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ABSTRACT: We have developed and tested PKA17, a coarse‐grain grid‐based model for predicting protein pKa shifts. Our 
pKa predictor is currently deployed via a website interface. We have carried out parameter fitting using 442 Asp, Glu, His, 
Lys, and Arg residues for which experimental results are available in the literature. PROPKA software has been used for 
benchmarking. The average unsigned error and RMSD have been found to be 0.628 and 0.831 pH units, respectively, for 
PKA17. The corresponding results with PROPKA are 0.761 and 1.063 units. We have assessed the robustness of the developed 
PKA17 methodology with a number of tests and have also explored the possibility of using a combination of PROPKA and 
PKA17 calculations in order to improve the accuracy of predicted pKa values for protein residues. We have also once again 
confirmed that protein acidity constants are influenced almost entirely by residues in the immediate spacial proximity of 
the ionizable amino acids. The resulting PKA17 software has been deployed online with a web‐based interface at http://us‐
ers.wpi.edu/~jpcvitkovic/pka_calc.html 

I. Introduction 

Assessing protein acidity constant values is important in 
predicting the structure, stability, and function of proteins. 
Thus, it is beneficial to be able to predict the values of these 
acidity  constants  computationally  when  robust  experi‐
mental data are not available.  

Protein pKa values have to be calculated in aqueous so‐
lutions  to  be  biochemically  relevant.  These  acidity  con‐
stants are proportional to the total free energies of depro‐
tonation. Such a deprotonation free energy is a sum of the 
bond breaking energy and the free energy of hydration for 
the  resulting  ions.  The  two  components  have  opposite 
signs and  large magnitudes, often hundreds of kcal/mol. 
The  accuracy of  calculating  the  final pKa value  thus de‐
pends on reproducing or predicting a very fine balance of 
energies, since computational predictions need to be accu‐
rate within ca. 0.8‐1.0 pH unit or slightly over 1 kcal/mol in 
order to be relevant. This is why robust calculations of pro‐
tein and other acidity constants remain a very difficult task 
even in the presence of the computational resources avail‐
able today.  

Thus, a number of research groups have applied signifi‐
cant efforts to achieve reliable and accurate results in the 
computational assessment of protein pKa values. Protein 

pKa values are proportional to the free energies of depro‐
tonation in aqueous solution.It is convenient to calculate 
pKa shifts instead of the absolute values, the former being 
the differences introduced into the acidity constants (and 
thus deprotonation free energies) by transferring the ion‐
izable  group  into  the protein  environment  from  the hy‐
drated form of a simple reference compound. For example, 
propanoic acid can be used as the reference compound for 
the aspartic acid residue. Thus, the task is to assess the dif‐
ference in the deprotonation energy due to the interactions 
of  the  residue with  the other parts of  the protein as op‐
posed  to  its  interactions with bulk  solvent. The goal has 
been seen as predicting protein pKa values within 0.8 – 1.0 
pH units.1  

The efforts  in computational prediction of protein pKa 
shifts have been made in several directions. It is natural to 
apply the Poisson‐Boltzmann equation to the calculation 
of acidity constants,2,3 and a number of variations and ap‐
proximations of this general methodology for pKa calcula‐
tions have been suggested.4‐19 Other techniques have been 
applied  as  well.1  The  Poisson‐Boltzmann  (PB)  approach 
can be  implemented  in volume‐ or surface‐based formal‐
isms.1 A variety of approaches have been proposed to opti‐
mize the electrostatic charges used in PB simulations and 
to address the need to take into the account the presence 
of multiple  ionizable  residues.9,10  Some  research  groups 



 

have suggested assigning a dielectric constant with  large 
magnitude (up to 20) to the interior of proteins.11‐13 While 
this approach led to an overall improvement of the results, 
it still left a number of calculated pKa values deviating sig‐
nificantly  from  experimental  values.1,14  Furthermore,  the 
very physical meaning of such high values of the dielectric 
constant for the protein interior is not clear.  

