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ABSTRACT. We consider singular metrics on a punctured Rie-
mann surface and on a line bundle, and study the behavior of
the Bergman kernel in the neighborhood of the punctures. The
results have an interpretation in terms of the asymptotic profile
of the density-of-states function of the lowest Landau level in
quantum Hall effect.
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1. INTRODUCTION

The purpose of this paper is to study the behavior of the Bergman kernel function
of a Hermitian holomorphic line bundle over a punctured Riemann surface. A
quite general result about asymptotics of Bergman kernel on non-compact man-
ifolds was given in [25, 34–36]. Let (Y ,ω) be a complete Kähler manifold of
dimension n, and (L,h)→ X be a holomorphic Hermitian line bundle such that

(1.1) c1(L,h) ≥ εω, Ricω ≥ −Cω,
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for some constants ε, C > 0. If (L,h) = (KY , hKY ), where KY = det(T∗(1,0)Y) is
the canonical bundle and hKY is induced by ω, condition (1.1) is to be replaced
by

(1.2) Ricω ≤ −εω.

Under these assumptions, it is known that the Bergman kernel function Pp(x) of
the space of L2-holomorphic sections H0

(2)(Y , L
p) has the following expansion:

(1.3) Pp(x) = b0(x)p
n + b1(x)p

n−1 + · · · =
∞∑

j=0

bj(x)p
n−j ,

uniformly on compact sets relative to any Cℓ-topology.

More precisely, there exist coefficients bj ∈ C∞(Y), j ∈ N, such that for any
compact set K ⊂ Y , any k, ℓ ∈ N, there exists Ck,ℓ,K > 0 such that for p ∈ N

∣∣∣∣
1
pn
Pp(x)−

k∑

j=0

bj(x)p
−j
∣∣∣∣
Cℓ(K)

≤ Ck,ℓ,Kp−k−1.

Moreover, we have

b0 =
c1(L,h)n

ωn
, b1 =

1
8π
c1(L,h)n

ωn

(
rY − 2∆ log

(
c1(L,h)n

ωn

))
,

where rY and ∆ are the scalar curvature and the Bochner Laplacian of the metric
associated with the Kähler form c1(L,h).

Assume, now, that X is compact and c1(L,h) = ω; hence, b0 = 1. The
expansion Pp(x) = pn + O(pn−1/2) was proved by Tian [41, Section 3] in the
C4-topology and generalized by Ruan [37] to Pp(x) = pn + O(pn−1) in any
Cℓ-topology. Berndtsson [4] gave a simple proof of the uniform convergence
Pp(x) = b0(x)pn + o(pn). The asymptotics (1.3) were proved by Catlin [10]
and Zelditch [43].

In the quantum Hall effect (QHE), the density of states for the lowest Lan-
dau level on a Riemann surface, or more generally on a Kähler manifold, is given
by the Bergman kernel on the diagonal (see [20], where (1.3) was derived using
perturbation theory for the quantum mechanical path integral). The metric de-
pendence and gravitational anomaly in the quantum Hall states has recently been
studied using the asymptotic expansion of the Bergman kernel [26, 30], as well as
other methods [1,5–7,22,24,29] (see [27] for a review). The quantum Hall states
and the density function have been studied recently for surfaces with conical sin-
gularities [8, 28], singular surfaces with Zn-symmetry [23] and cusps [9] (see [2]
for the results for the Bergman kernel). Remarkably, the quantum Hall effect on
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a cone can also be realized experimentally (see [38], where synthetic Landau levels
on a cone were constructed in a photon resonator). In this paper, we study the
asymptotic profile of the Bergman kernel for more general singular geometries.

If X is non-compact, (1.3) was deduced in [34, Theorem 6.1.1] under hypoth-
esis (1.1), in [35, Theorem 3.11] under hypothesis (1.2) (see also Theorem 1.6
in [25]). We refer the reader to the book [34] for a comprehensive study of the
Bergman kernel and its applications, and also to the survey [33].

By the above mentioned works, the asymptotic expansion of the Bergman
kernel is well understood on fixed compact sets. In this paper, we consider very
general metrics on a punctured Riemann surface and on a line bundle, and study
the behavior of the Bergman kernel in the neighborhood of the punctures. The
asymptotics depend on the singularities of the metrics on the base manifold and
on the bundle.

In the case of metrics with Poincaré singularities, [2] provides a weighted esti-
mate in the Cm-norm near the punctures for the global Bergman kernel compared
to the Bergman kernel of the punctured disc, uniformly in the tensor powers of
the given bundle. Our estimates complement the results of [2].

More precisely, we consider in this paper the following setting:

(A) X is a Riemann surface and Σ = {xj : j ≥ 1} ⊂ X is a discrete closed
subset. We fix a smooth Hermitian metric Ω on X and denote by dist the
induced distance.

(B) ω is a Hermitian metric of class C2 on X \ Σ such that ω ≥ cΩ, where
c : X → (0,∞) is a continuous function and Ricω ≥ −2πBω, for some
constant B > 0.

(C) L is a holomorphic line bundle on X and h is a Hermitian metric of class
C3 on L|X\Σ such that c1(L,h) ≥ 2εω on X \Σ, for some constant ε > 0.

Let hp := h⊗p be the metric induced by h on Lp|X\Σ, where Lp := L⊗p. We
denote by H0

(2)(X \ Σ, Lp) the Bergman space of L2-holomorphic sections of Lp

relative to the metric hp andω,

(1.4) H0
(2)(X \ Σ, Lp) =

{
S ∈ H0(X \ Σ, Lp) :

∥∥S
∥∥2
p :=

∫

X\Σ

∣∣S
∣∣2
hp
ω < ∞

}
,

endowed with the obvious inner product.
Let dp ∈ N∪{∞} be the dimension of H0

(2)(X \Σ, Lp). We denote by Pp the

Bergman kernel function of the space H0
(2)(X \Σ, Lp), which is defined as follows.

For p ≥ 1, if {Spℓ }ℓ≥1 is an orthonormal basis of H0
(2)(X \ Σ, Lp) , then

(1.5) Pp(x) =
dp∑

ℓ=1

∣∣Spℓ (x)
∣∣2
hp
.

Note that Pp is independent of the choice of basis (see [11, Lemma 3.1]).
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Fix xj ∈ Σ and a constant Rj > 0 with the property that xj has a coordinate
neighborhood Uxj centered at xj such that the coordinate disc B(xj ,2Rj) ⋐ Uxj
and

(1.6) dist(B(xj ,2Rj),Σ \ {xj}) ≥ Rj .

Let ej be a local holomorphic frame of L on B(xj ,2Rj), and let ϕj be the sub-
harmonic weight of h on B(xj ,2Rj)\{xj} corresponding to ej , so |ej|h = e−ϕj .
We assume that, in local coordinate z on Uxj , ϕj has the form

ϕj(z) = νj log |z| +ψj(z),(1.7)

where νj ∈ R, ψj ∈ C3(B(xj ,2Rj) \ {xj}).

Moreover, we assume that there exist the constants Aj > 0, αj ≥ 0 such that the
third-order derivatives of ψj verify

(1.8) |Dµψj(z)| ≤ Aj|z|−αj , for all z ∈ B(xj ,2Rj) \ {xj}, |µ| = 3.

In particular, equation (1.7) lets us consider the special cases when ψj is bounded
or smooth near xj ; that is, the metric h has logarithmic singularities at Σ.

Next, we can write on B(xj ,2Rj) \ {xj},

(1.9) ω(z) = i
2
ρj(z)dz ∧ dz̄ = ρj(z)dm(z),

where dm(z) is the Lebesgue measure in the coordinate z. We assume that there
exist the constants A′j > 0, βj ≥ 0 such that the first-order derivatives of ρj verify

(1.10) |Dρj(z)| ≤ A′j|z|−βj , for all z ∈ B(xj ,2Rj) \ {xj}.

Finally, we let

(1.11) δj =max

{
8
3
,
8βj
3
,8αj

}
.

In [4, Section 2], Berndtsson gave a simple proof for the first-order asymp-
totics of the Bergman kernel function Pp(x) = b0(x)pn + o(pn) in the case of
powers of an ample line bundle on a projective manifold. By adapting his methods
to our situation, we prove the following asymptotics near the singular points. They
show explicitly how the estimates depend on the distance to the singular points,
and on the parameters αj, βj which encode the singularities of the metrics.

Theorem 1.1. Let (X,Σ,ω, L,h) verify assumptions (A)–(C), and let xj ∈ Σ.
Let Rj be defined by (1.6), δj by (1.11), and assume that h andω satisfy inequalities
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(1.8) and (1.10), respectively. Then, there exists a constant Cj > 1 such that if
x ∈ B(xj , Rj) \ {xj} and

p > Cj dist(x,xj)−δj ,

then
∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣(1.12)

≤ Cj(p−1/8 dist(x,xj)−αj + p−3/8 dist(x,xj)−βj ).

Next, we consider Bergman kernels for powers of the canonical bundle of a
punctured Riemann surface. In addition to the setting in (A), let us consider the
following condition:

(B’) ω is a smooth Hermitian metric on X \ Σ such that ω ≥ cΩ, where
c : X → (0,∞) is a continuous function and Ricω ≤ −λω on X \ Σ, for
some constant λ > 0.

The Hermitian metric ω induces a Hermitian metric hKX on KX|X\Σ. We
denote by hp the metric induced by hKX on K

p
X and by H0

(2)(X \Σ, K
p
X) the space

of holomorphic sections of K
p
X|X\Σ which are L2, with respect to the metrics hp

and volume formω (cf. (1.4)).
Let z : Uxj → C be a local holomorphic coordinate, with respect to which the

metric ω has the form (1.9). We define the weight ϕj on B(xj ,2Rj) \ {xj} of
hKX by

(1.13) e−2ϕj =
∣∣dz

∣∣2
ω, ϕj =

1
2
(logρj − log 2),

and we further write ϕj as in (1.7).

