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Abstract. In his work on deformation quantization of algebraic varieties Kontsevich
introduced the notion of algebroid as a certain generalization of a sheaf of algebras. We
construct algebroids which are given locally by NC-smooth thickenings in the sense of
Kapranov, over two classes of smooth varieties: the bases of miniversal families of vector
bundles on projective curves, and the bases of miniversal families of quiver representa-
tions.

Introducton

In this work we study certain families of vector bundles over noncommutative bases.
More precisely, our framework is the theory of NC-schemes over C, developed by Kapranov
in [6]. These are analogs of usual schemes based on the algebras that are close to being
commutative: any expression containing sufficiently many commutators in such rings
vanishes. More precisely, these are NC-nilpotent algebras; one also considers NC-complete
algebras which are complete with respect to the commutator filtration.

In this theory there is a natural notion of NC-smoothness, which is analogous to the
notion of quasi-free algebra from [2]. Kapranov proves the existence and uniqueness of an
NC-smooth thickening for any smooth affine scheme X. By definition, such a thickening
corresponds to an NC-smooth algebra whose abelianization is the algebra of functions on
X. The problem of determining which non-affine smooth schemes admit such extensions
seems to be quite hard. There are very few known examples of such thickenings. For
example, there are explicit constructions for Grassmannians and abelian varieties (see
[6],[11]). In both cases the relevant NC-smooth thickenings represent natural functors on
the category N of NC-nilpotent algebras. On the other hand, there is no smooth scheme
for which we would know that there is no NC-smooth thickening.

One of the constructions considered in [6] is that of a natural functor of families of
vector bundles over NC-nilpotent bases, which on the commutative level are induced by a
given family of vector bundles on a fixed projective variety with a base B. More precisely,
we consider the following situation. Let Z be a projective algebraic variety, B a smooth
variety, and let Eab be a vector bundle over B × Z. We denote by ρ : B × Z → B the
natural projection.

Definition 0.0.1. We say that Eab is an excellent family of bundles on Z if

(a) OB → ρ∗End(Eab) is an isomorphism,
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(b) the Kodaira-Spencer map κ : TB → R1ρ∗End(Eab) is an isomorphism,
(c) R2ρ∗End(Eab) = 0,
(d) Rdρ∗End(Eab) is locally free for d ≥ 3.

For example, if Z is a projective curve then conditions (c) and (d) are automatic.
Condition (a) is satisfied for a family of simple bundles (see [5, Lem. 4.6.3]). Condition
(b) is satisfied if the map from B to the moduli stack of vector bundles on Z is étale.

Following [6] we consider the natural functor hNCB on the category N of noncommuta-
tive families of vector bundles compatible with Eab (see Definition 1.5.1 for details). It
was claimed in [6] that this functor is representable by an NC-smooth thickening of B.
However, the proof contained a gap.

In the present paper we prove that whenever dimB ≥ 1, the functor hNCB is not rep-
resentable by an NC-scheme (see Theorem 1.5.6). The reason for this is rather silly: we
observe that hNCB factors through the quotient category aN of N in which conjugate
homomorphisms are identified (see Sec. 1.2).

The natural idea then is to ask the representability question in this new category aN .
Our main technical result is that this is true locally: the functor of families over NC-
nilpotent bases is representable in the case when B is affine (see Theorem 2.2.1). We use
this local representability of hNCB in aN to construct in the general case a C-algebroid1

over B in the sense of [9], [7, Sec. 2.1], given locally by an NC-smooth thickening of B.
We call such a structure an NC-smooth algebroid thickening of B (see Definition 1.3.2 for
details).

Theorem A[see Thm. 1.3.8+Thm. 2.2.1]. Let B be a (smooth) base of an excellent
family of vector bundles. Assume that B is connected and dimB ≥ 2. Then there exists
an NC-smooth algebroid thickening of B.

Note that the case dimB = 1 is not interesting since any smooth commutative scheme
of dimension 1 is already NC-smooth.

In the case when B is quasi-projective, so that there exists an open affine covering (Ui)
of B, such that all intersections Ui ∩ Uj are distinguished affine opens in both Ui and Uj,
the algebroid in Theorem A can be described in more down-to-earth terms as follows.
We have an NC-smooth thickening of Ui for each i; over Ui ∩ Uj we have isomorphisms
between the two induced NC-smooth thickenings; and over Ui∩Uj ∩Uk the isomorphisms
agree up to an inner automorphism (furthermore, the corresponding invertible elements
are chosen and satisfy the natural compatibility condition over Ui ∩ Uj ∩ Uk ∩ Ul).

Note that algebroids were introduced by Kontsevich in connection with deformation
quantization of algebraic varieties (see [9], [7]). NC-smooth thickenings are in some ways
similar to deformation quantization algebras (in particular, the construction of NC-smooth
thickenings from torsion-free connections in [11] is somewhat reminiscent of Fedosov’s
deformation quantization procedure in [3]). Thus, it is not very surprising that algebroids
made their appearance in the theory of NC-smooth thickenings. In light of Theorem A,
it seems that rather than asking which smooth schemes admit NC-smooth thickenings, it
is more natural to ask which smooth schemes admit NC-smooth algebroid thickenings.

1This notion has nothing to do with the more commonly used Lie algebroid: the latter is a sheaf of
Lie algebras with some extra structures, whereas a C-algebroid is a certain stack of C-linear categories.
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In fact, in the proof of Theorem A we construct a canonical algebroid (up to an equiv-
alence). Since there is a well defined notion of a module over an algebroid, one natural
problem is whether there is a universal family of modules over our algebroid, extending
the original family over B. One can also try to study the higher rank analog of the
Fourier-Mukai transform picture for NC Jacobians considered in [11, Sec. 4]. We leave
these questions for a future study.

Motivated by Toda’s work [12], we also consider the similar picture for representations
of quivers. Namely, starting with an excellent family (see Def. 2.4.2) of representations
of a finite quiver Q (with no relations), we consider the functor of compatible families
of representations of Q over NC-nilpotent affine schemes. We show that the situation is
completely similar to (and somewhat easier than) the picture discussed above.

Theorem B[see Thm. 1.3.8+Thm. 2.4.4]. Let B be a (smooth) base of an excellent family
of representations of Q. Assume that B is connected and dimB ≥ 2. Then there exists
an NC-smooth algebroid thickening of B.

For example, this result applies to the moduli space of stable quiver representations
corresponding to an indivisible dimension vector.

Note that for the proof of Theorem B we develop a version of nonabelian hypercoho-
mology H1 for a sheaf of groups acting on a sheaf of sets, which may be of independent
interest (see Section 2.3).

Toda also constructs in [12] local (non NC smooth) NC thickenings for some obstructed
families of vector bundles (and for representations of quivers with relations). It would be
interesting to study whether these thickenings glue into an algebroid.

The paper is organized as follows. In Section 1 we discuss the category aN of affine
almost NC schemes (in which conjugate homomorphisms are identified). We prove in
Section 1.3 that any formally smooth functor on aN , that is locally representable, leads
to an NC smooth algebroid thickening (see Theorem 1.3.8). Then in Section 1.5 we show
that the functor of NC families extending the given excellent family of vector bundles
factors through aN , and as a consequence, is not representable except in trivial cases (see
Theorem 1.5.6).

In Section 2 we prove local representability results for formally smooth functors on aN .
First, we give a technical representability criterion for such a functor extending the functor
on commutative algebras representable by a smooth affine scheme (see Proposition 2.1.3).
Then we apply this criterion to the functor of NC families extending a given excellent
family of vector bundles (see Theorem 2.2.1) and then to the functor of NC families of
quiver representations (see Theorem 2.4.4).

Acknowledgments. The work of the second author is supported in part by the NSF grant
DMS-1700642 and by the Russian Academic Excellence Project ‘5-100’. He also would like
to thank Institut de Mathématique de Jussieu and Institut des Hautes Études Scientifiques
for hospitality and excellent working conditions.

Conventions. All algebras we consider are over C, all schemes are assumed to be of finite
type over C. The expression [a, b] always denotes commutator in an associative algebra:
[a, b] = ab− ba.
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1. Affine almost NC schemes and the non-representability of the
functor of NC families of vector bundles

1.1. Generalities on NC schemes. For a ring R, we define the decreasing filtration
InR by

InR =
∑

i1≥2,... ,im≥2,i1+...+im≥n

R ·RLie
i1
·R · . . . ·R ·RLie

im ·R,

where RLie
n is the nth term of the lower central series of R viewed as a Lie algebra. Note

that R/I2R is precisely Rab, the abelianization of R.
We define the category Nd of NC-nilpotent algebras of degree d as the category of

algebras R for which Id+2R = 0. Thus, N0 = Com is the category of commutative
algebras. A ring R is in N1 if and only if it is a central extension of a commutative
algebra. Here we say that an extension of algebras

0→ I → R→ R→ 0

is a central extension if I is a central ideal in R with I2 = 0.
We denote by N = ∪d≥0Nd the category of NC-nilpotent algebras. For A ∈ N

we denote by hA the corresponding representable covariant functor on N : hA(B) =
Homalg(A,B).

An algebra R is called NC-complete if it is complete with respect to the filtration (InR).
We denote by NC the category of NC-complete algebras. For an NC-complete algebra
R we denote by hR the functor on N given by hR(B) = Homalg(R,B). Note that the
restriction hR|Nd

is naturally isomorphic to the representable functor hR/Id+2R. This easily
implies that the functor

NCop → Fun(N , Sets) : R 7→ hR

is fully faithful.
An NC-complete algebra R is called NC-smooth if the functor hR is formally smooth,

i.e., for any central extension in N , B′ → B, the induced map hR(B′) → hR(B) is
surjective. An NC-nilpotent algebra A of degree d is called d-smooth if the same is true
for the functor hA|Nd

.
Kapranov defines NC-nilpotent schemes (over C) as locally ringed spaces locally iso-

morphic to the spectrum of an NC-nilpotent algebra, with its natural structure sheaf,
which is defined similarly to the commutative case. General NC-schemes are similarly
modeled on formal spectra of NC-complete algebras (see [6, Sec. 2] for details). One can
view an NC-scheme X as an underlying usual scheme Xab equipped with a sheaf of non-
commutative algebras OX such that its abelianization is OXab . In this case we say that
X is an NC-thickening of Xab. In the case when X is NC-smooth, we say that it is an
NC-smooth thickening of Xab.

Lemma 1.1.1. (i) Let R be a d-smooth algebra, such that dimRab ≥ 2 and Rab is con-
nected. Assume that d ≥ 1. Then the center of R is C + Id+1R.
(ii) Let ONCX be an NC-smooth thickening of a smooth connected scheme X with dimX ≥
2. Then the center of ONCX is the constant sheaf CX .
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Proof. (i) Let Z(R) denote the center of R. We have a central extension of algebras

0→ Id+1R→ R→ R′ = R/Id+1R→ 0,

hence, we have the inclusion C+ Id+1R ⊂ Z(R). In the case d = 1 we have R′ = Rab and
the commutator pairing associated with the above extension is

[f̃ , g̃] = df ∧ dg ∈ Ω2
Rab ' I2R,

where f̃ , g̃ ∈ R are lifts of f, g ∈ R′ = Rab. This easily implies that an element of Z(R)
projects to C ⊂ R′.

