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Abstract-Gaussian Markov random fields (GMRFs) are popular for
modeling dependence in large areal datasets due to their ease of
interpretation and computational convenience afforded by the sparse
precision matrices needed for random variable generation. Typically in
Bayesian computation, GMRFs are updated jointly in a block Gibbs
sampler or componentwise in a single-site sampler via the full
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conditional distributions. The former approach can speed convergence
by updating correlated variables all at once, while the latter avoids
solving large matrices. We consider a sampling approach in which the
underlying graph can be cut so that conditionally independent sites are
updated simultaneously. This algorithm allows a practitioner to
parallelize updates of subsets of locations or to take advantage of
‘vectorized’ calculations in a high-level language such as r. Through
both simulated and real data, we demonstrate computational savings
that can be achieved versus both single-site and block updating,
regardless of whether the data are on a regular or an irregular lattice.
The approach provides a good compromise between statistical and
computational efficiency and is accessible to statisticians without
expertise in numerical analysis or advanced computing.

Keywords: Bayesian computation, Cholesky factorization, chromatic, Gibbs
sampling, conditional autoregressive model, graph coloring; Markov chain Monte

Carlo

1 INTRODUCTION

Suppose we have observed data y=(3,,...,¥,). il which each y; summarizes
information over an area i,i=1,...,n, suchias a sum or average of individuals in
the area. For instance, Self et al. (2018) investigate regional trends of occurrence
of Lyme disease, where the data are'the number of positive disease cases
observed in each county in‘the United States. Other examples include Brown

et al. (2014), who consider functional magnetic resonance imaging data in which
each y;quantifies the neuronal changes associated with an experiment observed
in the fhthree-dimensional pixel in a brain image, where the goal is to identify
those areas exhibiting statistically significant changes. Waller et al. (1997)
estimate spatially-varying risks of developing lung cancer using reported deaths
in each county of the state of Ohio. In the examples we consider in this work, y;is
either the observed intensity at pixel /in an image or the number of votes cast for
a particular candidate in voting precinct /in the state of New York. The task in the
former is to reconstruct an underlying true image that has been corrupted with
noise; in the latter we aim to estimate spatially-varying trends in voter preference

throughout the state.



What these examples, and countless others, have in common is that the data are
correlated so that the value at one location is influenced by the values at nearby
locations. While this dependence can be directly modeled in the likelihood of y; it
is often reasonable to assume that it can be explained by an unobservable
process x=(x,,...,x,)" , where x;is the realization of the process at node

(location) 7 Then a typical Bayesian analysis of this problem takes the y/s to be
indep.
condijtionally independent given x; y,|x ~ f,({x),i=1,...,n. In other words;the

correlation is assumed to be completely explained by x. For more flexibility and to
more fully account for sources of uncertainty, one might assume that the
distribution of xis determined by an unknown parameter vector/6# (usually of
much smaller dimension than x) which is itself assigned a hyper-prior. Thus, the

Bayesian model is

ylx~1({x)
x[0~x.(10) (1)
0~ ().

Inference proceeds by evaluating (ornestimating) characteristics of the posterior

distribution, determined via Bayes"rule as 7(x,0|y) < f(y| x)x (x| 0)7,(0) .

A widely adopted approaeh. for modeling the dependence structure in this
problem is to assume.x satisfies a Markov property. In the simplest case, this
means that if x;is-in‘between x;and xx, then x;and xx are conditionally
independent,given x. (Higher-order neighborhoods are also sometimes used
whereonditioning on more values is necessary.) If x satisfies this property, then
X is said to be a Markov random field (MRF). MRFs are useful tools in a variety of
challenging applications, including disease mapping (Waller et al., 1997; Self

et al., 2018), medical imaging (Higdon, 1998; Brown et al., 2014), and gene
microarray analysis (Xiao et al., 2009; Brown et al., 2017a). Even autoregressive
time series models are instances of Markov random fields; though this work is
primarily motivated by models for spatially-indexed data in which there is no clear

direction of influence. Awareness of such models was raised after the seminal



work of Besag (1974), after which they came to be known in the statistics
literature as conditional autoregressive (CAR; Banerjee et al., 2015) models.
Since then, they have become popular for modeling temporally- or spatially-
dependent areal data due to their interpretability and computational tractability
afforded by the conditional independence induced by the Markov property. This
property is particularly important for modern Markov chain Monte Carlo

(MCMC; Gelfand and Smith, 1990) methods. Indeed, the ease with whichMarkov
random fields can be incorporated into a Gibbs sampling algorithm (Geman, and

Geman, 1984) has contributed to their popularity in Bayesian statistics.

We are concerned in this work with models in which x| is a Gaussian Markov
random field. Gaussian Markov random fields (GMRFs; Ruerand Held, 2005) are
simply MRFs in which the conditional distribution of each (scalar) random
variable is Gaussian. GMREFs typically are specified either implicitly by providing
the complete set of full conditional distributions

p(x, | x5 0X, 5 X

ESERN

.Xx,),i=1,...,n, or explicitly'by defining the precision (inverse
covariance) matrix instead of the covariance function as would be done in
Gaussian process modeling (Schabenberger and Gotway, 2005). Further,
GMRFs do not usually yield stationary processes due to a so-called “edge effect”
in which the marginal variances vary by location. Corrections can be made to
yield a stationary process such as a periodic boundary assumption (Fox and
Norton, 2016) or algorithmic'specification of the precision matrix

(Dempster, 1972). Sometimes the effect can simply be ignored with little effect on
inference (Besag and Kooperberg, 1995). Efforts have been made to use
GMREFs to approximate Gaussian processes with specified covariance functions
(e.g., Rue and Tjemland, 2002; Song et al., 2008; Lindgren et al., 2011), but

much work still remains.

A particularly intuitive instance of a GMRF is one that centers the distribution of

each x;at the average of its neighbors; i.e., x,|x_, ~ N(x,,0,) , where

1

Xy = (XX, X, x,) . X is the average of the values adjacent to x; and o}

i+1%°°



is obtained by scaling a common variance term by the number of neighbors at
site /. The precision matrix determined by this model is only positive sem/-definite
and thus not invertible, meaning that the joint distribution is improper. Such
models are called /ntrinsic auforegressive (IAR; Besag and Kooperberg, 1995)
models and are popular as Bayesian prior distributions, due in part to their

interpretability.

Belonging to the Gaussian class of distributions, GMRFs are the most widely.
studied Markov random fields. See Rue and Held (2005) for an overview. of
relevant work. The literature includes techniques for efficiently sampling from
GMRFs. As we discuss in Section 2, the two most common methods for
sampling both have caveats when working with extremely high-dimensional data.
So-called block sampling involves Cholesky factorizations of‘large precision
matrices and thus carries high computational and memory costs. While a GMRF
prior induces sparsity which can be exploited to economize such calculations,
conditional posterior precision matricesiarising in Bayesian models such as (1)
typically depend on parameters that change in each iteration of an MCMC
algorithm and the required repeated factorizations can be extremely time
consuming. On the other hand, so-called single-site samplers work by only
considering scalar random variable updates. In addition to being more loop-
intensive than block samplers, single-site samplers are known to exhibit slow
convergence when the variables are highly correlated (Carlin and Louis, 2009).
The competing goals of statistical efficiency and computational efficiency have
led to recent.innovations in alternative sampling approaches for GMRFs. Some
of these approaches require considerable expertise in numerical analysis or
message passing interface (MPI) protocol, but others are relatively easy to
implement and hence can be quite useful for statisticians. Specifically, the
recently proposed chromatic Gibbs sampler (Gonzalez et al., 2011) is easy to
implement and is competitive with or even able to improve upon other existing

strategies. It allows a practitioner to parallelize sampling or to take advantage of



vectorized’ calculations in a high-level language such as r (R Core Team, 2018)

without requiring extensive expertise in numerical analysis or MPI.

The chromatic sampler appearing in Gonzalez et al. (2011) was motivated by
and demonstrated on binary MRFs. However, it is straightforward to carry over
the same idea to the Gaussian case. In this paper, we discuss block updating
and single-site updating of GMRFs and compare them to chromatic sampling.
Rather than focusing on theoretical convergence rates or an otherwise overall “
best” approach, we view these techniques through the lens of a practitioner
looking for easily implemented yet efficient algorithms. To the best of our
knowledge, this work is the first time chromatic Gibbs sampling'has been directly

compared to the standard approaches for sampling of GMRFs.

