NC-SMOOTH ALGEBROID THICKENINGS FOR FAMILIES OF
VECTOR BUNDLES AND QUIVER REPRESENTATIONS

BEN DYER AND ALEXANDER POLISHCHUK

ABSTRACT. In his work on deformation quantization of algebraic varieties Kontsevich
introduced the notion of algebroid as a certain generalization of a sheaf of algebras. We
construct algebroids which are given locally by NC-smooth thickenings in the sense of
Kapranov, over two classes of smooth varieties: the bases of miniversal families of vector
bundles on projective curves, and the bases of miniversal families of quiver representa-
tions.

INTRODUCTON

In this work we study certain families of vector bundles over noncommutative bases.
More precisely, our framework is the theory of NC-schemes over C, developed by Kapranov
in [6]. These are analogs of usual schemes based on the algebras that are close to being
commutative: any expression containing sufficiently many commutators in such rings
vanishes. More precisely, these are NC-nilpotent algebras; one also considers NC-complete
algebras which are complete with respect to the commutator filtration.

In this theory there is a natural notion of NC-smoothness, which is analogous to the
notion of quasi-free algebra from [2|. Kapranov proves the existence and uniqueness of an
NC-smooth thickening for any smooth affine scheme X. By definition, such a thickening
corresponds to an NC-smooth algebra whose abelianization is the algebra of functions on
X. The problem of determining which non-affine smooth schemes admit such extensions
seems to be quite hard. There are very few known examples of such thickenings. For
example, there are explicit constructions for Grassmannians and abelian varieties (see
[6],[11]). In both cases the relevant NC-smooth thickenings represent natural functors on
the category N of NC-nilpotent algebras. On the other hand, there is no smooth scheme
for which we would know that there is no NC-smooth thickening.

One of the constructions considered in [6] is that of a natural functor of families of
vector bundles over NC-nilpotent bases, which on the commutative level are induced by a
given family of vector bundles on a fixed projective variety with a base B. More precisely,
we consider the following situation. Let Z be a projective algebraic variety, B a smooth
variety, and let £% be a vector bundle over B x Z. We denote by p : B x Z — B the
natural projection.

Definition 0.0.1. We say that £%° is an excellent family of bundles on Z if
(a) Op — p.End(E?) is an isomorphism,
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(b) the Kodaira-Spencer map & : Tg — R'p.End(E?) is an isomorphism,
(c) R?p.End(E%) =0,
(d) Rp,End(E) is locally free for d > 3.

For example, if Z is a projective curve then conditions (c¢) and (d) are automatic.
Condition (a) is satisfied for a family of simple bundles (see [5, Lem. 4.6.3]). Condition
(b) is satisfied if the map from B to the moduli stack of vector bundles on Z is étale.

Following [6] we consider the natural functor A% on the category A/ of noncommuta-
tive families of vector bundles compatible with £% (see Definition 1.5.1 for details). It
was claimed in [6] that this functor is representable by an NC-smooth thickening of B.
However, the proof contained a gap.

In the present paper we prove that whenever dim B > 1, the functor h¥ is not rep-
resentable by an NC-scheme (see Theorem 1.5.6). The reason for this is rather silly: we
observe that h¥C factors through the quotient category aAN of N in which conjugate
homomorphisms are identified (see Sec. 1.2).

The natural idea then is to ask the representability question in this new category a/\.
Our main technical result is that this is true locally: the functor of families over NC-
nilpotent bases is representable in the case when B is affine (see Theorem 2.2.1). We use
this local representability of AN in aN to construct in the general case a C-algebroid*
over B in the sense of [9], [7, Sec. 2.1], given locally by an NC-smooth thickening of B.
We call such a structure an NC-smooth algebroid thickening of B (see Definition 1.3.2 for
details).

Theorem A[see Thm. 1.3.8+Thm. 2.2.1]. Let B be a (smooth) base of an excellent
family of vector bundles. Assume that B is connected and dim B > 2. Then there exists
an NC-smooth algebroid thickening of B.

Note that the case dim B = 1 is not interesting since any smooth commutative scheme
of dimension 1 is already NC-smooth.

In the case when B is quasi-projective, so that there exists an open affine covering (U;)
of B, such that all intersections U; N U; are distinguished affine opens in both U; and Uj;,
the algebroid in Theorem A can be described in more down-to-earth terms as follows.
We have an NC-smooth thickening of U; for each i; over U; N U; we have isomorphisms
between the two induced NC-smooth thickenings; and over U; N U; NUj, the isomorphisms
agree up to an inner automorphism (furthermore, the corresponding invertible elements
are chosen and satisfy the natural compatibility condition over U; N U; N U, N ;).

Note that algebroids were introduced by Kontsevich in connection with deformation
quantization of algebraic varieties (see [9], [7]). NC-smooth thickenings are in some ways
similar to deformation quantization algebras (in particular, the construction of NC-smooth
thickenings from torsion-free connections in [11] is somewhat reminiscent of Fedosov’s
deformation quantization procedure in [3]). Thus, it is not very surprising that algebroids
made their appearance in the theory of NC-smooth thickenings. In light of Theorem A,
it seems that rather than asking which smooth schemes admit NC-smooth thickenings, it
is more natural to ask which smooth schemes admit NC-smooth algebroid thickenings.

IThis notion has nothing to do with the more commonly used Lie algebroid: the latter is a sheaf of
Lie algebras with some extra structures, whereas a C-algebroid is a certain stack of C-linear categories.
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In fact, in the proof of Theorem A we construct a canonical algebroid (up to an equiv-
alence). Since there is a well defined notion of a module over an algebroid, one natural
problem is whether there is a universal family of modules over our algebroid, extending
the original family over B. Omne can also try to study the higher rank analog of the
Fourier-Mukai transform picture for NC Jacobians considered in [11, Sec. 4]. We leave
these questions for a future study.

Motivated by Toda’s work [12], we also consider the similar picture for representations
of quivers. Namely, starting with an excellent family (see Def. 2.4.2) of representations
of a finite quiver ) (with no relations), we consider the functor of compatible families
of representations of ) over NC-nilpotent affine schemes. We show that the situation is
completely similar to (and somewhat easier than) the picture discussed above.

Theorem B[see Thm. 1.3.84+Thm. 2.4.4]. Let B be a (smooth) base of an excellent family
of representations of Q). Assume that B is connected and dim B > 2. Then there exists
an NC-smooth algebroid thickening of B.

For example, this result applies to the moduli space of stable quiver representations
corresponding to an indivisible dimension vector.

Note that for the proof of Theorem B we develop a version of nonabelian hypercoho-
mology H! for a sheaf of groups acting on a sheaf of sets, which may be of independent
interest (see Section 2.3).

Toda also constructs in [12] local (non NC smooth) NC thickenings for some obstructed
families of vector bundles (and for representations of quivers with relations). It would be
interesting to study whether these thickenings glue into an algebroid.

The paper is organized as follows. In Section 1 we discuss the category a/N of affine
almost NC schemes (in which conjugate homomorphisms are identified). We prove in
Section 1.3 that any formally smooth functor on a/N, that is locally representable, leads
to an NC smooth algebroid thickening (see Theorem 1.3.8). Then in Section 1.5 we show
that the functor of NC families extending the given excellent family of vector bundles
factors through a/, and as a consequence, is not representable except in trivial cases (see
Theorem 1.5.6).

In Section 2 we prove local representability results for formally smooth functors on aN".
First, we give a technical representability criterion for such a functor extending the functor
on commutative algebras representable by a smooth affine scheme (see Proposition 2.1.3).
Then we apply this criterion to the functor of NC families extending a given excellent
family of vector bundles (see Theorem 2.2.1) and then to the functor of NC families of
quiver representations (see Theorem 2.4.4).

Acknowledgments. The work of the second author is supported in part by the NSF grant
DMS-1700642 and by the Russian Academic Excellence Project ‘5-100". He also would like
to thank Institut de Mathématique de Jussieu and Institut des Hautes Etudes Scientifiques
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Conventions. All algebras we consider are over C, all schemes are assumed to be of finite
type over C. The expression [a,b] always denotes commutator in an associative algebra:
[a,b] = ab — ba.
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1. AFFINE ALMOST NC SCHEMES AND THE NON-REPRESENTABILITY OF THE
FUNCTOR OF NC FAMILIES OF VECTOR BUNDLES

1.1. Generalities on NC schemes. For a ring R, we define the decreasing filtration
Z,R by

I.R = > R-RY*-R-...-R-R/ R,

1>2, im >2,i1 4 Him >N

where R is the nth term of the lower central series of R viewed as a Lie algebra. Note
that R/Z,R is precisely R, the abelianization of R.

We define the category Ny of NC-nilpotent algebras of degree d as the category of
algebras R for which Z;,oR = 0. Thus, Ny = Com is the category of commutative
algebras. A ring R is in N if and only if it is a central extension of a commutative
algebra. Here we say that an extension of algebras

0> —>R—>R—0

is a central extension if I is a central ideal in R with I? = 0.

We denote by N' = Ug>eNy the category of NC-nilpotent algebras. For A € N
we denote by hy the corresponding representable covariant functor on N: ha(B) =
HOIHalg(A, B)

An algebra R is called NC-complete if it is complete with respect to the filtration (Z,,R).
We denote by NC the category of NC-complete algebras. For an NC-complete algebra
R we denote by hg the functor on N given by hg(B) = Homg,(R, B). Note that the
restriction hg|x;, is naturally isomorphic to the representable functor hg/z,,,r. This easily
implies that the functor

NC? — Fun(N, Sets) : R — hpg

is fully faithful.

An NC-complete algebra R is called NC-smooth if the functor hg is formally smooth,
i.e., for any central extension in N, B® — B, the induced map hgr(B’) — hgr(B) is
surjective. An NC-nilpotent algebra A of degree d is called d-smooth if the same is true
for the functor ha|a,.

Kapranov defines NC-nilpotent schemes (over C) as locally ringed spaces locally iso-
morphic to the spectrum of an NC-nilpotent algebra, with its natural structure sheaf,
which is defined similarly to the commutative case. General NC-schemes are similarly
modeled on formal spectra of NC-complete algebras (see [6, Sec. 2] for details). One can
view an NC-scheme X as an underlying usual scheme X equipped with a sheaf of non-
commutative algebras Ox such that its abelianization is Oy . In this case we say that
X is an NC-thickening of X®. In the case when X is NC-smooth, we say that it is an
NC-smooth thickening of X .