Theorem 1.2. We let (X,Σ,ω) verify the assumptions (A) and (B’). We as-
sume that ω satisfies (1.8) and (1.10). We let Pp be the Bergman kernel function
of the space H0

(2)(X \ Σ, K
p
X). Then, there exists a constant Cj > 1 such that if

x ∈ B(xj , Rj) \ {xj} and

(1.14) p > Cj dist(x,xj)−δj ,

then
∣∣∣∣∣
Pp(x)

p

(
− 2π
Rω(x)

)
− 1

∣∣∣∣∣(1.15)

≤ Cj(p−1/8 dist(x,xj)−αj + p−3/8 dist(x,xj)−βj ),

where Rω is the Gauss curvature ofω.
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In [2], we consider the particular situation of Theorem 1.2 when the met-
ric ω equals the Poincaré metric near the punctures (hence, αj = βj = 3,
cf. Lemma 4.3) and obtain estimates which are different in nature from those
in Theorem 1.2.

See Corollaries 4.4, 4.6, 4.7 for applications of Theorem 1.2.
Theorem 1.1 has the following interesting corollary which gives a uniform

estimate on the Bergman kernel Pp(x) in the regime where the distance from x
to Σ decreases slower than some power of 1/p.

Corollary 1.3. In the setting of Theorems 1.1 or 1.2, there exists a constant
Cj > 1 such that if η ∈ [0,1], p > Cj , and x ∈ B(xj , Rj) satisfies dist(x,xj) >
(Cj/p)η/δj , then

∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣ ≤ 2Cjp−(1−η)/8.

The paper is organized as follows. In Section 2, we recall some facts about
singular Hermitian metrics on holomorphic line bundles and the solution of the
∂̄ equation. Section 3 is devoted to the proof of the main results announced in
the Introduction. In Section 4, we apply these results to interesting metrics for
which the parameters αj and βj can be explicitly given (metrics with logarithmic,
cuspidal, and conical singularities). In Section 5, we calculate the Bergman kernel
of the Riemann sphere with two conical singularities and study its asymptotics
near the singularities.

2. PRELIMINARIES

2.1. Singular Hermitian holomorphic line bundles. Let L be a holo-
morphic line bundle on a complex manifold Y . The notion of singular Her-
mitian metric h on L is defined as follows (see [18], [34, p. 97]): if eℓ is a
holomorphic frame of L over an open set Uℓ ⊂ Y , then |eℓ|2h = e−2ϕℓ , where
ϕℓ ∈ L1

loc(Uℓ). If gℓk = ek/eℓ ∈ O∗Y (Uℓ ∩ Uk) are the transition functions
of L, then ϕℓ = ϕk + log |gℓk|. The curvature current c1(L,h) of h is the
current of bidegree (1,1) on Y defined by c1(L,h) = ddcϕℓ on Uℓ, where
dc = 1/(2πi)(∂ − ∂̄). If c1(L,h) ≥ 0, then the weight ϕℓ is plurisubharmonic
on Uℓ. When Y is compact, the space H0(Y , L) of global holomorphic sections of
L is finite dimensional.

Now, let (X,Σ,ω, L,h) be as in Theorem 1.1, and Pp be the Bergman kernel
functions of the spaces H0

(2)(X \ Σ, Lp) defined in (1.5). Then, for all x ∈ X \ Σ,

(2.1) Pp(x) =max
{∣∣S(x)

∣∣2
hp

: S ∈ H0
(2)(X \ Σ, Lp), ‖S‖p = 1

}
.

Let (Y , J,ω) be a Kähler manifold, where J is the complex structure of Y , and let
gTY be the Riemannian metric associated with ω by gTY (u,v) = ω(u, Jv) for
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all u,v ∈ TxY , x ∈ Y . Let Ric be the Ricci curvature of gTY . The Ricci form
Ricω is defined as the (1,1)-form associated with Ric by

(2.2) Ricω(u,v) = Ric(Ju,v), for any u,v ∈ TxY, x ∈ Y.

The volume form ωn induces a metric h
K∗Y
ω on K∗Y , whose dual metric on KY is

denoted by hKYω . For simplicity, we denote by hp := (hKYω )⊗p the induced metric
on KpY . Since the metric gTY is Kähler, we have (see, e.g., [34, Problem 1.7])

(2.3) Ricω = iRK
∗
Y = −iRKY = −2πc1(KY , h

KY ).

Let us consider now the case of dimension n = 1. The canonical bundle of Y
is just KY = T (1,0)∗Y and K∗Y = T (1,0)Y ; moreover, the metric h

K∗Y
ω on K∗Y is

directly given by ω. In local holomorphic coordinates z : U → C, we write
ω(z) = (i/2)ρ(z)dz ∧ dz̄, so gTY (z) = ρ(z)|dz|2. The Gauss curvature of
gTY (and, by a slight abuse, ofω) is defined by

(2.4) Rω = −
2
ρ

∂2

∂z ∂z̄
logρ.

Since the metric h
K∗Y
ω on K∗Y is directly given by ω, we have that ∂/∂z is a frame

of K∗Y , dz is the dual frame of KY on U , and

(2.5)
∣∣∣∣
∂

∂z

∣∣∣∣
2

ω
= ρ(z)

2
,
∣∣dz

∣∣2
ω =

2
ρ(z)

.

The weight ϕ of hKYω on U is given by

e−2ϕ =
∣∣dz

∣∣2
ω, ϕ = 1

2
(logρ − log 2);

hence,

(2.6) Ricω = −2πc1(KY , h
KY ) = −2πddcϕ = −πddc logρ = Rωω.

In local normal coordinates associated withω near an arbitrary point x0 ∈ Y , we
have ω|x0 = (i/2)dz ∧ dz̄, and the scalar curvature rω of (Y ,ω) is given at x0

by

rω = 4RT
(1,0)Y

(
∂

∂z
,
∂

∂z̄

)
.

Thus,

(2.7) − i
2
rωω = RT (1,0)Y = −RKY = ∂̄ ∂ log |σ |2,



600 DAN COMAN, SEMYON KLEVTSOV & GEORGE MARINESCU

where σ is a local holomorphic frame of T (1,0)Y . From (2.6) and (2.7), we deduce
the relation between scalar and Gaussian curvature,

(2.8) rω = 2Rω.

2.2. L2-estimates for ∂̄. The following version of Demailly’s estimates for
the ∂̄ operator [17, Theorem 4.1] will be needed in our proofs (see Theorem 2.5
of [14]).

Theorem 2.1 ([17]). Let Y be a complete Kähler manifold, dimY = n, and
let ω be a Kähler form of class C2 on Y (not necessarily complete) such that its Ricci
form Ricω ≥ −2πBω on Y , for some constant B > 0. Let (L,h) be a Hermitian
holomorphic line bundle on Y such that h is of class C2 and c1(L,h) ≥ 2εω. If
p ≥ B/ε and g ∈ L2

0,1(Y , L
p, loc) verifies

∂̄g = 0 and
∫

Y

∣∣g
∣∣2
hp
ωn <∞,

then there exists u ∈ L2
0,0(Y , L

p , loc) such that

∂̄u = g and
∫

Y

∣∣u
∣∣2
hp
ωn ≤ 1

pε

∫

Y

∣∣g
∣∣2
hp
ωn.

We also need the following version for powers of the canonical bundle.

Theorem 2.2. Let Y be a complete Kähler manifold, dimY = n, and let ω
be a Kähler form on Y (not necessarily complete) such that its Ricci form satisfies
Ricω ≤ −λω on Y , for some constant λ > 0. If p ≥ 2 and g ∈ L2

0,1(Y ,K
p
Y , loc)

verifies

∂̄g = 0 and
∫

Y

∣∣g
∣∣2
hp
ωn <∞,

then there exists u ∈ L2
0,0(Y ,K

p
Y , loc) such that

∂̄u = g and
∫

Y

∣∣u
∣∣2
hp
ωn ≤ 1

(p − 1)λ

∫

Y

∣∣g
∣∣2
hp
ωn.

3. PROOF OF MAIN RESULTS

In this section, we prove Theorems 1.1 and 1.2 together with Corollary 1.3. We
then give a semi-global version of these results (Theorem 3.1).

Proof of Theorem 1.1. We use methods from [4, Section 2] (see Theorem 1.3
of [14]), and divide the proof into three steps. Recall the definition (1.6) of Rj .
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Step 1. Given x ∈ B(xj , Rj) \ {xj} we estimate the growth of the functions ρj
and ψj defined in (1.9) and (1.7), respectively.

Note that, since ω ≥ cΩ, we have

(3.1) ρj(z) ≥ c0, ∀z ∈ B(xj ,2Rj) \ {xj},

for some constant c0 > 0. Let x ∈ B(xj , Rj), r < |x|/2, and set

Mj(x, r) =max{ρj(z) : |z − x| ≤ r},
mj(x, r) =min{ρj(z) : |z − x| ≤ r}.

Hence,

(3.2) mj(x, r)dm(z) ≤ω(z) ≤Mj(x, r)dm(z) on B(x, r).

Since r < |x|/2, we obtain by (1.10)

|ρj(z)− ρj(x)| ≤
A′jr

(|x| − r)βj
≤

2βjA′jr

|x|βj
, z ∈ B(x, r).

Therefore, by using (3.1), we get

Mj(x, r) ≤ ρj(x)+
2βjA′jr

|x|βj
≤ ρj(x)


1+

2βjA′jr

c0|x|βj


 ,

mj(x, r) ≥ ρj(x)−
2βjA′jr

|x|βj
≥ ρj(x)


1−

2βjA′jr

c0|x|βj


 .