There exist fast approximation methods for estimating features of a posterior
distribution without resorting to Markov chain Monte Carlo. One of the most
popular of these is integrated nested Laplace approximation (INLA; Rue

et al., 2009), the r implementation of which'is the r-1n1.2 package (Lindgren and
Rue, 2015). Such approximation methods are useful when certain quantities
need to be estimated quickly, butithey/are only approximations and thus are not
interchangeable with Markov. chain Monte Carlo algorithms that converge to the
exact target distribution,and allow for the approximation of virtually any posterior
expected value with' the same Monte Carlo sample. Indeed, INLA provides the
most accurate appraoximations around the posterior median and can disagree
with MCMC(in tail probability approximations (Gerber and Furrer, 2015). These
disagreements are more pronounced in cases where the full conditional
distribution of the random field is non-Gaussian (for which INLA uses Laplace
approximations) and a GMRF is used as a proposal in a Metropolis-Hastings
algorithm. Further, the r-1n1.2 package is a “black box” that works well for a set
of pre-defined models. For more flexibility to manipulate non-standard models,
there is the need to break open the black box to customize an algorithm to suit

one’s needs. In the context of GMRFs, this requires more direct interaction with



the random fields, motivating this work. Efficient strategies such as those
considered here are not intended to be substitutes for INLA or other
approximation methods. Rather, they are complementary procedures that are
useful when one is interested in direct MCMC on challenging posterior

distributions.

In Section 2, we briefly motivate our sampling problem and review GMRFs. We
then compare chromatic sampling to block updating and single-site sampling,of
GMRFs. In Section 3 we compare the performance of single-site sampling, block
updating, and the chromatic approach in a numerical study using a simple
Bayesian model with spatial random effects on simulated, high-dimensional
imaging data, as well as a real application involving non-Gaussian polling data.

We conclude in Section 4 with a discussion.

2 MCMC SAMPLING FOR GAUSSIAN MARKOV RANDOM
FIELDS

In modern Bayesian analysis, it is commonfor the posterior distribution to have
no known closed form. Hence, expectations with respect to this distribution
cannot be evaluated directly. If one can obtain a sample from this distribution,
though, laws of large numbers allow us to approximate quantities of interest via
Monte Carlo methods. A'common approach to obtaining a sample from a
posterior distributionds Markov chain Monte Carlo (MCMC), particularly Gibbs

sampling.

One reasonfor the popularity of Gibbs sampling is the ease with which the
algorithm can be constructed. For an estimand u = (,ul,...,,up)T, it proceeds
simply by initializing a chain at (14”,...,")" and, at iteration £ sampling
P~ 7 | st 0 ), m=1,...., p . Under suitable conditions,
ergodic theory (e.g., Robert and Casella, 2004) establishes that the resulting
Markov chain {(z",..., )" :t=0,1,--} has z(u) as its limiting distribution. In

practice, for GMRFs with target distribution z(x,@| y), implementing this



algorithm requires the ability to draw x|@, y thousands of times. This is
computationally expensive and thus quite challenging when xis high

dimensional, as we discuss in this Section.
2.1 Gaussian Markov Random Fields

Consider a GMRF x=(x,,...,x,)" , where x;is the realization of the field at node

i,i=1,...n. The density of xis given by
1 T T
72'(x|,u)ocexp[—§x Ox+b xj, (2)

where u eR" and b=Qu . If Qis nonsingular, then this distributionsis proper (i.e.,
jn(xl,u)alx <o, for all #) and the normalizing constant is (22)™"det(Q)"".

Intrinsic GMRFs are such that Qs rank deficient and only“positive semidefinite.
In this case, we may define the density with proportionality constant

2m) " M?det’ (@), where n— kis the rank of,Qand det’(-) is the product of the n
— knon-zero eigenvalues of Q (Hodges et alk, 2003; Rue and Held, 2005). Such
improper GMRF models are common,in Bayesian disease mapping (Waller

et al., 1997) and linear inverse problems (Bardsley, 2012), as they are easily

interpretable and usually yield ‘proper posterior distributions.

An appealing feature.of GMRFs is the ability to specify the distribution of x
through a complete ‘set of full conditional distributions, {p(x,|x_;):i=1,...,n}. For

instance, we.caniassume each x, |x_, ~ N(73,07), with 7, = 11, + > ¢, (x, — p1,)
j~i

and o, > 0 'where /~ jif and only if node /is connected to (i.e., a neighbor of)
node j#i and cjare specified weights such that ¢, # 0 if and only if /~ /.
Specification of a Markov random field through these so-called /oca/
characteristics was pioneered by Besag (1974), after which such models came to
be known as conditional autoregressive (CAR) models. Besag (1974) uses Brook
's Lemma and the Hammersley-Clifford Theorem to establish that the set of full

conditionals collectively determine a joint density, provided a positivity condition



holds among x. In this case, we have that Q, = (I(i:j)—cl.jl(iij))/of, where £-)
is the indicator function. The condition afcy. = Ufcﬁ , for all / j, is necessary to
ensure symmetry of Q. The ease with which these full conditional distributions
can be incorporated into a Gibbs sampling algorithm has led to a dramatic
increase in the popularity of CAR models over the past twenty years or so

(Lee, 2013; Banerjee et al., 2015). Indeed, there exists user-friendly software that
facilitates incorporating CAR models into Bayesian spatial models without
detailed knowledge of their construction. Examples include the ceoBUGS (package

in winBuGs (Lunn et al., 2000) and the r package carBayes (Lee, 2043):

GMRFs may be specified according to an undirected graph G=/,&), where V
indicates nodes (the vertices) and £€={(i,j):i~ j} is the edge set. The precision
matrix Qis determined by (Q), =0 if and only if (i, /). & Specifying the density
through the precision matrix Q instead of a covarianece matrix induces a Markov
property in the random field (Rue and Held, 2005, Theorem 2.2). For any node /,
x| x_; ix,. | Xy » Where N (i) ={j:(i, /) €&}is the neighborhood of node /and
x,=(x:ieA)" for some index set A. That'is, x;is conditionally independent of
the rest of the field given its neighbers. Most GMRFs assume that each node has
relatively few neighbors, resulting in Q being sparse. The typical sparsity of the
precision matrix is another reason GMRFs are widely used to model dependence

in areal data.

With the need.to.model extremely large datasets with nontrivial correlation has
come the need for efficient sampling techniques whereby posterior distributions
arising from fully Bayesian models can be simulated. When periodic boundary
conditions on x eR" can be assumed (i.e., each x;has the same number of
neighbors, including the edge nodes, as in a pixelized image with zero-padded
boundaries), Fox and Norton (2016) note that the sampling problem can be
diagonalized via the Fast Fourier Transform (with complexity O(nlogn)), whence
a sample can be drawn by solving a system in O(n) operations. They propose

reducing the total number of draws from the conditional distribution of x by using



a “marginal-then-conditional” sampler in which the MCMC algorithm operates by
completely collapsing over x and subsequently sampling x using only the
approximately independent draws of the hyperparameters obtained from a full
MCMC run on their marginal distribution. In many applications, though, the
periodic boundary assumption may not be realistic (e.g., administrative data
indexed by irregular geographic regions or pathways in microarray analysis
consisting of different numbers of genes), and sampling from the marginal
distribution of hyperparameters can itself be challenging. To avoid the
computational difficulties associated with full GMRFs, Cai et al. (2013),propose
using a pairwise graphical model as an approximate GMRF for high-dimensional
data imputation without specifying the precision matrix directly. The‘authors
admit, however, that this procedure is very hard to implement.(Cai, 2014, p. 7). In
cases where we are given Qand b in (2) with the goal,ofiestimating u , Johnson
et al. (2013) express the Gibbs sampler as a Gauss-Seidel iterative solution to
Ou = b, facilitating the “Hogwild” parallel algorithm of Niu et al. (2011) in which
multiple nodes are updated simultaneously.without locking the remaining nodes.
In the Gaussian case, Johnson et al. (2013) prove convergence to the correct
solution when the precision matrix @ is symmetric diagonally dominant.
Motivated by Johnson et al. (2013), Cheng et al. (2015) use results from spectral
graph theory to proposeaparallel algorithm for approximating a set of sparse
factors of Q',—1<[ <dmin'nearly linear time. They show that it can be used to
construct independent.and identically distributed realizations from an
approximateddistribution. This is opposed to a Gibbs sampler, which produces
approximately.independent samples from the correct distribution (possibly after
thinning): Similar to the Gauss-Seidel splitting considered by Johnson

et al. (2013), Liu et al. (2015) propose an iterative approach to approximating a
draw from a GMRF in which the corresponding graph is separated into a
spanning tree and the missing edges, whence the spanning tree is randomly

perturbed and used as the basis for an iterative linear solve.