Lemma 1.1.1. (i) Let R be a d-smooth algebra, such that dim R® > 2 and R® is con-
nected. Assume that d > 1. Then the center of R is C + Zy,1 R.
(ii) Let OFC be an NC-smooth thickening of a smooth connected scheme X with dim X >

2. Then the center of OXC is the constant sheaf Cy.
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Proof. (i) Let Z(R) denote the center of R. We have a central extension of algebras
0—>Zy1R—R— R =R/ZT; R — 0,

hence, we have the inclusion C + Z;,1 R C Z(R). In the case d = 1 we have R’ = R and
the commutator pairing associated with the above extension is

[f.3) = df Adg € Q2 ~ T,R,

where f,g € R are lifts of f,g € R = R®. This easily implies that an element of Z(R)
projects to C C R'.

In the case d > 1, by the induction assumption, we can assume that Z(R') = C+Z,R'.
Hence, it is enough to investigate elements of Z(R) that project to elements of Z,R' C R'.
Let us consider the commutator pairing

IdR/ X Rab — Id+1R : (a>f) = [&’ f]’

where a, fe R are lifts of o and f. We claim that this pairing is induced by the natural
commutator pairing

U(£Z€+(QRab))d X Ql Rab — U(£i€+(QlRab))d+1,

where we use the notation of [11, Sec. 2.1] (in particular, Lie, (7) denotes the degree > 2
part of the free Lie algebra) and an isomorphism

grb(R) =~ U(Lies (D))
for n < d-+1 (see [11, Cor. 2.3.15]). More precisely, we claim that

@, f] = ~lo, dflu, (1.1.1)

where we view « as an element of ZyR' = gri(R), and on the right-hand side we take the
commutator in the algebra U(Lie(Q,,)). Indeed, by [11, Cor. 2.3.9], we can realize R as
a subalgebra in T'(Q,.,)/T2?(Q%,.,) (where T(?) denotes the tensor algebra over R®),

so that the projection R — R is induced by the projection to 7° = R®. Furthermore,

the elements in the image of R have tensor components of the form (f, —df,...). Since T0
is in the center of the tensor algebra, this immediately implies formula (1.1.1). Thus, if
a € Iy R lifts to an element of Z(R) then [a, df]y = 0 for any f. Since, U(£Z€+(QRab)) is
a subalgebra in the tensor algebra T'(2},., ), this implies that o is in the center of T'(Qp,, ),

hence, o = 0 (since dim R® > 2). This implies that Z(R) = C + Zy,, R.

(ii) It is enough to check this in the case when X is affine, i.e., X is the formal spectrum
of an NC-smooth algebra R such that R% is connected. Now the assertion easily follows

from (i). O

By a vector bundle F on an NC-nilpotent scheme X we mean a sheaf of right O-modules
which is locally free of finite rank. We denote by £ the induced vector bundle on X,

Lemma 1.1.2. Assume that X C X' is a nilpotent extension of affine NC-nilpotent
schemes, i.e., Ox is a quotient of Ox: by a nilpotent ideal. Let E' be a vector bundle over
X', and E the induced vector bundle over X. Let ¢ : O% — E be a trivialization. Then

¢ extends to a trivialization O%, — E.
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Proof. 1t is enough to consider the case when 0 — Z — Ox» — Ox — 0 is a central
extension. Then 7 is a quasicoherent sheaf over Oxas, so

HYX''E'®I) =H' (X E*®T)=0.

Thus, the n global sections of F defining the trivialization can be lifted to global sections
of E'. Tt is easy to see (arguing locally) that they give a trivialization of E’. O

1.2. The category of affine almost NC schemes. The category a/N has the same
objects as N, while the morphisms in a/N are equivalence classes of homomorphisms
A — B, where fi, fo : A — B are equivalent if there exists b € B* such that fo = bf;b~ L.
We denote by aNy C a/N the full subcategory of NC-nilpotent algebras of degree d.

Given a ring A in N and a multiplicative set S C A%, let S denote the preimage of
S under the projection A — A%. Then S satisfies Ore conditions and S™'A is again
NC-nilpotent (see [6, Sec. 2.1]). For any B € N the composition with the localization
morphism ¢ : A — A[S™!] induces an embedding Hom(A[S™!], B) — Homy/ (4, B) with
the image consisting of [f] such that f(S) C B*. Since the latter condition is invariant
with respect to our equivalence relation on Homys (A, B), the composition with [¢] gives
an embedding

HomaN(A[S_l], B) — HomaN(A, B)

with the same characterization of the image.
Note also that for B € A an element b € B is invertible if and only if its image in B%
is invertible. Thus, a homomorphism f : A — B factors through A[S™!] if and only if the

induced homomorphism % : A% — B factors through A%[S 1], where S C A% is the
image of S. It follows that we have a cartesian square of sets

hags—1)(B) ——= ha(B)

h B®™) — ha (B™)

Aab[?‘l](
Now let R be an NC-complete algebra and let 7 € R be a multiplicative subset.
Following Kapranov [6, Def. (2.1.8)], we set

RIT™ := lim(R/Z.R)[T; ',

where T; C R/Z,4R is the preimage of T'. In the case when 7' = {f™ | n > 0}, for some
element f € R®, we denote the above algebra simply by R[f~!].

For an NC-complete algebra R we denote by hp the corresponding functor on aN\:
hr(B) is the set of conjugacy classes of algebra homomorphisms R — B. Since the images

of both horizontal arrows in the above cartesian square are stable under the action of inner
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automorphisms of B, we deduce that the similar square

hppr-17(B) — hr(B)
(1.2.1)

hRab[Tfl] (Bab) - hRab (B(Lb)

is still cartiesian for any B € N.

Let aNC denote the category of NC-complete algebras with morphisms given by algebra
homomorphisms viewed up to conjugation, i.e., up to post-composing with an inner auto-
morphism. We denote by aNCS;, the subcategory in aN'C, whose objects are NC-smooth
algebras, with isomorphisms in a/N'C as morphisms.

Lemma 1.2.1. The functor
aNCS? — Fun,(aN,Sets) : R+ hg

18 fully faithful, where Fun,, is the category of functors and natural isomorphisms between
them.

Proof. Note that for any d > 0, the restriction ERla/\fd is naturally isomorphic to the
representable functor hg/z, .,z Thus, for NC-complete algebras R and R', we have a
natural identification

Iso(hgr, hr) o lim ¢ Is0an (R/Zap2R, R /ZaioR'),

where Iso,n(7,7) denotes the set of isomorphisms in the category a/N. Thus, it suffices
to prove that if R and R’ are NC-smooth then the natural map

ISOaNc<R, RI) — @1 d ISOCLN(R/ICHQR, R//Id+2R/) (122)

is a bijection. To check surjectivity, assume we are given a collection of algebra homo-
morphisms
fo: R/TaoR — R [Ty R,

which are compatible up to conjugation, i.e., the homomorphism fi114 : R/Zs2R —
R'/Z419R induced by fii1 is equal to 6,,fs, where 6, is the inner automorphism asso-
ciated with a unit uq € R'/Zs,oR’. Now, starting from d = 0, we can recursively correct
far1 by an inner automorphism of R'/Z;,3R', so that the homomorphisms (f;) become
compatible on the nose (not up to an inner automorphism). Since R’ is NC-complete,
this defines a unique homomorphism f : R — R’ inducing (f;). Furthermore, since R is
NC-complete, we see that f is an isomorphism if and only if all f; are isomorphisms.

It remains to check that (1.2.2) is injective. Thus, given two isomorphisms f, f' : R —
R’ such that the induced isomorphisms f, and f} are conjugate for each d, we have to check
that f and f’ are conjugate. By considering f~!f’, we reduce the problem to checking
that if we have an automorphism f : R — R such that f; is an inner automorphism of
R/Z;.5R for each d, then f is inner. For any algebra A, let us denote by Inn(A) the group
of inner automorphisms of A. Note that we have an exact sequence of groups

1—Z(A)" - A" - Inn(A) — 1.
7



Applying this to each algebra R/Z;. 5 R, and passing to projective limits, we have an exact
sequence

1— lgle<R/Id+2R)* — @d(R/Id+2R)* AN @dIDB(R/IUHQR).

We claim that the arrow p in this sequence is surjective. Indeed, it is enough to check that
the inverse system (Z(R/Zy4i2R)*) satisfies the Mittag-Leffler condition. But by Lemma
1.1.1(i), for d > 1, the image of the projection

Z(R/T2R)* — Z(R/T41R)"

is equal to C*, which implies the required stabilization. Thus, the map p is surjective. Note
that the source of this map can be identified with R*. Thus, we deduce the surjectivity
of the natural map

R — @d IHD(R/Id+2R).
Hence, we can compose f with an inner automorphism 6, of R, such that f' = 6,f
induces the identity automorphism of R/Z;. o R for each d. It follows that f' =id, i.e., f
is inner. O

1.3. Gluing. We can define the Zariski topology on aN° naturally. However, this is
not a subcanonical topology, i.e., representable functors are not necessarily sheaves with
respect to this topology. Namely, suppose fi, fo : A — B is a pair of homomorphisms,
inducing the same homomorphism A% — B®. Assume also that we have a covering of
Spec(A®) by distinguished affine opens, Spec(4j ), such that f; and fo become conjugate

as morphisms from A, to By,. It may happen that f1 and fy are still not conjugate by
an element of B*.

