suppose that S = {1, . . . , n}, C1(i) = i + 1 and that C2 = Ck

1 for some k which is prime to n. We can
draw the corresponding square-tiled surface as in Figure 7 (where the case of n = 5 and k = 2 is drawn).
Let M1,M2, . . . ,Mn be n disjoint Lagrangians corresponding to curves of slope 1/k , drawn in green in
Figure 7.

Note that these Lagrangians have a natural grading structure (since our line field is given by the horizontal
foliation). It was proven in [17, Lem. 3.1.1] that the collection L1,M1,M2, . . . ,Mn split generates the
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L1
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A B C D E A

D E A B C D

Figure 7: Generators of the exact Fukaya category, (n, k) = (5, 2)

exact Fukaya category. (This essentially follows from the fact that Dehn twists around L1,M1,M2, . . . ,Mn

generate the pure mapping class group of the n-punctured torus.)

Note that we have the following intersections in homology:

[Mi] · [L1] = 1

[Mi] · [L2] = k

[L2] · [L1] = n

In fact, by considering dual curves to Mi , it is easy to see that

[L2] = k[L1] + [M1] + [M2] + · · ·+ [Mn] ∈ H1(Σ0)

We claim that there is an exact triangle of the form:

(2–8) M1 ⊕M2 ⊕ . . .⊕Mn // L⊕k
1

��
L2

[1]

gg

where the maps Mi → L⊕k
1 are given by (ci, ci, . . . , ci), with ci ∈ CF1(Mi,L1), for each i, being the

generator corresponding to the unique intersection point. It is then clear the L1 and L2 split generate
F(Σ).

The exact triangle is an example of a surgery exact triangle proven in this case by Abouzaid in [1, Lemma
5.4]. It is technically easier to show that the following equivalent statement holds:

Cone(. . .Cone((Cone(M1 ⊕M2 ⊕ . . .⊕Mn)→ L1)→ L1) . . .→ L1) ' L2.

Indeed, we first do a surgery at each intersection point of L1 and each Mi and then we perform a new
surgery at the n intersection points of the obtained Lagrangian with a new copy of L1 . We do this k times
(including the first surgery between L1 and Mi ’s) until we arrive at an exact Lagrangian Hamiltonian
isotopic to L2 . Note that in each isotopy class of homotopically essential (i.e. not null-homotopic) simple
closed curves, there is a unique exact Lagrangian up to Hamiltonian isotopy, so it suffices to check that
the end result of all the surgeries, which is an exact Lagrangian, is smoothly isotopic to L2 .

The corresponding picture is drawn in Figures 8 and 9 below for n = 5, k = 2 case, from which it is
clear how the general case works.

31



A B C D E A
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Figure 8: τM1 ◦ τM2 ◦ τM3 ◦ τM4 ◦ τM5 (L1)

A B C D E A

D E A B C D

Figure 9: Cone(Cone((M1 ⊕M2 ⊕M3 ⊕M4 ⊕M5)→ L1)→ L1) ' L2

Note that by Seidel’s exact triangle [26], the first iteration can be identified as

Cone((M1 ⊕M2 ⊕ . . .⊕Mn)→ L1) ' τM1 ◦ τM2 ◦ . . . ◦ τMn(L1).

When A 6= ∅, if the puncture between Mi and Mi+1 is closed, then they become isotopic hence give
equivalent objects. (Of course, one has to isotope them with a finger move so as to make both of them
exact Lagrangians). The same argument as above, with the understanding that some of the Mi represent
equivalent objects, shows the exact triangle (2–8) remains valid. Hence, L1 and L2 again split generates
F(Σ).

3 Application to vector bundles over cycles over projective lines

3.1 Simple vector bundles on cycles of projective lines

In this section we work over an algebraically closed field k of characteristic 6= 2. Let C = ∪n−1
j=0 Cj be a

cycle of n projective lines (also known as the standard n-gon). We identify each Cj with the standard
copy P1 in such a way that the point ∞ ∈ Cj is glued to the point 0 ∈ Cj+1 (we identify indices with
Z/n).

Recall that, up to isomorphism, all simple vector bundles on C are obtained by the following construction
(see [5]), which has as an input an integer valued matrix m = (mj

i)i=1,...,r;j=0,...,n−1 and a nonzero constant
λ ∈ k∗ . The corresponding vector bundle V = Vλ(m) is defined by setting

V|Cj = Vj = OP1(mj
1)⊕ . . .⊕OP1(mj

r)

and by making the following identifications Vj|∞ ' Vj+1|0 : for all j except for j = n − 1 we use the
standard trivializations of the corresponding bundle O(m) at 0 and at ∞ (given by xm

0 and xm
1 ), while

for j = n− 1, we use
λ · C : Vn−1|∞ → V0|0,
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where C is the transitive permutation matrix ei 7→ ei−1 (where the indices are in Z/rZ. The obtained
vector bundle of rank r is simple if and only if a certain condition on m is satisfied. Namely, let us unroll
the matrix m into an rn-periodic sequence by setting

dqn+j = mj
−q, j, q ∈ Z, 0 ≤ j < n.