The aforementioned algorithms can be difficult to implement and require
substantial knowledge of graph theory, numerical analysis, and MPI
programming. This makes such approaches inaccessible to many statisticians
who nevertheless need to work with large random fields. Further, they are
iterative routines for producing a single draw from an approximation to the target
distribution. This feature makes them less appealing for users who work in = or
MaTLAB (The MathWorks, Natick, MA). It is well-known that loops should be
avoided in these languages to avoid repeated data type interpretation and
memory overhead issues. In response to these difficulties while still faced,with
the problem of efficient updating of GMRFs inside a larger MCMCralgorithm,
additional r packages have been made available which are benéeficial for
manipulating the sparse matrices associated with GMRFSincluding Matrix
(Bates and Maechler, 2016), sparsem (Koenker and Ng, 2016), and spam (Furrer
and Sain, 2010; Gerber and Furrer, 2015).

2.2 Block and Single-Site Gibbs Sampling

In this Section, it is helpful to distinguish between sampling x directly from a prior
GMRF and from the full conditional.distribution of x derived from an hierarchical
Bayesian model with a GMRF prior on x. For an unconditional (and proper)
GMREF, the distribution is’ofitheform x~ N(u,Q"), where u and Qare generally
unrelated. When drawing from the full conditional distribution as in a Gibbs
sampler, the distribution’is of the form x~ N(Q,'p,0."), where @, # Q is an
updated precision'matrix. For example, in a typical linear model

y| x, 2 ~FN(Ax%E) with Afixed and x ~ N(u,Q"), standard multivariate normal
theory yields x|y, ~ N(Q,'b,0Q,"), where Q, = A'S"'4+Q and b=A"S"y+Qu .

Two approaches to updating GMRFs inside a Markov chain Monte Carlo
algorithm are so-called single site sampling in which individual sites are updated
one at a time using the available full conditional distributions, and block Gibbs
sampling in which the entire random field is updated all at once via sampling from

a known multivariate Gaussian distribution induced by the GMRF. Block



sampling improves the convergence of Gibbs samplers in the presence of a
posteriori correlated variables by allowing the chain to move more quickly
through its support (Liu et al., 1994). The drawback is in the manipulation and
solution of large covariance matrices necessary for both random variable
generation and evaluation of the likelihood in a Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970). Single site updating uses the
conditional distributions of each scalar random variable, thus avoiding large
matrix computations. In single-site sampling, though, statistical efficiency may:be
sacrificed as updating a group of possibly highly correlated parameters one‘at a
time can result in slow exploration of the support, slowing convergence of the

Markov chain.

In single-site Gibbs sampling, we sequentially draw from each univariate
conditional distribution with density p(x; | x _,),i =1,%..n. Broadly speaking, this
requires alternating ntimes between using{x,_ €R™' to calculate the conditional
mean and drawing from p(x; | x_; ), meaning,that single-site updating essentially
is an O(n*) operation. However, by,exploiting the fact that the conditional mean
(usually) only depends on a relatively few neighbors of x;(i.e., N (i) < n),
updating it after each draw. becomes negligible, reducing the complexity to O(n) .
This algorithm has little regard,for the ordering of the nodes, making such
sampling strategies very easy to implement. Compared to block updating,
though, many more Gibbs scans may be required to sufficiently explore the
support of the-distribution. This approach is the most iteration-intensive of any of
the approaches.considered here. As such, its implementation in r can result in a
large amount of overhead associated with loops, considerably slowing the entire

routine.

Efficient block sampling schemes for GMRFs are discussed in Rue (2001) and
Knorr-Held and Rue (2002). What most of these schemes have in common is the
use of a Cholesky factorization to solve a system of equations. For the case

typically encountered in a Gibbs sampler, Rue and Held (2005) provide an



algorithm for simulating from N(Q[j‘b, Q:). This algorithm, presented in Algorithm
1 in the Supplementary Material, requires one Cholesky factorization and three

linear solves via forward or backward substitution.

In general, for a matrix of dimension n x n, the Cholesky factorization is an

O(n’ /3) operation and each linear solve costs O(n*) flops (Golub and

Van Loan, 1996). This can be particularly onerous in a fully Bayesian approach in
which hyperpriors are assigned to hyperparameters 6 that appear in the
precision matrix Q, = 0 ,(0) . However, the key to making block updating.feasible
on high-dimensional data lies in the computational savings that can be achieved
when @, is sparse. Sparse matrix algebra is itself a non-trivial problem requiring
specialized knowledge beyond the expertise of many statisticians. Indeed,
concerning this point, (Rue and Held, 2005, p. 52) recommend “leaving the issue
of constructing and implementing algorithms for facterizing sparse matrices to the
numerical and computer science experts.” In,practice, most statisticians rely on
special functions for sparse matrices such,as those found in the Matrix, sparseM,
or spam packages in r. Of these three, spamis the most specifically tailored for
repeatedly sampling GMRFs in MCMC.

For simulating posterior distributions via block Gibbs sampling, we are interested
in drawing from full conditional distributions. In this case, sparsity of the entire
precision matrix is contingent upon the sparsity of 4’>~"' 4. This is often the case
in practice. For instance, in disease mapping and related applications, it is
common to place a spatially correlated random effect at each location to
encourage smoothing of the incidence rate over space (e.g., Waller

et al., 1997; Banerjee et al., 2015). In terms of the linear model, this can be
expressed as y— Xf =Zy+¢&, where X corresponds to fixed effects and y
contains the spatially-varying effects. With site-specific random effects, Zis
diagonal or block diagonal. The diagonal case (e.g., Z =1) is especially

amenable to efficient block Gibbs sampling as well as chromatic sampling (see



Subsection 2.3), since the underlying graph G for the full conditional distribution

is exactly the same as the prior graph.

For a fully Bayesian model, the full conditional precision matrix associated with
the GMRF will generally depend on parameters that are updated in each iteration
of an MCMC routine, meaning that the Cholesky factorization has to be
recomputed on each iteration. Often, though, the neighborhood structure and
thus the sparsity pattern of the Cholesky factor remain fixed. The sparse matrix
implementation in the spam package exploits this fact to accelerate repeated
block GMRF updates. After finding the initial Cholesky factorization using so-
called supernodal elimination trees (Ng and Peyton, 1993), spam stores the
symbolic factorization and only performs numeric factorizations on subsequent
iterations. Even with sparse matrix algebra, though, bloek sampling xfrom a
GMREF in very high dimensions can be problematic'due to the computational cost
of even an initial factorization as well as the,associated memory overhead

(Rue, 2001, p. 331).

2.3 Chromatic Gibbs Sampling

Consider the graph representationof the GMRF, G =(V,€). The local Markov
property says that x, L x_g. 5l Xy, » Where x_ , denotes all x except x;and
the neighborhood of x;, and 2L denotes (statistical) independence. An extension
of the local Markoy property'is to let C =V denote a separating set, or cut, of G
such that nodes'in aset 4V are disconnected from nodes in BV after
removing the.nodes in Cfrom the graph. Then the global Markov property states
that x, l/x, | x.. Chromatic sampling exploits this property by partitioning the
nodes according to a graph coloring whereby the nodes in each subset can be

updated simultaneously.

A coloring :V —{l,...,k},k €N, is a collection of labels assigned to nodes on a
graph so that no two nodes that share an edge have the same label. A A-coloring
induces a partition of the nodes {A,..., A}, where A, = f'({j})c V. For



example, Figure 1 displays a 4-coloring that could be used for data that lie on a
regular two-dimensional lattice; e.g., imaging data. Given a A-coloring of the MRF
graph, we can determine a cut C; corresponding to each color jby assigning all

nodes that are not of that color to be in the cut; i.e., C, =A;,j=1,...,k . Defining

indep.
cuts in this way for j=1,...,k, we have that x,|x. ~ N(7,07),forall icA,

where each 77;and o7 depend on x. . Thatis, all nodes of the same color are

conditionally independent and can be sampled in parallel, given the rest of'the
field. The use of graph colorings in this way lead Gonzalez et al. (2011) to term

the approach chromatic Gibbs sampling.

Algorithm 1 presents a general chromatic Gibbs sampler forGMRFs. An
advantage of using this approach is in step 3 of the algorithm®#When updates of
the random variables indexed by A, are distributed@cross’several processors,
the computational effort of updating the entire field,can potentially be dramatically
reduced, even compared to the approximate linear'complexity obtained from
sparse matrix factorization. Given ¢ processers and a A-coloring of a Markov
random field over n nodes, and assuming calculating conditional means is O(1),
the chromatic Gibbs sampler generates a new sample in approximately
O(n/c+k) operations (Gonzalez et al., 2011, p. 326). Observe that single-site
Gibbs sampling can be_ obtained as a case of chromatic Gibbs sampling with & =

n colors.
Algorithm 1: €hromatic Gibbs step updating of a GMRF.

