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Abstract–Gaussian Markov random fields (GMRFs) are popular for 
modeling dependence in large areal datasets due to their ease of 
interpretation and computational convenience afforded by the sparse 
precision matrices needed for random variable generation. Typically in 
Bayesian computation, GMRFs are updated jointly in a block Gibbs 
sampler or componentwise in a single-site sampler via the full 
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conditional distributions. The former approach can speed convergence 
by updating correlated variables all at once, while the latter avoids 
solving large matrices. We consider a sampling approach in which the 
underlying graph can be cut so that conditionally independent sites are 
updated simultaneously. This algorithm allows a practitioner to 
parallelize updates of subsets of locations or to take advantage of 
‘vectorized’ calculations in a high-level language such as R. Through 
both simulated and real data, we demonstrate computational savings 
that can be achieved versus both single-site and block updating, 
regardless of whether the data are on a regular or an irregular lattice. 
The approach provides a good compromise between statistical and 
computational efficiency and is accessible to statisticians without 
expertise in numerical analysis or advanced computing.  

Keywords: Bayesian computation, Cholesky factorization, chromatic Gibbs 

sampling, conditional autoregressive model, graph coloring, Markov chain Monte 

Carlo  

1 INTRODUCTION 

Suppose we have observed data  in which each yi summarizes 

information over an area , such as a sum or average of individuals in 

the area. For instance, Self et al. (2018) investigate regional trends of occurrence 

of Lyme disease, where the data are the number of positive disease cases 

observed in each county in the United States. Other examples include Brown 

et al. (2014), who consider functional magnetic resonance imaging data in which 

each yi quantifies the neuronal changes associated with an experiment observed 

in the ith three-dimensional pixel in a brain image, where the goal is to identify 

those areas exhibiting statistically significant changes. Waller et al. (1997) 

estimate spatially-varying risks of developing lung cancer using reported deaths 

in each county of the state of Ohio. In the examples we consider in this work, yi is 

either the observed intensity at pixel i in an image or the number of votes cast for 

a particular candidate in voting precinct i in the state of New York. The task in the 

former is to reconstruct an underlying true image that has been corrupted with 

noise; in the latter we aim to estimate spatially-varying trends in voter preference 

throughout the state.  

1( , , )Tny y y

, 1, ,i i n 
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What these examples, and countless others, have in common is that the data are 

correlated so that the value at one location is influenced by the values at nearby 

locations. While this dependence can be directly modeled in the likelihood of y, it 

is often reasonable to assume that it can be explained by an unobservable 

process , where xi is the realization of the process at node 

(location) i. Then a typical Bayesian analysis of this problem takes the yi’s to be 

conditionally independent given x; . In other words, the 

correlation is assumed to be completely explained by x. For more flexibility and to 

more fully account for sources of uncertainty, one might assume that the 

distribution of x is determined by an unknown parameter vector  (usually of 

much smaller dimension than x) which is itself assigned a hyper-prior. Thus, the 

Bayesian model is  

 (1) 

Inference proceeds by evaluating (or estimating) characteristics of the posterior 

distribution, determined via Bayes’ rule as .  

A widely adopted approach for modeling the dependence structure in this 

problem is to assume x satisfies a Markov property. In the simplest case, this 

means that if xj is in between xi and xk, then xi and xk are conditionally 

independent, given xj. (Higher-order neighborhoods are also sometimes used 

where conditioning on more values is necessary.) If x satisfies this property, then 

x is said to be a Markov random field (MRF). MRFs are useful tools in a variety of 

challenging applications, including disease mapping (Waller et al., 1997; Self 

et al., 2018), medical imaging (Higdon, 1998; Brown et al., 2014), and gene 

microarray analysis (Xiao et al., 2009; Brown et al., 2017a). Even autoregressive 

time series models are instances of Markov random fields; though this work is 

primarily motivated by models for spatially-indexed data in which there is no clear 

direction of influence. Awareness of such models was raised after the seminal 

1( , , )Tnx x x

indep.
~ (· ), 1, ,i iy f i n x x| |

θ

~ (· )
~ (· )

~ (·).
x

f







y x x
x θ θ
θ

| |
| |

( , ) ( ) ( ) ( )xf   x θ y y x x θ θ| | |

Acc
ep

ted
 M

an
us

cri
pt



work of Besag (1974), after which they came to be known in the statistics 

literature as conditional autoregressive (CAR; Banerjee et al., 2015) models. 

Since then, they have become popular for modeling temporally- or spatially-

dependent areal data due to their interpretability and computational tractability 

afforded by the conditional independence induced by the Markov property. This 

property is particularly important for modern Markov chain Monte Carlo 

(MCMC; Gelfand and Smith, 1990) methods. Indeed, the ease with which Markov 

random fields can be incorporated into a Gibbs sampling algorithm (Geman and 

Geman, 1984) has contributed to their popularity in Bayesian statistics.  

We are concerned in this work with models in which  is a Gaussian Markov 

random field. Gaussian Markov random fields (GMRFs; Rue and Held, 2005) are 

simply MRFs in which the conditional distribution of each (scalar) random 

variable is Gaussian. GMRFs typically are specified either implicitly by providing 

the complete set of full conditional distributions 

, or explicitly by defining the precision (inverse 

covariance) matrix instead of the covariance function as would be done in 

Gaussian process modeling (Schabenberger and Gotway, 2005). Further, 

GMRFs do not usually yield stationary processes due to a so-called “edge effect” 

in which the marginal variances vary by location. Corrections can be made to 

yield a stationary process such as a periodic boundary assumption (Fox and 

Norton, 2016) or algorithmic specification of the precision matrix 

(Dempster, 1972). Sometimes the effect can simply be ignored with little effect on 

inference (Besag and Kooperberg, 1995). Efforts have been made to use 

GMRFs to approximate Gaussian processes with specified covariance functions 

(e.g., Rue and Tjemland, 2002; Song et al., 2008; Lindgren et al., 2011), but 

much work still remains.  

A particularly intuitive instance of a GMRF is one that centers the distribution of 

each xi at the average of its neighbors; i.e., , where 

 is the average of the values adjacent to xi, and  

x θ|

1 1 1( , , , , , ), 1, ,i i i np x x x x x i n    |

( ) ~ ( , )i i i ix N x x|

( ) 1 1 1( , , , , , ) ,Ti i i n ix x x x x    x 2
i
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is obtained by scaling a common variance term by the number of neighbors at 

site i. The precision matrix determined by this model is only positive semi-definite 

and thus not invertible, meaning that the joint distribution is improper. Such 

models are called intrinsic autoregressive (IAR; Besag and Kooperberg, 1995) 

models and are popular as Bayesian prior distributions, due in part to their 

interpretability.  

Belonging to the Gaussian class of distributions, GMRFs are the most widely 

studied Markov random fields. See Rue and Held (2005) for an overview of 

relevant work. The literature includes techniques for efficiently sampling from 

GMRFs. As we discuss in Section 2, the two most common methods for 

sampling both have caveats when working with extremely high-dimensional data. 

