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ABSTRACT: We have developed and tested PKA17, a coarse-grain grid-based model for predicting protein pKa shifts. Our
pKa predictor is currently deployed via a website interface. We have carried out parameter fitting using 442 Asp, Glu, His,
Lys, and Arg residues for which experimental results are available in the literature. PROPKA software has been used for
benchmarking. The average unsigned error and RMSD have been found to be 0.628 and 0.831 pH units, respectively, for
PKA17. The corresponding results with PROPKA are 0.761 and 1.063 units. We have assessed the robustness of the developed
PKA17 methodology with a number of tests and have also explored the possibility of using a combination of PROPKA and
PKA17 calculations in order to improve the accuracy of predicted pKa values for protein residues. We have also once again
confirmed that protein acidity constants are influenced almost entirely by residues in the immediate spacial proximity of
the ionizable amino acids. The resulting PKA17 software has been deployed online with a web-based interface at http://us-

ers.wpi.edu/~jpcvitkovic/pka_calc.html

I. Introduction

Assessing protein acidity constant values is important in
predicting the structure, stability, and function of proteins.
Thus, it is beneficial to be able to predict the values of these
acidity constants computationally when robust experi-
mental data are not available.

Protein pKa values have to be calculated in aqueous so-
lutions to be biochemically relevant. These acidity con-
stants are proportional to the total free energies of depro-
tonation. Such a deprotonation free energy is a sum of the
bond breaking energy and the free energy of hydration for
the resulting ions. The two components have opposite
signs and large magnitudes, often hundreds of kcal/mol.
The accuracy of calculating the final pKa value thus de-
pends on reproducing or predicting a very fine balance of
energies, since computational predictions need to be accu-
rate within ca. 0.8-1.0 pH unit or slightly over 1 kcal/mol in
order to be relevant. This is why robust calculations of pro-
tein and other acidity constants remain a very difficult task
even in the presence of the computational resources avail-
able today.

Thus, a number of research groups have applied signifi-
cant efforts to achieve reliable and accurate results in the
computational assessment of protein pKa values. Protein

pKa values are proportional to the free energies of depro-
tonation in aqueous solution.It is convenient to calculate
pKa shifts instead of the absolute values, the former being
the differences introduced into the acidity constants (and
thus deprotonation free energies) by transferring the ion-
izable group into the protein environment from the hy-
drated form of a simple reference compound. For example,
propanoic acid can be used as the reference compound for
the aspartic acid residue. Thus, the task is to assess the dif-
ference in the deprotonation energy due to the interactions
of the residue with the other parts of the protein as op-
posed to its interactions with bulk solvent. The goal has
been seen as predicting protein pKa values within 0.8 - 1.0
pH units.

The efforts in computational prediction of protein pKa
shifts have been made in several directions. It is natural to
apply the Poisson-Boltzmann equation to the calculation
of acidity constants,>? and a number of variations and ap-
proximations of this general methodology for pKa calcula-
tions have been suggested.+" Other techniques have been
applied as well.! The Poisson-Boltzmann (PB) approach
can be implemented in volume- or surface-based formal-
isms." A variety of approaches have been proposed to opti-
mize the electrostatic charges used in PB simulations and
to address the need to take into the account the presence
of multiple ionizable residues.”’® Some research groups



have suggested assigning a dielectric constant with large
magnitude (up to 20) to the interior of proteins.”" While
this approach led to an overall improvement of the results,
it still left a number of calculated pKa values deviating sig-
nificantly from experimental values."** Furthermore, the
very physical meaning of such high values of the dielectric
constant for the protein interior is not clear.

It has also been acknowledged that conformational
changes in the protein in response to the protonation or
deprotonation of ionizable residues have to be taken into
account to improve the accuracy of protein acidity con-
stant predictions. Techniques involving ensembles of con-
formers (usually with side-chain variations) have been pro-
posed.>>*® Of particular interest is the Multi-Conformation
Continuum Electrostatic (MCCE) method that combines
motion of side-chains with continuum dielectric treatment
of solvent and bulk protein.>®33 It has been used in many
applications, including successfully predicting pKa values
for an extensive testing set of several hundred protein res-
idues with AMBER, CHARMM, and PARSE force fields.
The prediction results were compared with the experimen-
tally measured acidity constants.?