In the case d > 1, by the induction assumption, we can assume that Z(R′) = C+IdR′.
Hence, it is enough to investigate elements of Z(R) that project to elements of IdR′ ⊂ R′.
Let us consider the commutator pairing

IdR′ ×Rab → Id+1R : (α, f) 7→ [α̃, f̃ ],

where α̃, f̃ ∈ R are lifts of α and f . We claim that this pairing is induced by the natural
commutator pairing

U(Lie+(Ω1
Rab))d × Ω1

Rab → U(Lie+(Ω1
Rab))d+1,

where we use the notation of [11, Sec. 2.1] (in particular, Lie+(?) denotes the degree ≥ 2
part of the free Lie algebra) and an isomorphism

grnI(R) ' U(Lie+(Ω1
Rab))n

for n ≤ d+ 1 (see [11, Cor. 2.3.15]). More precisely, we claim that

[α̃, f̃ ] = −[α, df ]U , (1.1.1)

where we view α as an element of IdR′ = grdI(R), and on the right-hand side we take the
commutator in the algebra U(Lie+(Ω1

Rab)). Indeed, by [11, Cor. 2.3.9], we can realize R as
a subalgebra in T (Ω1

Rab)/T
≥d+2(Ω1

Rab) (where T (?) denotes the tensor algebra over Rab),
so that the projection R → Rab is induced by the projection to T 0 = Rab. Furthermore,
the elements in the image of R have tensor components of the form (f,−df, . . . ). Since T 0

is in the center of the tensor algebra, this immediately implies formula (1.1.1). Thus, if
α ∈ IdR′ lifts to an element of Z(R) then [α, df ]U = 0 for any f . Since, U(Lie+(Ω1

Rab)) is
a subalgebra in the tensor algebra T (Ω1

Rab), this implies that α is in the center of T (Ω1
Rab),

hence, α = 0 (since dimRab ≥ 2). This implies that Z(R) = C + Id+1R.
(ii) It is enough to check this in the case when X is affine, i.e., X is the formal spectrum
of an NC-smooth algebra R such that Rab is connected. Now the assertion easily follows
from (i). �

By a vector bundle E on an NC-nilpotent scheme X we mean a sheaf of rightO-modules
which is locally free of finite rank. We denote by Eab the induced vector bundle on Xab.

Lemma 1.1.2. Assume that X ⊂ X ′ is a nilpotent extension of affine NC-nilpotent
schemes, i.e., OX is a quotient of OX′ by a nilpotent ideal. Let E ′ be a vector bundle over
X ′, and E the induced vector bundle over X. Let ϕ : OnX → E be a trivialization. Then
ϕ extends to a trivialization OnX′ → E.
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Proof. It is enough to consider the case when 0 → I → OX′ → OX → 0 is a central
extension. Then I is a quasicoherent sheaf over OXab , so

H1(X ′, E ′ ⊗ I) = H1(Xab, Eab ⊗ I) = 0.

Thus, the n global sections of E defining the trivialization can be lifted to global sections
of E ′. It is easy to see (arguing locally) that they give a trivialization of E ′. �

1.2. The category of affine almost NC schemes. The category aN has the same
objects as N , while the morphisms in aN are equivalence classes of homomorphisms
A→ B, where f1, f2 : A→ B are equivalent if there exists b ∈ B∗ such that f2 = bf1b

−1.
We denote by aNd ⊂ aN the full subcategory of NC-nilpotent algebras of degree d.

Given a ring A in N and a multiplicative set S ⊂ Aab, let S denote the preimage of
S under the projection A → Aab. Then S satisfies Ore conditions and S−1A is again
NC-nilpotent (see [6, Sec. 2.1]). For any B ∈ N the composition with the localization
morphism ι : A→ A[S−1] induces an embedding HomN (A[S−1], B) ↪→ HomN (A,B) with
the image consisting of [f ] such that f(S) ⊂ B∗. Since the latter condition is invariant
with respect to our equivalence relation on HomN (A,B), the composition with [ι] gives
an embedding

HomaN (A[S−1], B) ↪→ HomaN (A,B)

with the same characterization of the image.
Note also that for B ∈ N an element b ∈ B is invertible if and only if its image in Bab

is invertible. Thus, a homomorphism f : A→ B factors through A[S−1] if and only if the

induced homomorphism fab : Aab → Bab factors through Aab[S
−1

], where S ⊂ Aab is the
image of S. It follows that we have a cartesian square of sets

hA[S−1](B) - hA(B)

h
Aab[S

−1
]
(Bab)

?
- hAab(Bab)

?

Now let R be an NC-complete algebra and let T ∈ Rab be a multiplicative subset.
Following Kapranov [6, Def. (2.1.8)], we set

R[[T−1]] := lim←−(R/IdR)[T−1
d ],

where Td ⊂ R/IdR is the preimage of T . In the case when T = {fn | n ≥ 0}, for some
element f ∈ Rab, we denote the above algebra simply by R[[f−1]].

For an NC-complete algebra R we denote by hR the corresponding functor on aN :
hR(B) is the set of conjugacy classes of algebra homomorphisms R→ B. Since the images
of both horizontal arrows in the above cartesian square are stable under the action of inner
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automorphisms of B, we deduce that the similar square

hR[[T−1]](B) - hR(B)

hRab[T−1](B
ab)

?
- hRab(Bab)

?

(1.2.1)

is still cartiesian for any B ∈ N .
Let aNC denote the category of NC-complete algebras with morphisms given by algebra

homomorphisms viewed up to conjugation, i.e., up to post-composing with an inner auto-
morphism. We denote by aNCSis the subcategory in aNC, whose objects are NC-smooth
algebras, with isomorphisms in aNC as morphisms.

Lemma 1.2.1. The functor

aNCSopis → Funis(aN , Sets) : R 7→ hR

is fully faithful, where Funis is the category of functors and natural isomorphisms between
them.

Proof. Note that for any d ≥ 0, the restriction hR|aNd
is naturally isomorphic to the

representable functor hR/Id+2R. Thus, for NC-complete algebras R and R′, we have a
natural identification

Iso(hR′ , hR) ' lim←− d IsoaN (R/Id+2R,R
′/Id+2R

′),

where IsoaN (?, ?) denotes the set of isomorphisms in the category aN . Thus, it suffices
to prove that if R and R′ are NC-smooth then the natural map

IsoaNC(R,R
′)→ lim←− d IsoaN (R/Id+2R,R

′/Id+2R
′) (1.2.2)

is a bijection. To check surjectivity, assume we are given a collection of algebra homo-
morphisms

fd : R/Id+2R→ R′/Id+2R
′,

which are compatible up to conjugation, i.e., the homomorphism fd+1,d : R/Id+2R →
R′/Id+2R

′ induced by fd+1 is equal to θudfd, where θud is the inner automorphism asso-
ciated with a unit ud ∈ R′/Id+2R

′. Now, starting from d = 0, we can recursively correct
fd+1 by an inner automorphism of R′/Id+3R

′, so that the homomorphisms (fd) become
compatible on the nose (not up to an inner automorphism). Since R′ is NC-complete,
this defines a unique homomorphism f : R → R′ inducing (fd). Furthermore, since R is
NC-complete, we see that f is an isomorphism if and only if all fd are isomorphisms.

It remains to check that (1.2.2) is injective. Thus, given two isomorphisms f, f ′ : R→
R′ such that the induced isomorphisms fd and f ′d are conjugate for each d, we have to check
that f and f ′ are conjugate. By considering f−1f ′, we reduce the problem to checking
that if we have an automorphism f : R → R such that fd is an inner automorphism of
R/Id+2R for each d, then f is inner. For any algebra A, let us denote by Inn(A) the group
of inner automorphisms of A. Note that we have an exact sequence of groups

1→ Z(A)∗ → A∗ → Inn(A)→ 1.
7



Applying this to each algebra R/Id+2R, and passing to projective limits, we have an exact
sequence

1→ lim←− dZ(R/Id+2R)∗ → lim←− d(R/Id+2R)∗
ρ- lim←− d Inn(R/Id+2R).

We claim that the arrow ρ in this sequence is surjective. Indeed, it is enough to check that
the inverse system (Z(R/Id+2R)∗) satisfies the Mittag-Leffler condition. But by Lemma
1.1.1(i), for d ≥ 1, the image of the projection

Z(R/Id+2R)∗ → Z(R/Id+1R)∗

is equal to C∗, which implies the required stabilization. Thus, the map ρ is surjective. Note
that the source of this map can be identified with R∗. Thus, we deduce the surjectivity
of the natural map

R∗ → lim←− d Inn(R/Id+2R).

Hence, we can compose f with an inner automorphism θu of R, such that f ′ = θuf
induces the identity automorphism of R/Id+2R for each d. It follows that f ′ = id, i.e., f
is inner. �

1.3. Gluing. We can define the Zariski topology on aN op naturally. However, this is
not a subcanonical topology, i.e., representable functors are not necessarily sheaves with
respect to this topology. Namely, suppose f1, f2 : A → B is a pair of homomorphisms,
inducing the same homomorphism Aab → Bab. Assume also that we have a covering of
Spec(Aab) by distinguished affine opens, Spec(Agi), such that f1 and f2 become conjugate
as morphisms from Agi to Bgi . It may happen that f1 and f2 are still not conjugate by
an element of B∗.

Example 1.3.1. Let R := k[x, y]. For any ideal I ⊂ R we can consider the central
extension A of R by Ω2

R/k ⊗R R/I, obtained from the universal central extension via the

natural homomorphism Ω2
R/k → Ω2

R/k ⊗R R/I. We consider a pair of homomorphisms

f1 = id, f2 = id +δ : A→ A,

where δ : A→ R→ Ω2
R/k ⊗R R/I is a derivation given by

δ(r) = ω ∧ drmod IΩ2
R/k,

for some 1-form modulo I, ω ∈ Ω1
R/k ⊗R R/I. We are going to prove that for I =

(xy−1), there exists a 1-form ω such that f1 and f2 are locally conjugate, but not globally
conjugate. Note that if Rg is a localization of R then the corresponding localization of A
is a central extension of Rg by Ω2

Rg/k
⊗Rg (R/I)g. It is easy to see that the condition for

f1 and f2 to be conjugate over Spec(Rg) is that for some r ∈ R∗g one has

δ(r′) = r−1dr ∧ dr′mod IΩ2
Rg/k

for any r′ ∈ R. Since the morphism η 7→ η∧? gives an isomorphism

Ω1
Rg/k ⊗Rg (R/I)g ' HomRg(Ω1

Rg/k,Ω
2
Rg/k ⊗Rg (R/I)g),

this is equivalent to the condition

ω ≡ r−1drmod IΩ1
Rg/k.
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Let us consider the homomorphism of sheaves on Spec(R) = A2
k,

τ : O∗ → Ω1 ⊗O O/I,

induced by φ 7→ φ−1dφ. Thus, the condition on ω means that it comes from a global
section of the sheaf image im(τ), but is not in the image of the induced morphism on
global sections. Since H0(A2,O∗) = k, the latter condition is equivalent to ω 6= 0. Now
we observe that the sheaf Ω1⊗OO/I is supported on the curve xy = 1 which is contained
in the affine open subset x 6= 0. Hence, the 1-form dx/x gives a well defined nonzero
global section of im(τ), as required.

