


 

   

   

   
   

   

   

      
       

      
         

       

      
       

        
        

      
        

      
        

      
     

   
       

 

 

 

 

 

 

 

 

 

 

favours N2 -fixing cyanobacteria that draw on the vast atmo­
spheric N2 reserve, eventually providing the eutrophic eco­
system with enough N to compensate for N deficits, thus 
perpetuating P-limitation (Schindler 1977, Hecky and Kilham 
1988, Schindler et al. 2008, Schindler and Hecky 2009). The 
general applicability of this principle has been questioned 
however, as it has been argued that N2 -fixers cannot meet the 
N requirements of eutrophic ecosystems due to ecological and 
geochemical constraints on N2 -fixation (Howarth et al. 1988, 
Paerl 1990, 2017, Vitousek and Howarth 1991), and because 
the N input by N2 -fixers is offset by denitrification in eutro­
phic waters (Lewis and Wurtsbaugh 2008, Paerl et al. 2010, 
2016, Scott and McCarthy 2010, Lewis et al. 2011), thus 
perpetuating N-limitation (Paerl et al. 2016). A far-reaching 
implication is that ecosystem managers should also consider 
the reduction of N inputs, rather than focusing solely on P 
(Conley et al. 2009). However, a mechanistic understanding 
of how N2 -fixation affects nutrient limitation and eutrophi­
cation in aquatic ecosystems remains incomplete. 

Here, we use classical resource competition theory 
(Tilman 1982, Huisman and Weissing 1995) to explore 
whether N2 -fixers are capable of perpetuating P limitation 
when lowering external N supply. To address this, we built 
a resource competition model and analyzed for different 

combinations of external N and P supply how N2 -fixation 
influences the structure, productivity and nutrient limi­
tation characteristics of a eutrophic community domi­
nated by floating macrophytes. Then, we implemented 
the resource competition model in an established complex 
freshwater ecosystem model to test the robustness of our 
results in a more realistic setting including various bio­
geochemical processes and biotic interactions. Finally, we 
compared the model predictions with a 32-year field data 
set on eutrophic floating-plant dominated ecosystems to 
validate the results, and discussed the role of N2 -fixation 
and its implication in developing nutrient management 
strategies for aquatic ecosystems undergoing cultural 
eutrophication. 

Methods 

Resource competition model 

We developed a mechanistic model that describes a commu­
nity of floating plant species that compete for N, P and light 
(Table 1, Supplementary material Appendix 1 Fig. A1). One 
species is able to fix N2 from the atmosphere while the other is 
completely reliant on combined N in the water column. The 

Table 1. Resource competition of two competing floating plant species in a water body. 

Description Mathematical formulation Eq. 

Differential equations 
Biomass dynamics non-N2-fixer 

Biomass dynamics N2-fixer 

N dynamics in the water column 

P dynamics in the water column 

Auxiliary equations 
Growth rate of the non-N2-fixer 

Growth rate of the N2-fixer 

N limitation function 

P limitation function 

Light limitation function 

Light intensity below the plants 

1dL 
= ( pL − mL )L 

dt 
2dA 

= ( pA − mA )A 
dt 

3dN n 1 a 
= in − DN − cN L, pLL + (cN L, m + , mA ALL cN A )

dt z zB zBB 
4dP 1 a 

= − DP − ( + ) + ( m + mA A)pin cP L, pLL cP A pA A cP L, LL cP Adt zB zB 
, zB 

, 

pL = min[ , , , ] 5fN L  fP L  fI L, pmax, L 

=pA fP A fI A pmax, A 
6 

, , 
7N 

=fN L, N + MN L, 
8P 

=fP i, 
P + MP i, 

1 Iin 1 1 ⎛ + ⎞ 9 
Hi Iin = ∫ dI = lnfI i, 

kLL kA A Iou Hi + I kLL kA A ⎝⎜ + Iout ⎠⎟+ t + Hi 

−(kLL k+ AA) 10 
=Iout Iine 
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model builds on existing theoretical frameworks for resource 
competition (Huisman and Weissing 1995, Van Gerven et al. 
2015a) and simulates the dynamics of plant biomass 
(g DW m−2) and the N and P concentrations (g N m−3 and 
g P m−3) in the water column (Eq. 1–4). The water column 
N and P concentrations are affected by supply, outflow, uptake 
and remineralization. The biomass dynamics depend on loss 
rate m and growth rate p. The growth rate is co-limited by 
light and nutrients (Eq. 5 and 6). Nutrient limitation follows 
the Michaelis–Menten function (Eq. 7 and 8). The non-N2 ­
fixer is limited by either N or P according to Liebig’s law of 
the minimum, whereas the N2 fixer is only limited by P as its 
N demand is assumed to be met by N2 fixation. Light limita­
tion is also characterized by the Michaelis–Menten function 
(Eq. 9) and follows from integrating over the plant depth, as 
the light intensity I decreases with depth due to light attenu­
ation by the plants according to Lambert Beer’s law (Eq. 10). 
Via the remineralization process the N2 fixer is capable of 
enriching the system with N, as part of the nutrients in dead 
plant tissue ends up in the water while the remaining part is 
lost to the sediment by burial. 