A number of microscopic techniques with an explicit
treatment of solvent have also been suggested.3*3® Some of
these techniques use quantum mechanical representation
of the systems.394* While quantum methodology is gener-
ally more accurate and rather potent, it also requires
greater amounts of computational resources than non-
quantum empirical techniques, and thus its use is cur-
rently somewhat limited when protein pKa calculations are
to be carried out.!

Combined quantum mechanical/molecular mechanical
(QM/MM) methods can offer a better alternative than
purely quantum simulations.3** Some techniques also em-
ploy complete or partial continuum representation of sol-
vent. One successful example is in applications of constant
pH molecular dynamics (CPHMD) simulations.$¢ In
many cases, constant pH simulations approach or match
first-principles level of accuracy . Additionally, CPHMD
techniques offer a tool for studying pH-dependent confor-
mational phenomena.

At the same time, much attention has been directed to-
ward development and application of empirical techniques
of evaluating protein pKa shifts, with PROPKA being one
of the most successful and widely used examples.#’4 In
these cases, some physical considerations are combined
with statistical fitting of descriptors and parameters that
predict amino acid pKa values depending on the environ-
ment of the particular ionizable residue. Statistical fitting
methods can yield a reasonably high level of accuracy and
such methods implicitly replace any conformational and
rotamer sampling that may be needed to account for ther-
mal motion. Such methods are sufficiently accurate in
most cases, and they are also very fast and robust when ap-
plied to diverse sets of protein residues.

We have created PKA17, a predictor of protein pKa shifts
that has been parameterized on a subset of experimentally

known acidity constants of protein residues. One of its dis-
tinguishing features is that it employs an extremely coarse-
grain model of the protein with each residue represented
as only a single particle. This makes the model very simple
and at the same time reduces the noise levels, as fine vari-
ations in atomic positions have no effect on the calculated
values of the acidity constants. The other distinguishing
feature is the use of a cubic grid model for positioning of
the protein residues. Finally, the physical formalism of
PKA17 is much simpler than that of PROPKA, with the fit-
ting being almost entirely statistical with care taken to
only introduce a minimum number of fitable parameters.
At the same time, we believe that this statistics is defined
by the underlying physical principles. We have used 442
protein residues for fitting and benchmarking of our
model. In spite of its simplicity, PKA17 was found to per-
form on par with - or slightly better than -PROPKA. We
have also tested an approach in which PROPKA and PKA17y
are used in a combination to predict protein pKa shifts, and
we found this combined approach is capable of giving bet-
ter results than either of the techniques alone.

The rest of the paper is organized as follows. Methods
are presented in Section II. Given in Section III are results
and discussion. Summarizing conclusions can be found in
Section IV.

II. Methods

Mapping of the Protein Geometry to the Grid

Each protein residue is represented by a single particle
the location of which is determined solely by the position
of the alpha carbon of the residue. The Cartesian coordi-
nates of the alpha carbons are taken from the input PDB
file and then mapped onto nodes of a cubic grid. The side
of each grid cell is set to be 5.4 A. This makes each cubic
cell to have a volume that is approximately equal to the av-
erage volume of a protein residue.

The process of the geometry mapping by PKA17 is illus-
trated in Figure 1using chain I from the 1ppf PDB structure.
We start with the full PDB structure (a). Then we parse it
to leave only the alpha carbon locations, each of those rep-
resenting the whole residue (b). Finally, each of such par-
ticles is placed at the nearest node of the cubic lattice with
5.4 A spacing in each dimension (c). The types of the resi-
dues and the connections to the adjacent residues are rec-
orded and retained at this stage. The grid-mapped struc-
ture along with the residue type and connectivity infor-
mation is passed to the next stage of the pKa calculation as
described in the following subsection.



Figure 1. Schematic depiction of the process of mapping
protein residue coordinates onto the cubic grid. The map-
ping proceeds from the full atomistic PDB structure (a) to
the locations of the alpha carbons (b) and finally to the cu-
bic grid nodes (c).