So-called block sampling involves Cholesky factorizations of large precision 

matrices and thus carries high computational and memory costs. While a GMRF 

prior induces sparsity which can be exploited to economize such calculations, 

conditional posterior precision matrices arising in Bayesian models such as (1) 

typically depend on parameters that change in each iteration of an MCMC 

algorithm and the required repeated factorizations can be extremely time 

consuming. On the other hand, so-called single-site samplers work by only 

considering scalar random variable updates. In addition to being more loop-

intensive than block samplers, single-site samplers are known to exhibit slow 

convergence when the variables are highly correlated (Carlin and Louis, 2009). 

The competing goals of statistical efficiency and computational efficiency have 

led to recent innovations in alternative sampling approaches for GMRFs. Some 

of these approaches require considerable expertise in numerical analysis or 

message passing interface (MPI) protocol, but others are relatively easy to 

implement and hence can be quite useful for statisticians. Specifically, the 

recently proposed chromatic Gibbs sampler (Gonzalez et al., 2011) is easy to 

implement and is competitive with or even able to improve upon other existing 

strategies. It allows a practitioner to parallelize sampling or to take advantage of ‘
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vectorized’ calculations in a high-level language such as R (R Core Team, 2018) 

without requiring extensive expertise in numerical analysis or MPI.  

The chromatic sampler appearing in Gonzalez et al. (2011) was motivated by 

and demonstrated on binary MRFs. However, it is straightforward to carry over 

the same idea to the Gaussian case. In this paper, we discuss block updating 

and single-site updating of GMRFs and compare them to chromatic sampling. 

Rather than focusing on theoretical convergence rates or an otherwise overall “

best” approach, we view these techniques through the lens of a practitioner 

looking for easily implemented yet efficient algorithms. To the best of our 

knowledge, this work is the first time chromatic Gibbs sampling has been directly 

compared to the standard approaches for sampling of GMRFs.  

There exist fast approximation methods for estimating features of a posterior 

distribution without resorting to Markov chain Monte Carlo. One of the most 

popular of these is integrated nested Laplace approximation (INLA; Rue 

et al., 2009), the R implementation of which is the R-INLA package (Lindgren and 

Rue, 2015). Such approximation methods are useful when certain quantities 

need to be estimated quickly, but they are only approximations and thus are not 

interchangeable with Markov chain Monte Carlo algorithms that converge to the 

exact target distribution and allow for the approximation of virtually any posterior 

expected value with the same Monte Carlo sample. Indeed, INLA provides the 

most accurate approximations around the posterior median and can disagree 

with MCMC in tail probability approximations (Gerber and Furrer, 2015). These 

disagreements are more pronounced in cases where the full conditional 

distribution of the random field is non-Gaussian (for which INLA uses Laplace 

approximations) and a GMRF is used as a proposal in a Metropolis-Hastings 

algorithm. Further, the R-INLA package is a “black box” that works well for a set 

of pre-defined models. For more flexibility to manipulate non-standard models, 

there is the need to break open the black box to customize an algorithm to suit 

one’s needs. In the context of GMRFs, this requires more direct interaction with 
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the random fields, motivating this work. Efficient strategies such as those 

considered here are not intended to be substitutes for INLA or other 

approximation methods. Rather, they are complementary procedures that are 

useful when one is interested in direct MCMC on challenging posterior 

distributions.  

In Section 2, we briefly motivate our sampling problem and review GMRFs. We 

then compare chromatic sampling to block updating and single-site sampling of 

GMRFs. In Section 3 we compare the performance of single-site sampling, block 

updating, and the chromatic approach in a numerical study using a simple 

Bayesian model with spatial random effects on simulated, high-dimensional 

imaging data, as well as a real application involving non-Gaussian polling data. 

We conclude in Section 4 with a discussion.  

2 MCMC SAMPLING FOR GAUSSIAN MARKOV RANDOM 
FIELDS 

In modern Bayesian analysis, it is common for the posterior distribution to have 

no known closed form. Hence, expectations with respect to this distribution 

cannot be evaluated directly. If one can obtain a sample from this distribution, 

though, laws of large numbers allow us to approximate quantities of interest via 

Monte Carlo methods. A common approach to obtaining a sample from a 

posterior distribution is Markov chain Monte Carlo (MCMC), particularly Gibbs 

sampling.  

One reason for the popularity of Gibbs sampling is the ease with which the 

algorithm can be constructed. For an estimand , it proceeds 

simply by initializing a chain at  and, at iteration t, sampling 

. Under suitable conditions, 

ergodic theory (e.g., Robert and Casella, 2004) establishes that the resulting 

Markov chain  has  as its limiting distribution. In 

practice, for GMRFs with target distribution , implementing this 

1( , , )Tp  μ
(0) (0)
1( , , )Tp 

( ) ( ) ( ) ( 1) ( 1)
1 1 1~ ( , , , , , ), 1, ,t t t t t

m m m m p m p       

    |

( ) ( )
1{( , , ) : 0,1, }t t T

p t   ( ) μ

( , ) x θ y|
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algorithm requires the ability to draw  thousands of times. This is 

computationally expensive and thus quite challenging when x is high 

dimensional, as we discuss in this Section.  

2.1 Gaussian Markov Random Fields 

Consider a GMRF , where xi is the realization of the field at node 

. The density of x is given by  

 (2) 

where  and . If Q is nonsingular, then this distribution is proper (i.e., 

 for all ) and the normalizing constant is . 

Intrinsic GMRFs are such that Q is rank deficient and only positive semidefinite. 

In this case, we may define the density with proportionality constant 

, where n – k is the rank of Q and det*(⋅) is the product of the n 

– k non-zero eigenvalues of Q (Hodges et al., 2003; Rue and Held, 2005). Such 

improper GMRF models are common in Bayesian disease mapping (Waller 

et al., 1997) and linear inverse problems (Bardsley, 2012), as they are easily 

interpretable and usually yield proper posterior distributions.  

An appealing feature of GMRFs is the ability to specify the distribution of x 

through a complete set of full conditional distributions, . For 

instance, we can assume each , with  

and , where i ~ j if and only if node i is connected to (i.e., a neighbor of) 

node  and cij are specified weights such that  if and only if i ~ j. 

Specification of a Markov random field through these so-called local 

characteristics was pioneered by Besag (1974), after which such models came to 

be known as conditional autoregressive (CAR) models. Besag (1974) uses Brook

’s Lemma and the Hammersley-Clifford Theorem to establish that the set of full 

conditionals collectively determine a joint density, provided a positivity condition 

,x θ y|

1( , , )Tnx x x

, 1,i i n 

1( ) exp ,
2

T T
 

    
x μ x Qx b x|

nμ b Qμ

( ) ,d   x μ x| μ /2 1/2(2 ) det( )n  Q

( )/2 * 1/2(2 ) det ( )n k   Q

( ){ ( ) : 1, , }i ip x i n  x|
2

( ) ~ ( , )i i i ix N  x|
~

( )i i ij j j
j i
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2 0i 

j i 0ijc Acc
ep

ted
 M

an
us

cri
pt



holds among x. In this case, we have that , where I(⋅) 

is the indicator function. The condition , for all i, j, is necessary to 

ensure symmetry of Q. The ease with which these full conditional distributions 

can be incorporated into a Gibbs sampling algorithm has led to a dramatic 

increase in the popularity of CAR models over the past twenty years or so 

(Lee, 2013; Banerjee et al., 2015). Indeed, there exists user-friendly software that 

facilitates incorporating CAR models into Bayesian spatial models without 

detailed knowledge of their construction. Examples include the GeoBUGS package 

in WinBUGS (Lunn et al., 2000) and the R package CARBayes (Lee, 2013).  