Input: Current state of GMRF, x'”, a &-coloring of the MRF graph,
(A =1 k.

Output: New draw x"*" from the GMRF.

1 forj=171f kdo

2 For i €A, , calculate conditional means and standard deviations 7,07

using



(t+1) (t+1) (1) (1)
Xy reees Xy s X s Xy

3 Draw x, ~N| (..o, diag(07,i=1,...| A ]|
4 end

5 Return x“*V

The best computational savings under chromatic sampling will be achieved by
using the chromatic index for the coloring, defined as the minimum & so thatia A-
coloring of G exists. The minimal coloring problem for a graph is NP-hard and
thus very challenging except in simple situations. On regular lattices with
commonly assumed neighborhood structures (e.g., Figure 1), such colorings can
be found by inspection without complicated algorithms. Coloring more general
graphs is more involved. However, it is important to observe that for fixed
sparsity patterns (and hence fixed Markov graphs)‘suchias those we consider
here, graph coloring is a pre-computation. It is ©nly required to run the algorithm

once prior to running MCMC.

A straightforward approach to graph'coloring is the greedy algorithm, but it is
known to generally produce subeptimal colorings. In fact, for random graphs in
which any two vertices have prebability 1/2 of sharing an edge, the greedy
algorithm is known to asymptotically produce, on average, twice as many colors
as necessary (Grimmett and McDiarmid, 1975). We illustrate this with an
example in the Supplementary Material in which the greedy algorithm produces
the optimal coloring under one permutation of the vertices, and over twice as
many colors with another permutation. The sensitivity of the greedy algorithm to
the ordering of the vertices was recognized by Culberson (1992), who proposes
an iterative approach in which the greedy algorithm is repeatedly applied to
permutations of the vertices so that the optimal coloring can be better
approximated. Beyond greedy algorithms, Krager et al. (1998) cast the 4-coloring
problem as a semidefinite program and propose a randomized polynomial time

algorithm for its solution. A full exposition of coloring algorithms is well beyond



the scope of this work. However, our experience is that even the suboptimal
colorings produced by the simple greedy algorithm are still able to facilitate vast
computational improvements over block or single-site updating. As such, we
provide in the Supplementary Material Algorithm 2, an easily-implemented
greedy algorithm that is accessible to most statisticians looking for a quick way to
color their MRF graph. We also remark that there exist r packages containing
functions for coloring graphs; e.g., the Mapcoloring package (Hunziker, 2017)
which implements the DSATUR algorithm (Brélaz, 1979).

Most computers today have parallel processing capabilities, and any distributed
processing over ¢ processors can reduce the computational burden by an
approximate factor of 1/c. Regardless of the number of processors available to
the user, though, savings can still be realized when working in a high-level
language such as r by ‘vectorizing’ the updating ofthe conditionally independent
sets. Vectorizing still ultimately uses a for doop on each set of nodes, but the
loops are performed in a faster language.such as c or rortran. It also minimizes
the overhead associated with interpreting data types; i.e., vectorizing allows r to
interpret the data type only once for the entire vector instead of repeatedly for

each element of the vector.

3 NUMERICAL ILLUSTRATIONS

In this Section we-compare chromatic sampling to block Gibbs and single-site
sampling with=both simulated data on large regular arrays and real, non-
Gaussian (binomial) data on an irregular lattice. Our emphasis here is on ease of
implementation for statisticians who may not be as comfortable with low-level
programming as they are in r. Thus, most of our comparisons are done by
examining the computational effort associated with programming entirely in r. We
emphasize that computational improvements may be realized without direct
parallel processing. We simply vectorize the simultaneous updating steps,
thereby avoiding direct for loops in r. It is important to note that our

implementation of chromatic sampling involves updating the means after each



simultaneous draw via matrix-vector multiplication. The necessary matrices are
stored in sparse format. Without sparse representations, the computational effort
would be dramatically increased. Near the end of Subsection 3.1, we consider
also a parallel implementation of the chromatic sampler in r, as well as what
happens when the single-site updating step is done in c++ rather than r. To
implement the block Gibbs sampler, we use the spam package (Furrer and

Sain, 2010), since it is specifically tailored for GMRFs inside MCMC routines by
storing the sparsity structure for repeated use. To make the spam functionsias
efficient as possible, we follow the authors’ suggestion and turn off the, symmetry
check and safe mode options (options (spam.cholsymmetrycheck™ FALSE,
spam.safemodevalidity= FALSE)). The computer code is available.as

supplementary material.
3.1 Simulated Imaging Problem

Image analysis involves attempting to reconstruct a true latent image, where the
image’ may mean a true physical structure«as.in clinical medical imaging, or an
activation pattern or signal as in, e.gs, functional magnetic resonance imaging
(Lazar, 2008). The available data consist of pixel values, often corresponding to
color on the grayscale taking integer values from 0 to 255. The true values are
assumed to have been gontaminated with error due to the image acquisition
process. This area is'one of the original motivating applications for Markov
random fields (Besag;«1986; Besag et al., 1991).

There is growing interest in the statistical analysis of ultra-high dimensional
imaging data. For example, structural magnetic resonance images of the human
brain may consist of 20-40 two dimensional slices, each of which has 256 x 256
resolution or higher. Spatial Bayesian models for even a single slice of such data
can involve GMRFs over lattices of dimension n= 2562 (Brown et al., 2017b) and
thus are very computationally challenging when drawing inference via Markov
chain Monte Carlo. Motivated by such applications, we consider images

consisting of p x p pixels, each of which has an observed value y, =x, +¢,,



where xjis the true value of the (i, /)" pixel in the latent image and &
represents the corresponding contamination. To simulate the data, we take the
error terms to be independent, identically distributed M0, 1) random variables.
The true image in this case is a rescaled bivariate Gaussian density with

x; =Sexp{—||v; > /2}/ 7, where v, = (v,,v,) €[-3,3]x[-3,3] denotes the center of
the (/ )th pixel, evenly spaced over the grid, and ||-|| denotes the usual Euclidean
norm. Figure 2 depicts the true generated image (in 50 x 50 resolution) andvits
corrupted counterpart. To study each of the three sampling algorithms, we

consider first an image with dimension n= p x p =502,

The assumed model for the observed image is given by y=14,+y +¢&, where

y eR" is the vector of the observed pixel values, 1=(1,..41)" eR", 3 €R is a
constant intercept parameter, y is the vector of spatial effects, and ¢ is the
vector of errors assumed to follow N(0,c°1). To.capture’local homogeneity of the
image, we assume the spatial random effects obey an IAR model with mean
zero; i.e., the density of y is f(p) oc () 2exp{(27) 'y (D-W)y},y eR",

where W ={w, =1(i~ j)}; _, is thetincidence matrix of the underlying graph and

i,j=1

n \
D= diagkz w; i = 1,...,nJ . Here:we,assume a first-order neighborhood structure

in which each interior pixel.has eight neighbors. We ignore edge effects induced
by the perimeter pixels of the image. We specify inverse gamma priors for the
variance components and a flat prior for the intercept; i.e.,

o’ ~ InvGam(e, &), 7 ~ InvGam(a, @), >0 , and =(,) <1, 3, eR. To approximate
vaguegriors for.the variance components, we take a = 0.001. It has been
observed'that an inverse gamma prior on 72 sometimes can yield undesirable
behavior in the posterior (Gelman, 2006); but our focus is on sampling the
random field and thus we use this prior simply for convenience. For posterior
sampling, our modeling assumptions lead to a Gibbs sampler having the
following full conditional distributions:

Bl y.7.0" ~N(U'(y=p)/n,0°/n), 0" | p.y.f, ~ InvGam(a+n/2,a+|| y =18, =7 | /2), |y ~ InvGam|



,and y|y.0’,7 ~N(Q,'0.Q,'), where @, = oI +*(D-W) and
b=(y-1p8))/c" . We remark that it is not unusual for spatial prior distributions to
have zero or constant mean functions (Bayarri et al., 2007), since the a posteriori
updated spatial model will still usually capture the salient features. In the
presence of noisy data, however, identifiability is limited, meaning that the
parameters will more closely follow the assumed correlation structure in the prior.
In terms of statistical efficiency, this situation favors block sampling over

componentwise updating, as previously mentioned.