Determining Residues that Define the Values of the pKa
Shifts

The current version of PKA17 predicts acidity constants
for five types of protein residues - Asp, Glu, His, Lys, Arg.
Each of these types has an initial reference pKa constant of

0 . . .
A’ , where the subscript denotes the amino acid type. It

should be noted that this constant is not intended to cor-
respond to the pKa value for the residue in any particular
protein or peptide, as it is always modified by influence
from other residues. The final value of the acidity constant
is determined by the following sum:

pK,=A4'+> B, +> C,+> D, +> E, ()

The meanings of the terms of Eq. 1 are illustrated in Fig-
ure 2. Coefficient Bj signifies the shift in the pKa value of
residue A of type i resulting from being directly connected
to a residue of type j in the backbone. Coefficient C; stands
for the effect of on the acidity constant of residue A of type
i induced by a non-connected residue of type j located just
one lattice period [ away. Coefficient Dj; represents the ef-
fect of a diagonally placed residue of type j, and Ej shows
the influence of a residue of type j placed at a distance of

\/§ -/ . Residues that are located farther away do not affect
the pKa value of residue A.

Figure 2. Neighboring residues affecting pKa value of res-
idue A.

The values of the coefficients that determine the pKa
value of residue A of type i depend on the type, j, of the
influencing residue. Non-connected residues that are
mapped to the same node of the cubic grid as residue A are
assigned the same pKa shift coefficients, Bj, as those resi-
dues within exactly distance [ (the grid spacing) from it.



The above mapping and coefficients are all that deter-
mine the values of protein pKa shifts in the PKA17 frame-
work. Values of all the parameters are found by fitting to
experimentally measured values, with further tests on pro-
teins and amino acids that were not included in the fitting
set.

It should be noted that we are not utilizing any explicit
procedure for establishing whether a residue is exposed to
the solvent or buried within a protein. However, the shift
of the acidity constant does depend on the number of
neighboring residues, and thus the effect of exposure to or
separation from the solvent is automatically included in an
implicit way. Additionally, while the desolvation contribu-
tion to the pKa shift cannot be separated from the other
factors contributing to the pKa shift, it is accounted for as
a part of the B, C, D, and E coefficients in Equation 1.

I11. Results and Discussion

Target Data Sets Used in Fitting of the pKa Shift Coeffi-
cients

In the present version of the PKA17 software,
Bl.j = Cl.j = Dl.j = El.j for any i and j. In other words, any
residue of type j shifts the pKa value of residue of type i by

the same amount if the residues are no farther than \/g -l
apart. It also does not matter whether the residues are co-
valently bonded, only the geometric distance between the
grid-mapped alpha carbons is used to determine if the res-
idue pairs are neighbors. This was done to avoid overpa-
rameterization and related issues with stability and trans-
ferability of the results. Naturally, the coefficients are dif-
ferent for different pairs of residue types i and j. Moreover,

it should be emphasized that, in general B i #B i and the
same is true for coefficients C, D, and E.

We used an extensive fitting and testing set of protein
residue pKa values from Reference 50. A complete list of
the proteins and residues can be found in the Supplemen-
tary material file.

The general fitting procedure was as follows. For each of
the ionizable residue types that we considered (Asp, Glu,
His, Lys), we divided the set of experimental pKa values
from the literature into two subsets. The first part was the

. 0
fitting set. We fitted the parameters A and

Bl.j = Cl.j = Dl.j = El.j for this residue type to minimize

the deviation of the acidity constants calculated with the
PKA17 software from the experimental results. The result-
ing average deviation constituted the first benchmarking
result for our fitting.

Then we obtained the leave-one-out (LOO) average un-
signed errors. In this case, one residue was excluded from
the fitting, and the resulting fitted parameters were em-
ployed to calculate the pKa value for this residue. The pro-
cedure was repeated for all the residues in the set. There-
fore, we essentially assessed the average errors for residues
that were not a part of the fitting procedure at all.

The next step was in applying the parameters derived for
the full fitting set to calculate pKa values of the test set.
This was done without any refitting.

Finally, we used the full set (fitting and testing sets to-
gether) to fit the final set of the PKA17 parameters and to
calculate the LOO average unsigned error. While the LOO
result was used as a benchmarking measure, the final pa-
rameter set that is currently used in the software is the one
obtained by fitting to the full set of residues.

All the calculated errors were compared with those pro-
duced with the PROPKA website,5 as PROPKA is one of
the most successful and widely used web-based protein
pKa predictors.

The following subsections contain results for the specific
residue types.

Fitting and Testing Results for Aspartic Acid Residues

We used a fitting set of 105 residues and a testing set of
33 residues (the complete list of the proteins, residues, and
the results is given in the Supplementary Materials file).
The results are summarized in Table 1 and Figure 3.
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Figure 3. Average unsigned errors in pKa values of Asp
residues.