GMRFs may be specified according to an undirected graph  where  

indicates nodes (the vertices) and  is the edge set. The precision 

matrix Q is determined by  if and only if . Specifying the density 

through the precision matrix Q instead of a covariance matrix induces a Markov 

property in the random field (Rue and Held, 2005, Theorem 2.2). For any node i, 

, where } is the neighborhood of node i and 

 for some index set A. That is, xi is conditionally independent of 

the rest of the field given its neighbors. Most GMRFs assume that each node has 

relatively few neighbors, resulting in Q being sparse. The typical sparsity of the 

precision matrix is another reason GMRFs are widely used to model dependence 

in areal data.  

With the need to model extremely large datasets with nontrivial correlation has 

come the need for efficient sampling techniques whereby posterior distributions 

arising from fully Bayesian models can be simulated. When periodic boundary 

conditions on  can be assumed (i.e., each xi has the same number of 

neighbors, including the edge nodes, as in a pixelized image with zero-padded 

boundaries), Fox and Norton (2016) note that the sampling problem can be 

diagonalized via the Fast Fourier Transform (with complexity ), whence 

a sample can be drawn by solving a system in  operations. They propose 

reducing the total number of draws from the conditional distribution of x by using 

2( ( ) ( )) /ij ij iI i j c I i j    Q
2 2
j ij i jic c 

( , ),

{( , ) : ~ }i j i j

( ) 0ij Q ( , )i j 

( ) ( )

d

i i i ix x x x| | ( ) { : ( , )i j i j 

: ( : )Tix i Ax A

nx

( log )n n
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Acc
ep

ted
 M

an
us

cri
pt



a “marginal-then-conditional” sampler in which the MCMC algorithm operates by 

completely collapsing over x and subsequently sampling x using only the 

approximately independent draws of the hyperparameters obtained from a full 

MCMC run on their marginal distribution. In many applications, though, the 

periodic boundary assumption may not be realistic (e.g., administrative data 

indexed by irregular geographic regions or pathways in microarray analysis 

consisting of different numbers of genes), and sampling from the marginal 

distribution of hyperparameters can itself be challenging. To avoid the 

computational difficulties associated with full GMRFs, Cai et al. (2013) propose 

using a pairwise graphical model as an approximate GMRF for high-dimensional 

data imputation without specifying the precision matrix directly. The authors 

admit, however, that this procedure is very hard to implement (Cai, 2014, p. 7). In 

cases where we are given Q and b in (2) with the goal of estimating , Johnson 

et al. (2013) express the Gibbs sampler as a Gauss-Seidel iterative solution to 

, facilitating the “Hogwild” parallel algorithm of Niu et al. (2011) in which 

multiple nodes are updated simultaneously without locking the remaining nodes. 

In the Gaussian case, Johnson et al. (2013) prove convergence to the correct 

solution when the precision matrix Q is symmetric diagonally dominant. 

Motivated by Johnson et al. (2013), Cheng et al. (2015) use results from spectral 

graph theory to propose a parallel algorithm for approximating a set of sparse 

factors of  in nearly linear time. They show that it can be used to 

construct independent and identically distributed realizations from an 

approximate distribution. This is opposed to a Gibbs sampler, which produces 

approximately independent samples from the correct distribution (possibly after 

thinning). Similar to the Gauss-Seidel splitting considered by Johnson 

et al. (2013), Liu et al. (2015) propose an iterative approach to approximating a 

draw from a GMRF in which the corresponding graph is separated into a 

spanning tree and the missing edges, whence the spanning tree is randomly 

perturbed and used as the basis for an iterative linear solve.  

μ

Qμ b

, 1 1,l l  Q
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The aforementioned algorithms can be difficult to implement and require 

substantial knowledge of graph theory, numerical analysis, and MPI 

programming. This makes such approaches inaccessible to many statisticians 

who nevertheless need to work with large random fields. Further, they are 

iterative routines for producing a single draw from an approximation to the target 

distribution. This feature makes them less appealing for users who work in R or 

MATLAB (The MathWorks, Natick, MA). It is well-known that loops should be 

avoided in these languages to avoid repeated data type interpretation and 

memory overhead issues. In response to these difficulties while still faced with 

the problem of efficient updating of GMRFs inside a larger MCMC algorithm, 

additional R packages have been made available which are beneficial for 

manipulating the sparse matrices associated with GMRFs, including Matrix 

(Bates and Maechler, 2016), SparseM (Koenker and Ng, 2016), and spam (Furrer 

and Sain, 2010; Gerber and Furrer, 2015).  

2.2 Block and Single-Site Gibbs Sampling 

In this Section, it is helpful to distinguish between sampling x directly from a prior 

GMRF and from the full conditional distribution of x derived from an hierarchical 

Bayesian model with a GMRF prior on x. For an unconditional (and proper) 

GMRF, the distribution is of the form , where  and Q are generally 

unrelated. When drawing from the full conditional distribution as in a Gibbs 

sampler, the distribution is of the form  where  is an 

updated precision matrix. For example, in a typical linear model 

 with A fixed and , standard multivariate normal 

theory yields , where  and .  

Two approaches to updating GMRFs inside a Markov chain Monte Carlo 

algorithm are so-called single site sampling in which individual sites are updated 

one at a time using the available full conditional distributions, and block Gibbs 

sampling in which the entire random field is updated all at once via sampling from 

a known multivariate Gaussian distribution induced by the GMRF. Block 

1~ ( , )N x μ Q μ

1 1~ ( , ),p pN  x Q b Q p Q Q

, ~ ( , )N y x Ax| 1~ ( , )N x μ Q
1 1, ~ ( , )p pN  x y Q b Q| 1T

p
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sampling improves the convergence of Gibbs samplers in the presence of a 

posteriori correlated variables by allowing the chain to move more quickly 

through its support (Liu et al., 1994). The drawback is in the manipulation and 

solution of large covariance matrices necessary for both random variable 

generation and evaluation of the likelihood in a Metropolis-Hastings algorithm 

(Metropolis et al., 1953; Hastings, 1970). Single site updating uses the 

conditional distributions of each scalar random variable, thus avoiding large 

matrix computations. In single-site sampling, though, statistical efficiency may be 

sacrificed as updating a group of possibly highly correlated parameters one at a 

time can result in slow exploration of the support, slowing convergence of the 

Markov chain.  

In single-site Gibbs sampling, we sequentially draw from each univariate 

conditional distribution with density . Broadly speaking, this 

requires alternating n times between using  to calculate the conditional 

mean and drawing from , meaning that single-site updating essentially 

is an  operation. However, by exploiting the fact that the conditional mean 

(usually) only depends on a relatively few neighbors of xi (i.e., ), 

updating it after each draw becomes negligible, reducing the complexity to . 

This algorithm has little regard for the ordering of the nodes, making such 

sampling strategies very easy to implement. Compared to block updating, 

though, many more Gibbs scans may be required to sufficiently explore the 

support of the distribution. This approach is the most iteration-intensive of any of 

the approaches considered here. As such, its implementation in R can result in a 

large amount of overhead associated with loops, considerably slowing the entire 

routine.  