To implement the Gibbs sampler, three strategies are employed,.with the only
difference being how we sample the full conditional distribution of .. First, since
0, is sparse, we consider full block Gibbs sampling based on Algorithm 1 in the
Supplementary Material to sample y in a single block. The second strategy is to
obviate the large matrix manipulation by employing single-site Gibbs sampling
using the local characteristics, 7, |y, y,0%% ~N(,07),i=1,...,n, where

w=0(c"y,+77 Y wy,) and o] =%62{c’ (D), +7°}" . The final sampling

JEN (@)
strategy we implement is chromatie"Gibbs sampling discussed in Subsection 2.3.
This approach uses the coloring depicted in Figure 1 as a 4-coloring of the pixels

in the image. Following the 'notation in Subsection 2.3, we have that
indep.

7 1vc.v.0°,7 ~ N(u,6;),ieA, j=1,..,4. The mostimportant feature of the
chromatic sampler isithat y, chj,y,az,rz, i e A,, can be drawn simultaneously.

All of the necessary.conditional means and variances for a given color can be
computed through matrix-vector multiplication. In general, multiplcation of an n x
n matrix with an n x1 vector has O(n*) complexity. Similar to the block sampler,
though, we use sparse representations of the necessary matrices for the
chromatic sampler, which reduces the complexity to O(n) since each pixel has

relatively few Markov neighbors.

We implement the three sampling strategies so that each procedure performs 10,

000 iterations of the Monte Carlo Markov chain to approximate the posterior



distribution of the model parameters. For each approach, three chains are run
using dispersed initial values. We assess convergence of the chains via trace
plots, Gelman plots (Brooks and Gelman, 1998), and plots of cumulative ergodic
averages of scalar hyperparameters. We discard the first 8000 iterations as a
burn-in period and assess convergence using the last 2000 realizations of each
Markov chain. The simulations, coded entirely in r, are carried out on a Dell
Precision T3620 desktop running Windows 10 with an Intel Xeon 4.10 GHz CPU
and 64 GB of RAM.

Figure 3 displays the trace plots and empirical autocorrelation functions for the
hyperparameters ¢2 and 72 for chromatic, block, and single-site ' sampling. We see
very similar behavior in terms of autocorrelation across all three sampling
approaches. From Supplementary Figure 1, we glean that each sampling
approach has approximately converged in the 02 and 72 chains after 2,000
iterations, although the block sampler evidently has the longest convergence
time according to the Gelman plots. While eachiapproach produces estimates of
2 and 2 that tend to the same value, the block sampler exhibits slightly larger
Monte Carlo standard error than the other two approaches. This partly explains
the slight difference in empirical distribution from the block sampler versus that of
the chromatic and single-site'samplers, as depicted in Figure 4. Regardless, the
joint and marginal density estimates largely agree. This agreement is also
evident in Figure 5,'which displays the posterior mean estimates of the true
image f,1+7., the primary quantity of interest. To assess exploration of the
posterior distributions, the Figure also depicts point-wise ratios of sample
standard.deviations for each pair of algorithms. All three samplers produce

distributional estimates that are virtually indistinguishable.

The primary advantage of the chromatic approach versus the other two is in the
computational cost incurred to obtain each sample. Of course, the same number
of samples from two different algorithms is not guaranteed to provide the same

quality of approximation to the target distribution. To accommodate the different



convergence characteristics of the three algorithms while still considering total
computation time (including the burn-in period), we measure the cost per
effective sample (Fox and Norton, 2016), CES := N"'«T , where Tis the total
computation time, Nis the size of the retained sample from the Markov chain
(after burn-in), and «is the integrated autocorrelation time (IAT; Kass

et al., 1998; Carlin and Louis, 2009). CES measures the total computational
effort required to generate an effectively independent sample from the target
distribution. Table 1 displays the total CPU times, effective sample sizes;
integrated autocorrelation times, and CES for the 72 chains under each sampling
approach. Here we see an approximately 89% improvement in computational
effort between independent samples compared to block Gibbs sampling. Single-
site sampling (when coded in r) is by far the worst performer,.as expected. It is
interesting to note that in this case, the chromatic sampler.,has the shortest IAT of

the three methods considered.

To further study the performance of bleck sampling versus chromatic sampling,
particularly how they scale with regular arrays of increasing dimension, we repeat
the model fitting procedure using data‘simulated as before, but with images of
size p x p, for p= 80, 128, 256, and 512. To create a more challenging situation,
we add considerably more noise to the images by assuming Var(g) =501 . This
makes the underlying spatial field much more weakly identified by the data and
thus more strongly determined by the prior. Hence the GMRF parameters (
B,.y, ) will be'more strongly correlated in the posterior, creating a more
challenging situation for any MCMC algorithm. For each p, we run the same
model with the same prior specifications as in the first example. We again run
each MCMC algorithm for 10,000 iterations, treating the first 8,000 as burn-in

periods.

Supplementary Figures 2 through 8 display diagnostics and posterior mean
estimates produced by the different sampling procedures under p = 50, 80, 128

with noisy data. The r-coded single-site sampler was not computationally



feasible for images with resolution p >80 and so was not considered. As
expected, we see the autocorrelation in the 72 chains increased with the noisy
data, regardless of the sampling approach, whereas the data-level variance 2
remains well identified. The three approaches still produce parameter estimates
that agree with each other. The Gelman plots indicate that the chromatic sampler
takes longer to converge than the other two approaches, but still becomes an
acceptable approximation to a posterior sample after about 7, 000 iterations. The
joint and marginal densities of (@2, 72) are more diffuse than the low-noise case;
again agreeing with intuition. Despite the deterioration of the 72 chain, the
quantity of interest as in many imaging problems is a function of.the model
parameters. In this case, we are mainly interested in ¢ := £ ¥+ ,smeaning that
we want to explore the so-called embedded posterior distribution of ¢ . The
parameter ¢ (i.e., the underlying image) converges well'under chromatic and
block sampling. Hence we are able to recover aseasonable approximation of the
target image, as evident in Figure 6 and Supplementary Figure 7. This
phenomenon echoes the observation of Gelfand and Sahu (1999) that even
when a Gibbs sampler is run over a'posterior distribution that includes poorly
identified parameters (72 in this case), inferences can still be drawn for certain

estimands living in lower dimensional space than the full posterior.

As noted at the beginning of this Section, the preceding results are obtained by
only coding in = and without'any parallel processing. However, if one is interested
in accelerating the conditional GMRF updating step, they might choose to simply
code the single-site sampler in c or Fortran and incorporate it into a larger
MCMC algorithm. On the other hand, a researcher might want to fully exploit the
ability to do chromatic updates in parallel, as opposed to vectorized updates. To
examine the computational gains obtained by a simpler algorithm in a faster
language, we run the single-site algorithm with the simulated imaging data, but
where the GMRF updating step is passed to c++ via the rcpp package
(Eddelbuettel and Francgois, 2011). Further, we implement the chromatic sampler

with truly parallelized updates in r by distributing the independent updates (those



corresponding to the same color in the graph) over eight processors (five in the
50 x 50 case) via the paral1el package (R Core Team, 2018). In terms of the
generated Markov chains, the rcpp single site sampler and parallel chromatic
sampler are algorithmically identical to the r-coded single-site and vectorized
chromatic, respectively, so we do not look at their convergence characteristics
separately. The code for implementing the c++ and parallel approaches is also

available as supplementary material.

Figure 7 displays the total CPU time required to complete 10,000 iterations for p
= 50, 80, 128, 256, 512. As previously mentioned, the r-coded single-site
sampler is only feasible in the p = 50 case, as it is by far the most inefficient
implementation due to the nested loops. Chromatic sampling'requires much less
computing time than block sampling, and scales at a lower rate This is due in
part to the fact that no Cholesky factorizations are required for chromatic
sampling. Such factorizations with even sparse matrices can be expensive, and
repeated multivariate Gaussian draws are still required even when the symbolic
factorization is stored throughout the MCMC routine. The parallel implementation
of the chromatic sampler requires more CPU time at lower resolutions, but is
more scalable than the vectorized version. The cost of parallelization becomes
comparable to the vectorizediimplementation at 256 x 256 and is slightly faster
than the vectorization at p =5612. This illustrates how the overhead associated
with distributing data.across'processors cancels out any computational gain at
smaller scales. Parallelizing becomes worthwhile for extremely large datasets in
which splitting up a huge number of pixels is worth spending the overhead. There
is also overhead associated with passing the data and parameter values to a
function written in c++, as we see in the rcpp implementation of the single-site
sampler. At small to moderate resolutions, the rcpp version is much faster than
the chromatic sampler and the block sampler. However, the computational cost
of rcpp scales at a much faster rate than the chromatic versions, so much so that
both chromatic versions are an order of magnitude faster than the c++ single-site

sampler at p = 512. Similar to how a parallel implementation depends on the size



of the data, we see that the benefit of coding a chromatic sampler in r versus

passing to c++ is more pronounced when the dataset is extremely large.