It  has  also  been  acknowledged  that  conformational 
changes  in the protein  in response to the protonation or 
deprotonation of ionizable residues have to be taken into 
account  to  improve  the  accuracy of protein  acidity  con‐
stant predictions. Techniques involving ensembles of con‐
formers (usually with side‐chain variations) have been pro‐
posed.20‐28 Of particular interest is the Multi‐Conformation 
Continuum Electrostatic  (MCCE) method  that  combines 
motion of side‐chains with continuum dielectric treatment 
of solvent and bulk protein.29‐33 It has been used in many 
applications, including successfully predicting pKa values 
for an extensive testing set of several hundred protein res‐
idues with  AMBER,  CHARMM,  and  PARSE  force  fields. 
The prediction results were compared with the experimen‐
tally measured acidity constants.33  

A  number  of microscopic  techniques with  an  explicit 
treatment of solvent have also been suggested.34‐38 Some of 
these techniques use quantum mechanical representation 
of the systems.39‐42 While quantum methodology is gener‐
ally  more  accurate  and  rather  potent,  it  also  requires 
greater  amounts  of  computational  resources  than  non‐
quantum  empirical  techniques,  and  thus  its  use  is  cur‐
rently somewhat limited when protein pKa calculations are 
to be carried out.1 

Combined quantum mechanical/molecular mechanical 
(QM/MM) methods  can  offer  a  better  alternative  than 
purely quantum simulations.39‐42 Some techniques also em‐
ploy complete or partial continuum representation of sol‐
vent. One successful example is in applications of constant 
pH  molecular  dynamics  (CPHMD)  simulations.43‐46  In 
many cases, constant pH simulations approach or match 
first‐principles  level  of  accuracy  .1 Additionally, CPHMD 
techniques offer a tool for studying pH‐dependent confor‐
mational phenomena.  

At the same time, much attention has been directed to‐
ward development and application of empirical techniques 
of evaluating protein pKa shifts, with PROPKA being one 
of  the most  successful  and widely used  examples.47‐49  In 
these  cases,  some  physical  considerations  are  combined 
with statistical  fitting of descriptors and parameters  that 
predict amino acid pKa values depending on the environ‐
ment of the particular ionizable residue. Statistical fitting 
methods can yield a reasonably high level of accuracy and 
such methods  implicitly  replace any conformational and 
rotamer sampling that may be needed to account for ther‐
mal  motion.  Such  methods  are  sufficiently  accurate  in 
most cases, and they are also very fast and robust when ap‐
plied to diverse sets of protein residues.  

We have created PKA17, a predictor of protein pKa shifts 
that has been parameterized on a subset of experimentally 

known acidity constants of protein residues. One of its dis‐
tinguishing features is that it employs an extremely coarse‐
grain model of the protein with each residue represented 
as only a single particle. This makes the model very simple 
and at the same time reduces the noise levels, as fine vari‐
ations in atomic positions have no effect on the calculated 
values of  the acidity  constants. The other distinguishing 
feature is the use of a cubic grid model for positioning of 
the  protein  residues.  Finally,  the  physical  formalism  of 
PKA17 is much simpler than that of PROPKA, with the fit‐
ting being  almost  entirely  statistical   with  care  taken  to 
only introduce a minimum number of fitable parameters. 
At the same time, we believe that this statistics is defined 
by  the underlying physical principles. We have used 442 
protein  residues  for  fitting  and  benchmarking  of  our 
model. In spite of its simplicity, PKA17 was found to per‐
form on par with – or slightly better than –PROPKA. We 
have also tested an approach in which PROPKA and PKA17 
are used in a combination to predict protein pKa shifts, and 
we found this combined approach is capable of giving bet‐
ter results than either of the techniques alone.  

The rest of  the paper  is organized as  follows. Methods 
are presented in Section II. Given in Section III are results 
and discussion. Summarizing conclusions can be found in 
Section IV.  

 

II. Methods 

Mapping of the Protein Geometry to the Grid 

Each protein residue is represented by a single particle 
the location of which is determined solely by the position 
of the alpha carbon of the residue. The Cartesian coordi‐
nates of the alpha carbons are taken from the input PDB 
file and then mapped onto nodes of a cubic grid. The side 
of each grid cell is set to be 5.4 Å. This makes each cubic 
cell to have a volume that is approximately equal to the av‐
erage volume of a protein residue.  