Efficient block sampling schemes for GMRFs are discussed in Rue (2001) and 

Knorr-Held and Rue (2002). What most of these schemes have in common is the 

use of a Cholesky factorization to solve a system of equations. For the case 

typically encountered in a Gibbs sampler, Rue and Held (2005) provide an 

( )( ), 1,i ip x i n  x|
1

( )
n

i


 x

( )( )i ip x x|
2( )n

( )i n

( )n
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algorithm for simulating from . This algorithm, presented in Algorithm 

1 in the Supplementary Material, requires one Cholesky factorization and three 

linear solves via forward or backward substitution.  

In general, for a matrix of dimension n × n, the Cholesky factorization is an 

 operation and each linear solve costs  flops (Golub and 

Van Loan, 1996). This can be particularly onerous in a fully Bayesian approach in 

which hyperpriors are assigned to hyperparameters  that appear in the 

precision matrix . However, the key to making block updating feasible 

on high-dimensional data lies in the computational savings that can be achieved 

when  is sparse. Sparse matrix algebra is itself a non-trivial problem requiring 

specialized knowledge beyond the expertise of many statisticians. Indeed, 

concerning this point, (Rue and Held, 2005, p. 52) recommend “leaving the issue 

of constructing and implementing algorithms for factorizing sparse matrices to the 

numerical and computer science experts.” In practice, most statisticians rely on 

special functions for sparse matrices such as those found in the Matrix, SparseM, 

or spam packages in R. Of these three, spam is the most specifically tailored for 

repeatedly sampling GMRFs in MCMC.  

For simulating posterior distributions via block Gibbs sampling, we are interested 

in drawing from full conditional distributions. In this case, sparsity of the entire 

precision matrix is contingent upon the sparsity of . This is often the case 

in practice. For instance, in disease mapping and related applications, it is 

common to place a spatially correlated random effect at each location to 

encourage smoothing of the incidence rate over space (e.g., Waller 

et al., 1997; Banerjee et al., 2015). In terms of the linear model, this can be 

expressed as , where  corresponds to fixed effects and  

contains the spatially-varying effects. With site-specific random effects, Z is 

diagonal or block diagonal. The diagonal case (e.g., ) is especially 

amenable to efficient block Gibbs sampling as well as chromatic sampling (see 
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Subsection 2.3), since the underlying graph  for the full conditional distribution 

is exactly the same as the prior graph.  

For a fully Bayesian model, the full conditional precision matrix associated with 

the GMRF will generally depend on parameters that are updated in each iteration 

of an MCMC routine, meaning that the Cholesky factorization has to be 

recomputed on each iteration. Often, though, the neighborhood structure and 

thus the sparsity pattern of the Cholesky factor remain fixed. The sparse matrix 

implementation in the spam package exploits this fact to accelerate repeated 

block GMRF updates. After finding the initial Cholesky factorization using so-

called supernodal elimination trees (Ng and Peyton, 1993), spam stores the 

symbolic factorization and only performs numeric factorizations on subsequent 

iterations. Even with sparse matrix algebra, though, block sampling x from a 

GMRF in very high dimensions can be problematic due to the computational cost 

of even an initial factorization as well as the associated memory overhead 

(Rue, 2001, p. 331).  

2.3 Chromatic Gibbs Sampling 

Consider the graph representation of the GMRF, . The local Markov 

property says that , where  denotes all x except xi and 

the neighborhood of xi, and  denotes (statistical) independence. An extension 

of the local Markov property is to let  denote a separating set, or cut, of  

such that nodes in a set  are disconnected from nodes in  after 

removing the nodes in C from the graph. Then the global Markov property states 

that . Chromatic sampling exploits this property by partitioning the 

nodes according to a graph coloring whereby the nodes in each subset can be 

updated simultaneously.  

A coloring  is a collection of labels assigned to nodes on a 

graph so that no two nodes that share an edge have the same label. A k-coloring 

induces a partition of the nodes  where . For 
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example, Figure 1 displays a 4-coloring that could be used for data that lie on a 

regular two-dimensional lattice; e.g., imaging data. Given a k-coloring of the MRF 

graph, we can determine a cut Cj corresponding to each color j by assigning all 

nodes that are not of that color to be in the cut; i.e., . Defining 

cuts in this way for , we have that , for all  

where each ηi and  depend on . That is, all nodes of the same color are 

conditionally independent and can be sampled in parallel, given the rest of the 

field. The use of graph colorings in this way lead Gonzalez et al. (2011) to term 

the approach chromatic Gibbs sampling.  

Algorithm 1 presents a general chromatic Gibbs sampler for GMRFs. An 

advantage of using this approach is in step 3 of the algorithm. When updates of 

the random variables indexed by  are distributed across several processors, 

the computational effort of updating the entire field can potentially be dramatically 

reduced, even compared to the approximate linear complexity obtained from 

sparse matrix factorization. Given c processors and a k-coloring of a Markov 

random field over n nodes, and assuming calculating conditional means is , 

the chromatic Gibbs sampler generates a new sample in approximately 

 operations (Gonzalez et al., 2011, p. 326). Observe that single-site 

Gibbs sampling can be obtained as a case of chromatic Gibbs sampling with k = 

n colors.  

Algorithm 1: Chromatic Gibbs step updating of a GMRF. 

Input: Current state of GMRF, , a k-coloring of the MRF graph,  

.  

Output: New draw  from the GMRF.  

1 for j = 1 to k do  

2 For , calculate conditional means and standard deviations  

using  

, 1, ,c
j jC j k  

1, ,j k 
indep.

2~ ( , )
ji C i ix N  x| ,ji

2
i jC

x

j

(1)

( / )n c k

( )tx

{ : 1, , }j j k 

( 1)tx

ji 2,i i 

Acc
ep

ted
 M

an
us

cri
pt



  

3 Draw   

4 end  

5  Return   

The best computational savings under chromatic sampling will be achieved by 

using the chromatic index for the coloring, defined as the minimum k so that a k-

coloring of  exists. The minimal coloring problem for a graph is NP-hard and 

thus very challenging except in simple situations. On regular lattices with 

commonly assumed neighborhood structures (e.g., Figure 1), such colorings can 

be found by inspection without complicated algorithms. Coloring more general 

graphs is more involved. However, it is important to observe that for fixed 

sparsity patterns (and hence fixed Markov graphs) such as those we consider 

here, graph coloring is a pre-computation. It is only required to run the algorithm 

once prior to running MCMC.  