There is also considerable memory overhead associated with both sparse
Cholseky block updating and chromatic sampling. The total required memory for
Cholesky-based block updating depends on the storage scheme used by the
sparse matrix implementation. The spam implementation in our example uses a
variant of the so-called compressed sparse row format (Sherman, 1975).
Chromatic sampling, on the other hand, requires no matrix storage at.all, but only
lists of identifiers associated with each graph color. The right panel'of Figure 7
illustrates the consequent savings in total memory allocations and how they scale
with arrays of increasing dimension. In terms of total memory allocations, both
the vectorized and parallel chromatic samplers require considerably less than
block updating. In fact, block updating for p = 256 and p= 512 was not possible
due to memory limitations. The Cholesky factorization failed, returning choimod

error: ‘problem too large’.

3.2 Binomial Election Data on-an Irregular Lattice

Here we examine the performance.of the block Gibbs and chromatic sampling
strategies on an irregular_lattice, since both the structure of Q and the possible
colorings of the underlying graph are more complicated. Moreover, we illustrate
the performance of these procedures when applied to non-Gaussian data. In
particular, we.examine geographical trends in voter preference using binomial
outcomes. The data were obtained from the Harvard Election Data Archive

(https://dataverse.harvard.edu) and are depicted in Supplementary Figure 10.

Our data consist of polling results from the 2010 New York Governor’s race in
which Democratic candidate Andrew Cuomo defeated Republican candidate Carl
Paladino and Green Party candidate Howie Hawkins. During this election, the

state of New York had 14, 926 precincts, with polling data being available on 14,



597 precincts. The 329 precincts for which data are unavailable is attributable to

improper reporting or lack of voter turnout.

Let Y;be the number of votes cast for the Democratic candidate out of /7 total
indep.
votes in precinct i,i=1,...,n. Then we assume that Y, | z,,m. ~ Bin(m,,x,), where

g ' ()=, +7, g() is the usual logistic link function, and y = (y,,....7,)" is a
vector of random effects inducing spatial homogeneity. We suppose that y
follows a proper IAR model; i.e., y ~ N(0,7°(D—pW)™"), where Dand Ware as
defined in Section 3.1. Here, the “propriety parameter” pe(4,',1.") _énsures that
the precision matrix is non-singular, where A1 <0 and Ay > 0 are.the smallest and
largest eigenvalues of D™"*WD™"? | respectively (Banerjee et-al., 2015). Proper
IARs are sometimes used as approximations to the standard IAR when a proper
prior distribution is desired. For simplicity, we fix 0 =.0.995.. The model is

completed with the prior assumptions that £, ~ N(0,1000) and 72 ~ InvGam(1, 1).

Under the logistic link, we can simplify posterior.sampling via data augmentation.
This technique exploits the fact that

exp(n)" (1+exp()”* = 2" exp(sn) [explsyrr 12)p(y'0.0)dy, where
neR,aeR,beR",k=a-b/2,and p(:|b,0) is the probability density function of
a Pélya-Gamma random.variable with parameters 6 and 0 (Polson et al., 2013).

Using this identity, the.observed data likelihood can be written as
(Y| B,.7,) = | [ expir} Xfo exp(—v,77; / 2) p(w, | m;,0)dy,, where
i=1

Y=(,...Y),n=8+y, and x, =Y, —m, /2. Thus, by introducing y;as latent

random variables, we have that
7Y, | fy) = expi=((B,1+7) D, (B, 1+7)—26" (B, 1+7))/ 2] | p(w; | m,,0) , where
i=1

y=W,...v,) k= (k,...k,)" ,and D, =diag(y). By including ¥ in the MCMC
algorithm, we induce a Gaussian full conditional distribution on y , facilitating
GMREF updates without having to tune a Metropolis-Hastings algorithm.

Additional implementation details are provided in the Supplementary Material.



In order to implement chromatic sampling, a coloring of the underlying Markov
graph has to be found. Using the greedy algorithm given in Algorithm 2 in the
Supplementary Material, we obtain a 7-coloring, so that the chromatic sampler
can update the entire n= 14,926 -dimensional field in seven steps. The coloring

is depicted in Supplementary Figure 11.

We implement Gibbs sampling with both the block Gibbs and chromatic updates
for 10, 000 iterations, discarding the first 5, 000 as a burn-in period. The code. is
run on a desktop using Windows 10 with an Intel Core i5-3570 3.40GHz CPU
with 16GB of RAM. The trace plots and empirical ACF plots for S, and 2are
depicted in Supplementary Figure 12, along with the Gelman plots of these two
parameters in Supplementary Figure 13. We see adequate econvergence in the
same number of iterations under both sampling approaches.*Table 2 summarizes
the results for both samplers in terms of CPU time‘and cost per effective sample
of the intercept and variance terms. We again see assavings in CPU time under
chromatic sampling, so much so that itoffsets the slightly larger autocorrelation
time. Thus we are able to obtain effectively.independent samples with less
computational effort. The posterior mean maps of the voter Democratic
preference (77) obtained under each sampling strategy are displayed in Figure 8.

We see essentially identical results under both strategies.
3.3 Summary

These numerical experiments illustrate potential improvements that chromatic
Gibbs sampling can offer versus the two most common strategies of block
sampling/and single-site sampling. In simulated image reconstruction, we find
that for every considered resolution, the chromatic sampler is computationally
much cheaper than the full block Gibbs and single-site samplers coded entirely in
r. We observe in both chromatic and block sampling the deterioration in Monte
Carlo Markov chains that is known to occur as the dimension of a GMRF
increases (Rue and Held, 2005; Agapiou et al., 2014). Even in this case,

however, any of the approaches considered are able to estimate the posterior



mean of the latent field and obtain equivalent recovery of the quantity of interest.
The chromatic sampler is able to do so much more quickly and with much less
memory overhead, the latter of which allows the chromatic sampler to scale to
images of extremely large dimension beyond the capability of standard Cholesky
factorization routines available in r. The potential advantages extend to irregular

arrays and non-Gaussian data, as demonstrated in the election data example.

4 DISCUSSION

Over the last twenty years, Gaussian Markov random fields have seena
dramatic increase in popularity in the applied Bayesian community. Inithis work,
we discussed approaches for simulating from Gaussian Markoyv,random fields
that are commonly used in practice. We compared the two'dominant approaches
in the statistics literature, single-site and block updating, to’chromatic Gibbs
sampling. Each procedure has theoretical guarantees; but our criteria have been
pragmatic; i.e., how can statisticians effectively lower the computational cost of
sampling from the target distribution witheutwresorting to esoteric knowledge from
graph theory, numerical analysis, or-parallel programming? Taking this view, we
have shown that chromatic sampling.is competitive with and often able to
improve upon single-site and full block Gibbs. In a large-scale scenario, we
demonstrated improvements afforded by chromatic sampling even when
compared to passing the single-site updating step to c++. This shows that
computational efficieney gains are achievable even when a researcher desires
(or needs) to do.as'much programming as possible in a high-level interpreted

language:

Motivated by large-scale clinical imaging data, we illustrated potential
advantages on a regular array with Gaussian response, finding that chromatic
sampling scales to settings where memory limitations prevent direct sparse
matrix manipulations. We also considered a real example with binomial election
data on an irregular lattice with almost 15,000 areal units, showing that chromatic

sampling is useful even without a provably optimal coloring of the MRF graph.



Both block sampling and chromatic sampling tend to be far superior to single-site

sampling when working in r.

While facilitating parallel or vectorized simultaneous updates, each individual
draw under chromatic sampling is still at the level of a single site. Thus, for
variables that are highly correlated in the target distribution, convergence can be
slow. To handle this, Gonzalez et al. (2011) propose also a “splash sampler” to
combine the blocking principle of updating sets of correlated variables together
with the parallelizability afforded by graph colorings. Splash sampling.is more
involved than simple chromatic sampling. It requires careful construetionrof
undirected acyclic graphs subject to a known tree width determined by individual
processor limitations, and hence much more computing effort and more
familiarity with graph theory. In the Gaussian case, splash sampling would
require repeated Cholesky factorizations, each on ‘matrices of smaller dimension,
but without being able to save the sparsity structurexIn the presence of highly
correlated variables in the target distribution'with GMRF updates, it might be
preferable to use ordinary block updates with sparse matrix algebra and the
algorithms suggested by Rue (2001). However, our numerical experiments
demonstrate that the gain in computational efficiency from the simple chromatic
sampler can still outweigh the loss of statistical efficiency. This leads to an overall
improvement in a variety,of situations without resorting to more sophisticated

approaches that might be inaccessible to most statisticians.