If r < |x|/4 and r < c0|x|βj/(2βj+2A′j), these estimates yield

(3.3)
Mj(x,2r)

mj(x, r)
≤

1+
2βj+1A′jr

c0|x|βj

1−
2βjA

′
jr

c0|x|βj

≤ 1+ C′1r

|x|βj
,

with some constant C′1 > 0. Note that (3.3) holds also with ρj(x)/mj(x, r) and
Mj(x,2r)/ρj(x) in place of Mj(x,2r)/mj(x, r), since the first two quantities
are bounded above by the third.

Next, we turn our attention to the weight ϕj of the metric h corresponding
to the local holomorphic frame ej of L on B(xj ,2Rj) (see (1.7)). By using the
Taylor expansion of order 2 of ψj at x on B(x, |x|), we can write

ϕj(z) = νj log |z| + Refj(z)+ λx|z − x|2 + ψ̃j(z),
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where fj is a holomorphic polynomial, and ψ̃j vanishes to order 3 at x. If, then,
r < |x|/2, we have by (1.8) that

(3.4) max{|ψ̃j(z)| : z ∈ B(x, r)} ≤ Ajr 3

(|x| − r)αj ≤
2αjAjr 3

|x|αj .

Since c1(L,h)x ≥ 2εωx , it follows by (3.1) that

(3.5) λx ≥ περj(x) ≥ πεc0.

Note that the function log |z| is harmonic on the disc B(x, |x|). Hence, there
exists a holomorphic function Fj(z) on B(x, |x|) such that

ϕj(z) = ReFj(z)+ λx|z − x|2 + ψ̃j(z).

Consider the holomorphic frame ex = eFjej of L on B(x, |x|), so

(3.6) ϕ̃j(z) = − log |ex(z)|h = ϕj(z)−ReFj(z) = λx|z − x|2 + ψ̃j(z)

is the corresponding weight of h. Note that ϕ̃j(x) = 0.
We conclude Step 1 by introducing the following function, which is needed

in the sequel:

E(r) :=
∫

|ξ|≤r
e−2|ξ|2

dm(ξ) = π
2
(1− e−2r 2

),

where dm is the Lebesgue measure on C. If r ≥ δ > 0, then

(3.7)
π

2E(r)
= 1+ e−2r 2

1− e−2r 2 ≤ 1+ e−2r 2

1− e−2δ2 .

Step 2. We obtain here the upper estimate for Pp(x) if x ∈ B(xj , Rj) \ {xj}. Let

S ∈ H0
(2)(X \ Σ, Lp)

and write S = se⊗px , where ex is the local holomorphic frame of L on B(x, |x|)
from Step 1 and s ∈ OX(B(x, |x|)). Let rp ∈ (0, |x|/4) be an arbitrary num-
ber which will be specified later. It follows from the sub-averaging inequality for
subharmonic functions that

∣∣S(x)
∣∣2
hp
= |s(x)|2 ≤

∫

B(x,rp)
|s(z)|2e−2pλx |z−x|2 dm(z)

∫

B(x,rp)
e−2pλx |z−x|2 dm(z)

.
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By using (3.2), (3.6), and (3.4), we obtain∫

B(x,rp)
|s(z)|2e−2pλx |z−x|2 dm(z)

≤
exp(2pmaxB(x,rp) ψ̃j)

mj(x, rp)

∫

B(x,rp)
|s(z)|2e−2pϕ̃j(z)ω(z)

≤
exp(2αj+1Ajpr 3

p|x|−αj )
mj(x, rp)

∥∥S
∥∥2
p.

Moreover,

(3.8)
∫

B(x,r)
e−2pλx |z−x|2 dm(z) = 1

pλx
E(r

√
pλx) ≤

π

2pλx
, ∀ r > 0.

By combining these estimates, it follows that

(3.9)
∣∣S(x)

∣∣2
hp
≤
∥∥S
∥∥2
p

pλx
E(rp

√
pλx)

exp(2αj+1Ajpr 3
p|x|−αj )

mj(x, rp)
.

Note that
c1(L,h)x
ωx

= 2λx
πρj(x)

.

By taking the supremum in (3.9) over S ∈ H0
(2)(X \Σ, Lp) with ‖S‖p = 1, we get

by (2.1)

Pp(x) ≤ p
c1(L,h)x
ωx

π

2E(rp
√
pλx)

ρj(x)

mj(x, rp)
exp(2αj+1Ajpr

3
p|x|−αj ).

By using (3.5), we obtain

Pp(x) ≤ p
c1(L,h)x
ωx

π

2E(rp
√
πεc0p)

ρj(x)

mj(x, rp)
exp(2αj+1Ajpr

3
p|x|−αj ).

If rp
√
p ≥ 1, then by (3.7),

π

2E(rp
√
πεc0p)

≤ 1+ C′2 exp(−2πεc0pr
2
p)

with a constant C′2 > 0. Moreover, if pr 3
p < |x|αj , then

exp(2αj+1Ajpr
3
p|x|−αj ) ≤ exp(2αj+4Ajpr

3
p|x|−αj )(3.10)

≤ 1+ C′3pr 3
p|x|−αj ,

with a constant C′3 > 0. If, in addition, rp < c0|x|βj/(2βj+2A′j), then apply-
ing (3.3), together with these estimates, to the above upper bound on Pp(x) yields

Pp(x) ≤ p
c1(L,h)x
ωx

(1+ C′2e−2πεc0pr 2
p)(1+ C′1rp|x|−βj )(1+ C′3pr 3

p|x|−αj ),
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provided that

0 < rp <
|x|
4
, rp

√
p ≥ 1, rp <

c0|x|βj
2βj+2A′j

, pr 3
p < |x|αj .

Set rp = p−a, so rp
√
p = p1/2−a, pr 3

p = p1−3a. We have shown the following: if

1
3
< a <

1
2
, p−a <

|x|
4
, p−a <

c0|x|βj
2βj+2A′j

, p1−3a < |x|αj ,

then

Pp(x) ≤ p
c1(L,h)x
ωx

(1+ C′2e−2πεc0p
1−2a
)

× (1+ C′1p−a|x|−βj )(1+ C′3p1−3a|x|−αj ).

With a = 3
8 , this implies that there exists a constant C′4 > 0 such that if

p > C′4 max{|x|−8/3, |x|−8βj/3, |x|−8αj} = C′4|x|−δj ,
where δj is defined in (1.11), then

Pp(x)

p

ωx
c1(L,h)x

≤ 1+ C′4(p−3/8|x|−βj + p−1/8|x|−αj ).

Step 3. We obtain now the lower estimate for Pp(x) if x ∈ B(xj , Rj) \ {xj}. As
before, let rp ∈ (0, |x|/4) be an arbitrary number which will be specified later.
Let χ : C → [0,1] be a smooth function such that χ = 1 on the unit disc B(0,1)
and suppχ ⊂ B(0,2). If ex is the local holomorphic frame of L on B(x, |x|) from
Step 1, define

χp(z) = ρj(x)−1/2χ

(
z − x
rp

)
, F = χpe

⊗p
x ,

so ∣∣F(x)
∣∣2
hp
= ρj(x)−1e−2pϕ̃j(x) = ρj(x)−1.

By using (3.2), (3.6), (3.4), and (3.8), we obtain

∫

B(x,2rp)
e−2pϕ̃jω ≤ Mj(x,2rp) exp(2p max

B(x,2rp)
|ψ̃j|)(3.11)

×
∫

B(x,2rp)
e−2pλx|z−x|2 dm(z)

≤ πMj(x,2rp)
2pλx

exp
(
2αj+4Ajpr

3
p|x|−αj

)
.
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Since χ2
p
≤ ρj(x)−1, this implies

∥∥F
∥∥2
p =

∫

B(x,2rp)
χ2
p
e−2pϕ̃jω(3.12)

≤ π

2pλx

Mj(x,2rp)

ρj(x)
exp(2αj+4Ajpr

3
p|x|−αj ).

Note that any non-compact Riemann surface admits a complete Kähler met-
ric, since it is a Stein manifold by Behnke-Stein [3]. Hence, if X is a Riemann
surface and Σ is a discrete closed set, then X \ Σ admits a complete Kähler metric.
By assumptions (B) and (C), Ricω ≥ −2πBω, c1(Lp, hp) ≥ 2pεω on X \ Σ.
So, if p ≥ B/ε, we can solve the ∂̄-equation using [17] (see Theorem 2.1): if
θ = ∂̄F ∈ L2

0,1(X \ Σ, Lp, loc), there exists G ∈ L2
0,0(X \ Σ, Lp, loc) such that

∂̄G = θ = ∂̄F and
∥∥G
∥∥2
p =

∫

X\Σ

∣∣G
∣∣2
hp
ω ≤ 1

pε

∫

X\Σ

∣∣θ
∣∣2
hp
ω.

Since
|∂̄χp|2 ≤ ‖∂̄χ‖2ρj(x)

−1r−2
p ,

where ‖∂̄χ‖ denotes the maximum of |∂̄χ|, we get by (3.11)
∫

X\Σ

∣∣θ
∣∣2
hp
ω =

∫

B(x,2rp)
|∂̄χp|2e−2pϕ̃jω

≤ π‖∂̄χ‖
2

2λxpr
2
p

Mj(x,2rp)

ρj(x)
exp(2αj+4Ajpr

3
p|x|−αj ).

Thus,

(3.13)
∥∥G
∥∥2
p ≤

1
pε

π‖∂̄χ‖2

2λx

1

pr 2
p

Mj(x,2rp)

ρj(x)
exp(2αj+4Ajpr

3
p|x|−αj ).