A straightforward approach to graph coloring is the greedy algorithm, but it is 

known to generally produce suboptimal colorings. In fact, for random graphs in 

which any two vertices have probability 1/2 of sharing an edge, the greedy 

algorithm is known to asymptotically produce, on average, twice as many colors 

as necessary (Grimmett and McDiarmid, 1975). We illustrate this with an 

example in the Supplementary Material in which the greedy algorithm produces 

the optimal coloring under one permutation of the vertices, and over twice as 

many colors with another permutation. The sensitivity of the greedy algorithm to 

the ordering of the vertices was recognized by Culberson (1992), who proposes 

an iterative approach in which the greedy algorithm is repeatedly applied to 

permutations of the vertices so that the optimal coloring can be better 

approximated. Beyond greedy algorithms, Krager et al. (1998) cast the k-coloring 

problem as a semidefinite program and propose a randomized polynomial time 

algorithm for its solution. A full exposition of coloring algorithms is well beyond 

1 1 1
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the scope of this work. However, our experience is that even the suboptimal 

colorings produced by the simple greedy algorithm are still able to facilitate vast 

computational improvements over block or single-site updating. As such, we 

provide in the Supplementary Material Algorithm 2, an easily-implemented 

greedy algorithm that is accessible to most statisticians looking for a quick way to 

color their MRF graph. We also remark that there exist R packages containing 

functions for coloring graphs; e.g., the MapColoring package (Hunziker, 2017) 

which implements the DSATUR algorithm (Brélaz, 1979).  

Most computers today have parallel processing capabilities, and any distributed 

processing over c processors can reduce the computational burden by an 

approximate factor of 1/c. Regardless of the number of processors available to 

the user, though, savings can still be realized when working in a high-level 

language such as R by ‘vectorizing’ the updating of the conditionally independent 

sets. Vectorizing still ultimately uses a for loop on each set of nodes, but the 

loops are performed in a faster language such as C or Fortran. It also minimizes 

the overhead associated with interpreting data types; i.e., vectorizing allows R to 

interpret the data type only once for the entire vector instead of repeatedly for 

each element of the vector.  

3 NUMERICAL ILLUSTRATIONS 

In this Section we compare chromatic sampling to block Gibbs and single-site 

sampling with both simulated data on large regular arrays and real, non-

Gaussian (binomial) data on an irregular lattice. Our emphasis here is on ease of 

implementation for statisticians who may not be as comfortable with low-level 

programming as they are in R. Thus, most of our comparisons are done by 

examining the computational effort associated with programming entirely in R. We 

emphasize that computational improvements may be realized without direct 

parallel processing. We simply vectorize the simultaneous updating steps, 

thereby avoiding direct for loops in R. It is important to note that our 

implementation of chromatic sampling involves updating the means after each 
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simultaneous draw via matrix-vector multiplication. The necessary matrices are 

stored in sparse format. Without sparse representations, the computational effort 

would be dramatically increased. Near the end of Subsection 3.1, we consider 

also a parallel implementation of the chromatic sampler in R, as well as what 

happens when the single-site updating step is done in C++ rather than R. To 

implement the block Gibbs sampler, we use the spam package (Furrer and 

Sain, 2010), since it is specifically tailored for GMRFs inside MCMC routines by 

storing the sparsity structure for repeated use. To make the spam functions as 

efficient as possible, we follow the authors’ suggestion and turn off the symmetry 

check and safe mode options (options(spam.cholsymmetrycheck= FALSE, 

spam.safemodevalidity= FALSE)). The computer code is available as 

supplementary material.  

3.1 Simulated Imaging Problem 

Image analysis involves attempting to reconstruct a true latent image, where the ‘

image’ may mean a true physical structure as in clinical medical imaging, or an 

activation pattern or signal as in, e.g., functional magnetic resonance imaging 

(Lazar, 2008). The available data consist of pixel values, often corresponding to 

color on the grayscale taking integer values from 0 to 255. The true values are 

assumed to have been contaminated with error due to the image acquisition 

process. This area is one of the original motivating applications for Markov 

random fields (Besag, 1986; Besag et al., 1991).  

There is growing interest in the statistical analysis of ultra-high dimensional 

imaging data. For example, structural magnetic resonance images of the human 

brain may consist of 20-40 two dimensional slices, each of which has 256 × 256 

resolution or higher. Spatial Bayesian models for even a single slice of such data 

can involve GMRFs over lattices of dimension n = 2562 (Brown et al., 2017b) and 

thus are very computationally challenging when drawing inference via Markov 

chain Monte Carlo. Motivated by such applications, we consider images 

consisting of p × p pixels, each of which has an observed value , ij ij ijy x  
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where xij is the true value of the  pixel in the latent image and  

represents the corresponding contamination. To simulate the data, we take the 

error terms to be independent, identically distributed N(0, 1) random variables. 

The true image in this case is a rescaled bivariate Gaussian density with 

, where  denotes the center of 

the (i, j)th pixel, evenly spaced over the grid, and  denotes the usual Euclidean 

norm. Figure 2 depicts the true generated image (in 50 × 50 resolution) and its 

corrupted counterpart. To study each of the three sampling algorithms, we 

consider first an image with dimension n = p × p = 502.  

The assumed model for the observed image is given by  where 

 is the vector of the observed pixel values,  is a 

constant intercept parameter,  is the vector of spatial effects, and  is the 

vector of errors assumed to follow . To capture local homogeneity of the 

image, we assume the spatial random effects obey an IAR model with mean 

zero; i.e., the density of  is , 

where  is the incidence matrix of the underlying graph and 

. Here we assume a first-order neighborhood structure 

in which each interior pixel has eight neighbors. We ignore edge effects induced 

by the perimeter pixels of the image. We specify inverse gamma priors for the 

variance components and a flat prior for the intercept; i.e., 

, and . To approximate 

vague priors for the variance components, we take α = 0.001. It has been 

observed that an inverse gamma prior on τ2 sometimes can yield undesirable 

behavior in the posterior (Gelman, 2006); but our focus is on sampling the 

random field and thus we use this prior simply for convenience. For posterior 

sampling, our modeling assumptions lead to a Gibbs sampler having the 

following full conditional distributions: 
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, and , where  and 

. We remark that it is not unusual for spatial prior distributions to 

have zero or constant mean functions (Bayarri et al., 2007), since the a posteriori 

updated spatial model will still usually capture the salient features. In the 

presence of noisy data, however, identifiability is limited, meaning that the 

parameters will more closely follow the assumed correlation structure in the prior. 

In terms of statistical efficiency, this situation favors block sampling over 

componentwise updating, as previously mentioned.  

To implement the Gibbs sampler, three strategies are employed, with the only 

difference being how we sample the full conditional distribution of . First, since 

 is sparse, we consider full block Gibbs sampling based on Algorithm 1 in the 

Supplementary Material to sample  in a single block. The second strategy is to 

obviate the large matrix manipulation by employing single-site Gibbs sampling 

using the local characteristics, , where 

 and . The final sampling 

strategy we implement is chromatic Gibbs sampling discussed in Subsection 2.3. 

This approach uses the coloring depicted in Figure 1 as a 4-coloring of the pixels 

in the image. Following the notation in Subsection 2.3, we have that 

 The most important feature of the 

chromatic sampler is that  can be drawn simultaneously. 

All of the necessary conditional means and variances for a given color can be 

computed through matrix-vector multiplication. In general, multiplcation of an n × 

n matrix with an  vector has  complexity. Similar to the block sampler, 

though, we use sparse representations of the necessary matrices for the 

chromatic sampler, which reduces the complexity to  since each pixel has 

relatively few Markov neighbors.  