Example 1.3.1. Let R := k[z,y]. For any ideal I C R we can consider the central
extension A of R by Q7 /1 ®r /1, obtained from the universal central extension via the

natural homomorphism Q% e Q2R /e OR R/I. We consider a pair of homomorphisms
f1 :id,fg =id+6: A— A,
where 6 : A — R — Q% , ®g R/I is a derivation given by
d(r) = w A drmod IQ%/,C,

for some 1-form modulo I, w € Q}%/k ®@gr R/I. We are going to prove that for I =

(ry—1), there exists a 1-form w such that f; and f5 are locally conjugate, but not globally
conjugate. Note that if R, is a localization of R then the corresponding localization of A
is a central extension of R, by Qf%g i ®r, (R/I)g. It is easy to see that the condition for

fi and f5 to be conjugate over Spec(R,) is that for some r € R; one has
o(r') = r=tdr Adr' mod IQ%,
for any " € R. Since the morphism 7 +— nA? gives an isomorphism
b @y (R/D)g = Homp, (U 3 O 1 O, (R/1),),
this is equivalent to the condition

w = r~'dr mod [Q}%g/k.
8



Let us consider the homomorphism of sheaves on Spec(R) = A2,
70" = Q' ®p O/,

induced by ¢ — ¢ td¢. Thus, the condition on w means that it comes from a global
section of the sheaf image im(7), but is not in the image of the induced morphism on
global sections. Since H°(A?, O*) = k, the latter condition is equivalent to w # 0. Now
we observe that the sheaf Q' ®o O/I is supported on the curve xy = 1 which is contained
in the affine open subset © # 0. Hence, the 1-form dz/z gives a well defined nonzero
global section of im(7), as required.

Because of this we do not try to glue affine almost NC schemes using sheaves on a\.
Instead, we show that a locally representable formally smooth functor on aN always leads
to an algebroid over the underlying commutative smooth scheme X, that corresponds
locally to an NC-smooth thickening of X.

Recall that a C-algebroid A over a topological space X is a stack of C-linear cate-
gories over X, such that A is locally non-empty and any two objects of A(U) are locally
isomorphic. We refer to [7, Sec. 2.1] for basic results on algebroids.

Definition 1.3.2. Let X be a smooth scheme. An NC-smooth algebroid thickening of
X is a C-algebroid A over X such that for every object ¢ € A(U) over an open subset
U C X the sheaf of algebras End4(o) is an NC-smooth thickening of U.

For a sheaf of C-algebras A over X we have the corresponding C-algebroid with a fixed
global object ¢ such that A is the endomorphism algebra of o.

Definition 1.3.3. For a C-algebroid A, we define the center of A as the sheaf
Z4:=End(Idy)

of endomorphisms of the identity functor on A. We say that a C-algebroid A has trivial
center if the natural map of sheaves Cxy — Z4 is an isomorphism.

It is easy to see that for any local object o € A(U) one has a natural identification of
Z 4|y with the center of the sheaf of algebras End4(o). Thus, by Lemma 1.1.1(ii), any
NC-smooth algebroid thickening has trivial center.

We are going to prove a general gluing result for sheaves of C-algebras with trivial
centers and then apply it to construct NC-smooth algebroid thickenings.

Lemma 1.3.4. (i) Let A and A’ be a pair of C-algebroids with trivial centers over an
irreducible scheme X, and let F,G : A — A’ be a pair of equivalences. Assume that for
an open covering (U;) of X we have an isomorphism F|y, ~ G|y,. Then there exists an
isomorphism F ~ G.

(ii) Let A and A’ be a pair of C-algebroids with trivial centers over an irreducible scheme
X. Assume that for an open covering (U;) of X we have an equivalence

F A
and that for each pair i,j, we have an isomorphism

F;

U; —>A/

U;

Uij; = F’] Uij»s
9



where U;; = U; N U;. Then there exists an equivalence F : A — A" such that F|y, ~ F;.
Such an equivalence is unique up to an isomorphism.

(i1i) Let U; be an open covering of an irreducible scheme X, and for each i let A; be a
C-algebroid with trivial center over U;. Assume that for every i, 7, we have an equivalence

Fij+ A;

Usj — .Aj

Uij»s
such that for every 1,7, k, there is an isomorphism
ij|Uijk © Ej|Uijk = Fik‘Uijk”

where Uy, = U; N U; NUy. Then there exist a C-algebroid A over X and equivalences
F; : Aly, — A;, such that for every i,j, there is an isomorphism

Fij © Fi|Uij = Fj|Uij'
Furthermore, such A is unique up to an equivalence.

Proof. (i) Let us choose for each i an isomorphism ¢; : F|y, — G|y, Then for each i, j,
we have

¢j|Uij = ¢i|Uij © Cij,
where ¢;; is an autoequivalence of Fi|Ui].. Since Fj is an equivalence, we have Aut(F') ~
Aut(id4). Locally, the sheaf Aut(id 4) is given by the center of End 4(o), where o is an ob-
ject of A. Hence, by Lemma 1.1.1, the natural morphism of sheaves C% — Aut(id4) is an
isomorphism. Thus, ¢;; is a Cech 1-cocycle with values in C%. Since X is irreducible, the
corresponding Cech cohomology is trivial, so we can multiply ¢; by appropriate constants
in C*, to make them compatible on double intersections. The corrected isomorphisms
glue into a global isomorphism F' — G.
(ii) Let us choose for each 4, j an isomorphism ¢;; : Fi|y,, — Fj|y,;. Then for each i, j, k,
the composition ¢;j; = @ri@jr¢i; is an autoequivalence of FZ-|Ul.jk, where ¢;;;, is a Cech
2-cocycle with values in C%. As above, choosing representation of ¢;;; as a coboundary
allows to correct ¢;; by constants in C*, so that the isomorphisms ¢;; are compatible
on triple intersections. Hence, we can glue (F;) into the required global equivalence
F: A— A. The fact that F' is unique up to an isomorphism follows from (i).
(iii) For every i, 7, k, let us choose an isomorphism

Gijk - ij‘Uijk © Fileijk — Fig Uijk -

Then for every i, j, k, [, we have over U,
Girt (Frt * ijie) = Cijragiji(Gjm * Fij)

for some ¢ € Aut(Fy)(Usjr) = C*. Furthermore, (¢;jx) is a Cech 3-cocycle with values
in C%. Hence, we can multiple g;;; with appropriate constants to make them compatible
on quadruple intersections. This allows us to glue (A;) into a global C-algebroid A over
X (see [7, Prop. 2.1.13]). The uniqueness of A up to an equivalence follows from (ii). O

Proposition 1.3.5. Let (U;) be an open covering of an irreducible scheme X. Assume

that for each i we are given a sheaf of C-algebras A; with trivial center over U;, and for
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each pair i < j, a covering (Vi = Vi;) of Uij, together with isomorphisms of sheaves of
C-algebras

aijv,  Ailve = Ajlv,
for all k. We assume that the restrictions of aujv, and agjy, to Vi NV differ by an inner
automorphism. Also, we assume that for i < j < k there exists a covering (W, = Wijr)
of Uiji such that ajklw, o cujlw, and cuglw, differ by an inner automorphism. Then there
exists a C-algebroid A over X, together with equivalences of C-algebroids,

Fi . A|U1 — .Ai,

where A; is the C-algebroid over U; associated with A;, such that for i < j there exist
1somorphisms

aijy, © Filv, ~ Fjly,
over the covering (Vi) of U;;. Such an algebroid A is unique up to an equivalence.
Proof. Each isomorphism «; v, gives an equivalence

Fijv, + Ailv. = Ajlv.-

Since the local autoequivalence of A; associated with an inner automorphism of A; is
isomorphic to the identity, we get that Fj;y, and Fj;y, induce isomorphic equivalences
over V; N'V;. By Lemma 1.3.4(ii), we obtain an equivalence defined over Uj;,

Fij A;

Uij — .Aj

Uij»s

such that EJ‘V)C = OG5 v, -
Furthermore, we claim that over Ujj; there is an isomorphism

F, Ve (1.3.1)

Indeed, by assumption, we have a similar isomorphism over each open subset from the
covering (W) of Uyji. Thus, our claim follows from Lemma 1.3.4(i), applied to the equiv-
alences on both sides of (1.3.1).

Finally, we can apply Lemma 1.3.4(iii) to conclude the existence and uniqueness of the
required NC-smooth algebroid A over X. O

Usjk © Fij Uijk = Fi

Now we are going to apply the above general result to NC-smooth thickenings.
For a functor h on aN such that hcom = hx and an open subset U C X, we define the
subfunctor h,; C h by

hyu(A) = h(A) Xy (per) o (A™),
where we use the identification h(A%) ~ hx(A%).

Lemma 1.3.6. Let h = hy, where R is an NC-complete algebra. Then Jor any distin-
guished affine D(f) C Spec(A™) we have an equality of subfunctors hyp(s) = hags-1y.

Proof. This follows immediately from the cartesian square (1.2.1) with "= {f™ | n >
0}. 0
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Lemma 1.3.7. Let h be a functor on aN such that h|com = hx for some scheme X.
Assume that (U;) is an affine covering of X, such that for every i we have an isomorphism
hyu, ~ ha, for some A; € N. Let us denote also by A; the corresponding sheaf of algebras
over U;. Then for every open subset V- C U; N Uj, which is distinguished in both U; and
Uj, we have an isomorphism
Qv - Ai\v = Aj’V

compatible with the isomorphisms EAi(V) ~ hy ~ EAj(V). Furthermore, for another
such open V' C U; NU; the isomorphisms aujv|vay: and agjv|vay: differ by an inner
automorphism. Also, for any open V- C U; N U; N Uy, distinguished in U;, U; and Uy, we
have

Oéjk\v o aij’V = Oéik|v o Ad(uijk)
for some w;j, € A;(V)*.