Because of this we do not try to glue affine almost NC schemes using sheaves on aN .
Instead, we show that a locally representable formally smooth functor on aN always leads
to an algebroid over the underlying commutative smooth scheme X, that corresponds
locally to an NC-smooth thickening of X.

Recall that a C-algebroid A over a topological space X is a stack of C-linear cate-
gories over X, such that A is locally non-empty and any two objects of A(U) are locally
isomorphic. We refer to [7, Sec. 2.1] for basic results on algebroids.

Definition 1.3.2. Let X be a smooth scheme. An NC-smooth algebroid thickening of
X is a C-algebroid A over X such that for every object σ ∈ A(U) over an open subset
U ⊂ X the sheaf of algebras EndA(σ) is an NC-smooth thickening of U .

For a sheaf of C-algebras A over X we have the corresponding C-algebroid with a fixed
global object σ such that A is the endomorphism algebra of σ.

Definition 1.3.3. For a C-algebroid A, we define the center of A as the sheaf

ZA := End(IdA)

of endomorphisms of the identity functor on A. We say that a C-algebroid A has trivial
center if the natural map of sheaves CX → ZA is an isomorphism.

It is easy to see that for any local object σ ∈ A(U) one has a natural identification of
ZA|U with the center of the sheaf of algebras EndA(σ). Thus, by Lemma 1.1.1(ii), any
NC-smooth algebroid thickening has trivial center.

We are going to prove a general gluing result for sheaves of C-algebras with trivial
centers and then apply it to construct NC-smooth algebroid thickenings.

Lemma 1.3.4. (i) Let A and A′ be a pair of C-algebroids with trivial centers over an
irreducible scheme X, and let F,G : A → A′ be a pair of equivalences. Assume that for
an open covering (Ui) of X we have an isomorphism F |Ui

' G|Ui
. Then there exists an

isomorphism F ' G.
(ii) Let A and A′ be a pair of C-algebroids with trivial centers over an irreducible scheme
X. Assume that for an open covering (Ui) of X we have an equivalence

Fi : A|Ui
→ A′|Ui

and that for each pair i, j, we have an isomorphism

Fi|Uij
' Fj|Uij

,
9



where Uij = Ui ∩ Uj. Then there exists an equivalence F : A → A′ such that F |Ui
' Fi.

Such an equivalence is unique up to an isomorphism.
(iii) Let Ui be an open covering of an irreducible scheme X, and for each i let Ai be a
C-algebroid with trivial center over Ui. Assume that for every i, j, we have an equivalence

Fij : Ai|Uij
→ Aj|Uij

,

such that for every i, j, k, there is an isomorphism

Fjk|Uijk
◦ Fij|Uijk

' Fik|Uijk
,

where Uijk = Ui ∩ Uj ∩ Uk. Then there exist a C-algebroid A over X and equivalences
Fi : A|Ui

→ Ai, such that for every i, j, there is an isomorphism

Fij ◦ Fi|Uij
' Fj|Uij

.

Furthermore, such A is unique up to an equivalence.

Proof. (i) Let us choose for each i an isomorphism φi : F |Ui
→ G|Ui

. Then for each i, j,
we have

φj|Uij
= φi|Uij

◦ cij,
where cij is an autoequivalence of Fi|Uij

. Since Fi is an equivalence, we have Aut(F ) '
Aut(idA). Locally, the sheaf Aut(idA) is given by the center of EndA(σ), where σ is an ob-
ject of A. Hence, by Lemma 1.1.1, the natural morphism of sheaves C∗X → Aut(idA) is an
isomorphism. Thus, cij is a Cech 1-cocycle with values in C∗X . Since X is irreducible, the
corresponding Cech cohomology is trivial, so we can multiply φi by appropriate constants
in C∗, to make them compatible on double intersections. The corrected isomorphisms
glue into a global isomorphism F → G.
(ii) Let us choose for each i, j an isomorphism φij : Fi|Uij

→ Fj|Uij
. Then for each i, j, k,

the composition cijk = φkiφjkφij is an autoequivalence of Fi|Uijk
, where cijk is a Cech

2-cocycle with values in C∗X . As above, choosing representation of cijk as a coboundary
allows to correct φij by constants in C∗, so that the isomorphisms φij are compatible
on triple intersections. Hence, we can glue (Fi) into the required global equivalence
F : A → A′. The fact that F is unique up to an isomorphism follows from (i).
(iii) For every i, j, k, let us choose an isomorphism

gijk : Fjk|Uijk
◦ Fij|Uijk

→ Fik|Uijk
.

Then for every i, j, k, l, we have over Uijkl,

gikl(Fkl ∗ gijk) = cijklgijl(gjkl ∗ Fij)

for some cijkl ∈ Aut(Fil)(Uijkl) = C∗. Furthermore, (cijkl) is a Cech 3-cocycle with values
in C∗X . Hence, we can multiple gijk with appropriate constants to make them compatible
on quadruple intersections. This allows us to glue (Ai) into a global C-algebroid A over
X (see [7, Prop. 2.1.13]). The uniqueness of A up to an equivalence follows from (ii). �

Proposition 1.3.5. Let (Ui) be an open covering of an irreducible scheme X. Assume
that for each i we are given a sheaf of C-algebras Ai with trivial center over Ui, and for

10



each pair i < j, a covering (Vk = Vij,k) of Uij, together with isomorphisms of sheaves of
C-algebras

αij,Vk : Ai|Vk → Aj|Vk
for all k. We assume that the restrictions of αij,Vk and αij,Vl to Vk ∩ Vl differ by an inner
automorphism. Also, we assume that for i < j < k there exists a covering (Wl = Wijk,l)
of Uijk such that αjk|Wl

◦ αij|Wl
and αik|Wl

differ by an inner automorphism. Then there
exists a C-algebroid A over X, together with equivalences of C-algebroids,

Fi : A|Ui
→ Ai,

where Ai is the C-algebroid over Ui associated with Ai, such that for i < j there exist
isomorphisms

αij,Vk ◦ Fi|Vk ' Fj|Vk
over the covering (Vk) of Uij. Such an algebroid A is unique up to an equivalence.

Proof. Each isomorphism αij,Vk gives an equivalence

Fij,Vk : Ai|Vk → Aj|Vk .

Since the local autoequivalence of Ai associated with an inner automorphism of Ai is
isomorphic to the identity, we get that Fij,Vk and Fij,Vl induce isomorphic equivalences
over Vk ∩ Vl. By Lemma 1.3.4(ii), we obtain an equivalence defined over Uij,

Fij : Ai|Uij
→ Aj|Uij

,

such that Fij|Vk ' αij,Vk .
Furthermore, we claim that over Uijk there is an isomorphism

Fjk|Uijk
◦ Fij|Uijk

' Fik|Uijk
. (1.3.1)

Indeed, by assumption, we have a similar isomorphism over each open subset from the
covering (Wl) of Uijk. Thus, our claim follows from Lemma 1.3.4(i), applied to the equiv-
alences on both sides of (1.3.1).

Finally, we can apply Lemma 1.3.4(iii) to conclude the existence and uniqueness of the
required NC-smooth algebroid A over X. �

Now we are going to apply the above general result to NC-smooth thickenings.
For a functor h on aN such that hCom = hX and an open subset U ⊂ X, we define the

subfunctor h/U ⊂ h by

h/U(Λ) = h(Λ)×hX(Λab) hU(Λab),

where we use the identification h(Λab) ' hX(Λab).

Lemma 1.3.6. Let h = hR, where R is an NC-complete algebra. Then for any distin-
guished affine D(f) ⊂ Spec(Aab) we have an equality of subfunctors h/D(f) = hA[[f−1]].

Proof. This follows immediately from the cartesian square (1.2.1) with T = {fn | n ≥
0}. �
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Lemma 1.3.7. Let h be a functor on aN such that h|Com = hX for some scheme X.
Assume that (Ui) is an affine covering of X, such that for every i we have an isomorphism
h/Ui
' hAi

for some Ai ∈ N . Let us denote also by Ai the corresponding sheaf of algebras
over Ui. Then for every open subset V ⊂ Ui ∩ Uj, which is distinguished in both Ui and
Uj, we have an isomorphism

αij,V : Ai|V ' Aj|V
compatible with the isomorphisms hAi(V ) ' h/V ' hAj(V ). Furthermore, for another
such open V ′ ⊂ Ui ∩ Uj the isomorphisms αij,V |V ∩V ′ and αij,V ′|V ∩V ′ differ by an inner
automorphism. Also, for any open V ⊂ Ui ∩ Uj ∩ Uk, distinguished in Ui, Uj and Uk, we
have

αjk|V ◦ αij|V = αik|V ◦ Ad(uijk)

for some uijk ∈ Ai(V )∗.

Proof. Let us fix an isomorphism h/Ui
' hAi

for each i. Suppose V ⊂ Ui ∩ Uj is a
distinguished affine open in both Ui and Uj. Then

hAi,/V ' h/V ' hAj ,V .

Thus, by Lemmas 1.3.6 and 1.2.1, we have an isomorphism between the corresponding
localizations of Ai and Aj in aN , and hence, an isomorphism αij : Ai|V ' Aj|V , defined
uniquely up to an inner automorphism. For V ⊂ Ui ∩ Uj ∩ Uk the compatibility between
αij, αjk and αik, up to an inner automorphism, follows from the compatibility of all of

these isomorphisms with the isomorphisms of hAi,/V , hAj ,/V and hAk,/V with h/V . �

Theorem 1.3.8. Let h be a formally smooth functor on aN such that h|Com = hX , where
X is a smooth connected scheme with dimX ≥ 2. Assume that h is locally representable,
i.e., there exist an open affine covering (Ui) of X and isomorphisms

h/Ui
' hAi

,

where Ai is an NC-smooth thickening of Ui. Then there exist an NC-smooth algebroid A
over X and equivalences of algebroids

Fi : A|Ui
→ Ai,

such that for every open subset V ⊂ Ui ∩ Uj, distinguished in both Ui and Uj, there is an
isomorphism

gij ◦ Fi|V ' Fj|V ,
where gij : Ai|V → Aj|V is a representative (up to conjugation) of the isomorphism

hAi|V ' h/V ' hAj |V .

Proof. First, we apply Lemma 1.3.7 and obtain isomorphisms

αij,V : Ai|V → Aj|V
for every open V ⊂ Ui∩Uj, distinguished in both Ui and Uj, such that these isomorphisms
for V and V ′ and for V ⊂ Ui ∩ Uj ∩ Uk, are compatible up to an inner automorphism.
Hence, we are in the setup of Proposition 1.3.5, where as open coverings of Uij (resp.,
Uijk) we take the covering by all open affines which are distinguished in Ui and Uj (resp.,
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Ui, Uj and Uk). Note that the centers of Ai are trivial by Lemma 1.1.1(ii). Thus, applying
Proposition 1.3.5, we get the required NC-smooth algebroid over X. �

1.4. Recollections on nonabelian H1. We are going to use some basic constructions
involving nonabelian cohomology, which we recall here. The comprehensive reference is
Giraud’s book [4] (more specifically, we use [4, Sec. 3.3,3.4]). A more explicit treatment
in terms of Cech cocycles is given in [10, Sec. 2.6.8]; however, it contains one mistake that
we will correct.

