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Multitribe evolutionary search for stable Cu–Pd–Ag
nanoparticles using neural network models†

Samad Hajinazar, Ernesto D. Sandoval, Aiden J. Cullo and
Aleksey N. Kolmogorov

We present an approach based on two bio-inspired algorithms to accelerate the identification of

nanoparticle ground states. We show that a symbiotic co-evolution of nanoclusters across a range of

sizes improves the search efficiency considerably, while a neural network constructed with a recently

introduced stratified training scheme delivers an accurate description of interactions in multielement systems.

The method’s performance has been examined in extensive searches for stable elemental (30–80 atoms),

binary (50, 55, and 80 atoms), and ternary (50, 55, and 80 atoms) Cu–Pd–Ag clusters. The best candidate

structures identified with the neural network model have consistently lower energy at the density functional

theory level compared with those found with traditional interatomic potentials.

1 Introduction

Materials downsized to the nanoscale display surface-defined
functionalities desirable in catalysis,1 solar energy conversion,2

medicine,3 etc. Compared to their bulk counterparts, nano-
particles (NP) have a wider range of properties because they are
not constrained by the translational symmetry and can be
synthesized in various size-dependent metastable structures.
The dramatic expansion of the configuration space complicates
the identification of chemical compositions and synthesis
conditions optimal for NPs’ targeted applications. Despite the
recent development of advanced modeling methods, the basic
problem of determining stable structures as a function of the
system size and constituent elements remains a considerable
challenge.4–6

The success of predicting stable structures depends on the
efficiency of the search algorithm and the quality of the inter-
atomic interaction description. It has been widely acknowledged
that no single search method can provide the best convergence
for all cases.5–20 As a result, existing optimization algorithms
span a wide spectrum of strategies that rely on unbiased
sampling (e.g., in ab initio random structure searching21), take
advantage of common motifs (e.g., in dynamic lattice
searching16–18,22), or balance unconstrained optimization with
explicit or implicit biases (e.g., evolutionary algorithm, basin
hopping method, particle swarm optimization, etc.8–11).

Similarly, the toolset of interaction description methods offers
a range of options with varying degrees of accuracy and
efficiency. Density functional theory (DFT) has been used to
model properties of select NPs up to a few thousand atoms,23,24

but the method’s N3 scaling restricts fully ab initio structure
searches to systems with typically a few dozen atoms.25,26 The use of
linearly scaling classical potentials extends the unconstrained search
range to hundreds of atoms, but the models’ limited transferability
poses a problem for resolving competing structures.6 Hybrid
strategies mitigating this issue have relied on complementary
DFT calculations for either adjusting classical potentials during
structure searches27 or assessing small pools of global minima
candidate structures.28 The recent introduction of neural net-
work (NN) interatomic models has made it possible to maintain
near ab initio accuracy of the total energy description across
different atomic environments.29–37

Machine learning-based atomistic force fields have already
been used for predicting crystalline or nanosized materials.
Examples of bulk systems include high-P or high-T crystalline
phases of Si,38 B,39 and Mg–Ca,40 while stable surface config-
urations have been explored for the Cu–ZnO41 and Au–Pd42

systems. The most extensive effort has been directed at the
identification of stable clusters. NN potentials have been devel-
oped to perform unconstrained ground state searches for
elemental Nan clusters (n = 17–40),43 MgO-supported Pt13,

44

Au58,
45 Au17,34,58,

46 and Au147.
47 Select compositions and sizes

have been examined in multielement systems as well, such as
55-atom Cu–Au clusters in water solution,48 55-atom Ag–Au
structures,49 and Pt–Cu–Ni clusters with 147, 309, and 561 atoms.50

Surprisingly we did not find any comprehensive work dedicated
to benchmarking NN against traditional potentials in global
structure searches.
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In this study, we have performed a systematic comparison of
the potential energy surface (PES) mapping at zero temperature
provided by the widely used Gupta potentials and our NN
potentials developed for the Cu–Pd–Ag system. NPs comprised
of these precious/noble metals have applications in energy
conversion and storage, medicine, optics, electronics, etc.51 In
the elemental NP form, Cu enhances the activity of composite
catalysts in numerous electro- and photocatalytic reactions by
promoting the formation of C–C bonds and facilitating the
separation of electron–hole pairs,52,53 Ag exhibits a high anti-
microbial activity suitable for use in medicine,54 and Pd dis-
plays good catalytic properties for a range of (electro)chemical
reactions.55 In the nanoalloy form, Cu–Ag NPs have a high
density of states at the Fermi level and are considered promis-
ing alternatives to expensive Pt-based catalysts,56 while Cu–Pd
NPs in nanodendrite structures have high specific and mass
activities important for the electrocatalytic methanol oxidation
reaction.57 Cu–Pd–Ag NPs have been the subject of numerous
structure analysis studies.7 Several DFT studies have focused on
small elemental Cu, Ag, and Pd clusters,25,58–60 which included
evolutionary optimization of the three metals in the 12–25 atom
range.26 Binary Cu–Ag and Pd–Ag clusters of magic 34, 38, and
55 sizes have been examined with a Gupta potential-assisted
DFT search driven by the basin hopping method.61–67 Embedded
atom model studies have included explorations of large-size
systems with up to a few hundred atoms.68–70 Studies based on
Sutton–Chen potential have been performed for Cu and Ag71,72 as
well as Cu–Ag,73 with a notable lack of parameterizations available
for Pd and the corresponding binaries. The most recent and
extensive studies have been done with the Gupta potential,22,74–77

which motivated us to test our NNs against this widely used
classical model.

Recent extensive ground state searches based on the Gupta
potentials yielded libraries of low-energy structures for elemental
Cu, Pd, and Ag22 as well as binary Cu–Ag and Pd–Ag61,63–67,78

clusters. The availability of these reference sets helped us test the
performance of the machine learning-based approach and estab-
lish the NN’s consistently better description of the elemental and
binary systems. Namely, 62.7% of the lowest-energy elemental
structures identified in our NN-based searches turned out to be
more stable (with 26.1% by over 10 meV per atom) compared
with the Gupta reference structures after both sets were locally
optimized with DFT. An additional advantage of the NNs over
simple classical potentials is the treatment of 3-body terms that
enables accurate description of ternary alloys. We used our
model to identify Cu–Pd–Ag stability regions for select sizes
and observed a good prediction quality with follow-up DFT
calculations.

The use of NNs instead of traditional potentials generally
increases the computational cost of simulations by two-three
orders of magnitude.79–82 With the primary goal of examining
the models’ performance for a variety of nanosized configura-
tions, we have introduced and tested an improved evolutionary
algorithm that executes a concurrent optimization of clusters in
a specified size range. The search acceleration is achieved by
periodic exchange of the most stable members among tribes of

neighboring NP sizes. We have also introduced and examined
the performance of different evolutionary operations that
include a Tetris-based generation of NPs, an alternative core–
shell crossover, and a Rubik’s cube mutation.

