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ABSTRACT. We consider singular metrics on a punctured Rie-
mann surface and on a line bundle, and study the behavior of
the Bergman kernel in the neighborhood of the punctures. The
results have an interpretation in terms of the asymptotic profile
of the density-of-states function of the lowest Landau level in
quantum Hall effect.
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1. INTRODUCTION

The purpose of this paper is to study the behavior of the Bergman kernel function
of a Hermitian holomorphic line bundle over a punctured Riemann surface. A
quite general result about asymptotics of Bergman kernel on non-compact man-
ifolds was given in [25, 34-36]. Let (Y, w) be a complete Kihler manifold of
dimension n, and (L, h) — X be a holomorphic Hermitian line bundle such that

(1.1) ci(L,h) = ew, Ricy = -Cw,
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for some constants &, C > 0. If (L, h) = (Ky, hXY), where Ky = det(T*19Y) is
the canonical bundle and X7 is induced by w, condition (1.1) is to be replaced
by

(1.2) Ricy < —€w.

Under these assumptions, it is known that the Bergman kernel function P, (x) of
the space of L2-holomorphic sections H{, (Y, L?) has the following expansion:

(1.3)  Pp(x) =bo(x)p™ + b1(x)p™ 1+ - = > bi(x)p",
Jj=0
uniformly on compact sets relative to any C¢-topology.

More precisely, there exist coefficients b; € C*(Y), j € N, such that for any
compact set K C Y, any k, € € N, there exists Cy ¢ ¢ > 0 such that for p € N

k-1
< CrexP k1

1 k ,
—p — b —J
ipn p() = 2 biap™|

Jj=0
Moreover, we have

n n n
bOZCI(i;f) ’ bl:%q(i’f) (TY—ZAlog(Cl(ﬁ)’f) >>,

where 7' and A are the scalar curvature and the Bochner Laplacian of the metric
associated with the Kihler form ¢ (L, h).

Assume, now, that X is compact and ¢;(L,h) = w; hence, by = 1. The
expansion Pp(x) = p™ + O(p"™~1/2) was proved by Tian [41, Section 3] in the
C*-topology and generalized by Ruan [37] to Pp(x) = p™ + O(p™!) in any
C!-topology. Berndtsson [4] gave a simple proof of the uniform convergence
P,(x) = bo(x)p™ + o(p™). The asymprotics (1.3) were proved by Catlin [10]
and Zelditch [43].

In the quantum Hall effect (QHE), the density of states for the lowest Lan-
dau level on a Riemann surface, or more generally on a Kihler manifold, is given
by the Bergman kernel on the diagonal (see [20], where (1.3) was derived using
perturbation theory for the quantum mechanical path integral). The metric de-
pendence and gravitational anomaly in the quantum Hall states has recently been
studied using the asymptotic expansion of the Bergman kernel [26, 30], as well as
other methods [1,5-7,22,24,29] (see [27] for a review). The quantum Hall states
and the density function have been studied recently for surfaces with conical sin-
gularities [8, 28], singular surfaces with Z,,-symmetry [23] and cusps [9] (see [2]
for the results for the Bergman kernel). Remarkably, the quantum Hall effect on
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a cone can also be realized experimentally (see [38], where synthetic Landau levels
on a cone were constructed in a photon resonator). In this paper, we study the
asymptotic profile of the Bergman kernel for more general singular geometries.

If X is non-compact, (1.3) was deduced in [34, Theorem 6.1.1] under hypoth-
esis (1.1), in [35, Theorem 3.11] under hypothesis (1.2) (see also Theorem 1.6
in [25]). We refer the reader to the book [34] for a comprehensive study of the
Bergman kernel and its applications, and also to the survey [33].

By the above mentioned works, the asymptotic expansion of the Bergman
kernel is well understood on fixed compact sets. In this paper, we consider very
general metrics on a punctured Riemann surface and on a line bundle, and study
the behavior of the Bergman kernel in the neighborhood of the punctures. The
asymptotics depend on the singularities of the metrics on the base manifold and
on the bundle.

In the case of metrics with Poincaré singularities, [2] provides a weighted esti-
mate in the C™-norm near the punctures for the global Bergman kernel compared
to the Bergman kernel of the punctured disc, uniformly in the tensor powers of
the given bundle. Our estimates complement the results of [2].