The process of the geometry mapping by PKA17 is illus‐
trated in Figure 1 using chain I from the 1ppf PDB structure. 
We start with the full PDB structure (a). Then we parse it 
to leave only the alpha carbon locations, each of those rep‐
resenting the whole residue (b). Finally, each of such par‐
ticles is placed at the nearest node of the cubic lattice with 
5.4 Å spacing in each dimension (c). The types of the resi‐
dues and the connections to the adjacent residues are rec‐
orded and retained at this stage. The grid‐mapped struc‐
ture  along with  the  residue  type  and  connectivity  infor‐
mation is passed to the next stage of the pKa calculation as 
described in the following subsection.  



 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Schematic depiction of the process of mapping 
protein residue coordinates onto the cubic grid. The map‐
ping proceeds from the full atomistic PDB structure (a) to 
the locations of the alpha carbons (b) and finally to the cu‐
bic grid nodes (c). 

 

Determining Residues that Define the Values of the pKa 
Shifts 

The current version of PKA17 predicts acidity constants 
for five types of protein residues – Asp, Glu, His, Lys, Arg. 
Each of these types has an initial reference pKa constant of 

0
iA , where the subscript denotes the amino acid type. It 

should be noted that this constant is not intended to cor‐
respond to the pKa value for the residue in any particular 
protein or peptide,  as  it  is always modified by  influence 
from other residues. The final value of the acidity constant 
is determined by the following sum: 

0
a i ij ij ij ijpK A B C D E          (1) 

The meanings of the terms of Eq. 1 are illustrated in Fig‐
ure 2. Coefficient Bij signifies the shift in the pKa value of 
residue A of type i resulting from being directly connected 
to a residue of type j in the backbone. Coefficient Cij stands 
for the effect of on the acidity constant of residue A of type 
i induced by a non‐connected residue of type j located just 
one lattice period l away. Coefficient Dij represents the ef‐
fect of a diagonally placed residue of type j, and Eij shows 
the influence of a residue of type j placed at a distance of 

3 l . Residues that are located farther away do not affect 

the pKa value of residue A. 

 

Figure 2. Neighboring residues affecting pKa value of res‐
idue A.  

 

The  values  of  the  coefficients  that  determine  the  pKa 
value of residue A of type  i depend on the type,  j, of the 
influencing  residue.  Non‐connected  residues  that  are 
mapped to the same node of the cubic grid as residue A are 
assigned the same pKa shift coefficients, Bij, as those resi‐
dues within exactly distance l (the grid spacing) from it.  



 

The above mapping and coefficients are all  that deter‐
mine the values of protein pKa shifts in the PKA17 frame‐
work. Values of all the parameters are found by fitting to 
experimentally measured values, with further tests on pro‐
teins and amino acids that were not included in the fitting 
set.  

It should be noted that we are not utilizing any explicit 
procedure for establishing whether a residue is exposed to 
the solvent or buried within a protein. However, the shift 
of  the  acidity  constant  does  depend  on  the  number  of 
neighboring residues, and thus the effect of exposure to or 
separation from the solvent is automatically included in an 
implicit way. Additionally, while the desolvation contribu‐
tion to the pKa shift cannot be separated  from the other 
factors contributing to the pKa shift, it is  accounted for as 
a part of the B, C, D, and E coefficients in Equation 1.  

  

III. Results and Discussion 

Target Data Sets Used in Fitting of the pKa Shift Coeffi‐
cients 

In  the  present  version  of  the  PKA17  software, 

ij ij ij ijB C D E    for any i and j. In other words, any 

residue of type j shifts the pKa value of residue of type i by 

the same amount if the residues are no farther than  3 l  

apart. It also does not matter whether the residues are co‐
valently bonded, only the geometric distance between the 
grid‐mapped alpha carbons is used to determine if the res‐
idue pairs are neighbors. This was done to avoid overpa‐
rameterization and related issues with stability and trans‐
ferability of the results. Naturally, the coefficients are dif‐
ferent for different pairs of residue types i and j. Moreover, 

it should be emphasized that, in general ij jiB B  and the 

same is true for coefficients C, D, and E.  

We used an extensive  fitting and testing set of protein 
residue pKa values  from Reference 50. A complete  list of 
the proteins and residues can be found in the Supplemen‐
tary material file.  