For a sheaf of groups G on a topological space X and an open covering U = (Ui) of X,
the set of 1-cocycles Z1(U ,G) consists of gij ∈ G(Uij), such that gii = 1, gijgji = 1 and

gij|Uijk
gjk|Uijk

= gik|Uijk
.

Two such 1-cocycles (gij) and (g̃ij) are cohomologous if

g̃ij = hi|Uij
gijh

−1
j |Uij

,

for some hi ∈ G(Ui). We denote by H1(U ,G) the corresponding set of equivalence classes
(pointed by the class of the trivial cocycle). The nonabelian cohomology set H1(X,G)
is obtained by taking the limit over all open coverings. Note that our convention for
nonabelian 1-cocycles is the same as in [4] and differs from that of [10, Sec. 2.6.8] by
passing to inverses. For brevity, from now on, we stop writing explicitly the restrictions
to the intersections in formulas involving sections defined over different open subsets.

For a homomorphism G1 → G2 the induced map of pointed sets H1(X,G1)→ H1(X,G2)
is defined in an obvious way. Now assume we are given an abelian extension of sheaves
of groups

1→ A→ G ′ p- G → 1.

This means that A is a sheaf of abelian groups, which is a normal subsheaf in G ′, and G
is the corresponding quotient. Then we have a natural connecting map

δ0 : H0(X,G)→ H1(X,A)

such that δ0(g) = 1 if and only if g lifts to a global section of G ′. Namely, for an open
covering Ui we can find g′i ∈ G ′(Ui) such that p(g′i) = g, and set δ0(g) to be the class of
the 1-cocycle (g′i)

−1g′j ∈ A(Uij). Note that δ0 is not a homomorphism in general. Rather,
it satisfies

δ0(g1g2) = g−1
2 (δ0(g1)) + δ0(g2), (1.4.1)

where we write the group structure in H1(X,A) additively and use the natural action
of H0(X,G) on H1(X,A) induced by the adjoint action of G on A. (This means that
g 7→ δ0(g−1) is a crossed homomorphism.) An equivalent restatement of (1.4.1) is that
there is a twisted action of H0(X,G) on H1(X,A) given by

g × a = g(a) + δ0(g−1), where g ∈ H0(X,G), a ∈ H1(X,A). (1.4.2)

Explicitly, the usual action of g ∈ H0(X,G) on the class of a Cech 1-cocycle (aij) with
values in A is given by g′iaij(g

′
i)
−1, where g′i ∈ G ′(Ui) are liftings of g. On the other hand,

the twisted action of g on aij is given by g′iaij(g
′
j)
−1.
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Next, starting from a class g ∈ H1(X,G), we can construct a class

δ1(g) ∈ H2(X,Ag)
such that δ1(g) = 0 if and only if g is in the image of the map H1(X,G ′) → H1(X,G).
Here Ag is the sheaf obtained from A by twisting with g. Namely, if g is represented by
a Cech 1-cocycle gij ∈ G(Ui) then we have isomorphisms ψi : A|Ui

→ Ag|Ui
such that

ψj = ψi ◦ gij over Uij. To construct δ1(g), for some covering (Ui), we can choose liftings
g′ij ∈ G ′(Uij) for a 1-cocycle (gij) representing g (such that g′ijg

′
ji = 1 and g′ii = 1). Then

δ1(g) is the class of the 2-cocycle (ψi(g
′
ijg
′
jkg
′
ki)) with values in Ag.

Finally, for a given class g ∈ H1(X,G), we need the following description of the fiber
of the map

H1(X,G ′) H1(p)- H1(X,G)

over g. Assume that this fiber is nonempty and let us choose an element g′ ∈ H1(X,G ′)
projecting to g. Then we have an exact sequence of twisted groups

1→ Ag → (G ′)g′ → Gg → 1.

Thus, as before we have two actions of the group H0(X,Gg) on H1(X,Ag). Now we can
construct a surjective map

H1(X,Ag)→ H1(p)−1(g), (1.4.3)

such that the fibers of this map are the orbits of the twisted action of H0(X,Gg) on
H1(X,Ag) (see (1.4.2)). Namely, let (g′ij) be a Cech 1-cocycle representing g′, and let
aij ∈ A(Uij) be the g-twisted 1-cocycle, so that ψi(aij) is a 1-cocycle with values in Ag.
This means that over Uijk one has

aij Ad(gij)(ajk) = aik.

Then our map (1.4.3) sends (aij) to the class of (aijg
′
ij).

In the particular case when the (usual) action of H0(X,Gg) on H1(X,Ag) is trivial, the
corresponding connecting map

δ0 : H0(X,Gg)→ H1(X,Ag)
is a group homomorphism, and the map (1.4.3) induces an identification of the cokernel
of this homomorphism with H1(p)−1(g). Equivalently, in this case the map (1.4.3) corre-
sponds to a transitive action of H1(X,Ag) on H1(p)−1(g), such that the stabilizer of any
element is the image of δ0. (In [10, Sec. 2.6.8] it is stated incorrectly that such an action
exists in the general case.)

1.5. The functor of NC-families extending a given excellent family. Let Z be a
projective algebraic variety, B a smooth algebraic variety, and let E be an excellent family
of bundles on Z with the base B (see Definition 0.0.1). Note that our definition is slightly
stronger than [6, Def. (5.4.1)] in that we add condition (d), which is used crucially in the
base change calculations.

For an NC-nilpotent scheme X and a usual scheme Z there is a natural product oper-
ation which gives an NC-nilpotent scheme X ×Z, so that functions on Z become central
in OX×Z . In the affine case this corresponds to the operation of extension of scalars
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R 7→ R ⊗C S from NC-nilpotent C-algebras to NC-nilpotent S-algebras, where S is a
commutative C-algebra.

Following [6], we consider the following functor of noncommutative families of vector
bundles compatible with E .

Definition 1.5.1. For an excellent family E over a smooth (commutative) base B, we
define the functor hNCB : N → Sets sending Λ ∈ N to the isomorphism classes of objects
in the following category CΛ. Consider NC-schemes X = Spec(Λ) and X × Z. Let us
denote by Xab

0 = Spec(Λab
0 ) the reduced scheme associated with the abelianization of X.

Then the objects of CΛ are the triples (f, EΛ, φ) consisting of

(i) a morphism f : Xab
0 → B of schemes,

(ii) a locally free sheaf of right OX×Z-modules EΛ,

(iii) an isomorphism φ : OXab
0 ×Z ⊗ EΛ

∼→ (f × id)∗E .

A morphism (f1, E1, φ1) → (f2, E2, φ2) exists only if f1 = f2 and is given by an isomor-
phism E1 → E2 commuting with the φi. On morphisms hNCB is the usual pullback.

The following result is stated in [6] (see [6, Prop. (5.4.3)(a)(b)]). However, we believe
our stronger assumptions on the family E , including condition (d), are needed for it to
hold, and we will give a complete proof below.

Proposition 1.5.2. The functor hNCB is formally smooth and the natural morphism of
functors hB → hNCB |Com is an isomorphism.

Lemma 1.5.3. For any commutative algebra Λ and any (f, EΛ, φ) ∈ hNCB (Λ) the natural
map

Λ→ End(EΛ)

is an isomorphism.

Proof. We prove this by the degree of nilpotency of the nilradical of Λ. Assume first that
Λ is reduced. Then we have EΛ = (f × id)∗E . Hence, by the base change theorem,

H0(X × Z, (f × id)∗End(E)) ' H0(X,RpX,∗(f × id)∗End(E)) '
H0(X,H0(Lf ∗Rρ∗End(E))),

where X = Spec(Λ). Since Riρ∗End(E) are locally free for i ≥ 1, we have

H0(Lf ∗Rρ∗End(E)) ' f ∗ρ∗End(E) ' OX ,

where in the last isomorphism we used assumption (a). This shows that our assertion
holds for such Λ.

Next, assume we have a central extension 0 → I → Λ′ → Λ → 0 of commutative
algebras, such that I is a module over Λ0, the quotient of Λ by its nilradical. Assume that
Λ → End(EΛ) is an isomorphism for any (f, EΛ, φ) ∈ hNCB (Λ) and let us prove a similar
statement over Λ′. Given (f, EΛ′ , φ

′) ∈ hNCB (Λ′), let EΛ be the induced locally free sheaf
over Spec(Λ)×Z. Then we have an exact sequence of coherent sheaves on Spec(Λ′)×Z,

0→ EΛ0 ⊗ p∗1I → EΛ′ → EΛ → 0,
15



where I is the ideal sheaf on Spec(Λ′) corresponding to I. Taking sheaves of homomor-
phisms from EΛ′ we get an exact sequence

0→ End(EΛ0)⊗ p∗1I → End(EΛ′)→ End(EΛ)→ 0

Passing to global sections we obtain a morphism of exact sequences

0 - I - Λ′ - Λ - 0

0 - H0(X0 × Z, End(EΛ0)⊗ p∗1I)
?

- End(EΛ′)
?

- End(EΛ)
?

Note that EΛ0 ' (f × id)∗E , so, as before, we get

H0(X0 × Z, End(EΛ0)⊗ p∗1I) ' H0(X0, I ⊗H0(Lf ∗Rρ∗End(E))) '
H0(X0, I ⊗ f ∗ρ∗End(E)) ' I,

where X0 = Spec(Λ0). Thus, in the above morphism of exact sequences the leftmost and
the rightmost vertical arrows are isomorphisms. Hence, the middle vertical arrow is also
an isomorphism. �

Proof of Proposition 1.5.2. Assume we are given a central extension

0→ I → Λ′ → Λ→ 0 (1.5.1)

in N and an element (f, EΛ, φ) ∈ hNCB (Λ), so that EΛ is a locally free sheaf of right
OX×Z-modules of rank r, where X = Spec(Λ). We have to check that it lifts to a locally
free sheaf of right OX′×Z-modules, where X ′ = Spec(Λ′). Furthermore, it is enough to
consider central extensions as above, where the nilradical of Λab acts trivially on I, so
that I is a Λab

0 -module.
We have a natural abelian extension of sheaves of groups on Xab × Z,

1→ Matr(OXab×Z)⊗ p∗1I → GLr(OX′×Z)→ GLr(OX×Z)→ 1 (1.5.2)

where I is the coherent sheaf on Xab corresponding to I. The isomorphism class of EΛ

corresponds to an element of the nonabelian cohomology H1(Xab × Z,GLr(OX×Z)). By
the standard formalism (see Sec. 1.4) the obstruction to lifting this class to a class in
H1(Xab×Z,GLr(OX′×Z)) lies in H2(Xab×Z, End(EΛab

0
)⊗p∗1I), where EΛab

0
is induced by

EΛ. We claim that this group H2 vanishes. Indeed, we have EΛab
0
' (f × id)∗E . Applying

the base change theorem, we get an isomorphism

RΓ(Xab
0 × Z, (f × id)∗End(E)⊗ p∗1I) ' RΓ(Xab

0 , I ⊗ Lf ∗Rρ∗End(E)).