Model analysis 

To examine the interplay between external N supply and 
N2 -fixation on nutrient limitation and productivity in the 
aquatic ecosystem, we analyzed the basic configuration of 
the model, after which we added complexity in a stepwise 
manner. We first considered the hypothetical situation of 
having two non-N2 -fixing species with identical resource 
requirements, using parameter values of duckweed (Lemna 
spp., Table 2). De facto we were thus modelling growth of a 
single species resulting from intraspecific competition. This 
exercise provided an important contrast for the next step, 
where we granted one of the two species the capability to 

Table 2. Parameter values of the resource competition model. 

fix N2. This second step exposes the single effect of N2 fixa­
tion on the ecosystem. As a third step, we also changed the 
other parameter values of the N2 -fixer, implementing values 
of the water fern (Azolla spp.), a floating plant species living 
in symbiosis with the N2 -fixing cyanobacterium Anabaena 
azollae (Wagner 1997, Table 2). This third step allowed us 
to evaluate the effect of N2 -fixation in relation to the dif­
ferent resource requirements of Lemna and Azolla. For each 
of the steps, we determined the competition outcome for a 
range of N (nin) and P (pin) inputs and assessed which nutri­
ent was limiting the growth rate of the non-N2 -fixing species. 
We also took a cross section in the N and P plane, focusing 
on the effect of decreasing N input while keeping the P input 
constant at a fairly high level representing eutrophic condi­
tions. We calculated the biomass of both species to analyze 
how external N supply controls the productivity in the sys­
tem and reported which resource was limiting the growth of 
the non-N2 -fixing species. To compare the effects of reducing 
the supply of P instead of N, we present a similar analysis 
in Supplementary material Appendix 1 Fig. A7, focusing on 
the effect of decreasing P input while keeping the N input 
constant. Additionally, to gain more insight into the com­
petitive ability of the species, we calculated and analyzed the 
zero net growth isoclines of the macrophytes for the differ­
ent resources, which is presented in Supplementary material 
Appendix 1 Fig. A9. 

Complex ecosystem model 

To test whether the results of our resource competition 
model remain the same in a more realistic setting, we imple­
mented the equations of the resource competition model 
in a full-scale and well-tested dynamic ecosystem model 
PCDitch (Janse 1998, Janse and Van Puijenbroek 1998), and 
repeated the analyses. PCDitch has previously been used to 

Description Symbol Unit Lemna Azolla 

Species parameters 
Maximum growth rate 
Loss rate 

pmax,i 
mi 

day−1 

day−1 
0.4a 

0.05a 
0.25b 

0.03c 

Light attenuation coeff. ki m2 g DW−1 0.07a* 0.07d 

Half-sat. constant for light Hi J m−2 s−1 25a* 35e 

Half-sat. constant for N 
Half-sat. constant for P 
N to dry weight ratio 
P to dry weight ratio 

MN,L 
MP,i 
cN,i 
cP,i 

g N m−3 

g P m−3 

g N g DW−1 

g P g DW−1 

2.5a 

0.25a 

0.07a 

0.015a 

– 
0.45f 

0.03g 

0.01g 

Environmental parameters 
N loading nin g N m−2 day−1 0–0.5 
P loading pin g P m−2 day−1 0–0.05 
Incident light intensity Iin J m−2 s−1 200 
Dilution rate of water column D day−1 0.1 
Remineralization fraction of died-off plants α – 0.5 
Water column depth zB m 0.5 

aPCDitch; Janse (1998), a*the values of PCDitch were raised to better match the values found for Azolla, bVan der Heide et al. (2006), 
cChosen such that maximum biomass is realistic, dForchhammer (1999), eMoretti and Siniscalco Gigliano (1988), fBieleski and Lauchli 
(1992), gCosta et al. (1999). 
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external N supply is lowered (Fig. 1b). We find that P limita­
tion is much more pronounced in the presence of a N2 fixer 
(Fig. 1b, middle panel) compared to a community where N2 ­
fixation does not occur (Fig. 1a, middle panel). The presence 
of the N2 -fixer makes it possible for the non-N2 -fixing species 
to maintain relatively high levels of biomass at low external N 
supply, compared to the situation without N2 -fixers (Fig. 1, 
right panels). However, the biomass of the non-N2 -fixing spe­
cies decreases when the external N supply is lowered. The 
N2 -fixing species, which does not compete for N in the water 
column, benefits from a reduction of the external N supply 
and becomes dominant, offsetting the reduction of the non­
N2 -fixing species. As a result, the external N supply has no 
control on the total productivity (Fig. 1, right panels). This 
is even the case when N2 -fixers do not ‘fertilize’ the water 
with fixed atmospheric N through remineralization of died-
off biomass (Supplementary material Appendix 1 Fig. A4). 