The conditions are: (1) for every i, i′, j one has |mj
i − mj

i′ | ≤ 1; (2) for every q, not divisible by r , the
rn-periodic sequence (dqn+j − dj) is not identically 0 and the occurrences of 1 and −1 in it alternate.

Recall that one of the results of [20] is an explicit computation of the trigonometric solution of the
AYBE associated with a pair (V,Op), where V = Vλ(m) is a simple bundle on C and p is a smooth
point. The answer is given by the trigonometric solution corresponding to a certain associative Belavin-
Drinfeld structure ABD(V, p), which we will describe now. Without loss of generality we can assume
that p ∈ C0 = Cn . Let us define the complete order ≺ on the set of indices Z/rZ = {0, 1, . . . , r − 1}
as follows: i ≺ i′ if the sequence (dj−in − dj−i′n)j=0,1,... is nonzero and the first nonzero term in it is
negative (the fact that it is a complete order follows from the condition (2) above). We define the transitive
permutations C1 and C2 on Z/rZ by letting C1 send each non-maximal element with respect to the
above complete order to the next element, and by C2(i) = i− 1. Finally, we define a subset A ⊂ Z/rZ
to be the set of i such that i− 1 ≺ C1(i)− 1 and mj

i = mj
i′ for 0 < j < n. By [20, Thm. 5.3], in fact C2

is a power of C1 , and the solution of the AYBE associated with a natural family of deformations of V
and p is the solution (2–2) associated with

ABD(V, p) := (Z/r,C1,C2,A).

Now the arguments of Section 1.5 imply that the formal solution of the general AYBE associated with
the pair (V, p) is equivalent to (2–2), viewed as a formal solution. By Theorem A, this implies that the
A∞ -subcategory, split generated by V and Op , depends only on ABD(V, p). Here to apply Theorem A
(with R = k) we need to equip the A∞ -algebra of endomorphisms of V⊕Op with a cyclic structure with
respect to a natural pairing coming from the Serre duality. The existence of such a cyclic structure can
be proved similarly to [21, Sec. 4.8] (using the assumption that characteristic is not equal to 2). Namely,
first, using a 1-spherical twist we can replace V ⊕ Op with a vector bundle, and then, use Proposition
4.8.2 and Lemma 4.8.4 of [21]. In the characteristic zero case one can instead use the criterion of
Kontsevich-Soibelman [15, Thm. 10.2.2] (see [21, Rem. 4.8.3]).

Definition 3.1.1 We say that a vector bundle W on P1 is of positive (resp., nonnegative) type if
W '

⊕r
j=1OP1(ai) with all ai > 0 (resp., ai ≥ 0). Now let V be a vector bundle on C . We say that V

is of positive (resp., nonnegative) type if each restriction V|Ci is of positive (resp., nonnegative) type. In
the case n = 1 we require this property for f ∗V , where f : P1 → C is the normalization map.

Recall that a collection of objects (Oi) split generates a triangulated category T if the minimal triangulated
subcategory T ′ ⊂ T , closed under direct summands and containing all Oi , is the entire T .

Proposition 3.1.2 Let V be a simple vector bundle on C of positive type. Then the pair (OC,V) split
generates Perf(C).
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Proof. Let us pick smooth points p1, . . . , pn , one on each component of C . Note that V(−p1− . . .− pn)
is of nonnegative type.

Assume first that the rank of V is > 1. Hence, by Lemma 3.1.3(i) below, there exists an injection of OC

into V(−p1 − . . .− pn). Let us consider the composed injective morphism

f : OC → OC(p1 + . . .+ pn)→ V,

where the first arrow is given by the canonical section of OC(p1 + . . . + pn) vanishing at the divisor
p1 + . . . + pn . Then the coherent sheaf coker(f ) has nonzero torsion at each of the points p1, . . . , pn .
Thus, we have an exact sequence

0→
n⊕

i=1

Ti → coker(f )→ F → 0

where Ti is a nonzero sheaf supported at pi and F is locally free near each p1, . . . , pn . Such a sequence
necessarily splits, so each Ti is a direct summand of coker(f ). This shows that the subcategory, split
generated by OC and V contains T1, . . . , Tn . Furthermore, each Ti has a direct summand of the form
Omipi with some mi ≥ 1. It remains to note that the objects (OC,Om1p1 , . . . ,Omnpn) split generate
Perf(C). Indeed, this can be checked similarly to [17, Lem. 3.3.1]: starting from OC and using the exact
sequences of the form

0→ L(−mipi)→ L→ Omipi → 0,

we derive that all the negative powers of the ample line bundle OC(
∑

mipi) belong to the subcategory
split generated by our objects. The fact that all negative powers of an ample line bundle generate Perf(C)
is proved in [18, Thm. 4].