It remains to observe that by our assumptions (c) and (d), the complex of sheaves
Lf ∗Rρ∗End(E) has no cohomology in degrees ≥ 2 (recall that Xab

0 is an affine scheme).
To prove the second assertion we argue by induction on the degree of nilpotency of

the nilradical of a test algebra Λ. Thus, we consider a square zero extension (1.5.1) of
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commutative algebras, where I is a Λab
0 -module, and study the corresponding commutative

square

hB(Λ′) - hB(Λ)

hNCB (Λ′)
?

- hNCB (Λ)
?

(1.5.3)

We assume that the right vertical arrow is an isomorphism and we would like to prove the
same about the left vertical arrow. We know that both horizontal arrows are surjective.
Furthermore, using the interpretation in terms of nonabelian H1 and the exact sequence
(1.5.2), we can get a description of the preimage of an element EΛ ∈ hNCB (Λ) under the
bottom arrow. Namely, the corresponding sequence of twisted sheaves is

0→ End(Eab)⊗ p∗1I → Aut(EΛ′)→ Aut(EΛ)→ 1. (1.5.4)

By Lemma 1.5.3, we have Aut(EΛ) = Λ∗, and it is easy to see that this group acts trivially
on H1(Xab × Z, End(EΛab)⊗ p∗1I) (since Λ′ is in the center of Aut(EΛ′)). It follows that
the preimage of EΛ in hNCB (Λ′) is the principal homogeneous space for the abelian group

coker(Aut(EΛ)
δ0- H1(Xab × Z, End(EΛab)⊗ p∗1I)),

where δ0 is the connecting homomorphism associated with (1.5.4). However, by Lemma
1.5.3, fixing a lifting EΛ′ ∈ hNCB (Λ′), we get that the previous map in the long exact
sequence, Aut(EΛ′)→ Aut(EΛ) is just the projection (Λ′)∗ → Λ∗, so it is surjective. This
implies that the preimage of EΛ is the principal homogeneous space for

H1(Xab × Z, End(EΛab
0

)⊗ p∗1I) ' H0(Xab
0 , I ⊗H1(Lf ∗Rρ∗End(E))).

By our assumptions (c) and (d), we have

H1(Lf ∗Rρ∗End(E)) ' f ∗R1ρ∗End(E),

thus, the above group is H0(Xab
0 , I ⊗ f ∗R1ρ∗End(E)).

On the other hand, different extensions of Spec(Λ) → B to Spec(Λ′) → B correspond
to H0(B, f∗I ⊗ TB). It is easy to check that the map hB(Λ′) → hNCB (Λ′) is compatible
with the Kodaira-Spencer map

H0(B, f∗I ⊗ TB) ' H0(Xab
0 , I ⊗ f ∗TB)→ H0(Xab

0 , I ⊗ f ∗R1ρ∗End(E)),

which is an isomorphism by assumption (b). It follows that the map hB(Λ′) → hNCB (Λ′)
is an isomorphism. �

We have the following simple observation.

Proposition 1.5.4. The functor hNCB : N → Sets factors through aN .

Proof. Suppose we have two homomorphims f1, f2 : Λ′ → Λ in N such that they are
conjugate, i.e., f2 = θf1, where θ = θu is an inner automorphism of Λ: θu(x) = uxu−1 for
some unit u in Λ. We have to check that f1 and f2 induce the same map h(Λ′) → h(Λ).
Equivalently, we have to check that the map h(θ) : h(Λ)→ h(Λ) is equal to the identity.
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Note that θu induces an automorphism of the NC-scheme X = Spec(Λ), which we still
denote by θ, and the map h(θ) sends a right OX×Z-module EΛ to (θ × idZ)∗EΛ. Now we
observe that the automorphism θ× id of X×Z acts trivially on the underlying topological
space and is given by the inner automorphism θu of the structure sheaf O = OX×Z ,
associated with u which we view as a global section of O∗. Thus, the operation (θ× idZ)∗

is given by tensoring on the right with the O −O bimodule θuO (which is the structure
sheaf with the left O-action twisted by θu).

Now we use the general fact that twisting by an inner automorphism does not change
an isomorphism class of a bimodule. Namely, if M is an R − S-bimodule and θu is
the inner automorphism of R associated with u ∈ R∗, then we have an isomorphism of
R− S-bimodules,

M
∼-

θuM : m 7→ um.

This construction also works for bimodules over sheaves of rings and an inner auto-
morphism associated with a global unit. This implies that in our situation the functor
(θ × idZ)∗ is isomorphic to identity, and our claim follows. �

Remark 1.5.5. In fact, our proof of Proposition 1.5.4 shows a little more. We can
enhance hNCB to a functor with values in groupoids, by considering the category of the
data as in Definition 1.5.1 and isomorphisms between them. On the other hand, we can
consider a 2-category of algebras in N with the usual 1-morphisms and with 2-morphisms
between f1, f2 : Λ′ → Λ given by u ∈ Λ∗ such that f2 = θuf1. Then the functor hNCB lifts
to a 2-functor from this 2-category to the 2-category of groupoids.

Theorem 1.5.6. If dimB ≥ 1 then for any d ≥ 1 the functor hNCB |Nd
is not representable

by an NC-nilpotent scheme of degree d.

Proof. It is enough to consider the case d = 1. Suppose hNCB |N1 is representable by
an NC-nilpotent scheme X of degree 1. Then by Proposition 1.5.2, X is 1-smooth and
Xab ' B. Let U = Spec(A) ⊂ X be an affine NC-subscheme corresponding to an open
affine subscheme of B of dimension ≥ 1. Then A is a 1-smooth algebra with dimAab ≥ 1,
and hA is a subfunctor of hNCB |N1 . Since the latter functor factors through aN1, this would
imply that hA also factors through aN1.

It remains to prove that for any 1-smooth algebra A with dimAab ≥ 1 the functor
hA does not factor through aN1. To this end we will give an example of two conjugate
homomorphisms f1, f2 : A→ A′ such that f1 6= f2. Set

A′ = (A ∗ C[z, z−1])[[ab]]/I3.

It is easy to see that A′ is 1-smooth and (A′)ab = Aab ⊗ C[z, z−1]. Therefore, by Lemma
1.1.1(i), the element z is not in the center of A′. Hence, we can take f1 : A → A′ to be
the natural homomorphism and set f2(a) = zf1(a)z−1. �

2. Representability results

2.1. Local representability in aN . Kapranov gives the following criterion for a for-
mally smooth functor on Nd to be representable by an NC-scheme.
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Proposition 2.1.1. ([6, Thm. (2.3.5)]) Let M be a smooth algebraic variety. A formally
smooth functor h : Nd → Sets such that h|Com = hM , is representable by a d-smooth
NC-scheme if and only if for any pair of central extensions in Nd, Λ1 → Λ, Λ2 → Λ, the
natural map

h(Λ1 ×Λ Λ2)→ h(Λ1)×h(Λ) h(Λ2)

is an isomorphism.

We will prove an analogous representability criterion for affine aNC-schemes. As in the
case of NC-schemes the main idea is to study fibers of the map h(p) : h(Λ′)→ h(Λ) for a
central extension

0→ I → Λ′
p- Λ→ 0 (2.1.1)

(cf. the proof of [6, Lem. (2.3.6)]).
For d ≥ 1, let h : aNd → Sets be a functor such that h|aNd−1

is representable by
A ∈ aNd−1. The key new ingredient we have to use is the following. Given a central
extension (2.1.1) with Λ′ ∈ Nd, Λ ∈ Nd−1, and a homomorphism f : A→ Λ, we set

U(f) := {u ∈ Λ∗ | uf(a)u−1 = f(a)∀a ∈ A}.
Then we have a natural map

∆f : U(f)→ Der(A, I) = Der(Aab, I).

where

∆f (u) : A→ I : a 7→ [u, f(a)]Λ′u
−1. (2.1.2)

Here for l1, l2 ∈ Λ, we define [l1, l2]Λ′ ∈ Λ′ by

[l1, l2]Λ′ := [l̃1, l̃2], (2.1.3)

where l̃i is a lifting of li to Λ′. Note that [u, f(a)]Λ′ ∈ I.
Furthermore, one can check that the image of ∆f depends only on the image of f in

HomaN (A,Λ) = h(Λ). Also, using the fact that I is central we immediately check that
∆f is a group homomorphism. The next result shows that in the case when h itself is
representable, the cokernel of ∆f maps bijectively to h(p)−1(f).

Lemma 2.1.2. Let A′ be an NC-nilpotent algebra of degree d such that A = A′/Id+1A
′.

Then for any central extension (2.1.1), with Λ′ ∈ Nd and Λ ∈ Nd−1, and any algebra
homomorphism f : A′ → Λ, there exists a natural transitive action of the group Der(A, I)
on the fiber hA′(p)

−1(f) of the map hA′(p) : hA′(Λ
′) → hA′(Λ), such that the action of

Der(A, I) on any element of this fiber induces a bijection

coker(∆f )
∼- hA′(p)

−1(f).

Proof. It is well known that the difference between two homomorphisms A′ → Λ′ lifting
f : A′ → Λ is a derivation A′ → I, and that this induces a simply transitive action
of Der(A′, I) = Der(A, I) on the set of such liftings. Now assume that we have two
homomorphisms f ′1, f

′
2 : A→ Λ′, such that both p◦f ′1 and p◦f ′2 are conjugate to f . Then

replacing f ′1 and f ′2 by conjugate homomorphisms we can assume that p ◦ f ′1 = p ◦ f ′2 = f .
Now it is easy to see that if f ′2 and f ′1 are conjugate by u ∈ (Λ′)∗ then u ∈ U(f), and
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the difference f ′2 − f ′1 is the derivation a 7→ [u, f(a)]Λ′u
−1. This establishes the required

bijection. �

Next, we return to the situation when only h|aNd−1
is representable. Recall (see [6,

Prop. (1.2.5)]) that for any central extension (2.1.1) there is a natural isomorphism

Λ′ ×Λ Λ′
∼- Λ′ ×Λab (Λab ⊕ I) : (x, y) 7→ (x, (xab, y − x)), (2.1.4)

where x→ xab is the projection Λ′ → Λab, and Λab⊕ I is the trivial commutative algebra
extension of Λab by I (such that I2 = 0 and Λab is a subalgebra). Let us assume in
addition that h commutes with pull-backs by commutative nilpotent extension, so that

h(Λ′ ×Λab (Λab ⊕ I)) ' h(Λ′)×h(Λab) h(Λab ⊕ I).

Combining this with the above isomorphism we get a natural map

h(Λ′)×h(Λab) h(Λab ⊕ I) ' h(Λ′ ×Λ Λ′)→ h(Λ′)×h(Λ) h(Λ′). (2.1.5)

Now assume Λ′ ∈ Nd, Λ ∈ Nd−1 and we are given an element f ′ ∈ h(Λ′) lifting f ∈ h(Λ).
Since h|aNd−1

' hA, we have a natural identification of the fiber of h(Λab⊕ I)→ h(Λab) =
Homalg(A,Λ

ab) over fab with Der(A, I). Thus, for any D ∈ Der(A, I), we can consider a
pair (f ′, fab + D) in the left-hand side of (2.1.5). Let us define f ′ + D ∈ h(p)−1(f), so
that (f ′, f ′ +D) is the image of (f ′, fab +D) under (2.1.5). In this way we get a map

δf ′ : Der(A, I)→ h(p)−1(f) : D 7→ f ′ +D. (2.1.6)

It is easy to see (by considering Λ′ ×Λ Λ′ ×Λ Λ′) that in this way we get an action of the
group Der(A, I) on h(p)−1(f). Note that in the case when h is representable by some
A′ ∈ Nd, this operation is exactly the operation of adding a derivation A′ → A→ I to a
homomorphism A′ → Λ′.