Proof. Let us fix an isomorphism 5y, ~ hy, for each i. Suppose V C U; N Uj is a
distinguished affine open in both U; and U;. Then

hAi,/V >~ h/V ~ hAj,V-
Thus, by Lemmas 1.3.6 and 1.2.1, we have an isomorphism between the corresponding
localizations of A; and A; in a/N, and hence, an isomorphism «;; : A;|y ~ A;|v, defined
uniquely up to an inner automorphism. For V' C U; N U; N Uy, the compatibility between
a;j, o and g, up to an inner automorphism, follows from the compatibility of all of
these isomorphisms with the isomorphisms of EA“ IV EAﬁ v and EAI“ v with hjy. ]

Theorem 1.3.8. Let h be a formally smooth functor on aN such that h|com = hx, where
X is a smooth connected scheme with dim X > 2. Assume that h is locally representable,
i.e., there exist an open affine covering (U;) of X and isomorphisms
h/UZ' = EA“
where A; is an NC-smooth thickening of U;. Then there exist an NC-smooth algebroid A
over X and equivalences of algebroids
F,: A

such that for every open subset V' C U; NU;, distinguished in both U; and U;, there is an
isomorphism

U; — AiJ

gij o Filv =~ Fjlv,
where g;; @ Ailv — Ajlv is a representative (up to conjugation) of the isomorphism
hAilV >~ h/V >~ hA]-\V-
Proof. First, we apply Lemma 1.3.7 and obtain isomorphisms
Qv e Az’V — Aj‘V

for every open V' C U;NUj, distinguished in both U; and U}, such that these isomorphisms
for V and V' and for V' C U; N U; N Uy, are compatible up to an inner automorphism.
Hence, we are in the setup of Proposition 1.3.5, where as open coverings of U;; (resp.,

Uiji) we take the covering by all open affines which are distinguished in U; and U; (resp.,
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Ui, U; and Uy). Note that the centers of A; are trivial by Lemma 1.1.1(ii). Thus, applying
Proposition 1.3.5, we get the required NC-smooth algebroid over X. O

1.4. Recollections on nonabelian H!. We are going to use some basic constructions
involving nonabelian cohomology, which we recall here. The comprehensive reference is
Giraud’s book [4] (more specifically, we use [4, Sec. 3.3,3.4]). A more explicit treatment
in terms of Cech cocycles is given in [10, Sec. 2.6.8]; however, it contains one mistake that
we will correct.

For a sheaf of groups G on a topological space X and an open covering U = (U;) of X,
the set of 1-cocycles Z* (U, G) consists of g;; € G(Uy;), such that g;; = 1, g;;9;; = 1 and

9ij

Two such 1-cocycles (g;;) and (g;;) are cohomologous if

Uije 9k Ui = Gik| Uiz -

Gij = hi Uijgijh;1 Uij»
for some h; € G(U;). We denote by H'(U,G) the corresponding set of equivalence classes
(pointed by the class of the trivial cocycle). The nonabelian cohomology set H'(X,G)
is obtained by taking the limit over all open coverings. Note that our convention for
nonabelian 1-cocycles is the same as in [4] and differs from that of [10, Sec. 2.6.8] by
passing to inverses. For brevity, from now on, we stop writing explicitly the restrictions
to the intersections in formulas involving sections defined over different open subsets.
For a homomorphism G; — G, the induced map of pointed sets H(X,G;) — H' (X, Gy)
is defined in an obvious way. Now assume we are given an abelian extension of sheaves

of groups
R ¢ N R

This means that A is a sheaf of abelian groups, which is a normal subsheaf in G, and G
is the corresponding quotient. Then we have a natural connecting map

S H(X,G) = H'(X, A)

such that do(g) = 1 if and only if g lifts to a global section of G’. Namely, for an open
covering U; we can find g, € G'(U;) such that p(g;) = g, and set dp(g) to be the class of
the 1-cocycle (gg)_lg; € A(U;;). Note that dy is not a homomorphism in general. Rather,
it satisfies

S0(9192) = 92 (60(91)) + do(g2), (1.4.1)

where we write the group structure in H'(X, A) additively and use the natural action
of H°(X,G) on H'(X,.A) induced by the adjoint action of G on A. (This means that
g+ 0o(g™") is a crossed homomorphism.) An equivalent restatement of (1.4.1) is that
there is a twisted action of H°(X,G) on H*(X,A) given by

gxa=g(a)+d(g"), wherege H*(X,G),a € H'(X, A). (1.4.2)

Explicitly, the usual action of g € H(X,G) on the class of a Cech 1-cocycle (a;;) with
values in A is given by gia;;(g})~", where g} € G'(U;) are liftings of g. On the other hand,
the twisted action of g on a;; is given by gja;(g;)~"

13



Next, starting from a class g € H'(X,G), we can construct a class
di(g) € H*(X, A%)

such that d;(g) = 0 if and only if g is in the image of the map H*(X,G") — H'(X,G).
Here A9 is the sheaf obtained from A by twisting with g. Namely, if ¢ is represented by
a Cech 1-cocycle g;; € G(U;) then we have isomorphisms v; : A|y, — A9y, such that
Y; = 1; o g;; over U;;. To construct d1(g), for some covering (U;), we can choose liftings
9i; € G'(Uy;) for a 1-cocycle (gj;) representing g (such that gj;¢%; = 1 and gj; = 1). Then
d1(g) is the class of the 2-cocycle (v(9;;9j19x;)) With values in A9

Finally, for a given class ¢ € HY(X,G), we need the following description of the fiber
of the map

1
HY(x,¢) 1% mx,g)
over g. Assume that this fiber is nonempty and let us choose an element ¢’ € H'(X,G’)
projecting to g. Then we have an exact sequence of twisted groups

1= A7 = (G — G — 1.

Thus, as before we have two actions of the group H°(X,G9) on H*(X,.AY). Now we can
construct a surjective map

HY (X, A% — H'(p) ' (g), (1.4.3)

such that the fibers of this map are the orbits of the twisted action of H°(X,G?) on
H'(X, A?) (see (1.4.2)). Namely, let (g;;) be a Cech I-cocycle representing ¢, and let
a;; € A(U;;) be the g-twisted 1-cocycle, so that 1;(a;;) is a 1-cocycle with values in A9.
This means that over Ujj; one has

aij Ad(gi;)(an) = ai.
Then our map (1.4.3) sends (a;;) to the class of (ag;;).

In the particular case when the (usual) action of H°(X,G9) on H*(X, A9) is trivial, the
corresponding connecting map

0o : H'(X,G%) — H' (X, A%)

is a group homomorphism, and the map (1.4.3) induces an identification of the cokernel
of this homomorphism with H'(p)~!(g). Equivalently, in this case the map (1.4.3) corre-
sponds to a transitive action of H'(X,.A49) on H'(p)~'(g), such that the stabilizer of any
element is the image of dp. (In [10, Sec. 2.6.8] it is stated incorrectly that such an action
exists in the general case.)

1.5. The functor of NC-families extending a given excellent family. Let Z be a
projective algebraic variety, B a smooth algebraic variety, and let £ be an excellent family
of bundles on Z with the base B (see Definition 0.0.1). Note that our definition is slightly
stronger than [6, Def. (5.4.1)] in that we add condition (d), which is used crucially in the
base change calculations.

For an NC-nilpotent scheme X and a usual scheme Z there is a natural product oper-
ation which gives an NC-nilpotent scheme X x Z, so that functions on Z become central

in Oxxz. In the affine case this corresponds to the operation of extension of scalars
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R — R ®c S from NC-nilpotent C-algebras to NC-nilpotent S-algebras, where S is a
commutative C-algebra.

Following [6], we consider the following functor of noncommutative families of vector
bundles compatible with £.

Definition 1.5.1. For an excellent family £ over a smooth (commutative) base B, we
define the functor A : N' — Sets sending A € N to the isomorphism classes of objects
in the following category C,. Consider NC-schemes X = Spec(A) and X x Z. Let us
denote by X&® = Spec(Ag’) the reduced scheme associated with the abelianization of X.
Then the objects of Cy are the triples (f, Ex, ¢) consisting of

(i) a morphism f: X3 — B of schemes,
(ii) a locally free sheaf of right Ox«z-modules Ej,
(ili) an isomorphism ¢ : Oxar, 7z ® En S (f xid)*E.
A morphism (f, By, ¢1) = (f2, Ea, ¢2) exists only if f; = f5 and is given by an isomor-
phism E; — E, commuting with the ¢;. On morphisms h¥¢ is the usual pullback.

The following result is stated in [6] (see [6, Prop. (5.4.3)(a)(b)]). However, we believe
our stronger assumptions on the family &, including condition (d), are needed for it to
hold, and we will give a complete proof below.

Proposition 1.5.2. The functor h%° is formally smooth and the natural morphism of
functors hg — th]COm 1 an isomorphism.

Lemma 1.5.3. For any commutative algebra A and any (f, Ex, ¢) € h¥C(A) the natural
map

A = End(Ey)

1 an isomorphism.

Proof. We prove this by the degree of nilpotency of the nilradical of A. Assume first that
A is reduced. Then we have Fy = (f x id)*€. Hence, by the base change theorem,

HY(X x Z,(f xid)*End(E)) ~ H*(X, Rpx..(f x id)*End(&)) ~
HO(X, HO(Lf*Rp.End(€))),
where X = Spec(A). Since R'p,.End(E) are locally free for i > 1, we have
HO(Lf*Rp,End(E)) ~ f*p.End(E) ~ Ox,

where in the last isomorphism we used assumption (a). This shows that our assertion
holds for such A.

Next, assume we have a central extension 0 — I — A’ — A — 0 of commutative
algebras, such that [ is a module over Ay, the quotient of A by its nilradical. Assume that
A — End(E,) is an isomorphism for any (f, Ex,¢) € h¥¢(A) and let us prove a similar
statement over A’. Given (f, Enr,¢') € h¥C(N), let Ex be the induced locally free sheaf
over Spec(A) x Z. Then we have an exact sequence of coherent sheaves on Spec(A’) x Z,

0= Exy @PIT — En — Ex — 0,
15



where 7 is the ideal sheaf on Spec(A’) corresponding to I. Taking sheaves of homomor-
phisms from &£y, we get an exact sequence

0 — End(Ep,) @ PIT — End(En) — End(En) — 0

Passing to global sections we obtain a morphism of exact sequences

0 I AN A 0

0 —— H' (X" x Z,End(Ey,) @ piT) — End(Ex) — End(E,)
Note that €, ~ (f x id)*E, so, as before, we get
H(X° x Z,End(En,) @ piT) ~ HY(X°, T @ HO(Lf*Rp.End(E))) ~
HY (X IT® f*p.End(&)) ~1,

where X? = Spec(Ag). Thus, in the above morphism of exact sequences the leftmost and
the rightmost vertical arrows are isomorphisms. Hence, the middle vertical arrow is also
an isomorphism. Il

Proof of Proposition 1.5.2. Assume we are given a central extension

0=>IT—=AN—=>A=0 (1.5.1)

in N and an element (f, Ex,¢) € h¥°(A), so that Ej is a locally free sheaf of right
Oxxz-modules of rank r, where X = Spec(A). We have to check that it lifts to a locally
free sheaf of right Ox/yz-modules, where X’ = Spec(A’). Furthermore, it is enough to
consider central extensions as above, where the nilradical of A® acts trivially on I, so
that I is a Ad®-module.