2 Interaction description methods
2.1 Density functional theory calculations

DFT served as the reference electronic structure method for
evaluating total energies and atomic forces. By default, we
used the Perdew–Burke–Ernzerhof (PBE) exchange–correlation
functional83 within the generalized gradient approximation
(GGA),84 and projector augmented wave potentials (Cu_pv,
Pd_pv, and Ag)85 implemented in VASP.86,87 All calculations
were performed with a high 500 eV energy cutoff and without
spin polarization or spin–orbit coupling. Generation of refer-
ence bulk structures for NN training was done with dense
(Dk B 0.04 Å�1) k-point meshes62 and the Methfessel–Paxton88

0.1 eV smearing. The settings typically provide a 2–3 meV per
atom numerical convergence for relative energies of different
structures. We kept the same smearing method in G-point
simulations of NPs placed in 20 Å cubic unit cells. Our tests
indicated that the NP relative energies varied by less than
0.5 meV per atom upon reduction of the smearing parameter
or expansion of the box size. Although improvements in
describing the energetics are observed with revised versions
of the PBE functional,89 the original PBE form has been widely
used for the generation of NN training datasets.36,40,90–93 Since
we had used the PBE parametrization for the construction of
NN potentials in our previous study,36 we expanded the refer-
ence set in this work with the same DFT flavor, referred to as
the GGA hereafter. Select structure sets were also evaluated with
the local density functional approximation (LDA)94 (Section 4)
and with the RPBE functional to assess the DFT systematic
errors (Table S1, ESI†).

2.2 Gupta potential

The Gupta potential (GP) was introduced to treat many-body
effects within a second-moment approximation of the tight-
binding method95,96 and has been widely used for modeling
metallic alloys.74–77 The potential has the following functional
form:
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where Aij, zij, pij, qij, and r(0)ij are adjustable parameters.
The cohesive term is a function of only pair interactions;

therefore, it cannot be properly tuned to describe ternary alloys.
Table 1 lists GP parameters used for the elemental and binary
systems considered in the present study. All these parameter-
izations were based on experimental data: lattice constants,
elastic constants, cohesive energy for elemental systems, and
solubility enthalpies for the binary compounds.
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2.3 Neural network parametrization

Known shortcomings of semiempirical potentials27,97,98 have
motivated the development of more adaptable interatomic
models.27 NNs are among the most general and flexible
machine learning methods that have been gaining prominence
in materials modeling since the introduction of descriptors
capable of converting arbitrary atomic environments into NNs’
input.29,99 It has been shown that NNs trained on large first-
principles datasets outperform traditional potentials in the
description of total energies, defect energies, phonon disper-
sions, transition states, etc. for elemental or multicomponent
systems.100,101

Construction of NN models for the present analysis of
Cu–Pd–Ag NPs was based on the approach introduced in our
previous study.36 A reliable sampling of the relevant PES
regions is achieved via short evolutionary searches rather than
commonly used molecular dynamics runs. The former protocol
promotes the inclusion of diverse non-equilibrium configura-
tions occurring in global structure searches and limits the
undesired function of the NN as an extrapolator. A consistent
description of interactions in alloys is attained via a hierarch-
ical training from the bottom up, i.e., starting from elements
and proceeding to binaries and ternaries. The training stratifi-
cation ensures that the NN expansion to chemical systems with
more elements does not affect the description of the subsys-
tems, as only the new interspecies weights are allowed to
adjust. The benefits of these data generation and NN training
schemes were examined in systematic tests for bulk Cu–Pd–Ag
structures.36

In order to account for the more diverse atomic environ-
ments in NPs we have made the following adjustments in the
NN parameterization. First, we incorporated GGA atomic forces
into the training set, which provides local information about
interatomic interactions.79–82,102 Since forces on nearby atoms
are correlated, it was found sufficient to select 25% of atoms
randomly and treat each of the three force components per
atom as a reference data point (see Table S2, ESI†).102 Second,
we used the L2 regularization with L = 10�6 to promote the
smoothness of the PES fit. We observed that the regularization
had little effect on the NN performance because we maintained
a reasonably high (at least 18 : 1) data to parameter ratio in all

considered cases. Third, we expanded the set of Behler–Parrinello
symmetry functions from 30 to 51 per element and increased the
cutoff radius from 6.0 Å to 7.5 Å with the corresponding reduction
of all Z parameters by a factor of 1.252 (Table S3, ESI†).40 Our tests
showed that the diverse low-coordination surface geometries
were described better with the 51-function basis set than with
the 30-function set used for studying the bulk materials,36 which
is important for resolving competing NP configurations. The
larger cutoff helps capture long-range effects and enables
future use of these Cu, Pd, and Ag NN models in combination
with larger elements. Last, we complemented the previously
described database of crystalline structures36 with NP config-
urations. The reference NP structures were generated with short
evolutionary searches using the previously developed bulk NN
model.36 The resulting dataset consisted of (i) non-equilibrium
bulk structures with 1–12 atoms per unit cell (B85%); (ii)
compressed/expanded close-packed structures and small
clusters to reduce the number of artificial minima appearing
in unconstrained searches as discussed in ref. 36 (B10%); and
(iii) clusters with 30–80 atoms for single elements and 55 atoms
for alloys (B5%). All constructed NNs had two hidden layers
with 10 neurons each, and the total number of adjustable
weights is given in Table 2. We split the data randomly into
training and testing sets with a typical 90% to 10% ratio. The
only subset used exclusively for training was the collection of
compressed/expanded structures described in (ii) above. Because
of this choice, the training errors were about 7.5% larger than
the testing errors, as detailed in Table 2 and Fig. S1 (ESI†).

2.4 Method comparison

The following tests illustrate the performance of the NN model
relative to the GGA, the LDA, the GP, and our previous NNbulk

model trained on only bulk structures.36 According to Tables 2
and 3, the inclusion of the NP reference data tunes the NN to
describe both bulk and cluster configurations with a good
3–10 meV per atom accuracy. The NNbulk model extrapolates
the surface energies of close-packed structures well (Fig. S2,
ESI†) but evaluates the total energies of NPs with large average
errors of 50–70 meV per atom (Fig. S3, ESI†). As can be seen
from the mean values of the error distributions in Table 3, the
lack of low-coordinated atomic configurations in the NNbulk

training set resulted in the model’s consistent overestimation
of the NP cohesive energies.