Fitting PKA17 parameters for Asp to the fitting set values
resulted to an averaged unsigned error of 0.654 pH units,
which is a bit higher that the PROPKA 0.606 pH units. The
leave-one-out (LOO) average error was 0.809 pH units.
While this number is somewhat higher than the PROPKA
errors, it should be noted that the PROPKA training set
does include some of the residues that were employed in
our tests.

The performance of this intermediate set of PKA17 pa-
rameters for the test subset of the Asp residues was better
than that of the PROPKA software, with the average errors
being 0.876 and 0.694 pH units for PROPKA and PKA17,
respectively.

Finally, the fitting to the complete combined set of Asp
residues lead to an average unsigned error of 0.632 pH
units as calculated with PKA17. The LOO average error was
0.740 pH units. The PROPKA result is 0.671 pH units. Once



again, we need to keep in mind that some of the residues
were used in parameter fitting for PROPKA.

Fitting and Testing Results for Glutamic Acid Residues

In this case, the fitting and the testing sets consisted of
101 and 32 residues, respectively. The results are summa-
rized in Table 2 and Figure 4.
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Figure 4. Average unsigned errors in pKa values of Glu
residues.

Both the fitted PKA17 parameters for the fitting set and
the LOO calculations yield lower average unsigned errors
of 0.518 and 0.632 pH units, respectively, than the average
PROPKA error of 0.726 units. The non-fitted test set results
are somewhat similar (0.479 pH units error for PKA17 and
0.498 units for PROPKA). Using the complete set that in-
cludes both the fitting and the testing subsets for the fit-
ting leads to an average PKA17 error of 0.484 and the LOO
average unsigned error of 0.565 pH units, both numbers
being lower than the average PROPKA error of 0671 units.

It should be noted explicitly that one of the major rea-
sons for including the leave-one-out errors is the need to
test the stability of the resulting PKA17 framework with re-
spect to the fitting data set and its ability to predict acidity
constants for residues that are not a part of the fitting set
at all. At the same time, it makes sense to minimize the
actual final error and to employ the fitting that employs
every single residue to produce the finalized version of the
PKA17 parameters.

Fitting and Testing Results for Histidine Residues

We used a fitting subset of 61 His residues and a testing
subset of 28 residues, comprising a full combined set of 89
histidine residues. The results of our fitting and testing for
histidine are summarized in Table 3 and Figure 5.
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Figure 5. Average unsigned errors in pKa values of His
residues.

PKA17 performs better than PROPKA for this residue
type. For the fitting set, the fitting of the parameters for the
PKA17 framework permits to lower the average unsigned
error to 0.722 pH units, while the PROPKA result is a ca.
43% higher error of 1.038 units. Even with the leave-one-
out (LOO) approach, the PKA17 error is only 1.016 pH units.
When applied to the test set, the PKA17 error is somewhat
higher (1.053 units) than the PROPKA one (0.872 units).
However, using the complete combined set, we obtained
0.730 units and 0.914 units average errors with the fitting
and LOO PKA17 runs, while the PROPKA average unsigned
error is 0.985 pH units. Overall, the PKA17 performance in
these histidine calculations is sufficiently robust.

Fitting and Testing Results for Lysine Residues

The composition of our lysine fitting and testing sets was
somewhat different than that of the Asp, Glu, and His ones.
Most of Lys residues have pKa values within a relatively
narrow range. Our main fitting set is composed of such
cases. The testing set (that was also a part of the complete
combined set) included mutants that exhibit a greater va-
riety of pKa values.5*¢ This way we covered a broader range
of potential lysine acidity constant shits that can be en-
countered in wild or engineered proteins.

The results are summarized in Table 4 and Figure 6.



Figure 6. Average unsigned errors in pKa values of Lys
residues.

The initial fitting set contained 57 Lys residues. The av-
erage unsigned error in the pKa values obtained wit
PROPKA was 0.583 pH units, and the PKA17 average error
with fitting for this set was 0.510 units. The LOO PKA17 re-
sult was 0.793 pH units. It should be emphasized again that
it is hard to make a direct comparison between PROPKA
and PKA17 given that PROPKA parameters were developed
with some training/fitting on this particular data set as
well.