The general fitting procedure was as follows. For each of 
the ionizable residue types that we considered (Asp, Glu, 
His, Lys), we divided  the  set of experimental pKa values 
from the literature into two subsets. The first part was the 

fitting  set.  We  fitted  the  parameters 
0
iA   and 

ij ij ij ijB C D E     for  this  residue  type  to minimize 

the deviation of the acidity constants calculated with the 
PKA17 software from the experimental results. The result‐
ing average deviation constituted  the  first benchmarking 
result for our fitting. 

Then we obtained the leave‐one‐out (LOO) average un‐
signed errors. In this case, one residue was excluded from 
the  fitting, and  the  resulting  fitted parameters were em‐
ployed to calculate the pKa value for this residue. The pro‐
cedure was repeated for all the residues in the set. There‐
fore, we essentially assessed the average errors for residues 
that were not a part of the fitting procedure at all. 

The next step was in applying the parameters derived for 
the  full  fitting set  to calculate pKa values of  the  test set. 
This was done without any refitting. 

Finally, we used the full set (fitting and testing sets to‐
gether) to fit the final set of the PKA17 parameters and to 
calculate the LOO average unsigned error. While the LOO 
result was used as a benchmarking measure, the final pa‐
rameter set that is currently used in the software is the one 
obtained by fitting to the full set of residues. 

All the calculated errors were compared with those pro‐
duced with  the PROPKA website,51 as PROPKA  is one of 
the most  successful  and widely  used web‐based  protein 
pKa predictors.  

The following subsections contain results for the specific 
residue types.  

 

Fitting and Testing Results for Aspartic Acid Residues 

We used a fitting set of 105 residues and a testing set of 
33 residues (the complete list of the proteins, residues, and 
the  results  is given  in  the Supplementary Materials  file). 
The results are summarized in Table 1 and Figure 3.  

 

 

Figure 3. Average unsigned errors  in pKa values of Asp 
residues.  

 

Fitting PKA17 parameters for Asp to the fitting set values 
resulted to an averaged unsigned error of 0.654 pH units, 
which is a bit higher that the PROPKA 0.606 pH units. The 
leave‐one‐out  (LOO)  average  error was  0.809  pH  units. 
While this number is somewhat higher than the PROPKA 
errors,  it  should be noted  that  the PROPKA  training  set 
does include some of the residues that were employed in 
our tests. 

The performance of this  intermediate set of PKA17 pa‐
rameters for the test subset of the Asp residues was better 
than that of the PROPKA software, with the average errors 
being 0.876 and 0.694 pH units  for PROPKA and PKA17, 
respectively.  

Finally, the fitting to the complete combined set of Asp 
residues  lead  to  an  average  unsigned  error  of  0.632  pH 
units as calculated with PKA17. The LOO average error was 
0.740 pH units. The PROPKA result is 0.671 pH units. Once 



 

again, we need to keep in mind that some of the residues 
were used in parameter fitting for PROPKA.  

 

Fitting and Testing Results for Glutamic Acid Residues 

In this case, the fitting and the testing sets consisted of 
101 and 32 residues, respectively. The results are summa‐
rized in Table 2 and Figure 4.  

 

Figure 4. Average unsigned errors  in pKa values of Glu 
residues.  

 

Both the fitted PKA17 parameters for the fitting set and 
the LOO calculations yield lower average unsigned errors 
of 0.518 and 0.632 pH units, respectively, than the average 
PROPKA error of 0.726 units. The non‐fitted test set results 
are somewhat similar (0.479 pH units error for PKA17 and 
0.498 units for PROPKA). Using the complete set that in‐
cludes both the fitting and the testing subsets for the fit‐
ting leads to an average PKA17 error of 0.484 and the LOO 
average unsigned error of 0.565 pH units, both numbers 
being lower than the average PROPKA error of 0671 units. 

It should be noted explicitly that one of the major rea‐
sons for including the leave‐one‐out errors is the need to 
test the stability of the resulting PKA17 framework with re‐
spect to the fitting data set and its ability to predict acidity 
constants for residues that are not a part of the fitting set 
at all. At  the same  time,  it makes sense  to minimize  the 
actual  final error and  to employ  the  fitting  that employs 
every single residue to produce the finalized version of the 
PKA17 parameters.  