Since ∂̄G = ∂̄F = 0 on B(x, rp), G is holomorphic on B(x, rp). Hence, the
estimate (3.9) applies to G on B(x, rp) and gives

∣∣G(x)
∣∣2
hp
≤
∥∥G
∥∥2
p

pλx
E(rp

√
pλx)

exp(2αj+1Ajpr 3
p|x|−αj )

mj(x, rp)
.

By using (3.13), we obtain

∣∣G(x)
∣∣2
hp
≤ ρj(x)−1 π‖∂̄χ‖2

2εE(rp
√
pλx)

1

pr 2
p

Mj(x,2rp)

mj(x, rp)
exp(2αj+5Ajpr

3
p|x|−αj ).

If rp
√
p ≥ 1, then E(rp

√
pλx) ≥ E(

√
πεc0) by (3.5). So,

(3.14)
∣∣G(x)

∣∣2
hp
≤ ρj(x)−1 C

′
5

pr 2
p

Mj(x,2rp)

mj(x, rp)
exp(2αj+5Ajpr

3
p|x|−αj ),

with a constant C′5 > 0.
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Set S = F −G ∈ H0(X \ Σ, Lp), as ∂̄S = ∂̄F − ∂̄G = 0. By (3.12) and (3.13),
we have∥∥S

∥∥2
p ≤ (‖F‖p + ‖G‖p)2

≤ π

2pλx

Mj(x,2rp)

ρj(x)
exp(2αj+4Ajpr

3
p|x|−αj )

(
1+ ‖∂̄χ‖

rp
√
pε

)2

.

Moreover, if

Q(x, rp) :=

√
C′5

rp
√
p

(
Mj(x,2rp)

mj(x, rp)

)1/2

exp(2αj+4Ajpr
3
p|x|−αj ) < 1,

then, by using (3.14), it follows that

∣∣S(x)
∣∣2
hp
≥ (|F(x)|hp − |G(x)|hp)2 ≥ ρj(x)−1(1−Q(x, rp))2.

Therefore,

Pp(x) ≥
∣∣S(x)

∣∣2
hp∥∥S

∥∥2
p

≥ pc1(L,h)x
ωx

ρj(x)

Mj(x,2rp)

(1−Q(x, rp))2(
1+ ‖∂̄χ‖

rp
√
pε

)2

exp(2αj+4Ajpr
3
p|x|−αj )

.

If rp < c0|x|βj/(2βj+2A′j) and pr 3
p < |x|αj , then by (3.3) and (3.10),

Q(x, rp) ≤

√
C′5

rp
√
p
(1+ C′1rp|x|−βj )1/2(1+ C′3pr 3

p|x|−αj ) ≤
C′6
rp
√
p
,

for some constant C′6 > 1. We may assume that C′6 ≥ ‖∂̄χ‖/
√
ε. Applying this

estimate on Q(x, rp), together with (3.3) and (3.10), to the above lower bound
on Pp(x) yields

Pp(x) ≥ p
c1(L,h)x
ωx

(3.15)

×

(
1− C′6

rp
√
p

)2

(1+ C′1rp|x|−βj )(1+ C′3pr 3
p|x|−αj )

(
1+ C′6

rp
√
p

)2 ,

if

p >
B

ε
, 0 < rp <

|x|
4
, rp

√
p > C′6, rp <

c0|x|βj
2βj+2A′j

, pr 3
p < |x|αj .
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We again let rp = p−a, so rp
√
p = p1/2−a, pr 3

p = p1−3a. Then, (3.15)
implies the following: if

1
3
< a <

1
2
, p >

B

ε
, p1/2−a > C′6, p

−a <
|x|
4
, p−a <

c0|x|βj
2βj+2A′j

, p1−3a < |x|αj ,

then

Pp(x) ≥ p
c1(L,h)x
ωx

(1− C′6pa−1/2)2

(1+ C′1p−a|x|−βj)(1+ C′3p1−3a|x|−αj )(1+ C′6pa−1/2)2
.

By taking a = 3
8 , we conclude that there exists a constant C′7 > 0 such that if

p > C′7 max{|x|−8/3, |x|−8βj/3, |x|−8αj} = C′7|x|−δj ,

then
Pp(x)

p

ωx
c1(L,h)x

≥ 1− C′7(p−3/8|x|−βj + p−1/8|x|−αj ).

This concludes the proof of Theorem 1.1. ❐

Proof of Theorem 1.2. Here, L = KX . The proof is analogous to the proof
of Theorem 1.1, with the only difference that we apply Theorem 2.2 instead of
Theorem 2.1 in order to solve the ∂̄-equation in Step 3. For the leading term of
the expansion, observe that

c1(KY , h
KY ) = −Rω

2π
ω by (2.6). ❐

Proof of Corollary 1.3. Let Cj be the constant from Theorem 1.1. Then,

dist(x,xj) > (Cj/p)η/δj ≥ (Cj/p)1/δj .

Hence, by Theorem 1.1, and by using that αj/δj ≤ 1
8 and βj/δj ≤ 3

8 , we obtain

∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣ ≤ Cj(p
−1/8 dist(x,xj)−αj + p−3/8 dist(x,xj)−βj)

≤ Cj(p−1/8(p/Cj)
ηαj/δj + p−3/8(p/Cj)

ηβj/δj )

≤ Cj(p−(1−η)/8 + p−3(1−η)/8) ≤ 2Cjp−(1−η)/8. ❐

We give now a semi-global version of Theorem 1.1. Let K ⊂ X be a compact
set and let Σ ∩ K = {x1, . . . , xm}. Fix a constant R0 > 0 with the property that
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every point x ∈ K has a coordinate neighborhood Ux centered at x such that the
coordinate disc B(x,2R0) ⋐ Ux and

dist(B(xj ,2R0),Σ \ {xj}) ≥ R0, 1 ≤ j ≤m.

Define

α := max{αj : 1 ≤ j ≤m}, A := max{Aj : 1 ≤ j ≤m},
β := max{βj : 1 ≤ j ≤m}, A′ := max{A′j : 1 ≤ j ≤m},

where αj , Aj and βj , A′j are as in (1.8) and (1.10), respectively. We have the
following result.

Theorem 3.1. Let (X,Σ,ω, L,h) verify assumptions (A)–(C), and let K ⊂ X
be a compact set with Σ ∩ K = {x1, . . . , xm}. Assume that h and ω satisfy (1.8)
and (1.10), respectively.

Then, there exists a constant C = C(K,Σ,ω, L,h) > 1 such that if x ∈ K \ Σ
and p > C dist(x,Σ)−δ, where δ =max{ 8

3 ,8β/3,8α}, then

∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣ ≤ C(p
−1/8 dist(x,Σ)−α + p−3/8 dist(x,Σ)−β).

Proof. Let

K′ := K \
m⋃

j=1

B(xj , Rj).

There exist a positive number r0 < R0 and points yj ∈ K′, 1 ≤ j ≤m′ such that

K′ ⊂
⋃m′
j=1 B(yj , r0) and

dist(B(yj ,2r0),Σ) ≥ r0, 1 ≤ j ≤m′.

We have to estimate Pp(x) for x ∈ B(yj , r0). Note that h is of class C3 and
ω is of class C2 in a neighborhood of B̄(yj ,2r0). As in (1.9), we write ω(z) =
ρj(z)dm(z), where ρj ≥ c′0 on B(yj ,2r0), 1 ≤ j ≤ m′, with some constant
c′0 > 0. IfMj(x, r) andmj(x, r) are defined as in Step 1 of the proof of Theorem
1.1, we have that (3.3) holds for r < r0/2 with βj = 0 and some constant C′1 > 0.
Next, we can choose a holomorphic frame ex of L on B(x, r0) ⊂ B(yj ,2r0) for
which the corresponding weight ϕ̃j of h verifies (3.6) and

max{|ψ̃j(z)| : z ∈ B(x, r)} ≤ C′8r 3, r < r0,

with some constant C′8 > 0. Moreover, λx ≥ πεc′0.
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Proceeding as in Step 2 and Step 3 of the previous proof, we show that there
exist p0 ∈ N and a constant C′9 > 0 such that if 1

3 < a <
1
2 , p > p0, and

p1/2−a > C′9, then

(3.16)
Pp(x) ≤ p

c1(L,h)x
ωx

(1+ C′9(e−2πεc′0p
1−2a + p−a + p1−3a)),

Pp(x) ≥ p
c1(L,h)x
ωx

(1− C′9(pa−1/2 + p−a + p1−3a)).

By choosing a = 3
8 in (3.16), we see that there exists p′0 ∈ N such that if p > p′0,

then ∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣ ≤ 3C′9p
−1/8.

Together with Theorem 1.1, this completes the proof of Theorem 3.1. ❐

4. APPLICATIONS

In this section we examine some situations when the parameters α and β can
be explicitly calculated. We consider metrics with logarithmic singularities and
hyperbolic metrics with parabolic singularities (cusps) or conical singularities.

4.1. Metrics with logarithmic singularities. Let X be a Riemann surface
and Σ ⊂ X be a discrete closed subset. Let ω be a Hermitian metric of class
C2 on X. Let (L,h) be a holomorphic line bundle on X with singular metric h
(see [18], [34, p. 97]). We assume that h is smooth on X \Σ and has weights with
logarithmic singularities at Σ; that is, in (1.7) we haveϕj(z) = νj log |z|+ψj(z),
with νj ≥ 0 andψj ∈ C3(B(xj ,2Rj), whereϕj(z) = − log |ej|h is a local weight
around xj .

In this situation, we have α = β = 0, so from Theorem 1.1 we obtain imme-
diately the following result.