We have a natural abelian extension of sheaves of groups on X% x Z,

1— Matr(oxabxz) ®pTI — GLT(Oxle) — GLT(OXXZ) —1 (152)

where Z is the coherent sheaf on X corresponding to /. The isomorphism class of Ejy
corresponds to an element of the nonabelian cohomology H*(X% x Z,GL,(Oxxz)). By
the standard formalism (see Sec. 1.4) the obstruction to lifting this class to a class in
HY (X% % Z,GL,(Ox1x 7)) lies in H*(X® x Z,End(Eyg) @ piZ), where Eye is induced by
E\. We claim that this group H? vanishes. Indeed, we have E Agh (f xid)*E. Applying
the base change theorem, we get an isomorphism

RU(X x Z,(f x id)*End(€) @ p;T) ~ RT(X{*, T ® Lf*Rp.End(E)).

It remains to observe that by our assumptions (c) and (d), the complex of sheaves
Lf*Rp.End(€) has no cohomology in degrees > 2 (recall that X is an affine scheme).
To prove the second assertion we argue by induction on the degree of nilpotency of

the nilradical of a test algebra A. Thus, we consider a square zero extension (1.5.1) of
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commutative algebras, where I is a A3-module, and study the corresponding commutative
square

hg(N) —— hp(A)
(1.5.3)

hi© () — h5C(A)
We assume that the right vertical arrow is an isomorphism and we would like to prove the
same about the left vertical arrow. We know that both horizontal arrows are surjective.
Furthermore, using the interpretation in terms of nonabelian H' and the exact sequence
(1.5.2), we can get a description of the preimage of an element E, € h%“(A) under the
bottom arrow. Namely, the corresponding sequence of twisted sheaves is

0 = End(E?) @ piT — Aut(En) — Aut(Ey) — 1. (1.5.4)

By Lemma 1.5.3, we have Aut(FE,) = A*, and it is easy to see that this group acts trivially
on HY(X% x Z End(Epw) ® piI) (since A’ is in the center of Aut(Ey/)). It follows that
the preimage of E, in h¥“(A’) is the principal homogeneous space for the abelian group

coker(Aut(Ey) —2 HY(X® x Z,End(Eyw) ® piT)),

where §y is the connecting homomorphism associated with (1.5.4). However, by Lemma
1.5.3, fixing a lifting By € h¥C(A'), we get that the previous map in the long exact
sequence, Aut(Ey) — Aut(F,) is just the projection (A’)* — A*, so it is surjective. This
implies that the preimage of E is the principal homogeneous space for

HY (X x Z,End(Epg) © piT) ~ H*(X§", T © H'(Lf*Rp.End(E))).
By our assumptions (c¢) and (d), we have
HY(Lf*Rp.End(E)) ~ f*R'p,End(E),

thus, the above group is H*(X$, I @ f*R'p.End(E)).

On the other hand, different extensions of Spec(A) — B to Spec(A’) — B correspond
to H(B, f.I @ Tg). It is easy to check that the map hg(A’) — A¥C(A’) is compatible
with the Kodaira-Spencer map

H(B, f.I®Tp) = H'(X" Z® f*Tp) = H'(X§", T ® f*R'p.End(E)),
which is an isomorphism by assumption (b). It follows that the map hp(A’) — ANC(A)
U

is an isomorphism.

We have the following simple observation.
Proposition 1.5.4. The functor h¥¢ : N' — Sets factors through a/N .

Proof. Suppose we have two homomorphims fi, fo : A’ — A in N such that they are
conjugate, i.e., fo = 0f;, where = 0, is an inner automorphism of A: 6,(z) = uzu=?* for
some unit v in A. We have to check that f; and fs induce the same map h(A") — h(A).

Equivalently, we have to check that the map h(#) : h(A) — h(A) is equal to the identity.
17



Note that 6, induces an automorphism of the NC-scheme X = Spec(A), which we still
denote by 6, and the map h(6) sends a right Ox z-module E, to (6 x idz)*E). Now we
observe that the automorphism 6 xid of X x Z acts trivially on the underlying topological
space and is given by the inner automorphism 6, of the structure sheaf O = Oxyz,
associated with u which we view as a global section of O*. Thus, the operation (0 x idz)*
is given by tensoring on the right with the @ — O bimodule »4,O (which is the structure
sheaf with the left O-action twisted by 6,,).

Now we use the general fact that twisting by an inner automorphism does not change
an isomorphism class of a bimodule. Namely, if M is an R — S-bimodule and 6, is
the inner automorphism of R associated with u € R*, then we have an isomorphism of

R — S-bimodules,
M —~ 4, M :m — um.

This construction also works for bimodules over sheaves of rings and an inner auto-
morphism associated with a global unit. This implies that in our situation the functor
(0 x idz)* is isomorphic to identity, and our claim follows. O

Remark 1.5.5. In fact, our proof of Proposition 1.5.4 shows a little more. We can
enhance h¥¢ to a functor with values in groupoids, by considering the category of the
data as in Definition 1.5.1 and isomorphisms between them. On the other hand, we can
consider a 2-category of algebras in A/ with the usual 1-morphisms and with 2-morphisms
between f1, fo : A’ — A given by u € A* such that f, = 6, f;. Then the functor A lifts
to a 2-functor from this 2-category to the 2-category of groupoids.

Theorem 1.5.6. If dim B > 1 then for any d > 1 the functor hi¥¢ |y, is not representable
by an NC-nilpotent scheme of degree d.

Proof. Tt is enough to consider the case d = 1. Suppose h¥C|y, is representable by
an NC-nilpotent scheme X of degree 1. Then by Proposition 1.5.2, X is 1-smooth and
X% ~ B. Let U = Spec(A) C X be an affine NC-subscheme corresponding to an open
affine subscheme of B of dimension > 1. Then A is a 1-smooth algebra with dim A% > 1,
and h 4 is a subfunctor of A3y, . Since the latter functor factors through aAf, this would
imply that hy also factors through aV;.

It remains to prove that for any l-smooth algebra A with dim A% > 1 the functor
ha does not factor through aN;. To this end we will give an example of two conjugate
homomorphisms fi, fo : A — A’ such that f; # fo. Set

A = (A * C[Z, z‘l])[[abﬂ/lg.

It is easy to see that A’ is 1-smooth and (A")® = A% ® C|z, z7!|. Therefore, by Lemma
1.1.1(i), the element z is not in the center of A’. Hence, we can take f; : A — A’ to be
the natural homomorphism and set fo(a) = zf1(a)z7 . d

2. REPRESENTABILITY RESULTS

2.1. Local representability in a\. Kapranov gives the following criterion for a for-

mally smooth functor on N; to be representable by an NC-scheme.
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Proposition 2.1.1. ([6, Thm. (2.3.5)]) Let M be a smooth algebraic variety. A formally
smooth functor h : Ny — Sets such that hlcom = har, is representable by a d-smooth
NC-scheme if and only if for any pair of central extensions in Ny, Ay — A, Ay — A, the
natural map

h(Al XA Ag) — h(Al) X h(A) h,(AQ)

s an isomorphism.
We will prove an analogous representability criterion for affine aNC-schemes. As in the

case of NC-schemes the main idea is to study fibers of the map h(p) : h(A") — h(A) for a
central extension

0=T—=N-L+A—=0 (2.1.1)

(cf. the proof of [6, Lem. (2.3.6)]).

For d > 1, let h : aN; — Sets be a functor such that h|.y;, , is representable by
A € aNy_1. The key new ingredient we have to use is the following. Given a central
extension (2.1.1) with A’ € Ny, A € Ny_1, and a homomorphism f: A — A, we set

U(f) :={uec A |uf(a)u™' = f(a)Va € A}.
Then we have a natural map
Aj: U(f) — Der(A, I) = Der(A™, I).

where
Ap(u): A= T:aw [u, f(a)pu™" (2.1.2)
Here for 13,1l € A, we define [l1,ls]n € A" by
[, bo]ar = [I1, Io], (2.1.3)

where [; is a lifting of [; to A’. Note that [u, f(a)]s € I.

Furthermore, one can check that the image of A, depends only on the image of f in
Homga (A, A) = h(A). Also, using the fact that I is central we immediately check that
Ay is a group homomorphism. The next result shows that in the case when h itself is
representable, the cokernel of A; maps bijectively to h(p)~(f).

Lemma 2.1.2. Let A’ be an NC-nilpotent algebra of degree d such that A = A'/I;1 A"
Then for any central extension (2.1.1), with A’ € Ny and A € Ny_1, and any algebra
homomorphism f : A" — A, there exists a natural transitive action of the group Der(A, I)
on the fiber ha(p)~*(f) of the map ha(p) : ha(N') — ha(N), such that the action of
Der(A,I) on any element of this fiber induces a bijection

coker(Ay) —— ha(p) ' (f).

Proof. Tt is well known that the difference between two homomorphisms A" — A’ lifting
f A — Ais a derivation A — I, and that this induces a simply transitive action
of Der(A’,I) = Der(A,I) on the set of such liftings. Now assume that we have two
homomorphisms f{, f; : A — A’, such that both po f| and po f} are conjugate to f. Then
replacing f] and f} by conjugate homomorphisms we can assume that po f| = po f} = f.