More precisely, we consider in this paper the following setting:

(A) X is a Riemann surface and = = {x; : j = 1} C X is a discrete closed
subset. We fix a smooth Hermitian metric Q on X and denote by dist the
induced distance.

(B) w is a Hermitan metric of class C? on X \ = such that w = ¢ Q, where
c: X — (0,0) is a continuous function and Ric,, = —21TBw, for some
constant B > 0.

(C) L is a holomorphic line bundle on X and h is a Hermitian metric of class
C3 on L|x\s such that ¢; (L, h) > 2ew on X \ =, for some constant & > 0.

Let hp := h®P be the metric induced by h on L?|x\s, where L? := L®P. We
denote by HY, (X \ £,L?) the Bergman space of L2-holomorphic sections of L?
relative to the metric hp and w,

(1.4)  H{,) (X \Z,LP) = {S € HY(X\3,LP): ||S||f7 = JX\Z |5|flpw < oo},

endowed with the obvious inner product.

Letd, € NU {0} be the dimension ofH(Oz) (X\Z,L?). We denote by P, the
Bergman kernel function of the space H ?2) (X \Z,L?), which is defined as follows.
Forp = 1, if {Sf}yzl is an orthonormal basis ofH?z) (X\Z,L?) , then

dp
(1.5) Pp(x) = > [S] ()5,
{=1

Note that P, is independent of the choice of basis (see [11, Lemma 3.1]).
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Fix xj € X and a constant R; > 0 with the property that x; has a coordinate
neighborhood Uy, centered at x; such that the coordinate disc B(x},2R;) € Uy,
and

(1.6) dist(B(Xj,ZRj),Z\{Xj}) ZRJ'.

Let e; be a local holomorphic frame of L on B(xj,2R;), and let @ be the sub-
harmonic weight of h on B(x;,2R;) \ {x;} corresponding to e}, so |ej| = e~ ¥i.
We assume that, in local coordinate z on Ux;» @j has the form

(1.7) @j(z) =vjloglzl + y;(z2),
where Vj € R, yje C3(B(Xj,2Rj) \ {XJ'}).

Moreover, we assume that there exist the constants Aj > 0, &; = 0 such that the
third-order derivatives of  verify

(1.8) IDHY(2)| < Ajlz|~%, forall z € B(xj,2Rj) \ {xj}, |ul = 3.

In particular, equation (1.7) lets us consider the special cases when ¢/ is bounded
or smooth near x;; that is, the metric h has logarithmic singularities at X.
Next, we can write on B(xj,2R;) \ {x;},

(1.9) w(z) = %pj(z)dZAd2=pj(z)dm(z),

where dm(z) is the Lebesgue measure in the coordinate z. We assume that there
exist the constants A; > 0, Bj = 0 such that the first-order derivatives of p; verify

(1.10) IDpj(2)| < A%lz|™Fi,  forall z € B(x;,2R;)) \ {x;}.

Finally, we let

8 8B,
(1.11) S5; =max{§,TJ,80(J}.

In [4, Section 2], Berndtsson gave a simple proof for the first-order asymp-
totics of the Bergman kernel function P, (x) = bo(x)p™ + o(p™) in the case of
powers of an ample line bundle on a projective manifold. By adapting his methods
to our situation, we prove the following asymptotics near the singular points. They
show explicitly how the estimates depend on the distance to the singular points,
and on the parameters &, fj which encode the singularities of the metrics.

Theorem 1.1. Let (X,3, w, L, h) verify assumptions (A)—(C), and let x; € X.
Let R; be defined by (1.6), 6; by (1.11), and assume that h and w satisfy inequalities



Bergman Kernel Asymprotics 597

(1.8) and (1.10), respectively. Then, there exists a constant Cj > 1 such that if
X € B(Xj,Rj) \ {Xj} and

p > C;dist(x,x;)7%,
then

Pp(x) Wy B
p Cl(Lyh)X
< Cj(p~ "B dist(x, x;) % + p~3/8 dist(x, x;) Pi).

(1.12) 1

Next, we consider Bergman kernels for powers of the canonical bundle of a
punctured Riemann surface. In addition to the setting in (A), let us consider the
following condition:

(B’) w is a smooth Hermitian metric on X \ X such that w > ¢ Q, where
¢ :X — (0,) is a continuous function and Ric,, < —Aw on X \ X, for
some constant A > 0.