Table 1 GP parameters used in this study. The elemental parameters for
Ag are from ref. 76, and Cu and Pd parameters are from ref. 75. The binary
parameters for Cu–Ag and Pd–Ag NPs are from ref. 74

Model Aij (eV) xij (eV) pij qij r(0)ij (Å)

Cu 0.0855 1.2240 10.96 2.278 2.556
Pd 0.1746 1.7180 10.867 3.742 2.7485
Ag 0.1043 1.194 10.79 3.19 2.88

Cu 0.0894 1.2799 10.55 2.43 2.556
Ag 0.1031 1.1895 10.85 3.18 2.8921
Cu–Ag 0.0980 1.2274 10.70 2.805 2.72405

Pd 0.175 1.7019 11.0 3.794 2.75
Ag 0.1031 1.1899 10.85 3.18 2.89
Pd–Ag 0.1607 1.5597 10.895 3.492 2.82

Table 2 The NN parameterization specifications broken down by the
chemical composition: the total number of adjustable weights, the number
of energy and force components in the training sets, and the NN testing
RMSEs for energies (meV per atom) and forces (eV Å�1). The GGA was used
as a reference method for the NN training and testing

Model # of weights # of E data # of F data Error E Error F

Cu 641 2916 19 581 4.3 0.043
Pd 641 2844 19 683 8.6 0.073
Ag 641 2907 19 635 3.6 0.042
Cu–Pd 1880 3725 32 223 6.6 0.063
Cu–Ag 1880 3724 32 034 3.5 0.038
Pd–Ag 1880 3705 32 166 4.8 0.058
Cu–Pd–Ag 1290 2191 29 163 5.2 0.053
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Fig. 1 details how the NN and the GP describe atomic forces
relative to the two DFT approximations. The considered NN
and GP structures were putative ground states found with the
respective classical model for the elemental systems (Section 4).
Since the structures were fully relaxed at the NN or the GP level,
the root-mean-square error (RMSE) of forces evaluated with the
DFT approximations provides useful information on how close
the configurations are to being local minima on the DFT PES.
Against the GGA, we observed a good agreement for the NN (with
the errors below 0.1 eV Å�1 for all three metals) and a large
discrepancy for the GP (with the errors in the 0.3–0.6 eV Å�1

range for Pd and Ag). Against the LDA, the force error values for
the NN and the GP effectively flipped. The results suggest that
the empirical GP might be providing reasonable NP geometries,
as the GGA and LDA are known to overestimate and under-
estimate bond lengths, respectively. However, our results in
Section 4 illustrate that the GP local minima configurations turn
out to be consistently less stable than the NN configurations
once both sets are relaxed with either the LDA or GGA method.

In a final set of benchmark tests, we examined the PES
profiles for non-equilibrium configurations obtained by rotat-
ing one atom about a NP (see Fig. S4 and S5, ESI†). The atom’s
radial distance was optimized for a series of angles at the GGA

level and the resulting structures were evaluated with the four
methods. Interestingly, the LDA proved to be the odd one out,
differing from the other methods by up to 100% in the
description of the relative energies along this partially con-
strained transition state path. The NN and GP showed a good
agreement with the GGA, describing the energy barriers to
within B20%. The main purpose of the test was to check
whether the flexible NN models would develop clearly artificial
minima corresponding to low-coordination surface configura-
tions. The results for the considered elemental and binary NPs
demonstrated a reasonably good performance of the developed
NN models.

3 Structure search algorithm
3.1 Overview of optimization methods

A number of advanced optimization techniques have been
adapted for finding NP ground states. Basin-hopping represents
an efficient procedure for escaping from local minima and
mapping the PES;12–14 particle swarm optimization relies on
the crowd intelligence for navigating the energy landscape;19,20

evolutionary algorithm mixes and propagates beneficial struc-
tural traits;103–105 and dynamic lattice searching takes advantage
of known structural motifs.16–18,22

While these algorithms differ in implementation and per-
formance for different PES topologies, there are a few guiding
principles that the successful approaches have in common. The
search efficiency is generally improved by avoiding the con-
sideration of similar candidate structures, which is achieved by
creating taboo lists of visited local minima or eliminating
duplicate members in the population. It is also beneficial to
incorporate relevant information or optional constraints into
unbiased searches in the form of known structure seeds or
symmetrization operations. Even with these features present,
optimization algorithms typically screen 103–104 structures to
identify ground states for clusters with 50–100 atoms.12 There-
fore, the computational cost could be a factor limiting the
scope of stability analysis when the atomic interactions are
modeled with NNs rather than semiempirical potentials.

The evolutionary algorithm implemented in MAISE106 has
been extensively used for bulk40,107–110 and film111 materials
leading to confirmed predictions of some of the largest new
structures with 10 (FeB4,

107 CrB4
112), 20 (MnB4

109), 28 (CaB6
108),

and 56 (Na3Ir3O8
110) atoms per primitive unit cell. In this work,

we extended the application range to NPs by implementing and
improving the evolutionary-driven optimization for non-
periodic configurations. We benchmarked the method using
the less expensive GP against the low-energy structures found
previously with dynamic lattice searching for elemental Cu, Pd,
and Ag clusters with 30–80 atoms.22

3.2 Evolutionary operations

Population initialization is one of the critical steps in the PES
sampling. Use of common structural motifs may speed up the
identification of ground states by order(s) of magnitude,108 but

Table 3 RMSEs of NN models in evaluating the total energies (in meV per
atom) of bulk and NP datasets, with respect to GGA values. The NNbulk and
NN are models trained using bulk only and bulk plus NP datasets, respec-
tively. The second row of numbers for each dataset reflects the mean value
of error distribution for the corresponding model (see Fig. S3, ESI)

Dataset

Cu Pd Ag

NNbulk NN NNbulk NN NNbulk NN

Bulk RMSE 4.6 4.0 10.6 8.7 4.6 3.3
Mean �0.1 0.0 �0.9 0.1 0.0 0.0

NP RMSE 69.5 15.3 70.1 12.3 50.1 12.6
Mean �60.2 0.4 �64.3 �2.3 �21.1 �0.9

Fig. 1 Accuracy of atomic force description with the NN and GP models
relative to the two DFT approximations. The RMSEs were evaluated for the
lowest-energy Cu, Pd, and Ag structures found with the corresponding NN
or GP interaction model.
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may also steer the search away from unexpected or unknown
morphologies. We chose not to rely on any prior information
except for the effective atomic sizes and generate structures
randomly, ensuring the absence of unphysically short intera-
tomic distances. The creation of meaningful starting geo-
metries is especially important in NN calculations because
the inclusion of high-energy configurations reduces the NN
accuracy in the relevant low-energy PES regions. In the case of
periodic structures, we avoided short distances in randomly
generated unit cells by allowing 5–10 gradient descent steps
with a purely repulsive pair potential. In the case of NPs, we
kept atoms contained by adding a parabolic energy penalty for
atomic positions beyond a spherical boundary at the cluster’s
estimated radius. We also implemented an alternative genera-
tion scheme inspired by the game of Tetris. Atoms are shot
from random directions towards the NP one by one and
repeatedly rotated to explore allowed positions closer to the
cluster’s center (Fig. 2(a)). The algorithm was particularly help-
ful for generating nanoalloys with desired radius- or angle-
dependent species distributions. Both schemes proved to be
efficient for creating random compact NPs up to at least a few
hundred atoms. In fact, the good packing achieved in these
approaches led to an apparent bias towards spherical config-
urations. We promoted the generation of ellipsoidal shapes by
introducing a diagonal covariance matrix L = diag(e�1/2, e�1/2, e)
in the calculation of the atomic distances to the origin