The ability of N2 -fixers to perpetuate P-limitation disap­
pears when we consider the species of interest, the N2 -fixing 
Azolla and non-N2 -fixing Lemna, by implementing the dif­
ferent growth parameters and taking into account the respec­
tive differences in resource requirements. Our modelling 
results indicate that Azolla is unable to coexist with Lemna 
as long as the growth rate of Lemna is limited by P (Fig. 2a). 
Only when the growth limitation of Lemna switches from 
P to N, following a reduction of external N input, is Azolla 
able to coexist. Thus, the N2 -fixing capacity of Azolla does 
not prevent Lemna from becoming N limited. These findings 
remain even if we assume remineralization and associated 

‘N-fertilization’ to be very high (Supplementary material 
Appendix 1 Fig. A5). Consequently, a further reduction of 
external N input reduces the biomass of Lemna (Fig. 2a). 
The Azolla, however, relieved from competitive exclusion, 
can benefit from the poor growth conditions for Lemna and 
builds up considerable biomass under low N and high P 
input conditions (Fig. 2a, right panel). As a result, there is no 
consistent control of external N input on the total productiv­
ity in the system. These results are confirmed when we ana­
lyze the competition outcome along a gradient of external P 
supply while keeping the N supply constant (Supplementary 
material Appendix 1 Fig. A7, right panel). When the external 
input of N is high, the growth of Lemna is limited by P and 
Azolla is unable to coexist. When the N supply is relatively 
low, Azolla dominates as long as the growth of Lemna is lim­
ited by N. For both high and low N supply, the reduction 
of external P supply has a clear negative effect on the total 
biomass in the system. 

When we included the resource competition model in the 
full-scale ecosystem model PCDitch we found similar results: 
namely, that when lowering the N supply, the N2 -fixing Azolla 
cannot keep the growth of non-N2 -fixing Lemna P-limited 
(Fig. 2b, Supplementary material Appendix 1 Fig. A6). Both 
models predict that Azolla can only exist if the growth of 
Lemna is limited by N and there is sufficiently P available 
for Azolla to grow. To validate these qualitative results, we 
analysed the field data, which showed that N2 -fixing Azolla 
spp. indeed occurred at significantly higher P concentra­
tions than Lemna spp. (Fig. 3a: p < 0.001). Note that in the 

Figure 2. Structure and nutrient limitation characteristics of a floating-plant community of Lemna (L) and Azolla (A) as predicted by (a) the 
resource competition model and (b) the complex ecosystem model. Left panel, competition outcome where ‘S’ denotes submerged plants. 
Middle panel, nutrient that limits the growth of the non-N2 -fixing Lemna. Right panel, underlying biomasses in g DW m−2 and nutrient 
limitation factors of Lemna along a gradient of N supply (pin = 0.04). Table 2 for parameter values. Note that for the ecosystem model it 
concerns summer-averaged results. 
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appear unable to perpetuate P-limitation, they also show 
that N-fixers benefit from decreasing N inputs and may be 
able to increase their biomass considerably. Dense mats of 
Azolla can be just as harmful for the ecosystem and the pro­
visioning of ecosystem services as the targeted non-N2 -fixing 
Lemna species (Janes et al. 1996, Hussner 2012). Moreover, 
the N2 -fixers provide extra N to the system and thereby can 
potentially provide combined N for harmful eutrophic species 
(Schindler et al. 2008). 

On the other hand, our models probably overestimate 
the growth potential of N2 -fixers by ignoring other (in addi­
tion to P) ecological, geochemical and energetic constraints 
on N2 -fixation (Paerl 1990, 2017, Berman-Frank et al. 
2007). For example, our models assume that the N2 -fixer’s 
N demand is immediately fulfilled by N2 -fixation and 
thereby ignore most of the energetic costs associated with 
N2 -fixation (Paerl 1990, 2017). Such constraints could 
explain why N2 -fixation and the associated heterocyst-pro­
duction was minimal at low N supply (Ferber et al. 2004) 
and that N2 -fixers do not always become dominant over 
non-N2 -fixers when reducing N inputs (Paerl et al. 2014, 
2016). This conclusion is also supported by long-term field 
data on floating macrophytes, which showed that N2 -fixers 
do not necessarily occur at lower N availability when com­
pared to non-N2 -fixers (Fig. 3b). Moreover, in our com­
prehensive ecosystem model we did observe a moderate 
decrease in macrophyte biomass in response to the reduc­
tion of N input. Based on these observations, we propose 
that controlling N can be effective, given enough constraints 
on N2 -fixation. Therefore, we advocate a balanced approach 
to ecosystem restoration by not solely focusing on reducing 
P inputs but also lowering N inputs (Conley et al. 2009, 
Paerl et al. 2016, Cotner 2017). 

Given that excessive nutrient loading is one of the 
major drivers of global environmental change (Steffen et al. 
2015), and that the societal costs associated with mitigating 
eutrophication are significant (Smith 2003, Dodds et al. 
2009), there is a clear mandate for the scientific commu­
nity to come up with an unambiguous standpoint on how 
to restore aquatic ecosystems. Here, we stress the impor­
tance of theoretical models, to ensure that the arguments 
used in the debate have a sound and testable mechanistic 
underpinning. 
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