Corollary 4.1. Let X be a Riemann surface and Σ ⊂ X be a discrete closed
subset. Let ω be a Kähler metric of class C2 on X such that Ricω ≥ −2πBω, for
some B > 0. Let (L,h) be a holomorphic line bundle on X, where h has weights with
logarithmic singularities at Σ, it is smooth on X \Σ, and c1(L,h) ≥ 2εω holds in the
sense of currents on X, for some ε > 0. Let Pp(x) be the Bergman kernel function of
H0
(2)(X, L

p). Then, for any xj ∈ Σ and any compact set K ⊂ X with K ∩ Σ = {xj},
there exists Cj = Cj(K) > 0 such that if x ∈ K, then

∣∣∣∣∣
Pp(x)

p

ωx
c1(L,h)x

− 1

∣∣∣∣∣ ≤ Cjp
−1/8, for p > Cj dist(x,xj)−8/3.

Note that on a compact Riemann surface, the Ricci curvature is automatically
bounded below. Given a compact Riemann surface, a line bundle (L,h0) with
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smooth metric of positive curvature and a finite set Σ ⊂ X, we can always construct
a singular Hermitian metric h with the properties of Corollary 4.1. We can take
h = h0 exp(−εψ), where ε > 0 is small enough andψ a smooth function on X\Σ
with ψ(z) = log |z − xj| in a neighborhood of xj ∈ Σ.

Consider a non-compact Riemann surface X endowed with a Kähler metric
of class C2 on X such that Ricω ≥ −2πBω, for some B > 0. One can consider,
for example, a hyperbolic domain in P1 endowed with the Poincaré metric, or a
domain in C endowed with the Euclidean metric. Recall that a hyperbolic domain
X ⊂ P1 is a domain such that P1\X contains at least three points. Since X is Stein,
X admits a strictly subharmonic exhaustion function ϕ. Let Σ ⊂ X be a discrete
closed subset. The metric exp(−χ(ϕ)−ψ) on the trivial bundle L = X×C satisfies
the conditions of Corollary 4.1 for some convex increasing function χ : R → R

and for ψ as above.

Remark 4.2. In terms of the Nadel multiplier ideal sheaves (see, e.g., Defini-
tion 2.3.1 in [34]), we deal in Corollary 4.1 with a singular metric h on L with
c1(L,h) ≥ 2εω such that the zero variety of the multiplier ideal sheaves I(h) of
h equals Σ. We have H0

(2)(X, L
p) = H0(X,O(Lp) ⊗ I(hp)), the space of global

sections of the sheaf O(Lp) ⊗ I(hp). By [25, Theorem 1.8], if X is compact, the
Bergman kernel function Pp(x) of H0(X,O(Lp)⊗I(hp)) has the full asymptotic
expansion (1.3) on compact sets of X \ Σ.

4.2. Poincaré metric on the punctured disc. Let us consider X = D and
Σ = {0}. We endow the punctured disc Y := D∗ = D \ {0} with the Poincaré
metric ds2 = (|z| log |z|2)−2|dz|2, that is,

(4.1) ω = i
2

dz ∧ dz̄

|z|2(log |z|2)2 ·

This is a complete Kähler metric with Gauss curvature Rω = −4, or equivalently,
Ricω = −4ω (see (2.6)). The metricω fulfills condition (B’).

Lemma 4.3. We have α = β = 3.

Proof. We use (1.13), (1.7), (1.8) and (1.9), (1.10). We have

ϕ(z) = − log |z| − log | log |z|2 | − 1
2

log 2,

hence,

ψ(z) = − log | log(x2 +y2)| − 1
2

log 2,

with z = x + iy . By explicitly calculating ∂3
xψ and ∂2

x ∂yψ, we obtain that for
any r ∈ (0,1) there exists a constant C = Cr such that |∂3

xψ(z)| ≤ C|z|−3,
|∂2
x ∂yψ(z)| ≤ C|z|−3 for |z| ≤ r . By symmetry, we obtain the same estimates

for ∂3
yψ, ∂x ∂2

yψ. Thus, α = 3.
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We have ρ(z) = (|z| log |z|2)−2. Note that, by direct calculation, we obtain
|∂zρ(z)| ≤ |z|−3, and by symmetry, we obtain the same estimate for |∂z̄ρ(z)|.
Thus, β = 3. ❐

By Theorem 1.2 and Lemma 4.3, we obtain the following result.

Corollary 4.4. Let Pp(x) be the Bergman kernel function of H0
(2)(D

∗, K
p
D∗).

Let r ∈ (0,1). Then, there exists C = C(r) > 1 such that if 0 < |x| ≤ r and
p > C|x|−24, we have

∣∣∣∣∣
Pp(x)

p
· π

2
− 1

∣∣∣∣∣ ≤ Cp
−1/8|x|−3.

An explicit expression of the Bergman kernel on the punctured unit disc was
derived in [2, (3.7)]. By modifying slightly [2, Proposition 3.3], we can show that

(4.2) Pp(x) =
2
π
p − 4

π
+O(e−cp), p →∞,

outside a fixed neighborhood of the origin (or more generally, outside a shrinking
neighborhood [2, (3.9)]). Note that in [2], the metric (4.1) is normalized such
that its Gauss curvature equals −2 and one works with a line bundle L satisfying
2πc1(L,h) = ω; hence, the first two coefficients of the expansion differ from
those in [2] (see also Remark 4.8). Corollary 4.4 is concerned with the behavior
of the Bergman kernel inside a neighborhood of the origin.

4.3. Hyperbolic metrics with parabolic singularities. We consider the Rie-
mann sphere P1 = C∪∞ withm ≥ 3 marked points Σ = {x1, . . . , xm}. By using
a Möbius map we can assume that xm = ∞. Let Y = P1 \ Σ. By the uni-
formization theorem, Y is the quotient H/Γ , where H is the upper half-plane, and
Γ ⊂ PSL(2,R) is a finitely generated torsion-free Fuchsian group acting on H by
linear fractional transformations. The Poincaré metric on H descends to Y and
gives a complete Kähler metric ds2 of constant curvature −1. By [39, Lemma 2],
the metric ds2 has the form ds2 = eϕ|dz|2, where ϕ is a smooth function on Y
verifying ϕzz̄ = 1

2e
ϕ and

ϕ(z) =




−2 log |z − xj| − 2log
∣∣ log |z − xj|

∣∣+O(1),
as z → xj , 1 ≤ j ≤m− 1,

−2 log |z| − 2 log
∣∣log |z|

∣∣+O(1), as z → xm = ∞.

Lemma 4.5. For each j = 1, . . . ,m, we have αj = βj = 3.

Proof. Since the curvature is constant −1, we have ϕzz̄ = 1
2e
ϕ = ρ. Without

loss of generality, we may assume j = 1 and x1 = 0. Near z1 = 0, we have

ϕ(z) = −2 log |z| − 2 log
∣∣log |z|

∣∣+O(1).
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By [39, Lemma 2], there exist C > 0 such that near 0 we have

(4.3) |ϕz| ≤
C

|z| .

In the rest of the proof, we denote by C a constant that may change from line to
line. By [39, Lemma 2] (see also [39, (1.7), (1.8)]), there exists c1, . . . , cm−1 such
that

(4.4) ϕzz −
1
2
ϕ2
z =

m−1∑

i=1

(
1

2(z − xi)2
+ ci
z − xi

)

(the righthand side is actually the Schwarzian derivative of the inverse of the pro-
jectionH→ H/Γ = Y , and c1, . . . , cm−1 are called accessory parameters). By (4.3),
(4.4),

|ϕzz| ≤
C

|z|2 near z1 = 0,

and

ϕzzz = ϕzϕzz −
m−1∑

i=1

(
1

(z − zi)3
+ ci
(z − zi)2

)
.

Hence,

|ϕzzz| ≤
C

|z|3 near z1 = 0.

Now, ρz = ϕzzz̄ = 1
2e
ϕϕz; thus,

|ρz| = |ϕzzz̄| ≤
C

|z|3 near z1 = 0.

Further, ψ = ϕ + 2 log |z|; hence, ψz = ϕz + z−1 and ψzzz = ϕzzz + 2z−3,
ψzzz̄ = ϕzzz̄. We deduce that α1 = β1 = 3. ❐

By Theorem 1.2 and Lemma 4.5, we obtain the following result.