We implement the three sampling strategies so that each procedure performs 10, 

000 iterations of the Monte Carlo Markov chain to approximate the posterior 
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distribution of the model parameters. For each approach, three chains are run 

using dispersed initial values. We assess convergence of the chains via trace 

plots, Gelman plots (Brooks and Gelman, 1998), and plots of cumulative ergodic 

averages of scalar hyperparameters. We discard the first 8000 iterations as a 

burn-in period and assess convergence using the last 2000 realizations of each 

Markov chain. The simulations, coded entirely in R, are carried out on a Dell 

Precision T3620 desktop running Windows 10 with an Intel Xeon 4.10 GHz CPU 

and 64 GB of RAM.  

Figure 3 displays the trace plots and empirical autocorrelation functions for the 

hyperparameters σ2 and τ2 for chromatic, block, and single-site sampling. We see 

very similar behavior in terms of autocorrelation across all three sampling 

approaches. From Supplementary Figure 1, we glean that each sampling 

approach has approximately converged in the σ2 and τ2 chains after 2,000 

iterations, although the block sampler evidently has the longest convergence 

time according to the Gelman plots. While each approach produces estimates of 

σ2 and τ2 that tend to the same value, the block sampler exhibits slightly larger 

Monte Carlo standard error than the other two approaches. This partly explains 

the slight difference in empirical distribution from the block sampler versus that of 

the chromatic and single-site samplers, as depicted in Figure 4. Regardless, the 

joint and marginal density estimates largely agree. This agreement is also 

evident in Figure 5, which displays the posterior mean estimates of the true 

image , the primary quantity of interest. To assess exploration of the 

posterior distributions, the Figure also depicts point-wise ratios of sample 

standard deviations for each pair of algorithms. All three samplers produce 

distributional estimates that are virtually indistinguishable.  

The primary advantage of the chromatic approach versus the other two is in the 

computational cost incurred to obtain each sample. Of course, the same number 

of samples from two different algorithms is not guaranteed to provide the same 

quality of approximation to the target distribution. To accommodate the different 

0 1 γ
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convergence characteristics of the three algorithms while still considering total 

computation time (including the burn-in period), we measure the cost per 

effective sample (Fox and Norton, 2016), , where T is the total 

computation time, N is the size of the retained sample from the Markov chain 

(after burn-in), and κ is the integrated autocorrelation time (IAT; Kass 

et al., 1998; Carlin and Louis, 2009). CES measures the total computational 

effort required to generate an effectively independent sample from the target 

distribution. Table 1 displays the total CPU times, effective sample sizes, 

integrated autocorrelation times, and CES for the τ2 chains under each sampling 

approach. Here we see an approximately 89% improvement in computational 

effort between independent samples compared to block Gibbs sampling. Single-

site sampling (when coded in R) is by far the worst performer, as expected. It is 

interesting to note that in this case, the chromatic sampler has the shortest IAT of 

the three methods considered.  

To further study the performance of block sampling versus chromatic sampling, 

particularly how they scale with regular arrays of increasing dimension, we repeat 

the model fitting procedure using data simulated as before, but with images of 

size p × p, for p = 80, 128, 256, and 512. To create a more challenging situation, 

we add considerably more noise to the images by assuming . This 

makes the underlying spatial field much more weakly identified by the data and 

thus more strongly determined by the prior. Hence the GMRF parameters (

) will be more strongly correlated in the posterior, creating a more 

challenging situation for any MCMC algorithm. For each p, we run the same 

model with the same prior specifications as in the first example. We again run 

each MCMC algorithm for 10,000 iterations, treating the first 8,000 as burn-in 

periods.  

Supplementary Figures 2 through 8 display diagnostics and posterior mean 

estimates produced by the different sampling procedures under p = 50, 80, 128 

with noisy data. The R-coded single-site sampler was not computationally 
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feasible for images with resolution  and so was not considered. As 

expected, we see the autocorrelation in the τ2 chains increased with the noisy 

data, regardless of the sampling approach, whereas the data-level variance σ2 

remains well identified. The three approaches still produce parameter estimates 

that agree with each other. The Gelman plots indicate that the chromatic sampler 

takes longer to converge than the other two approaches, but still becomes an 

acceptable approximation to a posterior sample after about 7, 000 iterations. The 

joint and marginal densities of (σ2, τ2) are more diffuse than the low-noise case, 

again agreeing with intuition. Despite the deterioration of the τ2 chain, the 

quantity of interest as in many imaging problems is a function of the model 

parameters. In this case, we are mainly interested in , meaning that 

we want to explore the so-called embedded posterior distribution of . The 

parameter  (i.e., the underlying image) converges well under chromatic and 

block sampling. Hence we are able to recover a reasonable approximation of the 

target image, as evident in Figure 6 and Supplementary Figure 7. This 

phenomenon echoes the observation of Gelfand and Sahu (1999) that even 

when a Gibbs sampler is run over a posterior distribution that includes poorly 

identified parameters (τ2 in this case), inferences can still be drawn for certain 

estimands living in lower dimensional space than the full posterior.  

As noted at the beginning of this Section, the preceding results are obtained by 

only coding in R and without any parallel processing. However, if one is interested 

in accelerating the conditional GMRF updating step, they might choose to simply 

code the single-site sampler in C or Fortran and incorporate it into a larger 

MCMC algorithm. On the other hand, a researcher might want to fully exploit the 

ability to do chromatic updates in parallel, as opposed to vectorized updates. To 

examine the computational gains obtained by a simpler algorithm in a faster 

language, we run the single-site algorithm with the simulated imaging data, but 

where the GMRF updating step is passed to C++ via the Rcpp package 

(Eddelbuettel and François, 2011). Further, we implement the chromatic sampler 

with truly parallelized updates in R by distributing the independent updates (those 
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corresponding to the same color in the graph) over eight processors (five in the 

50 × 50 case) via the parallel package (R Core Team, 2018). In terms of the 

generated Markov chains, the Rcpp single site sampler and parallel chromatic 

sampler are algorithmically identical to the R-coded single-site and vectorized 

chromatic, respectively, so we do not look at their convergence characteristics 

separately. The code for implementing the C++ and parallel approaches is also 

available as supplementary material.  

Figure 7 displays the total CPU time required to complete 10,000 iterations for p 

= 50, 80, 128, 256, 512. As previously mentioned, the R-coded single-site 

sampler is only feasible in the p = 50 case, as it is by far the most inefficient 

implementation due to the nested loops. Chromatic sampling requires much less 

computing time than block sampling, and scales at a lower rate This is due in 

part to the fact that no Cholesky factorizations are required for chromatic 

sampling. Such factorizations with even sparse matrices can be expensive, and 

repeated multivariate Gaussian draws are still required even when the symbolic 

factorization is stored throughout the MCMC routine. The parallel implementation 

of the chromatic sampler requires more CPU time at lower resolutions, but is 

more scalable than the vectorized version. The cost of parallelization becomes 

comparable to the vectorized implementation at 256 × 256 and is slightly faster 

than the vectorization at p = 512. This illustrates how the overhead associated 

with distributing data across processors cancels out any computational gain at 

smaller scales. Parallelizing becomes worthwhile for extremely large datasets in 

which splitting up a huge number of pixels is worth spending the overhead. There 

is also overhead associated with passing the data and parameter values to a 

function written in C++, as we see in the Rcpp implementation of the single-site 

sampler. At small to moderate resolutions, the Rcpp version is much faster than 

the chromatic sampler and the block sampler. However, the computational cost 

of Rcpp scales at a much faster rate than the chromatic versions, so much so that 

both chromatic versions are an order of magnitude faster than the C++ single-site 

sampler at p = 512. Similar to how a parallel implementation depends on the size 
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of the data, we see that the benefit of coding a chromatic sampler in R versus 

passing to C++ is more pronounced when the dataset is extremely large.  