Calculating Lys pKa values for the 25 residue test set
(composed of residues with a greater range of pKa shifts
than the fitting set) yields average PROPKA and PKA17 er-
rors of 1.351 and 1.286 pH units, respectively. These results
are fairly similar, but PKA17 seems to perform somewhat
better for these structures that were not employed in the
direct initial fitting. When we use the complete combined
set that contains all the 82 residues, the average error with
PROPKA is 0.817 pH units, while the fitted and leave-one-
our average errors produced with PKA17 are 0.746 and
0.964 units, respectively.

Using the PROPKA Fitting Sets for Asp and Glu pKa val-
ues

The fitting sets used to train PROPKA performance for
the aspartic and glutamic acid residues are available from
the literature.*®* We have employed these sets in order to
produce a more direct comparison of the PKA1; and
PROPKA results.

The Asp PROPKA fitting set contains 43 residues (the
full list is given in the Supplementary Materials). The aver-
age unsigned error for the pKa values for the set computed
with PROPKA is 0.503 pH units. When we use the same set
for fitting PKA17 parameters, the average error is only
0.299 pH units. The leave-one-out (LOO) procedure re-
sulted in an average error of 0.460, which is still 8.5% lower
than the average PROPKA deviation.

We then applied the resulting PKA17 parameters to cal-
culating pKa values of all the 138 Asp residues in our com-
plete combined aspartic acid set. The average PROPKA er-
ror (also reported in the corresponding subsection above)

was 0.671 pH units, while the PKA17 one was slightly higher
at 0.768 units. It is worth recalling the average errors pro-
duced by the PKA17 calculations after fitting to the com-
plete combined Asp set. The average error in complete fit-
ting was 0.632 pH units, while the LOO procedure lead to
an error of 0.740 units, which is rather close to the 0.768
units resulting from fitting to the PROPKA training set.
While both the complete fitting and the LOO results ob-
tained with the direct fitting to the combined set are bet-
ter, the LOO one is rather close to the result obtained with
the parameters produced in fitting to the PROPKA training
set. We believe that this indicates the robustness of the
PKA17 framework with respect to the fitting protocol and
fitting set of residues. The results of the Asp fitting tests are
summarized in Table 5 and Figure 7.
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Figure 7. Average unsigned errors in pKa values of Asp
residues after fitting to the PROPKA training set.

The PROPKA fitting set for glutamic acid contains 42
residues.”> The average unsigned error for these residues
that we obtained with PROPKA is 0.469 pH units. Fitting
for to this set of resides for PKA17 results in an average er-
ror of 0.331 units, while the LOO protocol gives an error of
0.471 units, which is virtually the same as the PROPKA one.

Application of the resulting parameters to the full com-
bined set for Glu that contains 133 residues yields the fol-
lowing results. The average unsigned PROPKA error in pKa
values is 0.671 pH units. The error obtained with PKA17 is
0.603 units, or about 10% lower.

The results of using the PROPKA training set for the Glu
residue are summarized in Table 6 and Figure 8.
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Figure 8. Average unsigned errors in pKa values of Glu
residues after fitting to the PROPKA training set.



Overall, we can conclude from the above results that the
PKA17 fitting methodology is robust and stable with re-
spect to the choice of the fitting set. The resulting PKA17
parameters permit results that are at least as good as the
PROPKA ones when both programs are trained and tested
on the same data sets.

Comparative Timing of PROPKA and PKA17

While neither of the programs takes prohibitively long
to produce results, we still ran a brief comparison of the
required computational time for five representative pro-
teins. The results are shown in Table 7 and Figures 9 and
10.
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Figure 9. Computational time required by PROPKA and
PKA17 software as a function of the total number of resi-
dues in the protein.
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Figure 10. Computational time required by PROPKA and
PKAu17 software as a function of the number of pKa values
calculated for the protein.

Both programs are rather fast, but it is still worth noting
that PKA17 is an order of magnitude faster than PROPKA.
The very simple model we are using for mapping the pro-
teins and determining the pKa shifts is actually both fast
and robust.

Using PROPKA and PKA17 Together

We have also calculated pKa values for the complete
combined sets for Asp, Glu, His, and Lys by combining the

PROPKA and PKAu17y results for each residue in equal pro-
portion (0.5 of PROPKA pKa + 0.5 of PKA17 pKa). Resulting
average unsigned errors are shown in Table 8 and Figure 11.
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Figure 1. Average unsigned errors in pKa values calcu-
lated with PROPKA, PKA17, and as the average of the
PROPKA and PKA17 values.