The Hermitian metric w induces a Hermitian metric hXx on Kx|x\s. We
denote by h, the metric induced by hXx on Kf; and by H?z) (X\2, K)’?) the space
of holomorphic sections of Kf;l x\s which are L%, with respect to the metrics hp
and volume form w (cf. (1.4)).

Letz: Uy, — C be a local holomorphic coordinate, with respect to which the
metric w has the form (1.9). We define the weight @; on B(xj,2Rj) \ {x;} of
hKx by

1
(1.13) e i = |dz |2, @, = 5 (logp; —log2),

and we further write @; as in (1.7).

Theorem 1.2. We let (X,X, w) verify the assumptions (A) and (B'). We as-
sume that w satisfies (1.8) and (1.10). We let P, be the Bergman kernel function
of the space H(y (X \ 5,KX). Then, there exists a constant C; > 1 such that if
X € B(Xj,Rj) \ {Xj} and

(1.14) p > Cjdist(x,x;)%,
then

Py (x) 21
(1.15) ‘ , (—Rw(x))—1

< Cj(p~"8dist(x, x;)~% + p~3/8dist(x, x;) 7Pi),

where Ry, is the Gauss curvature of .
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In [2], we consider the particular situation of Theorem 1.2 when the met-
ric w equals the Poincaré metric near the punctures (hence, &j = B; = 3,
cf. Lemma 4.3) and obtain estimates which are different in nature from those
in Theorem 1.2.

See Corollaries 4.4, 4.6, 4.7 for applications of Theorem 1.2.

Theorem 1.1 has the following interesting corollary which gives a uniform
estimate on the Bergman kernel P, (x) in the regime where the distance from x
to X decreases slower than some power of 1/p.

Corollary 1.3. In the setting of Theorems 1.1 or 1.2, there exists a constant
Cj > 1 such that ifn € [0,1], p > Cj, and x € B(x,R}) satisfies dist(x,xj) >
(Cj/p)"%, then

p c(l,h)x

1| <2Cjp~1-m/8,

The paper is organized as follows. In Section 2, we recall some facts about
singular Hermitian metrics on holomorphic line bundles and the solution of the
) equation. Section 3 is devoted to the proof of the main results announced in
the Introduction. In Section 4, we apply these results to interesting metrics for
which the parameters «j and B can be explicitly given (metrics with logarithmic,
cuspidal, and conical singularities). In Section 5, we calculate the Bergman kernel
of the Riemann sphere with two conical singularities and study its asymptotics
near the singularities.

2. PRELIMINARIES

2.1. Singular Hermitian holomorphic line bundles. Let L be a holo-
morphic line bundle on a complex manifold Y. The notion of singular Her-
mitian metric h on L is defined as follows (see [18], [34, p. 97]): if ey is a
holomorphic frame of L over an open set Uy C Y, then |€£|%l = e 297, where
Q¢ € L, (Up). If gg = ex/ep € OF(Uy N Uy) are the transition functions
of L, then @y = @i + loglgekl. The curvature current ¢i(L,h) of h is the
current of bidegree (1,1) on Y defined by ¢;(L,h) = dd°@y on Uy, where
d¢ = 1/Qmi)(@ - 9). Ifc;(L,h) > 0, then the weight @y is plurisubharmonic
on Uy. When Y is compact, the space H(Y, L) of global holomorphic sections of
L is finite dimensional.

Now, let (X, 3, w, L, h) be as in Theorem 1.1, and P, be the Bergman kernel
functions of the spaces H?z) (X\X,L?) defined in (1.5). Then, forall x € X \ 3,

2.1) Pp(x) = max{|S(x)|ip :S € HY) (X \Z,LP), [ISllp = 1}.

Let (Y, J, w) be a Kihler manifold, where J is the complex structure of Y, and let
g™ be the Riemannian metric associated with w by g (u,v) = w(u, Jv) for
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all u,v € T, Y, x € Y. Let Ric be the Ricci curvature of g”¥. The Ricci form
Ricy is defined as the (1, 1)-form associated with Ric by

2.2) Ricy (u,v) = Ric(Ju,v), foranyu,v e TyY, x €Y.

The volume form w" induces a metric hff)* on K3, whose dual metric on Ky is
denoted by h) . For 51mphc1ty, we denote by hy, := (h&))®P the induced metric
on K¥. Since the metric g™ is Kihler, we have (see, e.g., [34, Problem 1.7])

(2.3) Ricy = iRXY = —iRXY = —271¢ (Ky, hXY).