In both the ¢++ and parallel implementations, we assume that the researcher
would prefer.to keep as much of the code in r as possible due to its user-friendly
functionality and their desire to avoid low-level programming. Since r itself is a
software suite written primarily in c, even matrix-vector calculations and
vectorized functions are ultimately executed via loops in c (or a another low-level
language such as rortran). Thus, if one were to code our entire MCMC
algorithm with ‘vectorized’ chromatic updates in c or c++, the result would be an

algorithm that is essentially identical to a single-site sampler up to the order in



which the sites are updated. In other words, if a researcher is working purely in c
or Fortran, then the computational advantages of chromatic sampling can only
be fully realized with a distributed parallel approach. However, parallel
programming in such low-level languages is much more difficult and nuanced
than it is in r and thus beyond the expertise of many statisticians and data
scientists. Indeed, one of the main reasons for the popularity of r is the ease with
which extremely complicated tasks (e.g., MCMC on exotic hierarchical Bayesian
models or sparse matrix factorizations) can be executed. There is nothing'w can
do that cannot be done in a low-level language if one has the time and,patience
to write the code for it. Our purpose in this work is to discuss and*demonstrate
computational savings that may be realized without having to"leave‘the more

comfortable environment of a high-level, interpreted programming language.

The parallel implementation used in this work used only eight processors, but this
still showed modest acceleration over vectorized.chromatic sampling with the
largest dataset we considered. The difference would no doubt be much more
pronounced by distributing the effort over more processors. With the advent of
modern computing clusters and GPU eomputing, it is becoming more common
for researchers to have available.thousands of cores for use simultaneously. In
fact, it is not difficult to envision scenarios where the number of processors
available is O(n) , in which case the complexity of parallel chromatic sampling
reduces to O(k) , where! kis'often fixed as nincreases due to the structure of the
data (Gonzalez'et al., 2011). Thus the scaling potential of parallel chromatic
sampling is enormous and worthy of further investigation. We defer such an

exploration tofuture work.

In this paper, we examined the performance of chromatic sampling versus single-
site and block Gibbs on high density data in which the entire study region is
sufficiently sampled and in which a first-order Markov neighborhood can capture
the salient features of the data. This situation is applicable to many, but not all,

analyses of areal data. There remains the issue of how chromatic sampling



would perform in the presence of sparse observations from an underlying smooth
process, where the autocorrelation of the Markov chain would be expected to be
higher than in the high-density case. Related to this point is that, to the best our
knowledge, the convergence rates associated with chromatic sampling Markov
transition kernels remain unknown. We leave these questions to be explored at a

later date.

Given the current trajectory of modern data analysis, the utility of GMRFs.is hot
likely to diminish anytime soon. However, with their use comes the need, for
efficient yet accessible sampling strategies to facilitate Bayesian posterior
inference along with appropriate measures of uncertainty. This area remains an
active area of research among statisticians, computer scientists, and applied
mathematicians. Fortunately, the increasingly interdisciplinary environment within
which researchers are operating today makes it more likely that significant
advancements will be widely disseminatedd@nd understood by researchers from
a wide variety of backgrounds. This is ne,doubtia promising trend which will

ultimately benefit the broader scientific community.

References

Agapiou, S., Bardsley, J=M., Papaspiliopoulos, O., and Stuart, A. M. (2014), “
Analysis of the Gibbs.sampler for hierarchical inverse problems,” SIAM/ASA

Journal on Unceritainty Quantification, 2, 511-544.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2015), Hierarchical Modeling and
Analysis for Spatial Data, Boca Raton: Chapman & Hall/CRC, 2nd ed.

Bardsley, J. M. (2012), “MCMC-based image reconstruction with uncertainty
quantification,” SIAM Journal on Scientific Computing, 34, 1316-1332.

Bates, D. and Maechler, M. (2016), Matrix. Sparse and dense matlrix classes
and methods, R package version 1.2-6.



Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J.,
Lin, C.-H., and Tu, J. (2007), “A framework for validation of computer models,”
Technometrics, 49, 138-154.

Besag, J. (1974), “Spatial interaction and the statistical analysis of lattice

systems,” Journal of the Royal Statistical Society, Series B, 36, 192-236.

— (1986), “On the statistical analysis of dirty pictures,” Journal of the Royal
Staftistical Society, Series B, 48, 259-302.

Besag, J. and Kooperberg, C. (1995), “On conditional and intrinsic
autogregressions,” Biometrika, 82, 733-46.

Besag, J., York, J. C., and Mollié, A. (1991), “Bayesianiimage restoration, with
two applications in spatial statistics,” Annals of the lnstitute of Statistical
Mathematics, 43, 1-59.

Brélaz, D. (1979), “New methods to color.the vertices of a graph,”
Communications of the ACM, 22, 251-256.

Brooks, S. P. and Gelman, A. (1998), “General methods for monitoring
convergence of iterativesimulations,” Journal of Computational and Graphical
Staftistics, 7, 434-455:

Brown, D. A., Datta, G. S., and Lazar, N. A. (2017a), “A Bayesian generalized
CAR model for correlated signal detection,” Stafistica Sinica, 27, 1125-1153.

Brown, D. A., Lazar, N. A, Datta, G. S., Jang, W., and McDowell, J. E. (2014), “
Incorporating spatial dependence into Bayesian multiple testing of statistical

parametric maps in functional neuroimaging,” Neurolmage, 84, 97-112.



Brown, D. A., McMahan, C. S., Shinohara, R. T., and Linn, K. L. (2017b), “
Bayesian spatial binary regression for label fusion in structural neuroimaging,’
ArXiv 1710.10351.

Cai, Z. (2014), “Very large scale Bayesian machine learning,” Unpublished

doctoral dissertation, Rice University, Department of Computer Science.

Cai, Z., Jermaine, C., Vagena, Z., Logothetis, D., and Perez, L. (2013), “The
pairwise Gaussian random field for high-dimensional data imputation,”/EEE 73th

International Conference on Data Mining (ICDM), 61-70.

Carlin, B. P. and Louis, T. A. (2009), Bayesian Methods foriData-Analysis, Boca
Raton: Chapman & Hall/CRC, 3rd ed.

Cheng, D., Cheng, Y., Liu, Y., Peng, R., and Teng, S.-H: (2015), “Efficient
sampling for Gaussian graphical models via,spectral-sparsification,” in Journal of
Machine Learning Research: Proceedings of the 28th International Conference

on Learning Theory, pp. 364-390.

Culberson, J. C. (1992), “Iterated greedy graph coloring and the difficulty

landscape,” Technical Report, University of Alberta.

Dempster, A. P. (1972), “Covariance selection,” Biometrics, 28, 157-175.

Eddelbuettel, D..and Francois, R. (2011), “Rcpp: Seamless R and C++

Integration,™ Journal of Statistical Software, 40, 1-18.

Fox, C. and Norton, R. A. (2016), “Fast sampling in a linear-Gaussian inverse
problem,” SIAM/ASA Journal on Uncertainty Quantification, 4, 1191-1218.

Furrer, R. and Sain, S. R. (2010), “spam: A sparse matrix R package with
emphasis on MCMC methods for Gaussian Markov random fields,” Journal of
Statistical Software, 36, 1-25.



Gelfand, A. E. and Sahu, S. K. (1999), “Identifiability, improper priors, and Gibbs
sampling for generalized linear models,” Journal of the American Statistical
Association, 94, 247-253.

Gelfand, A. E. and Smith, A. F. M. (1990), “Sampling-based approaches to
calculating marginal densities,” Journal of the American Statistical Association,
85, 398—-4009.

Gelman, A. (2006), “Prior distributions for variance parameters in hierarchical

models,” Bayesian Analysis, 1, 515-533.

Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs:distributions
and the Bayesian restoration of images,” /EEE Transactions oen'Pattern Analysis
and Machine Intelligence, 6, 721-741.

Gerber, F. and Furrer, R. (2015), “Pitfalls in.the implementation of Bayesian
hierarchical modeling of areal count data: An.illustration using BYM and Leroux

models,” Journal of Statistical Software, 63, 1-32.

Golub, G. H. and Van Loan, C+F. (1996), Matrix Computations, Baltimore: The

Johns Hopkins University Press,.3rd ed.

Gonzalez, J. E., Low;wY. \Gretton, A., and Guestrin, C. (2011), “Parallel Gibbs
sampling: From colored/fields to thin junction trees,” in Journal of Machine
Learning Reséarch: Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 324-332.

Grimmett, G. R. and McDiarmid, C. J. H. (1975), “On colouring random graphs,”
Mathematical Proceedings of hte Cambridge Philosophical Society, 33, 313-324.