It can be seen that this combined application offers a
clear advantage. All the combined PROPKA/PKA17 average
errors are lower than those resulting from applying
PROPKA alone. The errors for Asp and Lys are also lower
than those for applying PKA17 alone. Apparently, PROPKA
and PKA17 tend to err in the opposite directions, and their
combination provides a more robust option for predicting
protein pKa values.

Benchmarking PKA17 Using an Extensive MCCE Test Set

The Multi-Conformation Continuum Electrostatic
(MCCE) method using a Poisson-Boltzmann approach
with AMBER, CHARMM, and PARSE force fields has been
developed and successfully applied by Alexov and cowork-
ers in order to calculate pKa values of an extensive set of
protein residues.’ We have used the same dataset to pro-
vide additional validation of our technique by calculating
pKa values with the PKA17 and PROPKA software.

The comparison of accuracy in calculating these acidity
constants for Asp, Glu, His, and Lys residues are given in
Tables 9-12 and on Figures 12-15. The overall accuracy is
presented in Table 13 and on Figure 16. All the pKa values
for the individual residues are listed in the supporting in-
formation file. It should be emphasized that these results
were obtained with no additional fitting of the PKA17 pa-
rameters.
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Figure 12. Average errors of Asp pKa calculations for the
extensive fitting set presented in Reference 33.
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Figure 13. Average errors of Glu pKa calculations for the
extensive fitting set presented in Reference 33.
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Figure 14. Average errors of His pKa calculations for the
extensive fitting set presented in Reference 33.
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Figure 15. Average errors of Lys pKa calculations for the
extensive fitting set presented in Reference 33.
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Figure 16. Overall average unsigned errors of pKa calcu-
lations for the extensive fitting set presented in Reference

33.

It can be seen from these tables and figures that, in al-
most all of the cases (including the overall results), the
PKA17 formalism performs somewhat worse than the much

more sophisticated MCCE technique, but slightly better
than the PROPKA suite. Histidine calculations are an ex-
ception, with the PKA17 results being better than those
produced by all the other techniques.

We believe that these tests confirm the suitability of the
PKA17 formalism and implementation for use in the gen-
eral field of fast prediction of protein pKa shifts.

IV. Conclusions

We have developed and validated a predictor of protein
pKa values named PKAu1y. It is based on a coarse-grain grid
model of proteins. The pKa shifts are defined by the resi-
dues that are spatially close to the ionizable residue in
question. Fitting and validation of our model involved an
extensive set of 441 protein residues. Additional bench-
marking on a previously proposed extensive set of ioniza-
ble protein residues® appears to confirm the robustness of
the presented technique. The resulting tool has been de-
ployed with a web-based interface at
http://users.wpi.edu/~jpcvitkovic/pka_calc.html

The results demonstrate that PKA17 performs on par or
even somewhat better than the widely used and successful
protein pKa predictor PROPKA. It also requires less com-
putational resources, with the computational time needed
for PKA17 runs being an order of magnitude lower than
that required by PROPKA. Moreover, we have achieved the
current level of accuracy with PKA17 while significantly
limiting the number of fitting variables in order to avoid
any danger of possible overparameterization.

We have also shown that the accuracy of PKA17 is rea-
sonably robust with respect to the choice of the fitting set
for parameterization, even though some more sophisti-
cated techniques (such and MCCE and quantum mechan-
ics) canyield a higher degree of accuracy of evaluating pKa
shifts of protein residues.

In addition to the above, we have tested a combined ap-
plication of PKA17 and PROPKA and found that such a
combination results in improved accuracy of the pKa pre-
dictions compared to either technique used individually.

Therefore, we report creation of an accurate and efficient
web-interfaced protein pKa predictor, and, we have
demonstrated that protein pKa shifts can be assessed with
a set of very simplistic coarse-grid predictors. Moreover, all
these predictors are local, with only the immediate envi-
ronment of the ionizable residue affecting the final acidity
constant value.
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TABLES. Table 4. Results of pKa calculations for Lys resi-

dues (in pH units)