There is also considerable memory overhead associated with both sparse 

Cholseky block updating and chromatic sampling. The total required memory for 

Cholesky-based block updating depends on the storage scheme used by the 

sparse matrix implementation. The spam implementation in our example uses a 

variant of the so-called compressed sparse row format (Sherman, 1975). 

Chromatic sampling, on the other hand, requires no matrix storage at all, but only 

lists of identifiers associated with each graph color. The right panel of Figure 7 

illustrates the consequent savings in total memory allocations and how they scale 

with arrays of increasing dimension. In terms of total memory allocations, both 

the vectorized and parallel chromatic samplers require considerably less than 

block updating. In fact, block updating for p = 256 and p = 512 was not possible 

due to memory limitations. The Cholesky factorization failed, returning Cholmod 

error: ‘problem too large’.  

3.2 Binomial Election Data on an Irregular Lattice 

Here we examine the performance of the block Gibbs and chromatic sampling 

strategies on an irregular lattice, since both the structure of Q and the possible 

colorings of the underlying graph are more complicated. Moreover, we illustrate 

the performance of these procedures when applied to non-Gaussian data. In 

particular, we examine geographical trends in voter preference using binomial 

outcomes. The data were obtained from the Harvard Election Data Archive 

(https://dataverse.harvard.edu) and are depicted in Supplementary Figure 10.  

Our data consist of polling results from the 2010 New York Governor’s race in 

which Democratic candidate Andrew Cuomo defeated Republican candidate Carl 

Paladino and Green Party candidate Howie Hawkins. During this election, the 

state of New York had 14, 926 precincts, with polling data being available on 14, 
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597 precincts. The 329 precincts for which data are unavailable is attributable to 

improper reporting or lack of voter turnout.  

Let Yi be the number of votes cast for the Democratic candidate out of mi total 

votes in precinct . Then we assume that , where 

 is the usual logistic link function, and  is a 

vector of random effects inducing spatial homogeneity. We suppose that  

follows a proper IAR model; i.e., , where D and W are as 

defined in Section 3.1. Here, the “propriety parameter”  ensures that 

the precision matrix is non-singular, where λ1 < 0 and λN > 0 are the smallest and 

largest eigenvalues of , respectively (Banerjee et al., 2015). Proper 

IARs are sometimes used as approximations to the standard IAR when a proper 

prior distribution is desired. For simplicity, we fix ρ = 0.995. The model is 

completed with the prior assumptions that  and τ2 ~ InvGam(1, 1).  

Under the logistic link, we can simplify posterior sampling via data augmentation. 

This technique exploits the fact that 

, where 

, and  is the probability density function of 

a Pólya-Gamma random variable with parameters b and 0 (Polson et al., 2013). 

Using this identity, the observed data likelihood can be written as 

, where 

 and . Thus, by introducing ψi as latent 

random variables, we have that 

, where 

, and . By including  in the MCMC 

algorithm, we induce a Gaussian full conditional distribution on , facilitating 

GMRF updates without having to tune a Metropolis-Hastings algorithm. 

Additional implementation details are provided in the Supplementary Material.  
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In order to implement chromatic sampling, a coloring of the underlying Markov 

graph has to be found. Using the greedy algorithm given in Algorithm 2 in the 

Supplementary Material, we obtain a 7-coloring, so that the chromatic sampler 

can update the entire n = 14,926 -dimensional field in seven steps. The coloring 

is depicted in Supplementary Figure 11.  

We implement Gibbs sampling with both the block Gibbs and chromatic updates 

for 10, 000 iterations, discarding the first 5, 000 as a burn-in period. The code is 

run on a desktop using Windows 10 with an Intel Core i5-3570 3.40GHz CPU 

with 16GB of RAM. The trace plots and empirical ACF plots for β0 and τ2 are 

depicted in Supplementary Figure 12, along with the Gelman plots of these two 

parameters in Supplementary Figure 13. We see adequate convergence in the 

same number of iterations under both sampling approaches. Table 2 summarizes 

the results for both samplers in terms of CPU time and cost per effective sample 

of the intercept and variance terms. We again see a savings in CPU time under 

chromatic sampling, so much so that it offsets the slightly larger autocorrelation 

time. Thus we are able to obtain effectively independent samples with less 

computational effort. The posterior mean maps of the voter Democratic 

preference (πi) obtained under each sampling strategy are displayed in Figure 8. 

We see essentially identical results under both strategies.  

3.3 Summary 

These numerical experiments illustrate potential improvements that chromatic 

Gibbs sampling can offer versus the two most common strategies of block 

sampling and single-site sampling. In simulated image reconstruction, we find 

that for every considered resolution, the chromatic sampler is computationally 

much cheaper than the full block Gibbs and single-site samplers coded entirely in 

R. We observe in both chromatic and block sampling the deterioration in Monte 

Carlo Markov chains that is known to occur as the dimension of a GMRF 

increases (Rue and Held, 2005; Agapiou et al., 2014). Even in this case, 

however, any of the approaches considered are able to estimate the posterior 
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mean of the latent field and obtain equivalent recovery of the quantity of interest. 

The chromatic sampler is able to do so much more quickly and with much less 

memory overhead, the latter of which allows the chromatic sampler to scale to 

images of extremely large dimension beyond the capability of standard Cholesky 

factorization routines available in R. The potential advantages extend to irregular 

arrays and non-Gaussian data, as demonstrated in the election data example.  

4 DISCUSSION 

Over the last twenty years, Gaussian Markov random fields have seen a 

dramatic increase in popularity in the applied Bayesian community. In this work, 

we discussed approaches for simulating from Gaussian Markov random fields 

that are commonly used in practice. We compared the two dominant approaches 

in the statistics literature, single-site and block updating, to chromatic Gibbs 

sampling. Each procedure has theoretical guarantees, but our criteria have been 

pragmatic; i.e., how can statisticians effectively lower the computational cost of 

sampling from the target distribution without resorting to esoteric knowledge from 

graph theory, numerical analysis, or parallel programming? Taking this view, we 

have shown that chromatic sampling is competitive with and often able to 

improve upon single-site and full block Gibbs. In a large-scale scenario, we 

demonstrated improvements afforded by chromatic sampling even when 

compared to passing the single-site updating step to C++. This shows that 

computational efficiency gains are achievable even when a researcher desires 

(or needs) to do as much programming as possible in a high-level interpreted 

language.  

Motivated by large-scale clinical imaging data, we illustrated potential 

advantages on a regular array with Gaussian response, finding that chromatic 

sampling scales to settings where memory limitations prevent direct sparse 

matrix manipulations. We also considered a real example with binomial election 

data on an irregular lattice with almost 15,000 areal units, showing that chromatic 

sampling is useful even without a provably optimal coloring of the MRF graph. 