Corollary 4.6. Let Y := P1 \ Σ with Σ = {x1, . . . , xm}, m ≥ 3 be endowed
with the induced Poincaré metric of constant curvature −1. Let Pp(x) be the Bergman
kernel function of H0

(2)(Y ,K
p
Y ). Then, for any j = 1, . . . ,m, and any compact set

K ⊂ P1 with K ∩ Σ = {xj}, there exists Cj = Cj(K) > 0 such that if x ∈ K, then

∣∣∣∣∣
2πPp(x)

p
− 1

∣∣∣∣∣ ≤ Cjp
−1/8 dist(x,xj)−3, for p > Cj dist(x,xj)−24.
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Note that the space H0
(2)(Y ,K

p
Y ) is the space of cusp forms of weight 2p on

Y , so Pp(x) is the Bergman kernel of the cusp forms.
Let us now point out the interpretation of Corollaries 4.4 and 4.6 in terms of

classical Bergman kernels for function spaces. Let us consider a general hyperbolic
domain Y ⊂ C, that is, C \ Y contains at least two points. As above, Y admits an
induced Poincaré metric ds2 = ρ(z)|dz|2 of constant curvature −1. For p ∈ N,
we define the Petersson scalar product

(4.5) 〈f , g〉p :=
∫

D
f (z)g(z)ρ1−p(z)dm(z)

on the space L2
p(Y) := {f : Y → C measurable : ‖f‖2

p = 〈f , f 〉p < ∞} (see,
e.g., [31, p. 88]), where dm(z) = (i/2)dz ∧ dz̄ is the Euclidean volume form.
Set

A2
p(Y) := {f ∈ L2

p(Y) : f holomorphic},

which is a closed subspace of L2
p(Y). Denote byΠp : L2

p(Y) →A2
p(Y) the orthog-

onal projection and by Πp(·, ·) its reproducing kernel. If {fj} is an orthonormal
basis of (A2

p(Y), 〈·, ·〉), then Πp(z,w) =
∑
j fj(z)fj(w). The restriction on

the diagonal z ֏ Πp(z) :=
∑
j |fj(z)|2 is the Bergman kernel function for the

Petersson scalar product. Note that any element S ∈ H0
(2)(Y ,K

p
Y ) is of the form

S = f (dz)⊗p, where f ∈ O(Y). Let S′ = f ′(dz)⊗p be a further element of
H0
(2)(Y ,K

p
Y ). By (2.5),

〈S, S′〉ωω = ff ′
∣∣(dz)⊗p

∣∣2
ωω = 2pff ′ρ1−p

dm(z),

hence, 〈S, S′〉 = 2p〈f , f ′〉p. The map

A2
p(Y) → H0

(2)(Y ,K
p
Y ),

f ֏ 2−p/2f (dz)⊗p

is an isometry. Therefore,

(4.6) Pp(z) = Πp(z)ρ(z)−p , z ∈ Y.

By Corollary 4.6 and (4.6), we obtain the following result.

Corollary 4.7. Let Y = P1\Σwith Σ = {x1, . . . , xm},m ≥ 3, and write ds2 =
ρ(z)|dz|2 for the induced Poincaré metric of constant curvature −1 on Y . Let Πp(z)
be the Bergman kernel function associated with the Petersson scalar product (4.5).
Then, for any j = 1, . . . ,m, and any compact set K ⊂ P1 with K ∩ Σ = {xj}, there
exists Cj = Cj(K) > 0 such that if z ∈ K, then
∣∣∣∣∣

2πΠp(z)ρ(z)−p
p

− 1

∣∣∣∣∣ ≤ Cjp
−1/8 dist(z,xj)−3, for p > Cj dist(z,xj)−24.
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A similar statement can be proved for the Bergman kernel Πp(z) of the Pe-
tersson scalar product on D∗ by using Corollary 4.4 (see [21, Section 5] for the
explicit formula of the Bergman kernel Πp(z) for D∗).

Remark 4.8. Let Y ⊂ P1 be an arbitrary hyperbolic domain endowed with
the induced Poincaré metric of constant Gauss curvature −1. Let Pp(x) be the
Bergman kernel function of H0

(2)(Y ,K
p
Y ). By Theorem 6.1.1 of [34], Theo-

rem 3.11 of [35], Pp(x) has a full asymptotic expansion (1.3) on compact sets
of Y . Actually, by [2, Corollary 2.4] the expansion reads

Pp(x) =
p

2π
− 1

4π
+O(p−∞), p →∞.

Indeed, b0 = 1/(2π) by (2.6). The Gauss curvature of c1(KY , hKY ) being −2π ,
the scalar curvature of c1(KY , hKY ) is rY = −4π by (2.8). Hence, b1 = −1/(4π).
All other coefficients vanish by [2, Corollary 2.4], so the remainder is O(p−∞).

If Y = P1\Σ with Σ = {x1, . . . , xm},m ≥ 3, we refer to [2] for a weighted es-
timate near the punctures for the global Bergman kernel compared to the Bergman
kernel of the punctured disc.

4.4. Hyperbolic metrics with conical singularities. We consider again the
Riemann sphere P1 = C∪∞ withmmarked points Σ = {x1, . . . , xm},m ≥ 3. By
using a Möbius map we can assume that xm = ∞. Suppose that aj , 1 ≤ j ≤ m
are real numbers such that

(4.7) aj < 1,
m∑

j=1

aj > 2.

Then,
Y := P1 \ {x1, . . . , xm} = C \ {x1, . . . , xm−1}

admits a unique Kähler metric of constant curvature −1, which on P1 is with
conical singularities of order aj (or angle 2π(1−aj)) at xj , 1 ≤ j ≤m (see [40,
Section 2] and references therein). This metric has the form ds2 = eϕ|dz|2, where
ϕ is a smooth function on Y verifying

(4.8)

ϕzz̄ =
1
2
eϕ,

ϕ(z) =
{
−2aj log |z − xj| +O(1), as z → xj , 1 ≤ j ≤m− 1,

−2(2− am) log |z| +O(1), as z → xm = ∞.

Lemma 4.9. For each j = 1, . . . ,m, we have αj = βj = 1+ 2aj.

Proof. Since the curvature is constant −1, we have ϕzz̄ = 1
2e
ϕ = ρ. Without

loss of generality, we may assume j = 1 and x1 = 0. By [40, Lemma 2 and (9)],
we have
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(4.9) eϕ = 4|w′|
(1− |w|2)2 ,

with w(z) = z1−a1g(z), g holomorphic near x1 = 0, g(0) ≠ 0.

The function w is a multi-valued meromorphic function on P1 with ramification
points at {x1, . . . , xm}, and it becomes single-valued on the universal cover of Y .

Let us consider the function F(z) = (1 − a1)g(z) + zg′(z), holomorphic
near 0, F(0) = (1− a1)g(0) ≠ 0. By (4.9),

ϕ(z) = −2a1 log |z|+ψ(z)+log 4, where ψ(z) = log |F(z)|2−2 log(1−|w|2).

Let us denote ψ̃(z) = − log(1−|w|2). We haveψz = (F ′/F)+2ψ̃z , with (F ′/F)
holomorphic near 0. Thus, we only have to estimate the derivatives of ψ̃. By a
direct computation, we obtain

ψ̃zzz =
2(w′w̄)3

(1− |w|2)3 +
3w′w′′w̄2

(1− |w|2)2 +
w′′′w̄

(1− |w|2) .

Taking into account (4.9), there exists C > 0 such that near 0 we have

(4.10)
|w| ≤ C|z|1−a1 , |w′| ≤ C|z|−a1 ,

|w′′| ≤ C|z|−1−a1 , |w′′′| ≤ C|z|−2−a1 .

By (4.9) and (4.10), we infer that near 0,

|ψ̃zzz| ≤ C(|z|3−6a1 + |z|1−4a1 + |z|−1−2a1) ≤ C|z|−1−2a1 .

We have used here that a1 < 1. The previous estimate implies

(4.11) |ψzzz| ≤ C|z|−1−2a1 .

We estimate now ρz and ψzzz̄ simultaneously. We have

ϕzz̄ = ψzz̄ = 2ψ̃zz̄ =
1
2
eϕ = ρ

so ρz = ψzzz̄ = 1
2e
ϕϕz. On the other hand, ϕz = −a1/z + F ′/F + 2ψ̃z, where

ψ̃z = w′w̄/(1 − |w|2), so |ψ̃z| ≤ C|z|1−2a1 . We deduce that |ϕz| ≤ C|z|−1.
Since eϕ ≤ C|z|−2a1 , we deduce

(4.12) |ρz| = |ψzzz̄| ≤ C|z|−1−2a1 .

By symmetry, we obtain estimate similar to those in (4.11) and (4.12) for ψz̄z̄z̄
and ρz̄, ψzz̄z̄, which show that α1 = β1 = 1+ 2a1. ❐
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The (1,1)-form associated with ds2 isω = (i/2)eϕ dz ∧ dz̄; thus,

Ricω = −i ∂ ∂̄ log
eϕ

2
= −iϕzz̄ dz ∧ dz̄ = −ω.

Note that ω induces a Hermitian metric hω on KY = KP1|Y = OP1(−2)|Y with
curvature

c1(KY , hω) = −
1

2π
Ricω =

1
2π
ω.

In the chart C, the metric hω has weight

ϕ0 =
1
2

log
eϕ

2
= ϕ

2
− log 2

2
.

By letting z = 1/ζ, we obtain in coordinate ζ near xm = ∞ that

ds2 = eϕ(1/ζ) |dζ|
2

|ζ|4 = eϕ′(ζ)|dζ|2,

ϕ′(ζ) =ϕ
(

1
ζ

)
− 4 log |ζ| = −2am log |ζ| +O(1) as ζ → 0.

As before, in this chart the weight of hω is ϕ1 = ϕ′/2 − log 2/2. It follows that
hω extends to a singular Hermitian metric on KP1 which does not have positive
curvature measure since aj cannot be all less than or equal to 0.

Note that ω ≥ cΩ for some positive metric Ω on P1 if and only if aj ≥ 0 for
all 1 ≤ j ≤m. We conclude that (P1,Σ,ω,KP1 , hω) verify assumptions (A)–(C)
if and only if aj ≥ 0, 1 ≤ j ≤m; hence, Theorem 1.1 applies in this case.

Corollary 4.10. Let Y := P1 \ Σ with Σ = {x1, . . . , xm}, m ≥ 3, be en-
dowed with the Kähler metric ω of constant curvature −1 and conical singularities
of order aj ∈ [0,1) at xj (cf. (4.7), (4.8)). Let Pp be the Bergman kernel function
of H0

(2)(Y ,K
p
Y ) associated with ω and hω. Then, for any j = 1, . . . ,m and any

compact set K ⊂ P1 with K ∩ Σ = {xj}, there exists Cj = Cj(K) > 0 such that, for
x ∈ K and p > Cj dist(x,xj)−8(1+2aj),

∣∣∣∣∣
2πPp(x)

p
− 1

∣∣∣∣∣ ≤ Cjp
−1/8 dist(x,xj)−(1+2aj).