Now we can prove the following local aNC version of Proposition 2.1.1.

Proposition 2.1.3. Let A be a (d−1)-smooth algebra in aNd−1, and let h : aNd → Sets be
a formally smooth functor such that h|aNd−1

' hA. Then h is representable by a d-smooth
algebra in aNd if and only if the following two conditions hold.

(i) For any nilpotent extension Λ′ → Λ with Λ′ ∈ aNd and Λ ∈ Com, and any
commutative nilpotent extension Λ′′ → Λ, the natural map

h(Λ′ ×Λ Λ′′)→ h(Λ′)×h(Λ) h(Λ′′)

is a bijection.
(ii) For every central extension (2.1.1), for any f ′ ∈ h(Λ′) extending f ∈ h(Λ), the

map δf ′, which is well defined due to condition (i), induces a bijection

coker(∆f )
∼- h(p)−1(f).

Proof. Assume first that h is representable by A′ ∈ aNd. To check condition (i) for
h = hA′ we first note that since Λ and Λ′′ are commutative, the set h(Λ′) ×h(Λ) h(Λ′′)
can be described as pairs of homomorphisms f ′ : A → Λ′ and f ′′ : A → Λ′′ lifting the
same homomorphism f : A → Λ, up to the equivalence replacing f ′ by a conjugate
homomorphism. Clearly, this is the same as giving a homomorphism A′ → Λ′ ×Λ Λ′′ up
to conjugacy. On the other hand, condition (ii) for hA′ follows from Lemma 2.1.2.
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Now assume that conditions (i) and (ii) hold, and let A′ → A be a d-smooth thickening
of A (it exists by [6, Prop. (1.6.2)]). Let e ∈ h(A) be the family corresponding to the
isomorphism h|aNd−1

' hA. Since h is formally smooth, there exists an element e′ ∈ h(A′)
lifting e. Let hA′ → h be the induced morphism of functors. We already know that it is an
isomorphism on aNd−1, and we claim that it is an isomorphism on aNd. The argument is
similar to that of Proposition 1.5.2. Given Λ′ ∈ Nd, we can fit it into a central extension
(2.1.1) with Λ ∈ Nd−1. Then we consider the commutative square

hA′(Λ
′) - hA′(Λ)

h(Λ′)
?

- h(Λ)
?

Since hA′(Λ) ' hA(Λ) ' h(Λ), we know that the right vertical arrow is an isomorphism.
Also, both horizontal arrows are surjective. Let us fix a homomorphism f ∈ hA(Λ), and its
lifting f ′ ∈ hA′(Λ′). As we have seen in Lemma 2.1.2, the fiber of the top horizontal arrow
over f is identified with coker(∆f ). The same is true for the fiber of the bottom horizontal
arrow over f , by condition (ii). It remains to observe that both isomorphisms are induced
by the operation (2.1.6) of adding a derivation in Der(A, I), which is compatible with
morphisms of functors on aNd, extending hA on aNd−1. Thus, the left vertical arrow
induces an isomorphism between the fibers of the horizontal arrows over f . Since f was
arbitrary, we deduce that the left vertical arrow is an isomorphism. �

Remark 2.1.4. All the fiber products of algebras above are taken in Nd. Fiber products
in aNd usually do not exist (unless one of the factors is commutative).

2.2. Local representability of the functor of NC-families by an aNC scheme.
Assume we are in the situation of Sec. 1.5. By Proposition 1.5.4, we can view hNCB as a
functor on the category aN . Our main goal is to prove the local representability of the
corresponding functor hNCB |aNd

by a d-smooth NC-algebra.

Theorem 2.2.1. Assume that the base B of an excellent family is affine. Then for every
d ≥ 0 the functor hNCB |aNd

is representable by a d-smooth thickening of B. Hence, the
functor hNCB is representable by an NC-smooth thickening of B.

The proof will proceed by induction on d. We need two technical lemmas (the second
of which is a noncommutative extension of Lemma 1.5.3).

Lemma 2.2.2. Assume that hNCB |aNd−1
is representable by A ∈ Nd−1. Then for any

central extension (2.1.1) with Λ ∈ aNd−1, Λ′ ∈ aNd, and any homomorphism f : A→ Λ,
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there is a commutative square

U(f)
∆f - Der(Aab, I)

Aut(EΛ)
? δ0- H1(Spec(Λab)× Z,End(Eab)⊗ I)

−KS

?

(2.2.1)

Here ∆f is given by (2.1.2); EΛ = Ef is the family in hNCB (Λ) induced by f ; the map
KS is induced by the Kodaira-Spencer map; and the homomorphism U(f) → Aut(Ef )
associates with u ∈ Λ∗ an automorphism of Ef induced by the left multiplication by u
on Λ. The map δ0 is the connecting map associated with the exact sequence of sheaves
(1.5.4), where EΛ′ is a vector bundle over Spec(Λ′)× Z lifting EΛ. In particular, in this
situation δ0 is a group homomorphism.

Proof. We are going to compute the maps in the square (2.2.1) using local trivializa-
tions. Let us denote by Eab the original family over B × Z, and let E be the family
over Spec(A) × Z corresponding to the element idA ∈ hA(A) ' hNCB (A). We denote
by fab the homomorphism Aab → Λab induced by f and the corresponding morphism of
affine schemes Spec(Λab) → Spec(Aab) = B. Note that by Proposition 1.5.2, we have an
isomorphism Eab = (fab × id)∗Eab.
Step 1. Computation of δ0 : Aut(Ef )→ H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I).

Let us fix an open affine covering (Ui) of Spec(Λab)×Z such that Ef ′ is trivial over Ui.
Then, given an automorphism α ∈ Aut(Ef ), over Ui, we can lift α to an automorphism αi
of EΛ′ . Now over Ui ∩Uj the endomorphism α−1

i αj − id of EΛ′ factors through the kernel
of the projection Ef ′ → Ef , i.e., Eab ⊗ p∗1I. This gives the Cech 1-cocycle with values in
End(Eab)⊗ p∗1I, representing the class δ0(α).

Step 2. Computation of the KS-map

Der(Aab, I)→ H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I). (2.2.2)

Note that we have an identification

Der(Aab, I) ' H0(B, TB ⊗ fab∗ I).

Let us fix trivializations ϕabi : On → Eab over an affine open covering (Ui) of B × Z, and
let gabij = (ϕabi )−1ϕabj ∈ Matn(O(Ui ∩Uj)) be the corresponding transition functions. Then

to a vector field v on B with values in fab∗ I the KS-map associates the Cech 1-cocycle
ϕabi v(gabij )(gabij )−1(ϕabi )−1 on B × Z with values in End(Eab)⊗ p∗1fab∗ I.

We also need to calculate the image of this class under the isomorphism induced by the
projection formula

H1(B × Z, End(Eab)⊗ p∗1f∗I)
∼- H1(B × Z, (f × id)∗((f × id)∗End(Eab)⊗ p∗1I)) '

H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I).

To this end we note that the morphism fab × id : Spec(Λab)× Z → B × Z is affine, and

so Ũi := (fab × id)−1(Ui) is an affine open covering of Spec(Λab)× Z, over which we have
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the induced trivializations of Eab = (fab × id)∗Eab, which we still denote by ϕabi . Now
it is easy to see that the corresponding Cech 1-cocycle on Spec(Λab) × Z with values in
End(Eab)⊗ I is given by

ϕabi v(gabij )fab(gabij )−1(ϕabi )−1,

where we denote still by fab : O(Ui ∩ Uj) → O(Ũi ∩ Ũi) the homomorphism induced by

fab, and also extend v to a derivation O(Ui ∩ Uj)→ p∗1I(Ũi ∩ Ũj).
Step 3. Now we can check the commutativity of the square (2.2.1).

We start by choosing an affine open covering (Ui) of B×Z and trivializations of Eab over
Ui. Then we can lift these trivializations to some trivializations ϕi : OnSpec(A)×Z |Ui

→ E (see

Lemma 1.1.2). We denote by gij the corresponding transition functions in GLn(OSpec(A)×Z(Ui∩
Uj)).

By definition, ∆f (u) is the derivation

v(a) = [u, f(a)]Λ′u
−1 = [ũ, f̃(a)]ũ−1,

where ũ, f̃(a) ∈ Λ′ are some lifts of u and f(a) (note that Der(A, I) = Der(Aab, I)).
Hence, KS(∆f (u)) is represented by the 1-cocycle

ϕi[ũ, f̃(gij)]Λ′ũ
−1f̃(gij)

−1

ϕ−1
i = ϕi(ũf̃(gij)ũ

−1f̃(gij)
−1

− id)ϕ−1
i .

(2.2.3)

As in Step 2, we have the induced affine open covering Ũi of Spec(Λab) × Z, and the

induced trivializations ψi of Ef over Ũi. Let us choose a lifting EΛ′ of Ef to a vector
bundle over Spec(Λ′)×Z (it exists by formal smoothness of hNCB ), and liftings ψ′i of ψi to

trivializations of EΛ′ over Ũi (see Lemma 1.1.2). Note that we have ψ−1
i ψj = f(gij), and

hence (ψ′i)
−1ψ′j provide liftings f̃(gij) ∈ Λ′ of f(gij). The image of u ∈ U(f) in Aut(Ef )

can be represented over Ũi as ψiuψ
−1
i , where we view u as the corresponding operator

of the left multiplication by u (note that these operators are compatible on intersections
because u · f(gij) = f(gij) · u, due to the inclusion u ∈ U(f)). Using the lifting ũ ∈ Λ′ of

u we get local automorphisms of Ef ′ over Ũi, αi = ψ′iũ(ψ′i)
−1. Then

δ0(α) = α−1
i αj − id = (ψ′iũ

−1(ψ′i)
−1)(ψ′jũψ̃

−1
j )− id = ψ′i(ũ

−1f̃(gij)ũf̃(gij)
−1

− id)(ψ′i)
−1.

Comparing this with (2.2.3) we see that

δ0(α) = KS(∆f (u
−1)) = KS(−∆f (u)) = −KS(∆f (u)).

�

Lemma 2.2.3. Assume that hNCB |aNd
is representable by A ∈ aNd, so hNCB |aNd

' hA.
Then for every d-nilpotent algebra Λ and every homomorphism f : A → Λ, the induced
homomorphism U(f) → Aut(Ef ) is an isomorphism. Here Ef represents the family in
hNCB (Λ) induced by f .

Proof. We will prove the assertion by induction on d′ ≤ d such that Λ is d′-nilpotent. For
d′ = 0, i.e., when Λ is commutative, we have U(f) = Λ∗ and the assertion follows from
Lemma 1.5.3.
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Next, we have to see that both groups fit into the same exact sequences, when Λ′ is a
central extension of Λ by I. Namely, if f ′ : A→ Λ′ is a homomorphism lifting f , then by
Lemma 2.2.2, we have a morphism of exact sequences

1 - 1 + I - U(f ′) - U(f)
∆f - Der(Aab, I)

1 - 1 + I

id

?
- Aut(Ef ′)

?
- Aut(Ef )

? δ0- H1(Spec(Λab)× Z, End(Eab)⊗ p∗1I)

−KS

?