Acc
ep

ted
 M

an
us

cri
pt



Both block sampling and chromatic sampling tend to be far superior to single-site 

sampling when working in R.  

While facilitating parallel or vectorized simultaneous updates, each individual 

draw under chromatic sampling is still at the level of a single site. Thus, for 

variables that are highly correlated in the target distribution, convergence can be 

slow. To handle this, Gonzalez et al. (2011) propose also a “splash sampler” to 

combine the blocking principle of updating sets of correlated variables together 

with the parallelizability afforded by graph colorings. Splash sampling is more 

involved than simple chromatic sampling. It requires careful construction of 

undirected acyclic graphs subject to a known tree width determined by individual 

processor limitations, and hence much more computing effort and more 

familiarity with graph theory. In the Gaussian case, splash sampling would 

require repeated Cholesky factorizations, each on matrices of smaller dimension, 

but without being able to save the sparsity structure. In the presence of highly 

correlated variables in the target distribution with GMRF updates, it might be 

preferable to use ordinary block updates with sparse matrix algebra and the 

algorithms suggested by Rue (2001). However, our numerical experiments 

demonstrate that the gain in computational efficiency from the simple chromatic 

sampler can still outweigh the loss of statistical efficiency. This leads to an overall 

improvement in a variety of situations without resorting to more sophisticated 

approaches that might be inaccessible to most statisticians.  

In both the C++ and parallel implementations, we assume that the researcher 

would prefer to keep as much of the code in R as possible due to its user-friendly 

functionality and their desire to avoid low-level programming. Since R itself is a 

software suite written primarily in C, even matrix-vector calculations and 

vectorized functions are ultimately executed via loops in C (or a another low-level 

language such as Fortran). Thus, if one were to code our entire MCMC 

algorithm with ‘vectorized’ chromatic updates in C or C++, the result would be an 

algorithm that is essentially identical to a single-site sampler up to the order in 
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which the sites are updated. In other words, if a researcher is working purely in C 

or Fortran, then the computational advantages of chromatic sampling can only 

be fully realized with a distributed parallel approach. However, parallel 

programming in such low-level languages is much more difficult and nuanced 

than it is in R and thus beyond the expertise of many statisticians and data 

scientists. Indeed, one of the main reasons for the popularity of R is the ease with 

which extremely complicated tasks (e.g., MCMC on exotic hierarchical Bayesian 

models or sparse matrix factorizations) can be executed. There is nothing R can 

do that cannot be done in a low-level language if one has the time and patience 

to write the code for it. Our purpose in this work is to discuss and demonstrate 

computational savings that may be realized without having to leave the more 

comfortable environment of a high-level, interpreted programming language.  

The parallel implementation used in this work used only eight processors, but this 

still showed modest acceleration over vectorized chromatic sampling with the 

largest dataset we considered. The difference would no doubt be much more 

pronounced by distributing the effort over more processors. With the advent of 

modern computing clusters and GPU computing, it is becoming more common 

for researchers to have available thousands of cores for use simultaneously. In 

fact, it is not difficult to envision scenarios where the number of processors 

available is , in which case the complexity of parallel chromatic sampling 

reduces to , where k is often fixed as n increases due to the structure of the 

data (Gonzalez et al., 2011). Thus the scaling potential of parallel chromatic 

sampling is enormous and worthy of further investigation. We defer such an 

exploration to future work.  

In this paper, we examined the performance of chromatic sampling versus single-

site and block Gibbs on high density data in which the entire study region is 

sufficiently sampled and in which a first-order Markov neighborhood can capture 

the salient features of the data. This situation is applicable to many, but not all, 

analyses of areal data. There remains the issue of how chromatic sampling 

( )n

( )k
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would perform in the presence of sparse observations from an underlying smooth 

process, where the autocorrelation of the Markov chain would be expected to be 

higher than in the high-density case. Related to this point is that, to the best our 

knowledge, the convergence rates associated with chromatic sampling Markov 

transition kernels remain unknown. We leave these questions to be explored at a 

later date.  

Given the current trajectory of modern data analysis, the utility of GMRFs is not 

likely to diminish anytime soon. However, with their use comes the need for 

efficient yet accessible sampling strategies to facilitate Bayesian posterior 

inference along with appropriate measures of uncertainty. This area remains an 

active area of research among statisticians, computer scientists, and applied 

mathematicians. Fortunately, the increasingly interdisciplinary environment within 

which researchers are operating today makes it more likely that significant 

advancements will be widely disseminated and understood by researchers from 

a wide variety of backgrounds. This is no doubt a promising trend which will 

ultimately benefit the broader scientific community. 
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Fig. 1 An example of a k-coloring (k = 4) for nodes on a regular two-

dimensional lattice. 
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Fig. 2 True image (left panel) and corrupted image (right panel) for the 

simulated image reconstruction example. (These particular images have 

resolution 50 × 50.) 

 

Fig. 3 MCMC Trace plots (two left columns) and empirical ACF plots (two right 

columns) of single chains each for σ2 and τ2 for the 50 × 50 regular array 

example. The top, middle, and bottom rows are from the chromatic, block, and 

single-site chains, respectively. 
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Fig. 4 Left panel: Scatterplot and estimated marginal posterior densities (left) 

and empirical CDFs (right) from the three sampling approaches in the 50 × 50 

array example. The left panel was created using code available at 

https://github.com/ChrKoenig/R_marginal_plot. 
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Fig. 5 Posterior mean estimates of the true image obtained from each sampling 

approach (top row) along with pairwise standard deviation ratios (bottom row) in 

the 50 × 50 array example. 

 

Fig. 6 Simulated data and posterior mean estimates of the true image from the 

chromatic and block sampling approaches in the noisy 128 × 128 array example. 
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Fig. 7 CPU time (left) and total memory required (right) for the different 

sampling implementations to complete 10,000 iterations for simulated noisy p × p 

arrays. In both plots, the y axis is on the log scale. (Note that memory is only 

tracked up to p = 256, and single site memory usage was not tracked.) 
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Fig. 8 Posterior mean maps of voter preference for the Democratic candidate in 

the binomial election example obtained from the full block Gibbs (top), and 

chromatic Gibbs (bottom) sampling. 

 

Table 1 CPU times to draw 2,000 realizations (including 8,000 burn-in 

iterations) from one τ2 Markov chain under each sampling approach in the 50 × 

50 array example. Also reported are the effective sample sizes (ESS), integrated 

autocorrelation times (IAT), and costs per effective sample (CES). 
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Sampler  CPU Time (s) ESS  IAT  CES 

Chromatic 10.99  65.74 30.42 0.17  

Block  49.63  32.71 61.15 1.52  

Single-Site 3331.68  53.54 37.36 62.23 

Table 2 CPU times to draw 5,000 realizations (after 5,000 burin-in iterations) 

from one Markov chain under each sampling approach in the New York election 

example. Also reported are the effective sample sizes (ESS), autocorrelation 

times (ACT), and costs per effective sample (CES). 

Sampler  CPU Time (s) ESS  ACT CES  

β0 Chromatic 222.06  2445.74  2.04  0.0935 

β0 Block  294.16  2732.82  1.83  0.1018 

τ2 Chromatic 222.06  1916.63  2.61  0.1155 

τ2 Block  294.16  2186.021 2.29  0.1332 
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