 

Fitting and Testing Results for Histidine Residues 

We used a fitting subset of 61 His residues and a testing 
subset of 28 residues, comprising a full combined set of 89 
histidine residues. The results of our fitting and testing for 
histidine are summarized in Table 3 and Figure 5.  

 

Figure 5. Average unsigned errors  in pKa values of His 
residues.  

 

PKA17  performs  better  than  PROPKA  for  this  residue 
type. For the fitting set, the fitting of the parameters for the 
PKA17  framework permits  to  lower  the average unsigned 
error to 0.722 pH units, while the PROPKA result is a ca. 
43% higher error of 1.038 units. Even with the  leave‐one‐
out (LOO) approach, the PKA17 error is only 1.016 pH units. 
When applied to the test set, the PKA17 error is somewhat 
higher  (1.053 units)  than  the PROPKA one  (0.872 units). 
However, using the complete combined set, we obtained 
0.730 units and 0.914 units average errors with the fitting 
and LOO PKA17 runs, while the PROPKA average unsigned 
error is 0.985 pH units. Overall, the PKA17 performance in 
these histidine calculations is sufficiently robust.  

 

Fitting and Testing Results for Lysine Residues 

The composition of our lysine fitting and testing sets was 
somewhat different than that of the Asp, Glu, and His ones. 
Most of Lys  residues have pKa values within a  relatively 
narrow  range. Our main  fitting  set  is  composed of  such 
cases. The testing set (that was also a part of the complete 
combined set) included mutants that exhibit a greater va‐
riety of pKa values.50e This way we covered a broader range 
of potential  lysine acidity  constant  shits  that  can be en‐
countered in wild or engineered proteins.  

The results are summarized in Table 4 and Figure 6.  

 



 

 

Figure 6. Average unsigned errors  in pKa values of Lys 
residues.  

 

The initial fitting set contained 57 Lys residues. The av‐
erage  unsigned  error  in  the  pKa  values  obtained  wit 
PROPKA was 0.583 pH units, and the PKA17 average error 
with fitting for this set was 0.510 units. The LOO PKA17 re‐
sult was 0.793 pH units. It should be emphasized again that 
it is hard to make a direct comparison between PROPKA 
and PKA17 given that PROPKA parameters were developed 
with  some  training/fitting  on  this  particular  data  set  as 
well.  

Calculating  Lys  pKa  values  for  the  25  residue  test  set 
(composed of  residues with a greater range of pKa shifts 
than the fitting set) yields average PROPKA and PKA17 er‐
rors of 1.351 and 1.286 pH units, respectively. These results 
are  fairly similar, but PKA17 seems to perform somewhat 
better for these structures that were not employed in the 
direct initial fitting. When we use the complete combined 
set that contains all the 82 residues, the average error with 
PROPKA is 0.817 pH units, while the fitted and leave‐one‐
our  average  errors  produced  with  PKA17  are  0.746  and 
0.964 units, respectively.  

 

Using the PROPKA Fitting Sets for Asp and Glu pKa val‐
ues 

The fitting sets used to train PROPKA performance for 
the aspartic and glutamic acid residues are available from 
the  literature.48 We have employed these sets  in order to 
produce  a  more  direct  comparison  of  the  PKA17  and 
PROPKA results.  

The Asp PROPKA  fitting  set  contains 43  residues  (the 
full list is given in the Supplementary Materials). The aver‐
age unsigned error for the pKa values for the set computed 
with PROPKA is 0.503 pH units. When we use the same set 
for  fitting  PKA17  parameters,  the  average  error  is  only 
0.299 pH units. The  leave‐one‐out  (LOO) procedure  re‐
sulted in an average error of 0.460, which is still 8.5% lower 
than the average PROPKA deviation.  