Now it is easy to see that if fi and f] are conjugate by u € (A’)* then u € U(f), and
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the difference f; — f] is the derivation a — [u, f(a)]au™". This establishes the required
bijection. O

Next, we return to the situation when only hl.;, , is representable. Recall (see [6,
Prop. (1.2.5)]) that for any central extension (2.1.1) there is a natural isomorphism

N xpy N " N xpa (A D) : (2,9) = (2, (2™, y — 1)), (2.1.4)

where z — 2% is the projection A’ — A%, and A% @ I is the trivial commutative algebra
extension of A% by I (such that I? = 0 and A% is a subalgebra). Let us assume in
addition that A commutes with pull-backs by commutative nilpotent extension, so that

h(A/ X pab (Aab &P ])) ~ h(A/) Xh(A“b) h(Aab &P I)
Combining this with the above isomorphism we get a natural map
R(A') X ppary R(A® @ I) = h(A' x5 A') = h(A") xp0a) h(A). (2.1.5)

Now assume A’ € Ny, A € N;_; and we are given an element [’ € h(A') lifting f € h(A).
Since h|.v;,_, = ha, we have a natural identification of the fiber of h(A® & I) — h(A%?) =
Hom,, (A, A%) over fo with Der(A, I). Thus, for any D € Der(A,I), we can consider a
pair (f’, f% + D) in the left-hand side of (2.1.5). Let us define f' + D € h(p)~'(f), so
that (f’, f/ + D) is the image of (f’, f® + D) under (2.1.5). In this way we get a map

5y Der(A, I) — h(p)~X(f) : D+ f' + D. (2.1.6)

It is easy to see (by considering A’ x, A’ x, A’) that in this way we get an action of the
group Der(A, I) on h(p)~'(f). Note that in the case when h is representable by some
A’ € N, this operation is exactly the operation of adding a derivation A’ — A — I to a
homomorphism A" — A’

Now we can prove the following local aNC version of Proposition 2.1.1.

Proposition 2.1.3. Let A be a (d—1)-smooth algebra in aNy_1, and let h : aNy — Sets be
a formally smooth functor such that hlon;,_, =~ ha. Then h is representable by a d-smooth
algebra in aNy if and only if the following two conditions hold.

(i) For any nilpotent extension A" — A with A" € aNy and A € Com, and any
commutative nilpotent extension N — A, the natural map

h(A, XA A//) — h(A/> Xh(A) h(A//)
15 a bijection.
(ii) For every central extension (2.1.1), for any f' € h(A') extending f € h(A), the
map ¢, which is well defined due to condition (i), induces a bijection

coker(Ay) —— h(p)~'(f).

Proof. Assume first that h is representable by A" € aN,. To check condition (i) for
h = ha we first note that since A and A” are commutative, the set h(A’) xp) A(A")
can be described as pairs of homomorphisms f': A — A’ and f” : A — A” lifting the
same homomorphism f : A — A, up to the equivalence replacing f’ by a conjugate
homomorphism. Clearly, this is the same as giving a homomorphism A" — A’ x, A” up

to conjugacy. On the other hand, condition (ii) for h4: follows from Lemma 2.1.2.
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Now assume that conditions (i) and (ii) hold, and let A’ — A be a d-smooth thickening
of A (it exists by [6, Prop. (1.6.2)]). Let e € h(A) be the family corresponding to the
isomorphism A|gp;,_, = ha. Since h is formally smooth, there exists an element ¢’ € h(A’)
lifting e. Let hy — h be the induced morphism of functors. We already know that it is an
isomorphism on aN;_;, and we claim that it is an isomorphism on aN;. The argument is
similar to that of Proposition 1.5.2. Given A’ € N, we can fit it into a central extension
(2.1.1) with A € M;_1. Then we consider the commutative square

ha(A) —— ha(A)

h(A) h(A)

Since har(A) ~ ha(A) ~ h(A), we know that the right vertical arrow is an isomorphism.
Also, both horizontal arrows are surjective. Let us fix a homomorphism f € h(A), and its
lifting f* € ha(A"). As we have seen in Lemma 2.1.2, the fiber of the top horizontal arrow
over f is identified with coker(Ay). The same is true for the fiber of the bottom horizontal
arrow over f, by condition (ii). It remains to observe that both isomorphisms are induced
by the operation (2.1.6) of adding a derivation in Der(A, I), which is compatible with
morphisms of functors on aN;, extending ha on aNy_;. Thus, the left vertical arrow
induces an isomorphism between the fibers of the horizontal arrows over f. Since f was
arbitrary, we deduce that the left vertical arrow is an isomorphism. U

Remark 2.1.4. All the fiber products of algebras above are taken in N;. Fiber products
in aN; usually do not exist (unless one of the factors is commutative).

2.2. Local representability of the functor of NC-families by an aNC scheme.
Assume we are in the situation of Sec. 1.5. By Proposition 1.5.4, we can view hNC as a
functor on the category a/N. Our main goal is to prove the local representability of the
corresponding functor h¥%|,n;, by a d-smooth NC-algebra.

Theorem 2.2.1. Assume that the base B of an excellent family is affine. Then for every
d > 0 the functor hyC|.n;, is representable by a d-smooth thickening of B. Hence, the
functor h¥C is representable by an NC-smooth thickening of B.

The proof will proceed by induction on d. We need two technical lemmas (the second
of which is a noncommutative extension of Lemma 1.5.3).

Lemma 2.2.2. Assume that th|aNd,1 is representable by A € Ny_i. Then for any

central extension (2.1.1) with A € aNy_1, N € aNy, and any homomorphism f: A — A,
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there is a commutative square

U(f) Der(A®, I)

~KS (2.2.1)

Aut(Ey) o, H'(Spec(A?’) x Z,End(E®) @ I)
Here Ay is given by (2.1.2); Ex = Ey is the family in h°(A) induced by f; the map
KS' is induced by the Kodaira-Spencer map; and the homomorphism U(f) — Aut(E))
associates with w € A* an automorphism of Ey induced by the left multiplication by u
on A. The map &y is the connecting map associated with the exact sequence of sheaves
(1.5.4), where Eys is a vector bundle over Spec(N') x Z lifting Ex. In particular, in this
situation oy is a group homomorphism.

Proof. We are going to compute the maps in the square (2.2.1) using local trivializa-
tions. Let us denote by £ the original family over B x Z, and let £ be the family
over Spec(A) x Z corresponding to the element idy € ha(A) ~ hA¥°(A). We denote
by f% the homomorphism A% — A induced by f and the corresponding morphism of
affine schemes Spec(A®) — Spec(A?’) = B. Note that by Proposition 1.5.2, we have an
isomorphism E%® = (£ x id)*£%.

Step 1. Computation of dy : Aut(E;) — H'(Spec(A?) x Z, End(E?) ® piT).

Let us fix an open affine covering (U;) of Spec(A®) x Z such that E} is trivial over U;.
Then, given an automorphism a € Aut(Ey), over U;, we can lift a to an automorphism a;
of Ey. Now over U; NU; the endomorphism «; 104]- —id of E\ factors through the kernel
of the projection Ey — Ey, i.e., E° @ p;Z. This gives the Cech 1-cocycle with values in
End(E®) @ piZ, representing the class dp(a).

Step 2. Computation of the KS-map
Der(A®, I) — H'(Spec(A®’) x Z,End(E®) @ piT). (2.2.2)
Note that we have an identification
Der(A®, 1) ~ H*(B, T ® f*T).
Let us fix trivializations ¢ : O™ — £% over an affine open covering (U;) of B x Z, and

let g} = (¢§) ' p4® € Mat,, (O(U; NU;)) be the corresponding transition functions. Then
to a vector field v on B with values in f®Z the KS-map associates the Cech 1-cocycle
(i) (g)) @)™ on B x Z with values in End(E™) @ pi f*T.

We also need to calculate the image of this class under the isomorphism induced by the
projection formula

HY(B x Z,End(EY) @ pi f.T) — HYB x Z,(f x id).((f x id)*End(EP) @ piT)) ~
H'(Spec(A?) x Z,End(E™) ® piT).

To this end we note that the morphism f% x id : Spec(A®’) x Z — B x Z is affine, and

so U; := (f* x id)"X(U;) is an affine open covering of Spec(A®) x Z, over which we have
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the induced trivializations of £ = (f® x id)*€%, which we still denote by ¢%*. Now
it is easy to see that the corresponding Cech 1-cocycle on Spec(A?) x Z with values in

End(E®) ® I is given by
Pulg) 0 (a5) M i) T

where we denote still by f : (Ui ny;) — O(U; N U;) the homomorphism induced by
/%, and also extend v to a derivation O(U; NU;) — piZ(U; N U;).
Step 3. Now we can check the commutativity of the square (2.2.1).

We start by choosing an affine open covering (U;) of B x Z and trivializations of £ over
U;. Then we can lift these trivializations to some trivializations ¢; : O (see

Spec(A)
Lemma 1.1.2). We denote by g;; the corresponding transition functions in GLy, (Ogpec(a)xz(UiN

Uj))-
By definition, A¢(u) is the derivation
v(a) = [u, f(@)lvu™ = [a, f(a))a",

where @, f(a) € A are some lifts of v and f(a) (note that Der(A, I) = Der(A%,1)).
Hence, KS(A¢(u)) is represented by the 1-cocycle

oili, %]Alﬁ”]‘/@;)_lsofl = soi(ﬁf/(;;)ﬂ‘lm_l — id)gp; .
(2.2.3)

As in Step 2, we have the induced affine open covering U, of Spec(A?) x Z, and the

induced trivializations v¢; of Ey over (71 Let us choose a lifting Ey of E; to a vector
bundle over Spec(A’) x Z (it exists by formal smoothness of A¥), and liftings 1} of 1; to

trivializations of Ejs over U; (see Lemma 1.1.2). Note that we have v; ', = f(gi;), and
hence (¢]) =9 provide liftings f(gi;) € A’ of f(gi;). The image of u € U(f) in Aut(Ey)
can be represented over (N]Z as Yur); ! where we view u as the corresponding operator
of the left multiplication by u (note that these operators are compatible on intersections
because u - f(g;;) = f(gij) - u, due to the inclusion v € U(f)). Using the lifting @ € A’ of
u we get local automorphisms of Ey over U;, a; = ¢ju(;)~*. Then
~ ——1
o(e) = ooy —id = (i () )Wy ) —id = i@ Flgn)af () —id)(@)!
Comparing this with (2.2.3) we see that
do(a) = KS(Ap(u™")) = KS(=Ap(u)) = —KS(As(u)).
O

Lemma 2.2.3. Assume that hiC|.n;, is representable by A € aNy, so hi%|n, = ha.
Then for every d-nilpotent algebra A and every homomorphism f : A — A, the induced

homomorphism U(f) — Aut(Ey) is an isomorphism. Here Ey represents the family in
hEC(A) induced by f.