di
2 = riLri. A single ellipticity parameter e was randomly chosen

in the 0.7–1.3 range, and the principal axis was randomly
oriented along x, y, or z.

The central feature of evolutionary optimization is the cross-
over operation that creates offspring by combining pieces of
two parent structures. The partitioning is commonly done in
the form of planar cuts through each parent that select parts of
roughly equal size (Fig. 2(c)). As has been observed and dis-
cussed in previous studies of bulkmaterials,108,113 the rebonding
between otherwise intact fragments is particularly beneficial in
the optimization of large structures. To examine the effective-
ness of this operation in the case of NPs, we considered two
related crossover and mutation operations. The first one is
crossover performed with a spherical cut that seems more
natural for cluster geometries (Fig. 2(d)). The second one mimics
the Rubik’s cube rotation by a random angle along a planar cut
that divides a single parent structure into two roughly equal
hemispheres (Fig. 2(b)).

Panels (a–c) in Fig. 3 show the performance of the three
operations for elemental Cu, Pd, and Ag clusters. In these tests,
we used 50-member populations and limited the search to 200
generations to illustrate the different success rates for afford-
able search durations in the following NN-based runs. New
structures were created with 70% of the titled operation as the
primary driver to explore different PES basins, 20% of simple
distortions to help locate nearby minima, and 10% of random
NP generation to inject diverse starting points. The planar cut

Fig. 2 Illustration of generation and evolution operations for elemental
NPs. The semitransparent spheres represent atoms that are being added,
rearranged, or discarded. The yellow and blue colors correspond either to
fixed and repositioned atoms or to NP fragments from two different
parents. (a) Addition of a new atom in a Tetris-like creation of random
NPs. (b) Rubik’s cube rotation of the NP’s top half by a random angle.
(c and d) Crossover performed with either planar or spherical cuts.

Fig. 3 Comparison of different evolutionary search strategies for ele-
mental Cu, Pd, and Ag NPs modeled with the GP. (a–c) Single-tribe
optimization with the titled operation used to create 70% of offspring.
(d) Single-tribe optimization with a balanced assortment of various opera-
tions described in the main text. (e) Multitribe co-evolutionary optimization
with the same operation assortment. The best structures found in each run
are compared against the putative ground states proposed by Wu et al.22

Identified lower-energy structures are shown with hollow symbols.
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crossover performed better for Cu and Ag than for Pd, missing
7, 13, and 22 of the previously reported lowest-energy struc-
tures, respectively. Interestingly, the search identified 2 Pd
structures lower in energy by 3–4 meV per atom compared
with the reference set (Section 4). The success rate dropped
considerably in the case of the spherical cut crossover, espe-
cially for Pd and Ag. We ensured that the boundary between
fragments had meaningful interatomic distances, but it was
evident that the core–shell combination either carried less
significant information from each parent or could not be
optimized into a seamless stable shape with local relaxations.
This conclusion is supported by the operation’s particularly
poor performance for Pd, as this metal adopts a variety of less
spherical stable structures (Section 4). The Rubik’s cube muta-
tion was found to be comparable to the planar cut crossover for
Cu and Ag, having missed only 5 and 16 structures, respectively.
Hence, the optimization of Cu and Ag clusters with simpler
geometries appears to be less sensitive to how the fragments
are recombined as long as they are obtained by bond-breaking
planar cuts. The subpar performance of the Rubik’s cube
rotation for Pd indicates that the inheritance of phenotypes
from two different parents is more important than the muta-
tion of a single parent when dealing with more complex shapes.

We implemented additional single-parent mutation operations
that could locate specific global minima more efficiently. Since
faceting is known to reduce surface energy in large NPs, we
introduced an operation that promotes the formation of facets

in random directions. In this procedure, about
ffiffiffiffi

N
p

atoms are
selected with a single planar cut and relocated to random positions
on the opposite side. Since stable NPs also tend to possess
symmetries, we considered two simple symmetrization operations.
In both, a single parent structure is sliced into two nearly equal
hemispheres, and the smaller part is discarded. The full NP is then
regenerated from the remaining part using either reflection or
inversion. Any two atoms of the same species that happen to be
close to each other are merged into one, and the child structure is
accepted if the cluster has the proper number of each species.
According to our tests (not shown), these three operations showed
efficiencies comparable to that of the Rubik’s cube mutation.

Having tested multiple combinations, we ultimately chose to
use a balanced assortment of several implemented operations.
Each of the planar cut, spherical cut, Rubik’s cube rotation, facet
mutation, reflection mutation, inversion mutation, and random
atom distortion operations was used to generate 10% of off-
spring. The remaining 30% of child structures were created with
a redistribution of surface atoms in randomly selected parents;
this operation was generalized in multitribe optimizations to
exchange variable-size seeds (see Section 3.3). Results in Fig. 3(d)
illustrate that the search produced a set of low-energy structures
comparable to that found with the planar cut crossover includ-
ing several additional putative ground states for Pd and Ag.

3.3 Multitribe co-evolution

Examples in different fields, from finding a cooperative relation-
ship between populations of bacteria in biological systems114,115

to solving for optimal load distribution in parallel computing
systems,116 demonstrate the benefits of optimization achieved
via the use of multiple co-evolving tribes. In this evolutionary
process commonly seen in Nature, individual tribes develop
specific traits in isolation and periodically interact with neigh-
boring tribes. The two major types of interactions are competi-
tion, which subjects the combined population to ‘survival of the
fittest’ evolutionary pressure, and cooperation, which leads to an
intertribe exchange of genetic material.