5. RIEMANN SPHERE WITH TWO CONICAL SINGULARITIES

In this section, we calculate explicitly the Bergman kernel and study its scaling
asymptotics near conical singularities by using rescaled coordinates involving the
magnetic length, suggested by [8]. We also interpret our results in terms of the
density of states on the lowest Landau level.



Bergman Kernel Asymptotics 617

5.1. Metrics with conical singularities. We take the line bundle L = O(1)
on the projective space P1, endowed with the Hermitian metric ha given by the
logarithmically homogeneous plurisubharmonic function on C2,

ϕa(t, z) =
1

2a
log(|t|2a + |z|2a), 0 < a ≤ 1.

Consider the standard embedding z ∈ C ֓ [1 : z] ∈ P1. Then, ωa := c1(L,ha)
is given by

(5.1) ωa
∣∣
C
= ddcϕa(1, z) = i

a

2π|z|2(1−a)(1+ |z|2a)2 dz ∧ dz̄,

and is the Kähler form associated with the metric

ds2 = a

π|z|2(1−a)(1+ |z|2a)2 |dz|
2

on P1 with conical singularities of order a (or angle 2π(1 − a)) at 0 and ∞.
This surface is sometimes also called american football or spindle. Thus, ωa is

polarized by (L,ha). Moreover,
∫

P1
ωa = 1 and

Ricωa = −i ∂ ∂̄ log
a

2π|z|2(1−a)(1+ |z|2a)2
= 4πaωa + 2π(1− a)(δ(0)+ δ(∞))

in the sense of currents on P1, where δ(0) = (i/2)δ0 dz ∧ dz̄ and δ0 is the Dirac
measure at 0. So,ωa has constant Gauss curvature on C⋆ (and also on P1, in the
sense of distributions)

Rωa =
Ricωa
ωa

= 4πa.

Let us define the function ψ on P1,

(5.2) ψ([t : z]) = ν

2a
log

|z|2a
|t|2a + |z|2a , where ν ∈ R,

and consider on Lp = O(p) the singular Hermitian metric

(5.3) hp = e−2ψ h
⊗p
a .

We have that

(5.4) c1(L
p, hp) = (p − ν)ωa + νδ(0).
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The motivation for adding the weightψ in the metrichp is to create a δ-distribution
independent of p in the curvature, which can be interpreted as the Aharonov-
Bohm flux in the magnetic field (see Section 5.2).

Let Pa,νp be the Bergman kernel of the Hilbert space H0
(2)(P

1 \ {0,∞}, Lp) of
L2-integrable holomorphic sections of Lp relative to the metrics hp and ωa. Let
(·, ·)p denote the corresponding inner product.

Proposition 5.1. In the above setting, we have that

Pp(z) := Pa,νp (z)(5.5)

= |z|2(j0−ν)

(1+ |z|2a)(p−ν)/a
p−j0∑

j=0

|z|2j

B

(
1+ j + j0 − ν

a
,1+ p − j − j0

a

) ,

with z ∈ C, where B is the Euler Beta function,

j0 = max{⌊ν − a⌋ + 1,0} =
{

0, if ν < a,

⌊ν − a⌋ + 1, if ν ≥ a,

and ⌊x⌋ is the largest integer ≤ x. Moreover, Pp(z) = O(|z|2(j0−ν)) for z near 0,
and

j0 − ν =




−ν, if ν < 0,

−{ν}, if ν ≥ 0 and 0 ≤ {ν} < a,
1− {ν}, if ν ≥ 0 and a ≤ {ν} < 1,

where {x} := x − ⌊x⌋. In particular, 0 < Pp(0) < +∞ if and only if ν ∈ N, in
which case Pp(0) = (p − ν)/a+ 1.

Proof. For 0 ≤ j ≤ p, we obtain that

∥∥zj
∥∥2
p =

∫

C

|z|2(j−ν)
(1+ |z|2a)(p−ν)/a

a

2π|z|2(1−a)(1+ |z|2a)2 idz ∧ dz̄

=
∫ +∞

0

2ar 2(j−ν)+2a−1

(1+ r 2a)(p−ν)/a+2
dr .

By using the substitution r 2a = x/(1− x), it follows that

(5.6)
∥∥zj

∥∥2
p = B

(
1+ j − ν

a
,1+ p − j

a

)
<∞ if and only if j0 ≤ j ≤ p.

Since (zj , zk)p = 0 for j ≠ k, we conclude that

Pp(z) =
p∑

j=j0

∣∣zj
∣∣2
hp∥∥zj
∥∥2
p

,

which yields the desired formula for Pp. The remaining assertions are straightfor-
ward. ❐
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Remark 5.2. If ν > 0, the function ψ defined in (5.2) is quasisubharmonic
and has a pole at 0 with Lelong number ν. When a = 1 and 0 < ν < 1,ω1 is the

Fubini-Study metric on P1; hence, it is smooth, and P1,ν
p (z) ∼ |z|−2ν blows up

at 0. So, the presence of a logarithmic pole at 0 in the Hermitian metric hp on Lp

makes Pp(0) become infinite. On the other hand, if ν = 0 and 0 < a < 1, then

Pa,0p (0) ∼ p/a while Pa,0p (z) ∼ p for z ≠ 0, by Theorem 1.1. So, the presence
of a conical singularity inωa at 0 makes Pp peak at 0. Proposition 5.1 shows that
the following “interference” can appear in the presence of both a logarithmic pole
at 0 in hp and a conical singularity at 0 inωa: if a ≤ ν < 1, then Pa,νp (0) = 0.

Next, we let |z|2a = ay/p and, inspired by [8], we are interested in the limit
as p →∞ of the scaled Bergman kernel function

(5.7) Fp(y) = Fa,νp (y) := 1
p
P
a,ν
p



(
ay

p

)1/(2a)

 , y ≥ 0.

Recall the definition of the Mittag-Leffler function

Er ,s(ζ) =
∞∑

j=0

ζj

Γ (rj + s) ,

where r > 0, s ≥ 0, and Γ is the Euler Gamma function.

Theorem 5.3. In the above setting, we have that

Fp(y)→
1
a
y(j0−ν)/ae−yE1/a,1+(j0−ν)/a(y

1/a) as p → ∞,

locally uniformly for y ∈ (0,+∞) (or for y ∈ [0,+∞) when j0 − ν ≥ 0).
Observe that the theorem gives a scaling asymptotics of the Bergman kernel

for z approaching the singularity at 0 (at ∞, respectively) as p → ∞. Specifically,
if |z|2a = ay/p, then

Pp(z) ≃
p

a
y(j0−ν)/ae−yE1/a,1+(j0−ν)/a(y

1/a) as p →∞.

In particular, if ν = 0, we obtain that

Pp(z) ≃
p

a
e−yE1/a,1(y

1/a) as p →∞,

and

Pp(0) =
p

a
+ 1.

For the proof of Theorem 5.3, we need the following lemmas.
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Lemma 5.4. If r ≥ 0 and s ≥ 1, then

Γ (r + s)
Γ (s) ≤ e1/12(r + s)r .

Moreover,

lim
s→∞

Γ (r + s)
Γ (s)sr = 1 locally uniformly in r ≥ 0.

Proof. By Stirling’s formula, we have for all x > 0 that

Γ (x) =
√

2π
x

(
x

e

)x
eµ(x), where 0 < µ(x) <

1
12x

.

Thus,
Γ (r + s)
Γ (s) =

√
s

r + s e
−r
(

1+ r
s

)s
(r + s)reµ(r+s)−µ(s).

Since s ≥ 1, µ(r + s)− µ(s) < 1
12 . Moreover, (1+ r/s)s ≤ er , so the inequality

in the statement follows. Next,

Γ (r + s)
Γ (s)sr =

√
s

r + s e
−r
(

1+ r
s

)s (
1+ r

s

)r
eµ(r+s)−µ(s) → 1

as s →∞, locally uniformly for r ≥ 0. ❐

The next lemma is very simple and we omit its proof.

Lemma 5.5. Let fn(ζ) =
∑∞
j=0 cn,jζ

j be entire functions such that cn,j → dj
as n → ∞, for all j ≥ 0. Assume that there exists ξj > 0 such that |cn,j| < ξj
for all n, j, and that the function g(ζ) =

∑∞
j=0 ξjζ

j is entire. Then, the function
f (ζ) =

∑∞
j=0 djζ

j is entire and fn → f as n →∞ locally uniformly on C.

Proof of Theorem 5.3. We have

Fp(y) =
(

1+ ay
p

)−(p−ν)/a
(ay)(j0−ν)/a

p1+(j0−ν)/a

×
p−j0∑

j=0

Γ
(

2+ p − ν
a

)
(ay)j/a

Γ
(

1+ j + j0 − ν
a

)
Γ
(

1+ p − j − j0

a

)
pj/a

= 1
a
y(j0−ν)/a

(
1+ ay

p

)−(p−ν)/a
Gp(y),
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where

Gp(y) =
p−j0∑

j=0

cp,jy
j/a,

cp,j =
Γ
(

2+ p − ν
a

)
a1+(j+j0−ν)/a

Γ
(

1+ j + j0 − ν
a

)
Γ
(

1+ p − j − j0

a

)
p1+(j+j0−ν)/a

.

By Lemma 5.4, we have that for all p, j,

Γ
(

2+ p − ν
a

)
a1+(j+j0−ν)/a

Γ
(

1+ p − j − j0

a

)
p1+(j+j0−ν)/a

≤ e1/12

((
2+ p − ν

a

)
a

p

)1+(j+j0−ν)/a
< Cj ,

for some constant C > 1. Moreover, for j fixed,

lim
p→∞

Γ
(

2+ p − ν
a

)
a1+(j+j0−ν)/a

Γ
(

1+ p − j − j0

a

)
p1+(j+j0−ν)/a

= 1.