Proof. We will prove the assertion by induction on d' < d such that A is d’-nilpotent. For
d =0, i.e., when A is commutative, we have U(f) = A* and the assertion follows from

Lemma 1.5.3.
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Next, we have to see that both groups fit into the same exact sequences, when A’ is a
central extension of A by I. Namely, if f': A — A’ is a homomorphism lifting f, then by
Lemma 2.2.2, we have a morphism of exact sequences

A
1 141 U(f) U(f) —1 Der(A®, I)
id ~KS
5
1 14+ 1 — Aut(Ep) — Aut(E;) — H'(Spec(A™) x Z, End(E™) ® p'T)

Note that the map KS is an isomorphism. Since the map U(f) — Aut(Ey) is an iso-
morphism by the induction assumption, we deduce that U(f') — Aut(Ey) is also an
isomorphism. O

Proof of Theorem 2.2.1. By Proposition 1.5.2, we know that the assertion is true for d = 0.
Now, assuming that the functor h¥¢|.r;,_, is representable, we will apply Proposition 2.1.3
to prove that hi¥¢|.;, is representable. It suffices to check conditions (i) and (ii) of this
Proposition. To prove condition (i) assume that A — A and A” — A and nilpotent
extensions with A, A” € Com. To see that the map

h(A" xa A") — h(A') Xp(a) R(A")

is a bijection, we construct (as in [6, Lem. (5.4.4)]) the inverse map as follows. Starting
with families £y, and £y over A’ and A”, and choosing an arbitrary isomorphism of
the induced families over A, we define the family over A’ x5 A” as the fibered product
En X g, Epxr. One has to check that the result does not depend on a choice of isomorphism
of families over A (this may fail in general, but works for commutative A”). Note that
different choices differ by an automorphism of £, so it is enough to see that any such
automorphism can be lifted to an automorphism of £5». But this follows immediately
from Lemma 1.5.3.

Next, let us check condition (ii). Given a central extension (2.1.1) with A’ € N,
A € Ny, and a family (£, Ey, ¢) in h¥¢(A), then choosing a lifting Ej to a family
over A’, from the corresponding exact sequence of sheaves of groups (1.5.4) we get a
connecting map

ot Aut(Ey) — HY (X x Z,End(Epe) @ piT).

Furthermore, by Lemma 2.2.2, ¢y is actually a group homomorphism (and the source of
this map acts trivially on the target). Thus, from the formalism of nonabelian cohomology
applied to the abelian extension of sheaves of groups (1.5.2) we get that different liftings
of E to a family over A’ form a principal homogeneous space over coker(dy) (see Sec.1.4).
Note that by Lemma (2.2.3), we have an isomorphism U(f) ~ Aut(Ey), where f: A — A
is the homomorphism giving E,. Thus, by Lemma 2.2.2, we can identify coker(dy) with
coker(Ay). Thus, to prove condition (ii), it remains to check that the two actions of
Der(A, I) on the set of liftings of F are the same (the one coming from the formalism of
nonabelian cohomology, and the other one given by the map (2.1.6)).

To this end we use the computation of the Kodaira-Spencer map (2.2.2) using local

trivializations. Namely, we choose trivializations of the universal bundle £ over an open
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covering of Spec(A) x Z, and denote by g;; the corresponding transition functions, so
that f(g;;) are the transition functions for E4. Then, in the notation of Lemma 2.2.2, a
derivation v € Der(A4,I) = Der(A®, I) gives rise to the Cech 1-cocycle

-1 -1

eiv(9i5) 1 (955) " i
on Spec(A®) x Z with values in End(E®) ® p;Z. The corresponding f(g;;)-twisted 1-
cocycle with values in Mat, (O) @ piZ is (v(gi;) f(g;;) ). Now by definition, the action of
v on the set of liftings of f(g;;) to a 1-cocycle with values in GL,(Ogpec(ar)xz) sends (g;5)
to

(X +v(gi5) f(9:)7") - G5 = (G35 + v(95))- (2.2.4)

On the other hand, from v we get a homomorphism f% + v : A — A% @ I, and hence,
the 1-cocycle (f® + v)(gi;) with values in GL, (Ospec(actarnxz) lifting f®(gi;). Hence, a
lifting g;; of f(gi;) together with v defines a 1-cocycle

(Gijs (f* +v)(945))
with values in GL,(Ogpec( A/ b (ASD@T)) 7). It remains to observe that under the isomor-
phism (2.1.4) it corresponds to the 1-cocycle

(94> Gij +v(9i5))
with values in GL,(Ogpec(a'x,A7)xz), Which has (2.2.4) as the same second component. [

2.3. Nonabelian hypercohomology. We will use below the following simple general-
ization of nonabelian H'. Let G be a sheaf of groups over a topological space X, and let
& be a sheaf of sets, equipped with a G-action. We view a pair G ~ £ as a generalization
of a length 2 complex.

For an open covering U = (U;);e; of X, we define the set of 1-cocycles over U for the
pair g ~ &:

Zl(U, G~ &) :={(9ij € G(Uy))ijer, (€i € EWUi))ier | i = 1, 9595 = 1,
9ij9jk = Gik, € = gij(e;)}, (2.3.1)
where as usual we denote U;; = U; N U;, Uy, = U; N U; N Uy (and the restrictions to
appropriate intersections are assumed). Two 1-cocycles over U, (g;j,¢e;) and (g;j,€;) are
called cohomologous if for some collection h; € G(U;) we have
Gij = higishi ', & = ha(es).
It is easy to see that this defines an equivalence relation on Z'(U,G ~ £), and we denote
by HY(U,G ~ ) the corresponding set of equivalence classes. Passing to the limit over
all open coverings U, we get the nonabelian hypercohomology set HY(X,G ~ ).

These sets are natural: if we have a homomorphism of sheaves of groups G; — G, and
a compatible map of sheaves of sets & — &, then we get the induced map

Hl(X, g1 Y 51) — Hl(X, g2 % 52)
Also, sending (gi;,€;) to g;; defines a projection to the usual nonabelian H',

H' (X,G ~ &) — H'(X,G).
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Recall that H 1(X ,G) classifies isomorphism classes of G-torsors. Similarly, the set
HY(X,G ~ ) can be identified with the isomorphism classes of pairs (P, e), where P is
a G-torsor, and e is a global section of the twisted sheaf Ep = P xg &.

Next, we have the following analog of the connecting homomorphism H' — H?2. Assume
that we have an abelian extension of sheaves of groups

1A =G 2+G—1

over X, and sheaves of sets £ and &, where G’ (resp., G) acts on & (resp., £). Further,
assume that we have a sheaf of abelian groups A; acting freely on £, and an identifcation
E = &'JA;. We denote this action as a; + ¢/, where a; € Ay, ¢ € £. We require
the following compatibilities between these data. First, the projections p : & — £ and
p: G" — G should be compatible with the actions (of G’ on £ and of G on £). Note that
this implies that there is an action of G’ on A;, compatible with the group structure on
Aj, such that

g'(a1+€') =g'(ar) + g'(¢).
Secondly, we require that the subgroup Ay C G acts trivially on A;, so that there is an
induced action of G on Ay, such that the above formula becomes

g'(ar+€') = plg)(ar) + g'(¢).
In particular, for ¢’ = ag € Ap, we get
ap(ar + €') = ay + ag(€'). (2.3.2)
For ¢’ € & and ag € Ay, let us define du(ag) € A; from the equation
ao(€') = du(ag) + €

(this is possible since aq acts trivially on £). Furthermore, (2.3.2) easily implies that
day+er(ag) = der(ag), so we have a well defined map of sheaves

E XAy — Aj:(e,a9) — de(ap),
compatible with the group structures in Ag and A;, such that
ao(e’) = dp(el) (CLO) + 6,.

In particular, for every section e of £ over an open subset U C X we have a complex of
abelian groups over U, (A,,d.). Note that G acts on Ay (via adjoint action Ad(g)), A;
and &£, and we have

9(de(ag)) = dy(e)(Ad(g)ao). (2.3.3)

Now assume we have a class ¢ € H(X,G ~ &) represented by a Cech 1-cocycle (g,;, €;).
Let g = (gi;) be the induced class in H(X,G). We have the corresponding twisted sheaves
A and A{, and (2.3.3) implies that the d.,’s glue into a global differential

de : Aj — Af.
We are going to define an obstruction class d;(c) with values in

H* (X, (A7, de)),
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such that it vanishes if and only if (g;j,e;) can be lifted to a class in HY(X,G" ~ &').
Namely, by making the covering small enough, we can assume that

9i5 = p(9i;), 9i; € G'(Uy), ei=pley), e € E(Uy).
Then we have well defined elements ag ;i € Ao(Usjx) and ay; € A1 (U;;), such that
géjg}k = aO,ijkgz/'k:a
9i;(€}) = av; + €.
It is easy to check that (aojk, a1,;) satisfy the equations
ao,ijk + ok = Ad(gij) a0k + o, a1 + gij(ar k) = de, (o) + a1k,
which exactly means that we get a 2-cocycle 01(g;5, ;) with values in (A9, d.).

One can check that this construction gives a well defined element 6, (c) € H?*(X, (AY,d,)).
Namely, a different choice of liftings g;; — ao4;9;;, €; + ai; + €} would lead to adding
the coboundary of (agj,a1,) to the twisted 2-cocycle (ag,ijk,@1,;). On the other hand,
changing (g;;, e;) to (h; gijhj_l, hi(e;)) would lead to a different presentation of the twisted
sheaves AYJ, so that the action of h; glues into isomorphism between two presentations.
Our 2-cocycles 61(gij, €;) and &1 (higi;h; ', hi(e;)) correspond to each other under this iso-
morphism.