Several adaptations of this co-evolution strategy have been
used to improve structure prediction. Habershon et al. found
ordered crystalline phases consistent with experimental powder
diffraction data more efficiently by defining a global population
of structures and redistributing members among individual
tribes every few generations.117 In all other variations of the
parallel evolutionary optimization, a single pool or population
of structures has been used to explore the configuration
space by varying composition/size at the same time.113,118–120

For instance, the simultaneous optimization of bulk binary
phases113,118 relied on the distance to the convex hull as the
fitness parameter for phases across the full composition range,
while crossover operations allowed the creation of child struc-
tures with differing stoichiometries. The global variable-size/
composition optimization approach has been shown to have a
clear advantage over the independent optimization of fixed-
size/composition crystalline phases113,118 or NPs.119,120

The algorithm for simultaneous optimization of NPs across
different sizes introduced in this study divides the global
population into distinct tribes and imposes periods of isolated
evolution. The schematic in Fig. 4(a) illustrates the flow of
information during such global searches. We assigned one
tribe per NP size and optimized the combined population in
cycles of five-generation isolated evolution followed by an
intertribe exchange of structural motifs. The pool of geometries
used to seed a new cycle consisted of 15 structures, with 8
neighboring sizes contributing the most stable NP from the
previous cycle, and the remainder comprising NPs chosen
randomly from the previous generation of the NP size. We
removed or added surface atoms to match the targeted size and

optionally distorted �
ffiffiffiffi

N
p

atoms on the NP surface. The co-
evolutionary method could be expected to be more efficient due
to the persistence of certain stable motifs over multiple sizes.
For example, the 55-atom icosahedron shown in Fig. 4(b) is the
well-known ground state for several metals, and most algo-
rithms find the structure relatively quickly because it is highly
symmetric and stable. Derivatives of this motif with missing or
added atoms may also be the ground state for neighboring sizes
but are more difficult to find because of the reduced symmetry
and stability. Namely, without a clear edge over competing
configurations, the icosahedron-based precursors have a lower
chance of survival and are less prevalent in populations with
non-ideal cluster sizes. The intertribe exchange and minor
adjustment of already assembled stable shapes could help the
tribes to shortcut directly to the most stable solutions.

In our benchmark multitribe runs with the GP, we used the
same assortment of operations as in single-tribe searches.
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A dramatic improvement in the success rate was observed using
this flavor of the evolutionary optimization (see Fig. 3(e)). Out
of the 153 Cu, Pd, and Ag cases, only 6 reference structures were
missed by 0.3–2.5 meV per atom and 7 new structures were
identified to be more stable by 0.1–4.1 meV per atom. Two of
the new Pd putative ground states were incomplete icosahedra
with a missing center atom (for N = 54) or missing center and
surface atoms (N = 53). The finding highlights the benefit of
sharing seeds across NP sizes and the need to sample counter-
intuitive configurations, as one might expect a smaller energy
penalty for removing an atom from the surface rather than the
middle of a metallic NP. Considering the B10 meV per atom
accuracy of our NN models, the implemented search algorithm
and the chosen settings deliver an appropriate level of conver-
gence for a systematic comparison of the NN and GGA accuracy
for low-energy structures.

4 Results and discussion
4.1 Review of previous work

The most systematic GP-based study of metallic NPs has
been recently performed by Wu et al.22 They utilized the
dynamic lattice searching method and found that the main
structural motifs of the Cu, Pd, and Ag NPs between 13 and
100 atoms in size are the icosahedron, decahedron, and

icosahedron/decahedron, respectively. Their analysis of the
PES for the intermediate-size 38-atom NPs showed that the
number of the local minima, and hence the PES complexity,
increases in the order of Pd, Ag, and Cu.22

In the binary subsystems of the Cu–Pd–Ag ternary, systematic
GP-based ground state searches have been mostly restricted to
select magic sizes.7 For Cu–Ag bimetallic NPs, the lowest for-
mation energy configurations have been shown to have Cu–Ag
core–shell ordering and occur in the 0.6–0.8 Ag-rich composition
range. Namely, the most stable magic-size clusters with 34, 38,
40, and 98 atoms have been found to have 27,61 2978 or 30,61

27,63 and 58–6478 Ag atoms, respectively. The smaller clusters
commonly adopt polyicosahedral core–shell configurations,
while the 98-atom NPs assume structures with icosahedral Cu
cores and (anti-)Mackay Ag overlayers. Considerable atomic size
mismatch of Cu and Ag, bond order-bond length correlation,
lower surface energy of Ag, dominance of Cu–Cu and Cu–Ag
bonds, and HOMO–LOMO gap have been suggested as impor-
tant factors in determining the structure of the energetically
favored nanoalloys.61,63–65 Global optimizations of Pd–Ag bime-
tallic NPs with 34 and 38 atoms have revealed that the lowest
formation energy structures occur at stoichiometries with 24,66

and 2467 or 2666 Ag atoms, respectively. As in the Cu–Ag case, Ag
atoms prefer to be in the outer layers of stable NPs. However,
the smaller atomic size difference of Pd and Ag evidently leads
to a less pronounced segregation tendency and a lower favor-
ability of the polyicosahedral motif.66

4.2 Elemental nanoparticles

We employed the multitribe co-evolution algorithm (Section
3.3) and our developed NN models (Section 2.3) to search for
stable Cu, Pd, and Ag elemental NPs with 30–80 atoms. Such
clusters are large enough not to be dominated by electronic
structure peculiarities associated with low-coordination atomic
environments that are difficult to capture with classical
models. At the same time, the clusters are small enough to be
systematically explored with NNs and checked with DFT. Even
though clusters of these sizes are of little practical value, they
can be synthesized experimentally121 and may be used as a
testing ground for checking theoretical predictions. A typical
global optimization run consisted of 100–200 generations with
a population size of 50 structures per tribe. For Ag and Pd, as
higher NN residual errors suggest, the PES is more compli-
cated. We performed two multitribe searches for these metals
and selected the lowest energy structures for each size.

Fig. 5 illustrates the stability of these structures relative to
the putative ground states proposed by Wu et al.22 The compar-
ison was done at the GGA and LDA levels and involved energy
evaluations of the structures relaxed locally with either the
corresponding classical model (hollow points) or the corres-
ponding DFT approximation (solid points). The results indicate
that between the candidate structures identified with the GP
and NN models, the latter are consistently more stable at the
DFT level for all three metals. The figure also reveals the NN’s
good agreement with the GGA in evaluating forces, as the
GGA-level re-optimization of the NN-relaxed structures led to

Fig. 4 (a) Schematic of the multitribe co-evolutionary optimization.
The global population is divided into tribes by NP size and evolved in a
cyclic fashion. Each cycle involves tribes’ isolated evolution for a few
generations followed by an exchange of best members among several
tribes of neighboring NP sizes. Particularly stable motifs, e.g., the diamond
shape for N = 54, have a chance to spread over the global population and
morph into ground states for other NP sizes. (b) Illustration of the NP size
adjustment during intertribe seed exchange.
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energy gains of only a few meV per atom. The structures found
with the NN-model underwent a-common nearest neighbor
analysis122 (a-CNA) to describe the local environment of each
atom in terms of well-known reference structures. The struc-
tures were then classified manually based on their visual
similarity to the motifs used to describe NPs in ref. 22.