We then applied the resulting PKA17 parameters to cal‐
culating pKa values of all the 138 Asp residues in our com‐
plete combined aspartic acid set. The average PROPKA er‐
ror (also reported in the corresponding subsection above) 

was 0.671 pH units, while the PKA17 one was slightly higher 
at 0.768 units. It is worth recalling the average errors pro‐
duced by the PKA17 calculations after fitting to the com‐
plete combined Asp set. The average error in complete fit‐
ting was 0.632 pH units, while the LOO procedure lead to 
an error of 0.740 units, which is rather close to the 0.768 
units  resulting  from  fitting  to  the PROPKA  training  set. 
While both the complete fitting and the LOO results ob‐
tained with the direct fitting to the combined set are bet‐
ter, the LOO one is rather close to the result obtained with 
the parameters produced in fitting to the PROPKA training 
set. We believe  that  this  indicates  the  robustness of  the 
PKA17 framework with respect to the fitting protocol and 
fitting set of residues. The results of the Asp fitting tests are 
summarized in Table 5 and Figure 7.  

 

Figure 7. Average unsigned errors in pKa values of Asp 
residues after fitting to the PROPKA training set. 

 

The PROPKA  fitting  set  for  glutamic  acid  contains  42 
residues.15 The average unsigned error  for  these  residues 
that we obtained with PROPKA is 0.469 pH units. Fitting 
for to this set of resides for PKA17 results in an average er‐
ror of 0.331 units, while the LOO protocol gives an error of 
0.471 units, which is virtually the same as the PROPKA one.  

Application of the resulting parameters to the full com‐
bined set for Glu that contains 133 residues yields the fol‐
lowing results. The average unsigned PROPKA error in pKa 
values is 0.671 pH units. The error obtained with PKA17 is 
0.603 units, or about 10% lower.  

The results of using the PROPKA training set for the Glu 
residue are summarized in Table 6 and Figure 8. 

 

Figure 8. Average unsigned errors  in pKa values of Glu 
residues after fitting to the PROPKA training set. 

 



 

Overall, we can conclude from the above results that the 
PKA17  fitting methodology  is  robust  and  stable with  re‐
spect to the choice of the fitting set. The resulting PKA17 
parameters permit results that are at least as good as the 
PROPKA ones when both programs are trained and tested 
on the same data sets.  

 

Comparative Timing of PROPKA and PKA17  

While neither of the programs takes prohibitively  long 
to produce results, we still ran a brief comparison of the 
required  computational  time  for  five  representative pro‐
teins. The results are shown in Table 7 and Figures 9 and 
10. 

 

Figure 9. Computational time required by PROPKA and 
PKA17 software as a function of the total number of resi‐
dues in the protein.  

 

 

Figure 10. Computational time required by PROPKA and 
PKA17 software as a function of the number of pKa values 
calculated for the protein. 

 

Both programs are rather fast, but it is still worth noting 
that PKA17 is an order of magnitude faster than PROPKA. 
The very simple model we are using for mapping the pro‐
teins and determining the pKa shifts  is actually both fast 
and robust. 

 

Using PROPKA and PKA17 Together 

We  have  also  calculated  pKa  values  for  the  complete 
combined sets for Asp, Glu, His, and Lys by combining the 

PROPKA and PKA17 results for each residue in equal pro‐
portion (0.5 of PROPKA pKa + 0.5 of PKA17 pKa). Resulting 
average unsigned errors are shown in Table 8 and Figure 11. 

 

Figure 11. Average unsigned errors  in pKa values calcu‐
lated  with  PROPKA,  PKA17,  and  as  the  average  of  the 
PROPKA and PKA17 values. 

 

It  can be  seen  that  this  combined  application offers  a 
clear advantage. All the combined PROPKA/PKA17 average 
errors  are  lower  than  those  resulting  from  applying 
PROPKA alone. The errors for Asp and Lys are also lower 
than those for applying PKA17 alone. Apparently, PROPKA 
and PKA17 tend to err in the opposite directions, and their 
combination provides a more robust option for predicting 
protein pKa values.  

 

Benchmarking PKA17 Using an Extensive MCCE Test Set 

The  Multi‐Conformation  Continuum  Electrostatic 
(MCCE)  method  using  a  Poisson‐Boltzmann  approach 
with AMBER, CHARMM, and PARSE force fields has been 
developed and successfully applied by Alexov and cowork‐
ers in order to calculate pKa values of an extensive set of 
protein residues.33 We have used the same dataset to pro‐
vide additional validation of our technique by calculating 
pKa values with the PKA17 and PROPKA software.  