In the case when V is a line bundle, of positive degree on each component, by Lemma 3.1.3(i), we can
find a global section s : OC → V which does not vanish at the nodes. Its restriction to every component
of C vanishes at some smooth point pi . Then coker(s) will again have a nonzero torsion part at each pi ,
and the above proof goes through.

Lemma 3.1.3 (i) Let W be a simple vector bundle on C of nonnegative type. Assume in addition that
either W has rank > 1, or has positive degree. Then there exists an injective morphism OC → W , which
is an embedding as a subbundle near the nodes.

(ii) Let V be a simple vector bundle of positive type, p ∈ C a smooth point. Let us denote by E(V, p)
the universal extension

0→ Ext1(V,OC(p))∗ ⊗OC(p)→ E(V, p)→ V → 0.

Then E(V, p) is the result of applying to V the inverse twist with respect to OC(p). In particular, E(V, p)
is still a simple vector bundle.

Proof. (i) We use the fact that W has the form W = Vλ(m), where all mj
i ≥ 0. Note that the condition

that W is simple and has rank > 1 implies that mj
i > 0 for at least one pair (i, j). To define a global

section of W we need to choose a global section sj
i ∈ H0(Cj,O(mj

i) for each (i, j) in such a way that they
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are compatible with the gluing over Cj ∩ Cj+1 . We claim that we can make these choices in such a way
that each sj

i is nonzero at 0 and ∞. Indeed, in the case when mj
i > 0 we can arrange sj

i to have arbitrary
values at 0 and ∞, while in the case mj

i = 0, one of these values determine the other. Now looking at
the way the gluing is defined for Vλ(m) we see that the existence of at least one positive mj

i guarantees
the existence of a global section which is nonzero at all the nodes.

(ii) This follows from the vanishing Hom(V,OC(p))∗ ' H1(V(−p)) = 0 that holds since V(−p) is of
nonnegative type. Note that by Serre duality, any line bundle on C is 1-spherical.

Now we are going to consider the associative Belavin-Drinfeld structure ABD(E(V, p), p) associated to
E(V, p) and p.

Theorem 3.1.4 Let V and V ′ be simple vector bundles on C of positive type. Assume that for some
smooth points p, p′ ∈ C one has an isomorphism

ABD(E(V, p), p) ' ABD(E(V ′, p′), p′)

of associative Belavin-Drinfeld structures. Then there exists a Fourier-Mukai autoequivalence Φ of
Perf(C) given by a kernel in Db(C × C), such that Φ(OC) ' OC and Φ(V) ' V ′ .

Proof. By Lemma 3.1.3(ii), the inverse twist with respect to OC(p) sends the pair (OC,V) to the pair
(Op,E(V, p)[1]). Similarly, the twist with respect to OC(p′) sends (OC,V ′) to (Op′ ,E(V, p)[1]). By
Theorem A, the isomorphism of the corresponding associative Belavin-Drinfeld structures implies that
the subcategories, split generated by (OC,V) and (OC,V ′) are related by an equivalence Φ in such a way
that Φ(OC) ' OC and Φ(V) ' V ′ . By Proposition 3.1.2, Φ is actually an autoequivalence of Perf(C), or
more precisely, of its A∞ -enhancement. Such an autoequivalence is always given by a kernel on C × C
which could be a complex of quasicoherent sheaves (see [28]). The fact that it belongs to the bounded
derived category of coherent sheaves follows from [17, Lem. 3.5.1].

3.2 Proof of Theorem C

It is enough to consider the case when V is of positive type. Indeed, starting from an arbitrary bundle we
can apply twists at smooth points to replace V with V(N(p1 + . . . + pn)), which is of positive type for
large N .

By Lemma 3.1.3(ii), the inverse twist with respect toOC(p) transforms the pair (OC,V) to (Op,E(V, p)[1]).
As was shown in [20], the solution of AYBE, associated with the pair (E(V, p),Op), is a trigonometric so-
lution (2–2), corresponding to an associative Belavin-Drinfeld structure (S,C1,C2,A) in which C2 = Ck

1
for some k . Hence, by Theorem A, Theorem B and Proposition 2.3.6, the subcategory in Db(C) split
generated by the pair (OC,V) is equivalent to the Fukaya category of some square-tiled surface of genus
1, in such a way that OC and V correspond to the Lagrangians L1 and L2 . Note that in establishing this
equivalence we apply Theorem A, so we pass to formal solutions of the AYBE, as explained in Section
1.5.
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Now we recall that the Dehn twists with respect to the graded Lagrangians L1,M1, . . . ,Mn generate the
pure mapping class group (see the proof of Proposition 2.3.6). Hence, there exists a composition of these
Dehn twists and their inverses that takes L1 into L2 . Under the above equivalence, this corresponds to a
composition Φ of 1-spherical twists and their inverses that takes OC into V .
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