The NN-based search for Cu NPs resulted in 26 new minima.
In the N = 30–60 range, several structures are significantly more
stable than those found through GP-based searches, by 10 meV
per atom or more (Fig. 5) at the GGA level. Most of these energy
gains are not the result of substantially different configurations
but rather different decorations of incomplete icosahedron
shapes. For N = 36, the change does result in an amorphous
(AMO) structure that resembles a distorted incomplete icosa-
hedral structure.

For N = 38, the NN favored a mixed octahedral–icosahedral
(Oh–Ih) structure; although this motif has been reported to be a
low-energy isomer in other elemental123 and binary124 systems,
our GGA calculations placed it 3.9 meV per atom above the
GP-favored FCC structure for Cu. The most striking improve-
ments over the results reported for Cu in ref. 22 and 125 occur
in the N = 72–80 range. The previously reported minima show
an icosahedral (ICO) trend up to N = 72 with a switch to
decahedral (DEC) motif up to N = 79, and finally an ICO shape
for N = 80. The competing morphologies of structures identi-
fied in our search in this size range are the typical ICO with an
(anti)-Mackay layer (N = 72, 73, and 75) and double icosa-
hedrons (d-ICO) (N = 74 and 76–80). The DEC shapes previously
reported in ref. 22 are not observed to be stable at the GGA
level. The d-ICO shape first appears at N = 74 with a disordered
arrangement. Further occurrences of d-ICO at larger sizes show
a more ordered configuration for N = 78 and 80 (Fig. 6).

Searches for Pd NPs produced 41 new minima at the GGA
level. The morphologies of the new configurations represent a
significant departure from what was previously reported.22,77

The motifs reported included DEC, ICO, stacking-fault face-
centered cubic (sf-FCC), and AMO motifs. The DEC motif was
found to be dominant throughout the N = 30–80 range.22,77

Our results, however, show that the face-centered cubic (FCC)
structures are more stable at the GGA level than other shapes
throughout most of the examined range. The stable FCC motifs
shown in Fig. 5 include truncated octahedra (Oh), which were
found for N = 38 and 79 in agreement with previous results,22

and an octahedron, which was found to be a minimum for
N = 44 (Fig. 6). The new minima also include three sf-FCC NPs
for N = 35, 36, and 51. The preference for the FCC shape has
been attributed to the generalized Wulf construction
principle.126 A notable exception to the FCC trend is the magic
ICO shape found for N = 55. Piotrowski et al.58 determined the
FCC to be the preferred motif for Pd by 3.8 meV per atom at the
GGA level with the PAW-GW pseudopotential and a 250 eV
energy cutoff. In our PAW-GGA calculations with the 500 eV
cutoff, the ICO and FCCmotifs were found to be within 0.1 meV
per atom. The juxtaposition illustrates that the NN model’s
misevaluation of the relative stability of the two motifs by
3.7 meV per atom in favor of the former is not only well within
the NN’s 8.6 meV per atom test error but also comparable to the
typical calculation errors in the same DFT approximation.

The NN-based search for Ag NPs uncovered 27 new minima
compared to the reference structures22 at the GGA level. Similar
to our results for Cu, most of the new putative global minima
for structures of 60 atoms and below are variations of the
incomplete ICO morphology (Fig. 5). The largest gain in energy
in this size range was for size N = 44, which in ref. 22 was found
to be an ICO-like amorphous (AMP) structure and in our study
an incomplete ICO motif with an energy gain of almost 30 meV
per atom at the GGA level. We found that the competition
between ICO and ICO-like AMP motifs occurs in the N = 63–69
size range. For the N = 70–74 and 76 sizes, the DEC morphology
found in ref. 22 and 127 was replaced with (anti)-Mackay ICO
structures at the GGA level.

Fig. 5 shows that only 13 (B8.5%) of the elemental reference
structures22 were not matched or improved upon at the GGA
level, whereas 96 (B62.7%) were found to be new putative
global minima at the GGA level. This performance evaluation of
the two classical models is understandably biased because the

Fig. 5 Relative stability evaluated at the DFT level for two NP sets: the lowest-energy structures identified in our NN-based multitribe searches and the
putative ground states found previously in GP-based dynamic lattice searches.22 The solid points correspond to structures locally relaxed with GGA or
LDA. The GP DFT-relaxed structures are used as a reference in the calculation of the relative energies. The hollow points correspond to the GGA relative
energies for the original unrelaxed structures in the GP or NN sets. The two strings of color-coded square symbols show significantly different
distributions of stable structural motifs in the two NP sets.
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NNs were trained on GGA data, while the GPs were fitted to
empirical data. Considering that the GPs showed much better
agreement with the LDA in the description of forces for Pd and
Ag (see Fig. 1), we examined the relative stability of the
structures in the NN and GP pools at the LDA level as well.
Remarkably, the structures favored by the NNs remained con-
sistently more stable in the LDA treatment, as the relative
energies evaluated in the two DFT approximations matched
reasonably well (Fig. 5).

Another comparison of the classical models’ ability to map
the GGA PES is illustrated in Fig. S6 (ESI†). We selected several
metastable 55-atom structures from the NN and GP pools and
evaluated their relative energies with single-point GGA calcula-
tions. The NN models provided a much more consistent energy
ordering than the GPs within the chosen 20 meV per atom
window above the corresponding ground states.

The energy gains in GGA optimization of NN and GP best
structures in Fig. 5 provide useful information about the PES
features. Indeed, significant structural relaxations could be a
contributing factor to the suboptimal stability of the resulting
minima. The argument is based on an expectation that the
longer the trajectories the higher the chance for structures to
get trapped in nearby local minima. For the considered metals,

the energy gains in GGA relaxations of the GP structures were
notably different: about 10 meV per atom for Cu and 40 meV
per atom for Pd/Ag. Nevertheless, the GP-derived minima
ended up above NN-derived minima by a similar 10 meV per
atom for all three metals. These results suggest that the GGA
basins around the starting GP configurations are smooth. The
conclusion is supported by the analysis of the NP estimated
volumes (defined in ref. 90) before and after the relaxation. It
reveals an overall expansion of the GP structures in the GGA
optimizations by 0.0% for Cu, 2.2% for Pd, and 3.2% for Ag.
Hence, the starting geometry appears to be of less significance
than the ranking of the relevant basins for identifying global
DFT minima with these classical models.