Hence,

0 < cp,j <
Cj

Γ
(

1+ j + j0 − ν
a

) , lim
p→∞

cp,j =
1

Γ
(

1+ j + j0 − ν
a

) .

Now, by Lemma 5.5, fp(ζ) :=
∑p−j0

j=0 cp,jζ
j → E1/a,1+(j0−ν)/a(ζ) locally uni-

formly on C. So, Gp(y) = fp(y1/a) → E1/a,1+(j0−ν)/a(y
1/a) locally uniformly

in y ≥ 0, and the proof is complete. ❐

We conclude this section with a closed formula for Pa,0p in the case when
a = 1/s for some positive integer s.

Proposition 5.6. If ν = 0 and a = 1/s, where s > 0 is an integer, then

Pp(z) = P1/s,0
p (z) =

(
p + 1

s

)(
1+

s−1∑

ℓ=1

(
1+ e2πℓi/s|z|2/s

1+ |z|2/s
)ps)

.

Notably, Pp(0) = sp+1, while Pp has the following asymptotic expansion on C\{0}:
for every M > 1, there exists θ = θ(M) > 0 such that if 1/M ≤ |z| ≤ M , then

Pp(z) = p +
1
s
+O(e−θp).
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Proof. By Proposition 5.1,

Pp(z) =
1

(1+ |z|2/s)ps
p∑

j=0

|z|2j
B(1+ sj,1+ s(p − j))

= sp + 1
(1+ |z|2/s)ps

p∑

j=0

(
ps

js

)
|z|2j .

If ζ = e2πi/s , we have that

s−1∑

ℓ=0

(1+ ζℓy)ps =
ps∑

k=0

(
ps

k

)
yk

s−1∑

ℓ=0

ζkℓ = s
p∑

j=0

(
ps

js

)
ysj ,

since ζk = 1 if s divides k, and
∑s−1
ℓ=0 ζ

kℓ = 0 if s does not divide k. The
conclusion follows if we let y = |z|2/s in the above formula. ❐

Thus, the Bergman kernel P1/s,0
p has the same structure (4.2) as in the case of

the punctured disc endowed with the Poincaré metric; namely, the first two terms
are non-vanishing and the remainder has exponential decay (cf. Remark 4.8).

5.2. Density of states on the lowest Landau level. Here, we comment
on the relation of the results in the previous subsection to the density-of-states
function on the lowest Landau level (LLL) on singular surfaces. The surface with
the metric (5.1) is pictured on Figure 5.1. In physics terms, (5.4) means that the
constant magnetic field (not pictured on Figure 5.1) B = p−ν is turned on, with
flux lines everywhere perpendicular to the surface.

a

a

ν

FIGURE 5.1. Spindle
with cone angle a and
Aharonov-Bohm flux ν.

In addition, there is a delta-function (Aharo-
nov-Bohm) flux ν localized exactly at the north
pole (see Figure 5.1), so that the total flux of the
magnetic field p ∈ Z through the compact surface
is an integer. In terms of the singular metric (5.3),
the AB-flux ν is the Lelong number of the weight
ψ from (5.2). This is the compact surface version
of the setup of [8] where density of states was stud-
ied on a flat cone with a boundary.

As was already pointed out in Remark 5.2, the
Bergman kernel (5.5) diverges as Pp(z) ∼ |z|2ν
for ν < 0 and for 0 ≤ {ν} < a. This is because
the Hermitian norm |z0|2hp of the identity section
z0 (5.6) corresponding to the LLL wave function
with the smallest angular momentum is singular at
z = 0 for these values of ν, while the section is
L2-normalizable. The question may arise whether
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this section shall be kept in the spectrum. Here, we answer this question in the
affirmative. The singular value of Pp(0) is an artifact of the delta-function form
of the AB-flux, which should be smeared over some ε-neighborhood around zero.
Hence, the density is also smoothed out in this neighborhood.

This leads to an interesting effect, when the AB-flux ν is allowed to vary over
the real line, say, in the range 0 ≤ ν < ∞. Between 0 ≤ ν < a, the density Pp(0) is
peaked, while at a ≤ ν < 1 it drops to zero: Pp(0) = 0. This pattern then repeats
in the interval [1,2] and so on. This is a manifestation of the Laughlin’s “shift
register” on the LLL, first described in the original argument for the quantization
of the Hall conductance [32]. As ν becomes greater than a, the identity section
(wave function) z0 becomes non-normalizable (5.6) and drops from the spectrum
of physical states, that is, disappears into the conical singularity. At the same
time, a new L2-normalizable section localized at the equator emerges so that the
total number of states is preserved. (In Laughlin’s setting of annulus geometry,
the wave functions travelled from the outer to the inner edge of the annulus, as
AB-flux varied form 0 to 1.)

One consequence of Theorems 1.1 and 1.2 is that at a certain small distance
(in units set by magnetic length ℓ2

B ∼ 1/p) away from the singular point the
Bergman kernel tends to its constant value 2πPp ∼ p. Thus the interesting be-
havior of the density profile happens around a small area near the singular point
which shrinks as p tends to infinity. One way to study the density profile, sug-
gested in [8], is to use the rescaled coordinate y = p|z|2a/a in order to zoom in
on the point z = 0. Remarkably, this leads to the universal finite result for the
density profile near the conical singularity in Theorem 5.3, in agreement with the
results of [8] for the flat cone.

5.3. Metrics with a logarithmic pole. We consider again P1 and the metric
ωa with conical singularities at 0 and ∞, defined in (5.1). But here, we endow
the line bundle L = O(1) with the Hermitian metric h determined by the pluri-
subharmonic function

ϕ(t, z) = ν log |z| + 1− ν
2a

log(|t|2a + |z|2a), 0 < a ≤ 1, 0 < ν ≤ 1.

We let hp = h⊗p be the induced metric on Lp. Note that ϕ(1, z) has a logarith-
mic pole at 0 with Lelong number ν, and

c1(L
p, hp) = p(1− ν)ωa + pνδ(0).

Let Pp = Pa,νp be the Bergman kernel of H0
(2)(P

1 \ {0,∞}, Lp), the Hilbert
space of L2-integrable holomorphic sections of Lp relative to the metrics hp and
ωa. By a calculation similar to the proof of Proposition 5.1, we obtain the fol-
lowing result.
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Proposition 5.7. In the above setting,

Pa,νp (z) = |z|2(jp−pν)
(1+ |z|2a)p(1−ν)/a

×
p−jp∑

j=0

|z|2j

B

(
1+ j + jp − pν

a
,1+ p − j − jp

a

) , z ∈ C,

where jp = ⌊pν−a⌋+1. We have jp−pν ∈ (−a,1−a], and jp −pν = −{pν}
when a = 1. Moreover, if ν = 1, then jp = p and Pa,1(z) = 1.

Next, we study the behavior of the scaled Bergman kernel function Fa,νp de-
fined as in (5.7) by setting |z|2a = ay/p. Specifically:

Fp(y) = Fa,νp (y) := 1
p
P
a,ν
p



(
ay

p

)1/(2a)

 , y ≥ 0.

The difference with Section 5.1 is that now the sequence {Fp}p≥1 no longer has a
limit, but it is relatively compact and its limit points are determined by the limit
points of the bounded sequence {jp − pν}p≥1. Note that when ν is irrational,
the latter sequence is dense in the interval [−a,1− a].

Theorem 5.8. In the above setting, assume that pk →∞ is a sequence of positive
integers such that

jpk − pkν → θ ∈ [−a,1− a]

as k→∞. Then,

Fpk(y)→
1− ν
a
((1− ν)y)θ/ae−(1−ν)yE1/a,1+θ/a(((1− ν)y)1/a),

locally uniformly for y ∈ (0,+∞). Hence, the Bergman kernel has the following
scaling asymptotics near 0:

Ppk(z) ≃
pk(1− ν)

a
((1− ν)y)θ/ae−(1−ν)yE1/a,1+θ/a(((1− ν)y)1/a),

where |z|2a = ay/pk.

Proof. Arguing as in the proof of Theorem 5.3, we write

Fp(y) =
1
a
y(jp−pν)/a

(
1+ ay

p

)−p(1−ν)/a
Gp(y),
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where

Gp(y) =
p−jp∑

j=0

cp,jy
j/a,

cp,j =
Γ
(

2+ p(1− ν)
a

)
a1+(j+jp−pν)/a

Γ
(

1+ j + jp − pν
a

)
Γ
(

1+ p − j − jp
a

)
p1+(j+jp−pν)/a

.

By Lemma 5.4, we have that for all p, j,

Γ
(

2+ p(1− ν)
a

)
a1+(j+jp−pν)/a

Γ
(

1+ p − j − jp
a

)
p1+(j+jp−pν)/a

≤ e1/12

((
2+ p(1− ν)

a

)
a

p

)1+(j+jp−pν)/a
< C

j
1 ,

for some constant C1 > 1. By Stirling’s formula, Γ (x) > x−1/2(x/e)x . Then,

0 < cp,j < C
j
2j
−j/a, p ≥ 1, 0 ≤ j ≤ p − jp ,

with some constant C2 > 1 (here, 00 := 1). By using Lemma 5.4 again, we
conclude that for j fixed,

lim
k→∞

cpk,j =
(1− ν)1+(j+θ)/a

Γ
(

1+ j + θ
a

) .

Now, Lemma 5.5 implies that

Gpk(y)→ (1− ν)1+θ/aE1/a,1+θ/a(((1− ν)y)1/a),

as k→∞, locally uniformly in y ≥ 0. This completes the proof. ❐
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