The comparison of accuracy in calculating these acidity 
constants for Asp, Glu, His, and Lys residues are given in 
Tables 9‐12 and on Figures  12‐15. The overall accuracy  is 
presented in Table 13 and on Figure 16. All the pKa values 
for the individual residues are listed in the supporting in‐
formation file. It should be emphasized that these results 
were obtained with no additional fitting of the PKA17 pa‐
rameters.  

 



 

Figure 12. Average errors of Asp pKa calculations for the 
extensive fitting set presented in Reference 33. 

 

 

Figure 13. Average errors of Glu pKa calculations for the 
extensive fitting set presented in Reference 33. 

 

 

Figure 14. Average errors of His pKa calculations for the 
extensive fitting set presented in Reference 33. 

 

 

Figure 15. Average errors of Lys pKa calculations for the 
extensive fitting set presented in Reference 33. 

 

Figure 16. Overall average unsigned errors of pKa calcu‐
lations for the extensive fitting set presented in Reference 
33. 

 

It can be seen from these tables and figures that, in al‐
most  all  of  the  cases  (including  the  overall  results),  the 
PKA17 formalism performs somewhat worse than the much 

more  sophisticated MCCE  technique,  but  slightly  better 
than the PROPKA suite. Histidine calculations are an ex‐
ception, with  the  PKA17  results  being  better  than  those 
produced by all the other techniques.  

We believe that these tests confirm the suitability of the 
PKA17 formalism and implementation for use in the gen‐
eral field of fast prediction of protein pKa shifts. 

 

 

IV. Conclusions 

We have developed and validated a predictor of protein 
pKa values named PKA17. It is based on a coarse‐grain grid 
model of proteins. The pKa shifts are defined by the resi‐
dues  that  are  spatially  close  to  the  ionizable  residue  in 
question. Fitting and validation of our model involved an 
extensive  set  of  441  protein  residues. Additional  bench‐
marking on a previously proposed extensive set of ioniza‐
ble protein residues33 appears to confirm the robustness of 
the presented technique. The resulting tool has been de‐
ployed  with  a  web‐based  interface  at  
http://users.wpi.edu/~jpcvitkovic/pka_calc.html 

The results demonstrate that PKA17 performs on par or 
even somewhat better than the widely used and successful 
protein pKa predictor PROPKA. It also requires less com‐
putational resources, with the computational time needed 
for PKA17  runs being  an order of magnitude  lower  than 
that required by PROPKA. Moreover, we have achieved the 
current  level  of  accuracy with  PKA17 while  significantly 
limiting the number of  fitting variables  in order to avoid 
any danger of possible overparameterization.  

We have also shown that the accuracy of PKA17 is rea‐
sonably robust with respect to the choice of the fitting set 
for  parameterization,  even  though  some more  sophisti‐
cated techniques (such and MCCE and quantum mechan‐
ics) can yield a higher degree of accuracy of evaluating pKa 
shifts of protein residues. 

In addition to the above, we have tested a combined ap‐
plication  of  PKA17  and  PROPKA  and  found  that  such  a 
combination results in improved accuracy of the pKa pre‐
dictions compared to either technique used individually.  

Therefore, we report creation of an accurate and efficient 
web‐interfaced  protein  pKa  predictor,  and,  we  have 
demonstrated that protein pKa shifts can be assessed with 
a set of very simplistic coarse‐grid predictors. Moreover, all 
these predictors are  local, with only the  immediate envi‐
ronment of the ionizable residue affecting the final acidity 
constant value.  
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TABLES. 

 

Table 1. Results of pKa calculations for Asp resi-
dues (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 0.606 
Fitting set, PKA17 0.654 
Fitting set, PKA17, LOO 0.809 
Test set, PROPKA 0.876 
Test set, PKA17 0.694 
Combined set, PROPKA 0.671 
Combined set, PKA17 0.632 
Combined set, PKA17, 
LOO 

0.740 

 

Table 2. Results of pKa calculations for Glu resi-
dues (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 0.726 
Fitting set, PKA17 0.518 
Fitting set, PKA17, LOO 0.632 
Test set, PROPKA 0.498 
Test set, PKA17 0.479 
Combined set, PROPKA 0.671 
Combined set, PKA17 0.484 
Combined set, PKA17, 
LOO 