We also assessed the contribution of the vibrational entropy
on the relative stability of the NN and GP best structures at
elevated temperatures. Our previous tests showed a good
agreement between the NN and DFT results for phonon dis-
persions and vibrational entropy corrections to the free energy
calculated in Cu–Pd–Ag36 and Mg–Ca40 bulk phases. Here, we
used the NN models to examine 33 NP pairs with 30–80 atoms
and found that the relative free energies at 300 K changed on
average by only 0.7, 2.7, and 1.9 meV per atom for Cu, Pd, and
Ag, respectively. Therefore, most of the NPs in the NN pool
determined at T = 0 K to be more stable than those in the GP pool
are expected to be more stable at elevated temperatures as well. A
comprehensive analysis of the NP stability at high temperatures
involves long MD simulations or a systematic sampling of local
minima128,129 and will require a separate study.

4.3 Binary nanoparticles

We investigated the stability of binary nanoalloys for several
representative NP sizes (50, 55, and 80 atoms) by performing
NN-based single-tribe evolutionary searches for select stoichio-
metries. We sampled the binary compositions in steps of
5 atoms for the two smaller sizes and in steps of 10 atoms
for the largest size to identify regions with low formation
energies. The similar-size NPs with 50 and 55 atoms were
considered to compare stability trends in cases of low-
symmetry and high-symmetry configurations, as the NNs
favored different-shape and same-shape elemental ground
states for the three metals, respectively. The larger 80-atom
NPs were examined to assess the importance of size effects.
The searches were carried out using the same set of evolu-
tionary operations as in the case of single elements with the
addition of atom swaps in the mutation operations. Because
of the more complex nature of the PES for binary NPs, we
extended the searches to 500 generations and executed
two separate runs. The resulting lowest-energy NPs with 50
and 55 atoms were reoptimized at the GGA level. While
thermodynamically stable bulk alloys are determined
unambiguously by calculating Gibbs formation energies and
constructing the convex hull,109 the variability of NP
sizes governed by a combination of kinetic and thermo-
dynamic factors greatly complicates the stability analysis.
We used a common measure of the nanoalloy stability based
on the formation energy.63,67 For an A–B binary NP with

Fig. 6 Examples of significantly different structural motifs favored by the
NN and GP models. The relative stability and structure classification for Cu,
Pd, and Ag NPs in the N = 30–80 size range are presented in Fig. 5.
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N = NA + NB atoms, the formation energy per atom is calculated
with respect to the most stable elemental NPs, each of size N,
as follows:

Eform

AB
¼ EAB � NA

NA þNB

EA � NB

NA þNB

EB;

where EAB, EA, and EB represent the energies per atom of the
(NA + NB)-atom binary and elemental clusters, respectively. As
argued by Ferrando et al.,130 the reliance on the NP rather than
bulk ground states as references helps avoid element-
dependent bias when comparing clusters of the same size
but different compositions. Given that the NP ground states in
this study were determined with a 10 meV per atom accuracy,
we could not determine the boundary of the convex hull
definitively to identify the full set of stable nanoalloys in the
considered multicomponent systems. We will refer to most
stable compositions as stoichiometries corresponding to the
lowest formation energies.

Fig. 7 summarizes formation energy results for 50-atom NPs
and illustrates that the most stable binary compositions iden-
tified in our NN-based searches are Cu0.6Pd0.4, Cu0.3Ag0.7, and
Pd0.3Ag0.7. The Cu–Pd NPs adopt an incomplete ICO shape at
the Cu-rich end, become disordered at the Cu0.5Pd0.5 composi-
tion, and assume incomplete anti-Mackay ICO or incomplete-
sixfold pancake structures at the Pd-rich end. The Cu–Ag
putative ground states have Ag-rich polyicosahedral shapes
such as the anti-Mackay ICO and incomplete pancake struc-
tures. Interestingly, the Pd–Ag ground state NPs are mostly
different incomplete ICO structures (with the exception of FCC-
type Pd0.9Ag0.1) despite the reference structures for Pd and Ag
being FCC and incomplete ICO, respectively.

In order to evaluate the degree and importance of mixing in
stable NPs we compared the number of total and interspecies
neighbors within 3.2 Å in the lowest-energy NPs at the 1 : 1
composition. Out of 207, 219, and 205 total bonds in the
corresponding CuPd, CuAg, and PdAg 50-atom NPs, 103, 82,
and 92 were between different metals. The results at this and
other compositions are consistent with the largest (smallest)
magnitudes of the formation energy observed in the Cu–Pd
(Cu–Ag) nanoalloys. As for the dependence of the bimetallic NP
stability on the size and/or structure, Table 4 summarizes the

stoichiometries with the lowest formation energies in all con-
sidered cases. The results show that it is difficult to draw any
definitive conclusions regarding possible correlations because
the variations in stable compositions are comparable to the
chosen grid sizes (Fig. S7, ESI†).

We also performed comparative ground state searches with
the available Cu–Ag and Pd–Ag GPs.74 Reoptimization of these
18 50-atom NPs with the GGA resulted in 6 structures of lower
energy (by an average of 2.6 meV per atom) and 12 structures of
higher energy (by an average of 14.7 meV per atom) compared
to the NN-based set (Fig. 7). Formation energies of the NN- and
GP-based sets, evaluated by GP, NN, and GGA are detailed in
Fig. S8 (ESI†). Despite the overall suboptimal performance, the
GPs were accurate enough to suggest candidate structures
for reasonable GGA estimates of the stability regions and
formation energies. However, as in the case of the elemental
NPs (Section 2.4), the GPs showed less agreement with the GGA
in the description of atomic forces: the RMSEs were 0.20 and
0.33 eV Å�1 for the lowest-energy Cu–Ag and Pd–Ag NPs,
respectively. The NNs described the forces with a considerably
better accuracy: 0.05, 0.04, and 0.06 eV Å�1 for the corres-
ponding sets of lowest-energy Cu–Pd, Cu–Ag, and Pd–Ag NPs.

4.4 Ternary nanoparticles

Ternary Cu–Pd–Ag nanoalloys have not been studied previously
either at the classical or the DFT level. Our searches for putative
ground states of 50-, 55-, and 80-atom ternary NPs were
performed with the same settings as in the case of binary

Fig. 7 GGA formation energies of most stable 50-atom bimetallic NPs found in our evolutionary searches at the NN (red points) and GP (blue points)
levels. The hollow and solid symbols correspond to GGA evaluations of the non-modified and GGA-optimized putative ground states, respectively. Each
panel shows the most stable elemental and binary structures found in the NN-based searches.