Note that the map KS is an isomorphism. Since the map U(f) → Aut(Ef ) is an iso-
morphism by the induction assumption, we deduce that U(f ′) → Aut(Ef ′) is also an
isomorphism. �

Proof of Theorem 2.2.1. By Proposition 1.5.2, we know that the assertion is true for d = 0.
Now, assuming that the functor hNCB |aNd−1

is representable, we will apply Proposition 2.1.3
to prove that hNCB |aNd

is representable. It suffices to check conditions (i) and (ii) of this
Proposition. To prove condition (i) assume that Λ′ → Λ and Λ′′ → Λ and nilpotent
extensions with Λ,Λ′′ ∈ Com. To see that the map

h(Λ′ ×Λ Λ′′)→ h(Λ′)×h(Λ) h(Λ′′)

is a bijection, we construct (as in [6, Lem. (5.4.4)]) the inverse map as follows. Starting
with families EΛ′ and EΛ′′ over Λ′ and Λ′′, and choosing an arbitrary isomorphism of
the induced families over Λ, we define the family over Λ′ ×Λ Λ′′ as the fibered product
EΛ′×EΛ EΛ′′ . One has to check that the result does not depend on a choice of isomorphism
of families over Λ (this may fail in general, but works for commutative Λ′′). Note that
different choices differ by an automorphism of EΛ, so it is enough to see that any such
automorphism can be lifted to an automorphism of EΛ′′ . But this follows immediately
from Lemma 1.5.3.

Next, let us check condition (ii). Given a central extension (2.1.1) with Λ′ ∈ Nd,
Λ ∈ Nd−1, and a family (fab, EΛ, φ) in hNCB (Λ), then choosing a lifting EΛ′ to a family
over Λ′, from the corresponding exact sequence of sheaves of groups (1.5.4) we get a
connecting map

δ0 : Aut(EΛ)→ H1(Xab × Z, End(EΛab)⊗ p∗1I).

Furthermore, by Lemma 2.2.2, δ0 is actually a group homomorphism (and the source of
this map acts trivially on the target). Thus, from the formalism of nonabelian cohomology
applied to the abelian extension of sheaves of groups (1.5.2) we get that different liftings
of EΛ to a family over Λ′ form a principal homogeneous space over coker(δ0) (see Sec.1.4).
Note that by Lemma (2.2.3), we have an isomorphism U(f) ' Aut(EΛ), where f : A→ Λ
is the homomorphism giving EΛ. Thus, by Lemma 2.2.2, we can identify coker(δ0) with
coker(∆f ). Thus, to prove condition (ii), it remains to check that the two actions of
Der(A, I) on the set of liftings of EΛ are the same (the one coming from the formalism of
nonabelian cohomology, and the other one given by the map (2.1.6)).

To this end we use the computation of the Kodaira-Spencer map (2.2.2) using local
trivializations. Namely, we choose trivializations of the universal bundle E over an open
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covering of Spec(A) × Z, and denote by gij the corresponding transition functions, so
that f(gij) are the transition functions for EΛ. Then, in the notation of Lemma 2.2.2, a
derivation v ∈ Der(A, I) = Der(Aab, I) gives rise to the Cech 1-cocycle

ϕiv(gij)f(gij)
−1ϕ−1

i

on Spec(Λab) × Z with values in End(Eab) ⊗ p∗1I. The corresponding f(gij)-twisted 1-
cocycle with values in Matr(O)⊗ p∗1I is (v(gij)f(gij)

−1). Now by definition, the action of
v on the set of liftings of f(gij) to a 1-cocycle with values in GLr(OSpec(Λ′)×Z) sends (g̃ij)
to

((1 + v(gij)f(gij)
−1) · g̃ij = (g̃ij + v(gij)). (2.2.4)

On the other hand, from v we get a homomorphism fab + v : A → Λab ⊕ I, and hence,
the 1-cocycle (fab + v)(gij) with values in GLr(OSpec(Λab⊕I)×Z) lifting fab(gij). Hence, a
lifting g̃ij of f(gij) together with v defines a 1-cocycle

(g̃ij, (f
ab + v)(gij))

with values in GLr(OSpec(Λ′×
Λab (Λab⊕I))×Z). It remains to observe that under the isomor-

phism (2.1.4) it corresponds to the 1-cocycle

(g̃ij, g̃ij + v(gij))

with values in GLr(OSpec(Λ′×ΛΛ′)×Z), which has (2.2.4) as the same second component. �

2.3. Nonabelian hypercohomology. We will use below the following simple general-
ization of nonabelian H1. Let G be a sheaf of groups over a topological space X, and let
E be a sheaf of sets, equipped with a G-action. We view a pair G y E as a generalization
of a length 2 complex.

For an open covering U = (Ui)i∈I of X, we define the set of 1-cocycles over U for the
pair G y E :

Z1(U ,G y E) :={(gij ∈ G(Uij))i,j∈I , (ei ∈ E(Ui))i∈I | gii = 1, gijgji = 1,

gijgjk = gik, ei = gij(ej)}, (2.3.1)

where as usual we denote Uij = Ui ∩ Uj, Uijk = Ui ∩ Uj ∩ Uk (and the restrictions to
appropriate intersections are assumed). Two 1-cocycles over U , (gij, ei) and (g̃ij, ẽi) are
called cohomologous if for some collection hi ∈ G(Ui) we have

g̃ij = higijh
−1
j , ẽi = hi(ei).

It is easy to see that this defines an equivalence relation on Z1(U ,G y E), and we denote
by H1(U ,G y E) the corresponding set of equivalence classes. Passing to the limit over
all open coverings U , we get the nonabelian hypercohomology set H1(X,G y E).

These sets are natural: if we have a homomorphism of sheaves of groups G1 → G2 and
a compatible map of sheaves of sets E1 → E2, then we get the induced map

H1(X,G1 y E1)→ H1(X,G2 y E2).

Also, sending (gij, ei) to gij defines a projection to the usual nonabelian H1,

H1(X,G y E)→ H1(X,G).
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Recall that H1(X,G) classifies isomorphism classes of G-torsors. Similarly, the set
H1(X,G y E) can be identified with the isomorphism classes of pairs (P, e), where P is
a G-torsor, and e is a global section of the twisted sheaf EP = P ×G E .

Next, we have the following analog of the connecting homomorphismH1 → H2. Assume
that we have an abelian extension of sheaves of groups

1→ A0 → G ′
p- G → 1

over X, and sheaves of sets E ′ and E , where G ′ (resp., G) acts on E ′ (resp., E). Further,
assume that we have a sheaf of abelian groups A1 acting freely on E ′, and an identifcation
E = E ′/A1. We denote this action as a1 + e′, where a1 ∈ A1, e′ ∈ E ′. We require
the following compatibilities between these data. First, the projections p : E ′ → E and
p : G ′ → G should be compatible with the actions (of G ′ on E ′ and of G on E). Note that
this implies that there is an action of G ′ on A1, compatible with the group structure on
A1, such that

g′(a1 + e′) = g′(a1) + g′(e′).

Secondly, we require that the subgroup A0 ⊂ G ′ acts trivially on A1, so that there is an
induced action of G on A1, such that the above formula becomes

g′(a1 + e′) = p(g)(a1) + g′(e′).

In particular, for g′ = a0 ∈ A0, we get

a0(a1 + e′) = a1 + a0(e′). (2.3.2)

For e′ ∈ E ′ and a0 ∈ A0, let us define de′(a0) ∈ A1 from the equation

a0(e′) = de′(a0) + e′

(this is possible since a0 acts trivially on E). Furthermore, (2.3.2) easily implies that
da1+e′(a0) = de′(a0), so we have a well defined map of sheaves

E × A0 → A1 : (e, a0) 7→ de(a0),

compatible with the group structures in A0 and A1, such that

a0(e′) = dp(e′)(a0) + e′.

In particular, for every section e of E over an open subset U ⊂ X we have a complex of
abelian groups over U , (A•, de). Note that G acts on A0 (via adjoint action Ad(g)), A1

and E , and we have

g(de(a0)) = dg(e)(Ad(g)a0). (2.3.3)

Now assume we have a class c ∈ H1(X,G y E) represented by a Cech 1-cocycle (gij, ei).
Let g = (gij) be the induced class in H1(X,G). We have the corresponding twisted sheaves
Ag0 and Ag1, and (2.3.3) implies that the dei ’s glue into a global differential

de : Ag0 → A
g
1.

We are going to define an obstruction class δ1(c) with values in

H2(X, (Ag•, de)),
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such that it vanishes if and only if (gij, ei) can be lifted to a class in H1(X,G ′ y E ′).
Namely, by making the covering small enough, we can assume that

gij = p(g′ij), g
′
ij ∈ G ′(Uij), ei = p(e′i), e

′
i ∈ E ′(Ui).

Then we have well defined elements a0,ijk ∈ A0(Uijk) and a1,ij ∈ A1(Uij), such that

g′ijg
′
jk = a0,ijkg

′
ik,

g′ij(e
′
j) = a1,ij + e′i.

It is easy to check that (a0,ijk, a1,ij) satisfy the equations

a0,ijk + a0,ikl = Ad(gij)a0,jkl + a0,ijl, a1,ij + gij(a1,jk) = dei(a0,ijk) + a1,ik,

which exactly means that we get a 2-cocycle δ1(gij, ei) with values in (Ag•, de).
One can check that this construction gives a well defined element δ1(c) ∈ H2(X, (Ag•, de)).

Namely, a different choice of liftings g′ij 7→ a0,ijg
′
ij, e

′
i 7→ a1,i + e′i would lead to adding

the coboundary of (a0,ij, a1,i) to the twisted 2-cocycle (a0,ijk, a1,ij). On the other hand,
changing (gij, ei) to (higijh

−1
j , hi(ei)) would lead to a different presentation of the twisted

sheaves Ag•, so that the action of hi glues into isomorphism between two presentations.
Our 2-cocycles δ1(gij, ei) and δ1(higijh

−1
j , hi(ei)) correspond to each other under this iso-

morphism.
Next, let us assume that a class c ∈ H1(X,G y E) is lifted to a class c′ ∈ H1(X,G ′ y

E ′). (More precisely, we need to fix the corresponding pair (P ′, e′) where P ′ is G ′-torsor
and e′ is a global section of E ′P ′ .) Let g ∈ H1(X,G) be the image of c. We define the
following subgroup in H0(X,Gg):

H0(X,G, c) := {(αi ∈ G(Ui)) | αi = gijαjg
−1
ij , αi(ei) = ei},

where (gij, ei) is a Cech representative of c. We have a natural connecting map (depending
on a choice of c′)

δ0 : H0(X,G, c)→ H1(X, (Ag•, de)),
defined as follows. We can assume (gij, ei) comes from a Cech representative (g′ij, e

′
i) for

c′. Let α = (αi) be an element in H0(X,G, c). We can assume that each αi can be lifted
to α′i ∈ G ′(Ui). Then we have

α′i · a0,ij = g′ijα
′
j(g
′
ij)
−1, α′i(a1,i + e′i) = e′i,

for uniquely defined a0,ij ∈ A0(Uij), a1,i ∈ A0(Ui). It is easy to check that the following
equations are satisfied:

a0,ij + Ad(gij)(a0,jk) = a0,ik, dei(a0,ij) = a1,i − gij(a1,j), (2.3.4)

which means that (a0,ij, a1,i) is a 1-cocycle with values in (Ag•, de). We set δ0(αi) to be
the class of this 1-cocycle. As in Sec. 1.4, one can check that α 7→ δ0(α−1) is a crossed
homomorphism, i.e., equation (1.4.1) is satisfied.