0.565 

 

Table 3. Results of pKa calculations for His resi-
dues (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 1.038 
Fitting set, PKA17 0.722 
Fitting set, PKA17, LOO 1.016 
Test set, PROPKA 0.872 
Test set, PKA17 1.053 
Combined set, PROPKA 0.985 

Combined set, PKA17 0.730 
Combined set, PKA17, 
LOO 

0.914 

 

Table 4. Results of pKa calculations for Lys resi-
dues (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 0.583 
Fitting set, PKA17 0.510 
Fitting set, PKA17, LOO 0.793 
Test set, PROPKA 1.351 
Test set, PKA17 1.286 
Combined set, PROPKA 0.817 
Combined set, PKA17 0.746 
Combined set, PKA17, 
LOO 

0.964 

 

Table 5. Results of Aspartic acid pKa calculations 
after fitting to the PROPKA training set (in pH 
units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 0.503 
Fitting set, PKA17 0.299 
Fitting set, PKA17, LOO 0.460 
Combined set, PROPKA 0.671 
Combined set, PKA17 0.768 

 

Table 6. Results of Glutamic acid pKa calculations 
after fitting to the PROPKA training set (in pH 
units) 

 
Method 

Average unsigned 
error in pKa values 

Fitting set, PROPKA 0.469 
Fitting set, PKA17 0.331 
Fitting set, PKA17, LOO 0.471 
Combined set, PROPKA 0.671 
Combined set, PKA17 0.603 

 

Table 7. CPU time required for pKa calculation (in 
seconds) 



 

PDB ID 1ubq 2dhc 2gga 3twy 4pyp 

Number 
of  
residues 

76 310 455 137 504 

Number 
of pKa 
values 

26 93 108 52 79 

Time, 
PROPKA 

0.219 1.121 2.947 0.369 1.489

Time, 
PKA17 

0.038 0.046 0.062 0.027 0.066

 

Table 8. Average unsigned errors in pKa values 
calculated with PROPKA, PKA17, and as the av-
erage of the PROPKA and PKA17 values (in pH 
units) 

 
System/Method 

Average unsigned 
 error in pKa values 

Asp  

PROPKA 0.671 

PKA17 0.632 

Combined/Averaged 0.541 

Glu  

PROPKA 0.671 

PKA17 0.484 

Combined/Averaged 0.506 

His  

PROPKA 0.985 

PKA17 0.730 

Combined/Averaged 0.776 

Lys  

PROPKA 0.817 

PKA17 0.746 

Combined/Averaged 0.687 

 

Table 9. Average errors of Aspartic acid pKa cal-
culations for the extensive fitting set presented in 
Reference 33. (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

MCCE, AMBER33 0.473 
MCCE, CHARMM33 0.464 
MCCE, PARCE33 0.492 
PROPKA 0.600 
PKA17 0.572 

 

Table 10. Average errors of Glutamic acid pKa 
calculations for the extensive fitting set presented 
in Reference 33. (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

MCCE, AMBER33 0.562 
MCCE, CHARMM33 0.512 
MCCE, PARCE33 0.519 
PROPKA 0.700 
PKA17 0.635 

 

Table 11. Average errors of Histidine pKa calcu-
lations for the extensive fitting set presented in 
Reference 33. (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

MCCE, AMBER33 0.677 
MCCE, CHARMM33 0.705 
MCCE, PARCE33 0.596 
PROPKA 0.844 
PKA17 0.557 

 

Table 12. Average errors of Lysine pKa calcula-
tions for the extensive fitting set presented in Ref-
erence 33. (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

MCCE, AMBER33 0.479 
MCCE, CHARMM33 0.504 



 

MCCE, PARCE33 0.476 
PROPKA 0.542 
PKA17 0.507 

 

Table 13. Overall average errors of pKa calcula-
tions for the extensive fitting set presented in Ref-
erence 33. (in pH units) 

 
Method 

Average unsigned 
error in pKa values 

MCCE, AMBER33 0.538 

MCCE, CHARMM33 0.530 
MCCE, PARCE33 0.515 
PROPKA 0.661 
PKA17 0.575 
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