Table 4 NN- and GGA-level composition ratio (x in A1�xBx) and formation
energy (Eform) (in meV per atom) corresponding to the most stable binary
NPs with 50, 55, and 80 atoms

Cluster size

Cu–Pd Cu–Ag Pd–Ag

x Eform x Eform x Eform

50 atoms NN 0.40 �140.5 0.70 �72.5 0.70 �131.8
GGA 0.40 �132.6 0.80 �35.5 0.70 �125.8

55 atoms NN 0.45 �156.1 0.73 �59.5 0.64 �136.2
GGA 0.36 �148.4 0.73 �32.0 0.55 �121.5

80 atoms NN 0.37 �123.8 0.62 �71.6 0.62 �113.2
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nanoalloys. Within the sampled grid, a 50-atom ternary cluster
with the lowest formation energy was found at the Cu0.3Pd0.4Ag0.3
composition (Fig. 8) and displayed an incomplete six-fold pancake
structure with a Cu core and Pd–Ag shell. The NP also had the
lowest GGA formation energy when the full set of putative ground
states was reoptimized in this DFT approximation. Note that the
higher B20 meV per atom discrepancy between the NN and GGA
results in Fig. 8 is consistent with the accumulation of errors in
the calculation of ternary formation energies referenced to the
elemental NP ground state energies. Overall, Fig. 8 shows an
encouraging level of agreement between the NN and the GGA, as
the NN model reproduces the stability trends and correctly
identifies the island of NP stability.

Fig. S9 and S10 (ESI†) summarize our NN and DFT results on
the formation energies for 50-, 55-, and 80-atom ternary NPs.
We did not observe any significant dependence of the lowest
formation energy stoichiometry on the NP size. According to
the NN modeling, the optimal ternary compositions for nano-
alloys with 55 and 80 atoms are Cu0.272Pd0.364Ag0.364 and
Cu0.25Pd0.375Ag0.375, respectively. The GGA optimization of the
55-atom NPs confirms the NN model’s findings (Fig. S9, ESI†).
These observations provide further support for future use of
NNs as a reliable stand-alone method for describing large-scale
systems.

5 Summary

This work has been dedicated to the development, examina-
tion, and application of computational methods for predicting
stable NPs.

Aiming to improve ground state search efficiency, we intro-
duced a multitribe evolutionary algorithm for simultaneous
optimization of NPs in a specified size range. In contrast
to previously implemented variable-size/composition global
optimization strategies, our approach features well-defined
periods of isolated evolution for individual tribes followed by
intertribe seed exchange. This symbiotic co-evolution scheme

showed a clear advantage over the conventional serial evolu-
tionary optimization of fixed-size NPs. In our relatively short
200-generation benchmark runs with 50-member tribes of
Cu, Pd, and Ag NPs in the 30–80 atom range, the multitribe
searches identified 7 new putative ground states at the GP level
compared to previously reported candidate structures.

Given the lack of systematic studies comparing the reliability
of NN models and empirical potentials in ground state searches,
we performed benchmark tests of NN and GP models against
DFT approximations for elemental and binary NPs. The Cu–Pd–
Ag NNmodels were constructed from the bottom up and showed
a consistent B10 meV per atom accuracy for nanoalloys, which
illustrates that our stratified training scheme originally tested on
bulk structures is applicable to datasets with more complex NP
configurations. The lowest-energy structures identified in our
searches at the NN and GP levels were evaluated without and
with relaxation at the GGA level. Between the NNs fitted to GGA
data and the GPs fitted to empirical data, the former showed an
expectedly better agreement with this DFT approximation. In
terms of the quality of the atomic force description, most of the NN
(GP) configurations were found to be within about 4 (40) meV per
atom of the nearest minima on the GGA PES.

In terms of the total energy correspondence, the GP candi-
date structures were favored by the GGA in 8.5% of considered
cases by an average of 4.2 meV per atom while the NN ones in
62.7% by an average of 9.1 meV per atom, with 26.1% of the NN
pool by more than 10 meV per atom. According to our addi-
tional LDA calculations, all the putative ground states from the
NN pool favored by the GGA were also favored by the LDA. The
findings indicate that the NNs provide a more reliable mapping
of the DFT PES. Comparative analysis of structures found in the
NN- and GP-based searches revealed significant changes in the
previously discussed stability trends. For example, we found
the largest elemental NPs to be more stable in ICO/d-ICO rather
than DEC morphologies for Cu, FCC rather than DEC for Pd,
and ICO rather than DEC for Ag.

We would like to note that due to the wide scope of the study
and the high cost of DFT calculations we considered only one

Fig. 8 Color-coded formation energies calculated at the GGA (left) and NN (right) levels for putative ground states of 50-atom Cu–Pd–Ag NPs found in
our NN-based evolutionary searches. All the structures were relaxed with the corresponding GGA or NN method.
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best structure per size or composition from each of the GP and
NN pools, which is certainly insufficient for determining the
true GGA ground states. However, it should also be pointed out
that the typical B3 meV per atom level of ground state search
convergence and B10 meV per atom NN accuracy are compar-
able to the 3 meV per atom DFT numerical errors (e.g., found in
this study for Pd55) and B10 meV per atom DFT systematic
errors107,131–133 (found to beB3 meV per atom for select NPs in
Table S1, ESI†). These observations highlight the difficulty of
establishing definitively which stable NP configurations occur
in experiments even if none of the numerous environmental
factors are considered. Namely, free energy corrections due to
entropy, kinetic effects, influence of solutions and substrates,
etc., must be evaluated at target temperatures with sufficient
accuracy, which presents a much greater challenge compared to
the identification of putative ground states at zero temperature
performed in this study.128 Nevertheless, the NN/DFT level of
accuracy may allow one to identify regions of zero-temperature
nanoalloy stability. According to our analysis of bimetallic sys-
tems, GP-based candidate structures are still generally inferior to
those found with NNs but can be used for an adequate prediction
of most stable stoichiometries. The following NN/DFT examina-
tions of medium-size ternary Cu–Pd–Ag NPs revealed that NNs are
sufficiently accurate for predicting ‘‘regions’’ that most likely
contain stable nanoalloy(s). These results suggest that NN models
can be used for a reliable simulation of nanoscale materials that
are too large for full-scale DFT calculations.
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2018, 120, 156001.
38 V. L. Deringer, N. Bernstein, A. P. Bartók, M. J. Cliffe,
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J. Chem. Phys., 2002, 116, 4497–4507.

61 G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto and
R. Ferrando, Phys. Rev. Lett., 2004, 93, 105503.

62 A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C.
Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston,
J. Chem. Phys., 2005, 122, 194308.

63 G. Barcaro, A. Fortunelli, G. Rossi, F. Nita and R. Ferrando,
J. Phys. Chem. B, 2006, 110, 23197–23203.
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