Table 1. Results of pKa calculations for Asp resi- Average unsigned
dues (in pH units) Method error in pKa values
Fitting set, PROPKA 0.583
Average unsigned Fitting set, PKA17 0.510
Method error in pKa values Fitting set, PKA17, LOO 0.793
Fitting set, PROPKA 0.606 Test set, PROPKA 1.351
Fitting set, PKA17 0.654 Test set, PKA17 1.286
Fitting set, PKA17, LOO 0.809 Combined set, PROPKA 0.817
Test set, PROPKA 0.876 Combined set, PKA17 0.746
Test set, PKAL7 0.694 Combined set, PKA17, 0.964
Combined set, PROPKA 0.671 LOO
Combined set, PKA17 0.632
Combined set, PKA17, 0.740
LOO Table 5. Results of Aspartic acid pKa calculations
after fitting to the PROPKA training set (in pH
units)
Table 2. Results of pKa calculations for Glu resi-
dues (in pH units) Average unsigned
Method error in pKa values
Average unsigned Fitting set, PROPKA 0.503
Method error in pKa values Fitting set, PKA17 0.299
Fitting set, PROPKA 0.726 Fitting set, PKA17, LOO 0.460
Fitting set, PKA17 0.518 Combined set, PROPKA 0.671
Fitting set, PKA17, LOO 0.632 Combined set, PKA17 0.768
Test set, PROPKA 0.498
Test set, PKA17 0.479
Combined set, PROPKA 0.671 Table 6. Results of Glutamic acid pKa calculations
Combined set, PKA17 0.484 after fitting to the PROPKA training set (in pH
Combined set, PKA17, 0.565 units)
LOO
Average unsigned
Method error in pKa values
Table 3. Results of pKa calculations for His resi- Fitting set, PROPKA 0.469
dues (in pH units) Fitting set, PKA17 0.331
Fitting set, PKA17, LOO 0.471
Average unsigned Combined set, PROPKA 0.671
Method error in pKa values Combined set, PKA17 0.603
Fitting set, PROPKA 1.038
Fitting set, PKA17 0.722
Fitting set, PKA17, LOO 1.016 Table 7. CPU time required for pKa calculation (in
Test set, PROPKA 0.872 seconds)
Test set, PKA17 1.053

Combined set, PROPKA 0.985



PDBID  lubq 2dhc 3twy

2gga 4pyp

Number 76 310 455 137 504
of
residues

Number 26 93 108 52 79
of pKa
values

Time, 0.219 1.121 2947 0369 1.489

PROPKA

Time, 0.038 0.046 0.062 0.027 0.066

PKA17

Table 8. Average unsigned errors in pKa values
calculated with PROPKA, PKA17, and as the av-
erage of the PROPKA and PKA17 values (in pH
units)

Combined/Averaged 0.687

Table 9. Average errors of Aspartic acid pKa cal-
culations for the extensive fitting set presented in
Reference 33. (in pH units)

Average unsigned

Method error in pKa values
MCCE, AMBER?? 0.473
MCCE, CHARMM?* 0.464
MCCE, PARCE* 0.492
PROPKA 0.600
PKA17 0.572

Table 10. Average errors of Glutamic acid pKa
calculations for the extensive fitting set presented
in Reference 33. (in pH units)

Average unsigned

Average unsigned Method error in pKa values
System/Method error in pKa values MCCE, AMBER” 0.562
MCCE, CHARMM?* 0.512
Asp MCCE, PARCE** 0.519
PROPKA 0.700
PROPKA 0.671 PKA17 0.635
PKA17 0.632
Combined/Averaged 0.541 Table 11. Average errors of Histidine pKa calcu-
lations for the extensive fitting set presented in
Glu Reference 33. (in pH units)
PROPKA 0.671 Average unsigned
Method error in pKa values
PRAIT 0.484 MCCE, AMBER™ 0.677
Combined/Averaged 0.506 MCCE, CHARMM®* 0.705
MCCE, PARCE* 0.596
His PROPKA 0.844
PKA17 0.557
PROPKA 0.985
PKAT7 0.730 Table 12. Average errors of Lysine pKa calcula-
Combined/Averaged 0.776 tions for the extensive fitting set presented in Ref-
erence 33. (in pH units)
Lys
Average unsigned
PROPKA 0.817 Method error in pKa values
MCCE, AMBER* 0.479
PKA17 0.746

MCCE, CHARMM?* 0.504



MCCE, PARCE* 0.476 MCCE, CHARMM?* 0.530

PROPKA 0.542 MCCE, PARCE?? 0.515
PKA17 0.507 PROPKA 0.661
PKA17 0.575

Table 13. Overall average errors of pKa calcula-
tions for the extensive fitting set presented in Ref-
erence 33. (in pH units)

Average unsigned
Method error in pKa values
MCCE, AMBER? 0.538
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