Next, let us assume that a class ¢ € H'(X,G ~ &) is lifted to a class ¢ € H(X, G ~
&"). (More precisely, we need to fix the corresponding pair (P’,€’) where P’ is G'-torsor
and €' is a global section of £,.) Let g € H'(X,G) be the image of c. We define the
following subgroup in H°(X,G9):

H(X,G,¢) = {(a; € G(U))) | i = giez955°, ciles) = e},
where (g;;, €;) is a Cech representative of c. We have a natural connecting map (depending
on a choice of ¢)
S : HY(X, G, c) — H'(X, (AY,d.)),
defined as follows. We can assume (g;j, ¢;) comes from a Cech representative (g;, e;) for

d. Let @ = (a;) be an element in H(X, G, c). We can assume that each «; can be lifted
to af € G'(U;). Then we have

af - agq; = g5;05(g1;) " aglar; +e)) = e,
for uniquely defined ag;; € Ao(Ui;), a1 € Ao(U;). It is easy to check that the following
equations are satisfied:

ao,i; + Ad(gij)(ao k) = ok, de,(a0,i5) = ari — gij(a ), (2.3.4)
which means that (ag;,a1,) is a 1-cocycle with values in (A, d.). We set dp(;) to be
the class of this 1-cocycle. As in Sec. 1.4, one can check that o — dg(a™!) is a crossed

homomorphism, i.e., equation (1.4.1) is satisfied.
Next, we have a natural surjective map (depending on )

H'(X, (AY, de)) — L, (2.3.5)

where L, C HY(X,G" ~ &') is the set of liftings of ¢. Namely, given a twisted Cech

1-cocycle with values in (A9, d.), (ao,j,a1,), so that equations (2.3.4) are satisfied, and a

representative (gi;, e;) of ¢/, we get a new lifting (ao;9;;, a1, +e€;). Furthermore, as in Sec.
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1.4, we can identify the fibers of (2.3.5) with the orbits of the twisted action of H°(X, G, c)
on H'(X, (AY,d.)), which is defined similarly to (1.4.2). In particular, in the case when
the usual action of H(X, G, c) on H'(X, (AY,d.)) is trivial (or equivalently, d, is a group
homomorphism), these orbits are simply the cosets for the image of do.

2.4. Families of representations of quivers. Now we are going to consider families
of representations of quivers (without relations). Let @) be a finite quiver with the set of
vertices Qg and the set of arrows ;. We denote by h,t: Q)1 — )y the maps associating
with an arrow its head and tail.

As in [12], we can consider representations of () over an NC-scheme X. Such a repre-
sentation is a collection of vector bundles (V,)yeq, over X, and a collection of morphisms
€a : Vi(a) = V), for each a € Q.

With a collection V = (V,)veq, of vector bundles over X we associate a triple of sheaves
of groups on the underlying topological space of X,

G(V) = [JAutW,), &) :=][EndV.), &(V) =[] HomVia Vi)

Note that there is a natural action of G(V) on & (V) given by
(gv) : (‘ba) = (gh(a)(bag;(cll))'

In the case of trivial bundles V, = O™, for a dimension vector n,, we denote these sheaves
by G(n.), E(ne) and &£ (n,). When we want to stress the dependence on the NC-scheme
X we write G(n,, X), etc.

A structure of a representation of () on V is given by a global section e = (e,) of & (V).
For such a structure e we can build a 2-term complex

E.V,e): EV) e £, (V),

where the differential is given by de(¢v) = Gn@)€a — €adr(a). Note that HOE(V,e) is
precisely the sheaf of endomorphisms of (), e) as a representation of Q).

Let (V,e) be a representation of @) over X. Over some open affine covering U = (U;)
of X we can choose a trivialization ¢; = (¢.:) : @, O — @, Volv,- Then over each U;
we have morphisms

Cai i= ¢,:(z)7ieag0t(a),i € Maty, , xnq, (O(Ui)) = E1(ne) (Us),

and over intersections U; N U; we have transition functions
9i = (9v3) = @1 @5 € [ [ GLa, (O(Ui N T;)) = G(na) (Ui N T;).

One immediately checks that (g;;,eq;) defines a Cech 1-cocycle with values in the pair
G(ne) ™ E1(ns) (see Sec. 2.3). Furthermore, a different choice of trivializations (y;) leads
to a cohomologous cocycle, so we have a well defined element of H'(X, G(n.) ~ &1(n.)).
One can easily check that in this way we get a bijection between the latter nonabelian
hypercohomology set and the set of isomorphism classes of representations (V,e) of @,

such that the underlying vector bundle has dimension vector n,.
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For a central extension (2.1.1) we have an abelian extension of sheaves of groups
1— 50(n., OXab) KRL — g(n.,OX/) — g(n., OX) —1 (241)

where X = Spec(A), X' = Spec(A’), Z C Oy is the ideal sheaf associated with I, and an
exact sequence of abelian groups

0= E1(ne) L — E1(ne, X') = E1(ne, X) — 0,

compatible with the actions of the groups from (2.4.1). From Sec. 2.3 we get that the
obstacle to lifting a representation (V, e) of @ over Spec(A) to a representation of () over
Spec(A) is an element of the hypercohomology H?(X %, £,(V, e)®Z). But the latter group
H? fits into the exact sequence

= H(X? E(V)®T) - HE = HY (X &E(V)RT) — ...

Since X% is an affine scheme, we deduce that our H? vanishes. Thus, the functor of
families of Q-representations on N is formally smooth.

Definition 2.4.1. With a representation (V,e) of ) over a commutative scheme B we
associate the KS-map, which is a morphism of coherent sheaves on B,

KS:Tp — H'E(V,e), (2.4.2)

defined as follows. Locally we can choose trivializations ¢ : @, O™ — @, V, and, for a
local derivation v of Op, set

KS(v) = ov(p teap)p ' modim(d,) € E(V, f)/im(d,).

It is easy to check that a change of a local trivialization leads to the addition of a term
in im(d.), so the map K. is well defined.

This definition is motivated by the fact that in the case when B = Spec(k) is the
point and (V,e) is a Q-representation over k, the space H'&E,(V,e) is isomorphic to
Ext'((V,e),(V,e)) (see [1, Cor. 1.4.2]), which is the tangent space to deformations of
(V,e) as a Q-representation.

Now let us fix a family (V%, e®) of representations of @) over a smooth commutative
base scheme B. We have the following analog of Definition 0.0.1.

Definition 2.4.2. We say that (V% e®) is an excellent family of representations of Q if
(a) the natural map O — End(V®,e®) = HOE,(V®, ) is an isomorphism;
(b) the Kodaira-Spencer map KS : Tg — H'E(V?, e®) is an isomorphism.

Condition (a) is satisfied for families of endosimple representations (see [12, Lem. 3.4]).
Both conditions are satisfied for the moduli spaces of stable quiver representations corre-
sponding to an indivisible dimension vector (see [8, Prop. 5.3]).

Let us point out some consequences of assumptions (a) and (b). Given f : S — B
(where S is a commutative scheme), for (V,e) = (f*V%, f*¢) we have

End(V.e) = HEL(V,e) = HOLFE(V™, &) = FHOE V™, ) = f*Op ~ O,

where we used the fact that H1E, (V% e®) ~ Ty is locally free. Also, if S is affine, then
for any coherent sheaf F on S we have

H(E(Vie)@ F) = HIE(Ve) @ F =~ f"Tp® F.
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Now we consider the following analog of Definition 1.5.1 for quiver representations.

Definition 2.4.3. For an excellent family (V% %) of representations of ) over a smooth
(commutative) base B, we define the functor h3“ : N — Sets by letting h3¢ be the set
of isomorphism classes of the following data (f, Vi, ¢). Let X = Spec(A) and let X be
the reduced scheme of the abelianization of X. Then f : X2 — B is a morphism, (Vj, es)
is a representation of @ over X, and ¢ : (Ex, ey)] xgb (f*V, f*e® is an isomorphism of
representations of ().

We have the following analog of Theorem 2.2.1 (and Proposition 1.5.4).

Theorem 2.4.4. The functor hi¥¢ is formally smooth and factors through the category
aN . If the base B is affine then for every d > 0 the functor hi¥%|.;, is representable by
a d-smooth thickening of B.

Proof. The proof follows the same steps as in the case of families of vector bundles.
We have already shown before that h¥¢ is formally smooth. The fact that hi¥¢ factors
through a/\ is proved similarly to Proposition 1.5.4.

The key technical computation is the analog of Lemma 2.2.2, which in our case claims
commutativity of the diagram

U(f) A Der(A®, I)
~KS (2.4.3)

5
Aut(Vy, en) —> HY(X HE(V?, ™) @ T)

associated with a central extension (2.1.1) and a representation (V, exr) of @ over X' =
Spec(A’). Here we assume that h¥¢|.n;,_, is represented by A € Ny_1, that A € aNy_; and
that (Vi,ey) is a Q-representation over X = Spec(A) corresponding to a homomorphism
f:A—= A Also, (Var,en) is a Q-representation over X', extending (Va,eyx). The right
vertical arrow in (2.4.3) is induced by the KS-map (2.4.2), and the bottom arrow is the
connecting map defined in Sec. 2.3. More precisely, we use here the identification for any
quiver representation (), e) over X of the automorphism group Aut(V,e) with the group
H°(X,G(n.),c), where ¢ € HY(X,G(n,) ~ E1(n,)) is the class of (V,e). Also, we use the

natural isomorphism
HY (X, E,(V?, e®) @ T) —— HY(X,H'E,(V?, e?) @ T) (2.4.4)

induced by the projection & (V%) — H1E (VP ).
We assume that there is an open covering (U;) of B and trivializations ¢ of V%

U;
and the compatible trivializations 1; of V, and Vy over the covering U; = ¢ 'U;. Let
(gij, €i) be the Cech 1-cocycle corresponding to the universal family over Spec(A), so that
the corresponding cocycle for (Va,ea) is (f(gi5), f(ei)).

By definition of dy (see Sec. 2.3), starting from an automorphism a of Aut(Va, ey ), we

can lift it over U; to an automorphism o of (Vy/, ex) and then define dp(«v) as the class
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of the Cech 1-cocycle with values in & (V%, e®) ® I, given by

Qg5 = (Oé;)_l()é;- — ld, ay1; = (Oé;)_lei’/\/ — €A
Calculating as in the proof of Lemma 2.2.2, and recalling that the action of Gy(n.) on
E1(ne) is given by conjugation, we get

e~

Qo,ij = wi([ﬂ_la f(gz'j)] - id)wil - 1/%‘Af(U_l)(f(gij))f(gij)_1¢;17
ay; = %’(ﬂ_l@i,/\/ﬂ - €A’)1/J¢_1 = @biAf(U_l)(ei)%_lv

where we extend the derivation Ay : A — I to matrices with entries in A. Now we note
that the image of the class of this Cech 1-cocycle under the isomorphism (2.4.4) is simply
the global section of H'&,(V?, e®) ® T given by

(a1, modim(d,)) = KS(As(u™)) = —KS(As(u)).
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