Hastings, W. (1970), “Monte Carlo sampling methods using Markov chains and

their application,” Biometrika, 57, 97-109.



Higdon, D. M. (1998), “Auxiliary variable methods for Markov chain Monte Carlo

with applications,” Journal of the American Stafistical Association, 93, 585-595.

Hodges, J. S., Carlin, B. P., and Fan, Q. (2003), “On the precision of the

conditionally autoregressive prior in spatial models,” Biometrics, 59, 317-322.

Hunziker, P. (2017), MapColoring: Optimal Contrast Map Coloring, R package

version 1.0.

Johnson, M., Saunderson, J., and Willsky, A. (2013), “Analyzing Hogwild\parallel
Gaussian Gibbs sampling,” in Advances in Neural Information Processing
Systems 26, eds. Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q., Curran Associates, Inc., pp. 2715-2723.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R..(1998), “Markov chain Monte
Carlo in practice: A roundtable discussion,”\7he American Stafistician, 52, 93—
100.

Knorr-Held, L. and Rue, H. (2002),“On block updating in Markov random field

models for disease mapping,” Seandinavian Journal of Statistics, 29, 597-614.

Koenker, R. and Ng, P.(2016)y SparseM. Sparse Linear Algebra, R package

version 1.74.

Krager, D., Motwani, R., and Sudan, M. (1998), “Approximate graph coloring by
semidefinite programming,” Journal of the ACM, 45, 246-265.

Lazar, N. A. (2008), The Statistical Analysis of Functional MR/ Data, New York:

Springer Science + Business Media, LLC.

Lee, D. (2013), “CARBayes: An R package for Bayesian spatial modeling with

conditional autoregressive priors,” Journal of Statistical Software, 55, 1-24.



Lindgren, F. and Rue, H. (2015), “Bayesian spatial modelling with R-INLA,”
Journal of Statistical Software, 63, 1-25.

Lindgren, F., Rue, H., and Lindstrom, J. (2011), “An explicit link between
Gaussian fields and Gaussian Markov random fields: The stochastic partial
differential equation approach,” Journal of the Royal Statistical Society, Series B,
73, 423-498.

Liu, J. S., Wong, W. H., and Kong, A. (1994), “Covariance structure ofithe Gibbs
sampler with applications to the comparisons of estimators and augmentation
schemes,” Biomeirika, 81, 27-40.

Liu, Y., Kosut, O., and Willsky, A. S. (2015), “Sampling from Gaussian Markov
random fields using stationary and non-stationary subgraph pertubations,” /EEE

Transactions on Signal Processing, 63, 576-589:

Lunn, D. J., Thomas, A., Best, N., and:Spiegelhalter, D. (2000), “WinBUGS - A
Bayesian modelling framework: Concepts;istructure, and extensibility,” Statistics
and Computing, 10, 325-337.

Metropolis, N., Rosenbluth, A."W.; Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953), “Equation of state calculations by fast computing machines,” Journal of
Chemical Physics, 21,1087-1091.

Ng, E. g. andPeyton, B. W. (1993), “Block sparse Cholesky algorithms on
advanced,uniprocessor computers,” SIAM Journal on Scientific Computing, 14,
1034-1056.

Niu, F., Recht, B., Ré, C., and Wright, S. J. (2011), “Hogwild! A lock-free
approach to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems 24, eds. Shawe-Taylor, J., Zemel, R. S.,
Bartlett, P. L., Pereira, F., and Weinberger, K. Q., Curran Associates, Inc., pp.
693-701.



Polson, N. G., Scott, J. G., and Windle, J. (2013), “Bayesian Inference for
Logistic Models Using Polya Gamma Latent Variables,” Journal of the American
Statistical Association, 108, 1339-1349.

R Core Team (2018), R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria.

Robert, C. and Casella, G. (2004), Monte Carlo Statistical Methods, New York:
Springer, 2nd ed.

Rue, H. (2001), “Fast sampling of Gaussian Markov random fields,™ Journal of
the Royal Statistical Society, Series B, 63, 325-338.

Rue, H. and Held, L. (2005), Gaussian Markov Random. Fields, Boca Raton:
Chapman & Hall/CRC.

Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approximations,”
Journal of the Royal Statistical Socrety, Series B, 71, 319-392.

Rue, H. and Tjemland, H.,(2002), “Fitting Gaussian Markov random fields to

Gaussian fields,” Scandinavian‘Journal of Statistics, 29, 31-49.

Schabenberger, O:and Gotway, C. A. (2005), Statistical Methods for Spatial
Data Analysis, Boca Raton: Chapman & Hall/CRC.

Self, S; CoW.,, McMahan, C. S., Brown, D. A, Lund, R. B., Gettings, J. R., and
Yabsley, M. J. (2018), “A large-scale spatio-temporal binomial regression model

for estimating seroprevalence trends,” Environmetrics, €2538.

Sherman, A. H. (1975), “On the efficient solution of sparse systems of linear and

nonlinear equations,” Unpublished doctoral dissertation, Yale University.



Song, H.-R., Fuentes, M., and Ghosh, S. (2008), “A comparative study of
Gaussian geostatistical models and Gaussian Markov random fields,” Journal of
Multivariate Analysis, 99, 1681-1697.

Waller, L. A., Carlin, B. P., Xia, H., and Gelfand, A. E. (1997), “Hierarchical
spatio-temporal mapping of disease rates,” Journal of the American Staftistical
Association, 92, 607-617.

Xiao, G., Reilly, C., and Khodursky, A. B. (2009), “Improved detectionof
differentially expressed genes through incorporation of gene location,”
Biometrics, 65, 805-814.

Fig. 1 An example of a A-coloring (4 = 4) for nodes,on a regular two-

dimensional lattice.




Fig. 2 True image (left panel) and corrupted image (right panel) for the
simulated image reconstruction example. (These particular images have

resolution 50 x 50.)

Fig. 3 MCMC Trace plots (two left columns)‘and-empirical ACF plots (two right
columns) of single chains each for g2 and, 2for the 50 x 50 regular array
example. The top, middle, and bottom rows are from the chromatic, block, and

single-site chains, respectively.
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Fig. 4 Left panel: Scatterplot and estimated marginal posterior densities (left)
and empirical CDFs (right) from-the'three sampling approaches in the 50 x 50
array example. The left panel was/created using code available at
https://github.com/ChrKoenig/R_marginal_plot.
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Fig. 5 Posterior mean estimates of th ge obtained from each sampling
approach (top row) along with pairwise standard deviation ratios (bottom row) in

the 50 x 50 array example.
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Fig. 6 Simulated data and posterior mean estimates of the true image from the

chromatic and block sampling approaches in the noisy 128 x 128 array example.
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Fig. 7 CPU time (left) and total memory required (right) for.the different

sampling implementations to complete 10,000 iterations, for simulated noisy p x p

arrays. In both plots, the y axis is on the log scale.(Note,that memory is only

tracked up to p = 256, and single site memory usage was not tracked.)
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Fig. 8 Posterior mean maps of voter preference for the Democratic candidate in
the binomial election example obtained from the full block Gibbs (top), and

chromatic Gibbs (bottom) sampling.

0.0827 19 - 010000

| 0100001 - 0.20000C
[ 0200001 - 0.20000C
I 0700001 - D.400000
B 0.400001 - 05000
B 0500001 - Ds0DON
I o500001 - vDooo
. ; I 0.700001 - 0.800000
L g *— 8 | B 0.500001 - 050000
— I 000001 - 1.000000

Table 1 CPU times to draw 2,000 realizations (including 8,000 burn-in
iterations) from one 72 Markov chain under each sampling approach in the 50 x
50 array example. Also reported are the effective sample sizes (ESS), integrated

autocorrelation times (IAT), and costs per effective sample (CES).



Sampler |CPU Time (s)||ESS || IAT ||CES

Chromatic |[10.99 65.74(30.42/0.17

Block 49.63 32.71|61.15]|1.52

Single-Site||3331.68 53.54(37.36|(62.23

Table 2 CPU times to draw 5,000 realizations (after 5,000 burin-in iterations)
from one Markov chain under each sampling approach in the New York election
example. Also reported are the effective sample sizes (ESS), autocorrelation

times (ACT), and costs per effective sample (CES).

Sampler CPU Time (s)|| ESS ||ACT| CES

o Chromatic|[222.06 2445.74 |2.04(/0.0935
[ Block 294 .16 2732.82 ||1.83(|0.1018
72 Chromatic |[222.06 1916.63 ||2.61(|0.1155

72 Block 294.16 2186.021(2:29}|0.1332