Next, we have a natural surjective map (depending on c′)

H1(X, (Ag•, de))→ Lc, (2.3.5)

where Lc ⊂ H1(X,G ′ y E ′) is the set of liftings of c. Namely, given a twisted Cech
1-cocycle with values in (Ag•, de), (a0,ij, a1,i), so that equations (2.3.4) are satisfied, and a
representative (g′ij, e

′
i) of c′, we get a new lifting (a0,ijg

′
ij, a1,i+e′i). Furthermore, as in Sec.
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1.4, we can identify the fibers of (2.3.5) with the orbits of the twisted action of H0(X,G, c)
on H1(X, (Ag•, de)), which is defined similarly to (1.4.2). In particular, in the case when
the usual action of H0(X,G, c) on H1(X, (Ag•, de)) is trivial (or equivalently, δ0 is a group
homomorphism), these orbits are simply the cosets for the image of δ0.

2.4. Families of representations of quivers. Now we are going to consider families
of representations of quivers (without relations). Let Q be a finite quiver with the set of
vertices Q0 and the set of arrows Q1. We denote by h, t : Q1 → Q0 the maps associating
with an arrow its head and tail.

As in [12], we can consider representations of Q over an NC-scheme X. Such a repre-
sentation is a collection of vector bundles (Vv)v∈Q0 over X, and a collection of morphisms
ea : Vt(a)→ Vh(a), for each a ∈ Q1.

With a collection V = (Vv)v∈Q0 of vector bundles over X we associate a triple of sheaves
of groups on the underlying topological space of X,

G(V) :=
∏
v

Aut(Vv), E0(V) :=
∏
v

End(Vv), E1(V) :=
∏
a

Hom(Vt(a),Vh(a)).

Note that there is a natural action of G(V) on E1(V) given by

(gv) · (φa) = (gh(a)φag
−1
t(a)).

In the case of trivial bundles Vv = Onv , for a dimension vector n•, we denote these sheaves
by G(n•), E0(n•) and E1(n•). When we want to stress the dependence on the NC-scheme
X we write G(n•, X), etc.

A structure of a representation of Q on V is given by a global section e = (ea) of E1(V).
For such a structure e we can build a 2-term complex

E•(V , e) : E0(V)
df- E1(V),

where the differential is given by de(φv) = φh(a)ea − eaφt(a). Note that H0E•(V , e) is
precisely the sheaf of endomorphisms of (V , e) as a representation of Q.

Let (V , e) be a representation of Q over X. Over some open affine covering U = (Ui)
of X we can choose a trivialization ϕi = (ϕv,i) :

⊕
vO

nv
Ui
→

⊕
v Vv|Ui

. Then over each Ui
we have morphisms

ea,i := ϕ−1
h(a),ieaϕt(a),i ∈ Matnt(a)×nh(a)

(O(Ui)) = E1(n•)(Ui),

and over intersections Ui ∩ Uj we have transition functions

gij = (gv,ij) = ϕ−1
i ϕj ∈

∏
v

GLnv(O(Ui ∩ Uj)) = G(n•)(Ui ∩ Uj).

One immediately checks that (gij, ea,i) defines a Cech 1-cocycle with values in the pair
G(n•) y E1(n•) (see Sec. 2.3). Furthermore, a different choice of trivializations (ϕi) leads
to a cohomologous cocycle, so we have a well defined element of H1(X,G(n•) y E1(n•)).
One can easily check that in this way we get a bijection between the latter nonabelian
hypercohomology set and the set of isomorphism classes of representations (V , e) of Q,
such that the underlying vector bundle has dimension vector n•.
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For a central extension (2.1.1) we have an abelian extension of sheaves of groups

1→ E0(n•,OXab)⊗ I → G(n•,OX′)→ G(n•,OX)→ 1 (2.4.1)

where X = Spec(Λ), X ′ = Spec(Λ′), I ⊂ OX′ is the ideal sheaf associated with I, and an
exact sequence of abelian groups

0→ E1(n•)⊗ I → E1(n•, X
′)→ E1(n•, X)→ 0,

compatible with the actions of the groups from (2.4.1). From Sec. 2.3 we get that the
obstacle to lifting a representation (V , e) of Q over Spec(Λ) to a representation of Q over
Spec(Λ′) is an element of the hypercohomology H2(Xab, E•(V , e)⊗I). But the latter group
H2 fits into the exact sequence

. . .→ H1(Xab, E1(V)⊗ I)→ H2 → H2(Xab, E0(V)⊗ I)→ . . .

Since Xab is an affine scheme, we deduce that our H2 vanishes. Thus, the functor of
families of Q-representations on N is formally smooth.

Definition 2.4.1. With a representation (V , e) of Q over a commutative scheme B we
associate the KS-map, which is a morphism of coherent sheaves on B,

KS : TB → H1E•(V , e), (2.4.2)

defined as follows. Locally we can choose trivializations ϕ :
⊕

vOnv →
⊕

v Vv and, for a
local derivation v of OB, set

KS(v) := ϕv(ϕ−1eaϕ)ϕ−1 mod im(de) ∈ E1(V , f)/ im(de).

It is easy to check that a change of a local trivialization leads to the addition of a term
in im(de), so the map KS is well defined.

This definition is motivated by the fact that in the case when B = Spec(k) is the
point and (V, e) is a Q-representation over k, the space H1E•(V, e) is isomorphic to
Ext1((V, e), (V, e)) (see [1, Cor. 1.4.2]), which is the tangent space to deformations of
(V, e) as a Q-representation.

Now let us fix a family (Vab, eab) of representations of Q over a smooth commutative
base scheme B. We have the following analog of Definition 0.0.1.

Definition 2.4.2. We say that (Vab, eab) is an excellent family of representations of Q if

(a) the natural map OB → End(Vab, eab) = H0E•(Vab, eab) is an isomorphism;
(b) the Kodaira-Spencer map KS : TB → H1E•(Vab, eab) is an isomorphism.

Condition (a) is satisfied for families of endosimple representations (see [12, Lem. 3.4]).
Both conditions are satisfied for the moduli spaces of stable quiver representations corre-
sponding to an indivisible dimension vector (see [8, Prop. 5.3]).

Let us point out some consequences of assumptions (a) and (b). Given f : S → B
(where S is a commutative scheme), for (V, e) = (f ∗Vab, f ∗e) we have

End(V, e) = H0E•(V, e) = H0Lf ∗E•(Vab, eab) ' f ∗H0E•(Vab, eab) ' f ∗OB ' OS,
where we used the fact that H1E•(Vab, eab) ' TB is locally free. Also, if S is affine, then
for any coherent sheaf F on S we have

H1(E•(V, e)⊗F) ' H1E•(V, e)⊗F ' f ∗TB ⊗F .
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Now we consider the following analog of Definition 1.5.1 for quiver representations.

Definition 2.4.3. For an excellent family (Vab, eab) of representations of Q over a smooth
(commutative) base B, we define the functor hNCB : N → Sets by letting hNCB be the set
of isomorphism classes of the following data (f, VΛ, φ). Let X = Spec(Λ) and let Xab

0 be
the reduced scheme of the abelianization of X. Then f : Xab

0 → B is a morphism, (VΛ, eΛ)
is a representation of Q over X, and φ : (EΛ, eΛ)|Xab

0
' (f ∗Vab, f ∗eab is an isomorphism of

representations of Q.

We have the following analog of Theorem 2.2.1 (and Proposition 1.5.4).

Theorem 2.4.4. The functor hNCB is formally smooth and factors through the category
aN . If the base B is affine then for every d ≥ 0 the functor hNCB |aNd

is representable by
a d-smooth thickening of B.

Proof. The proof follows the same steps as in the case of families of vector bundles.
We have already shown before that hNCB is formally smooth. The fact that hNCB factors
through aN is proved similarly to Proposition 1.5.4.

The key technical computation is the analog of Lemma 2.2.2, which in our case claims
commutativity of the diagram

U(f)
∆f - Der(Aab, I)

Aut(VΛ, eΛ)
? δ0- H0(Xab,H1E•(Vab, eab)⊗ I)

−KS

?

(2.4.3)

associated with a central extension (2.1.1) and a representation (VΛ′ , eΛ′) of Q over X ′ =
Spec(Λ′). Here we assume that hNCB |aNd−1

is represented by A ∈ Nd−1, that Λ ∈ aNd−1 and
that (VΛ, eΛ) is a Q-representation over X = Spec(Λ) corresponding to a homomorphism
f : A → Λ. Also, (VΛ′ , eΛ′) is a Q-representation over X ′, extending (VΛ, eΛ). The right
vertical arrow in (2.4.3) is induced by the KS-map (2.4.2), and the bottom arrow is the
connecting map defined in Sec. 2.3. More precisely, we use here the identification for any
quiver representation (V , e) over X of the automorphism group Aut(V , e) with the group
H0(X,G(n•), c), where c ∈ H1(X,G(n•) y E1(n•)) is the class of (V , e). Also, we use the
natural isomorphism

H1(X, E•(Vab, eab)⊗ I)
∼- H0(X,H1E•(Vab, eab)⊗ I) (2.4.4)

induced by the projection E1(Vab)→ H1E•(Vab, eab).
We assume that there is an open covering (Ui) of B and trivializations ϕabi of Vab|Ui

and the compatible trivializations ψi of VΛ and VΛ′ over the covering Ũi = q−1Ui. Let
(gij, ei) be the Cech 1-cocycle corresponding to the universal family over Spec(A), so that
the corresponding cocycle for (VΛ, eΛ) is (f(gij), f(ei)).

By definition of δ0 (see Sec. 2.3), starting from an automorphism α of Aut(VΛ, eΛ), we

can lift it over Ũi to an automorphism α′i of (VΛ′ , eΛ′) and then define δ0(α) as the class
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of the Cech 1-cocycle with values in E•(Vab, eab)⊗ I, given by

a0,ij = (α′i)
−1α′j − id, a1,i = (α′i)

−1ei,Λ′ − ei,Λ′ .
Calculating as in the proof of Lemma 2.2.2, and recalling that the action of G0(n•) on
E1(n•) is given by conjugation, we get

a0,ij = ψi([ũ
−1, f̃(gij)]− id)ψ−1

i = ψi∆f (u
−1)(f(gij))f(gij)

−1ψ−1
i ,

a1,i = ψi(ũ
−1ei,Λ′ũ− eΛ′)ψ

−1
i = ψi∆f (u

−1)(ei)ψ
−1
i ,

where we extend the derivation ∆f : A → I to matrices with entries in A. Now we note
that the image of the class of this Cech 1-cocycle under the isomorphism (2.4.4) is simply
the global section of H1E•(Vab, eab)⊗ I given by

(a1,i mod im(de)) = KS(∆f (u
−1)) = −KS(∆f (u)).

�
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