Let us consider now the case of dimension n = 1. The canonical bundle of Y
is just Ky = TWO*Y and Kf = T19Y; moreover, the metric hw on K3 is
directly given by w. In local holomorphic coordinates z : U — C, we write
w(z) = (i/2)p(z)dz A dzZ, so g™V (2) = p(z)|dz|>. The Gauss curvature of
g"Y (and, by a slight abuse, of w) is defined by

2 02
(2.4) Ry = ~ 53295 logp.

Since the metric h{f}” on Ky is directly given by w, we have that 9/0z is a frame
of Ky, dz is the dual frame of Ky on U, and

(2.5)

The weight @ of hfy on U is given by
_2 2 1
e P = |dzl|,, @-= E(logp —log2);
hence,

(2.6) Ricw = —2mc; (Ky, h®) = —2mdd‘p = —mtdd® logp = Ry w.

In local normal coordinates associated with w near an arbitrary point xo € Y, we
have wlx, = (i/2) dz A dZ, and the scalar curvature ¥, of (Y, w) is given at X

by
_ 71,0y i i)
w = 4R (82’ 0z)"
Thus,
2.7) — 2rpw =RT"Y = _RKY = §3log|o 2,

2
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where 0 is a local holomorphic frame of T»? Y. From (2.6) and (2.7), we deduce
the relation between scalar and Gaussian curvature,

(2.8) Yw = 2Ry .

2.2. [2-estimates for 0. The following version of Demailly’s estimates for

the 0 operator [17, Theorem 4.1] will be needed in our proofs (see Theorem 2.5
of [14]).

Theorem 2.1 ([17]). Let Y be a complete Kiihler manifold, dimY = n, and
let w be a Kiihler form of class C* on'Y (not necessarily complete) such that its Ricci
form Ricy = —21Bw on Y, for some constant B > 0. Let (L, h) be a Hermitian
holomorphic line bundle on'Y such that h is of class C% and c;(L,h) = 2¢&w. If
p=Bleandg € L%’I(Y,L’”,loc) verifies

5 2
0g =0 and JY G |, ™ < o,
then there exists U € L%,O(Y, L7 loc) such that
Su=g and [ Jukom< | g2 @n
-9 y W@ =g )y 1910, @
We also need the following version for powers of the canonical bundle.
Theorem 2.2. Ler Y be a complete Kihler manifold, dimY = n, and ler w
be a Kihler form on'Y (not necessarily complete) such that its Ricci form satisfies

Ricw < —Aw on Y, for some constant A > 0. If p = 2 and g € L%‘I(Y,K}zi,loc)
verifies

5 2
0g =0 and Jy|g|hnw"<oo,
then there exists u € L} o(Y, K}, loc) such that
ou=g and J lul; w"s*J lg|7 w™.
Y 4 (p-DAJy 4

3. PROOF OF MAIN RESULTS

In this section, we prove Theorems 1.1 and 1.2 together with Corollary 1.3. We
then give a semi-global version of these results (Theorem 3.1).

Proof of Theorem 1.1. We use methods from [4, Section 2] (see Theorem 1.3
of [14]), and divide the proof into three steps. Recall the definition (1.6) of R;.
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Step 1. Given x € B(xj,R;j) \ {x;} we estimate the growth of the functions p;
and @ defined in (1.9) and (1.7), respectively.

Note that, since w = ¢ Q, we have
(3.1) pj(z) = co, Vze€B(xj,2R))\ {x;},

for some constant ¢y > 0. Let x € B(xj,R;), ¥ < |x]/2, and set

M;(x,r) = max{p;(z) : |z — x| <7},
mj(x,r) =min{p;j(z) : |z — x| <7}

Hence,
(3.2) mj(x,r)dm(z) < w(z) < Mj(x,v)dm(z) onB(x,r).
Since ¥ < |x|/2, we obtain by (1.10)

Alr ZBJA;r
<
(Ixl =7)fi = x|

lpj(z) —pj(x)| < , Z€B(x,7).

Therefore, by using (3.1), we get

2biAGr
M;(x,v) < pj(x) + xIP <pjx)|1+

colx|Pi

ﬁ. 14
2 JAjr>'

ﬁ. 14
2 JAjr>

2k A
mj(x,r) = pj(x) — <1 >pix)|1-

colx|Pi

Ifr <|x|/4and ¥ < COIXIBi/(ZBJ'*zA;-), these estimates yield

2Bit1A Y
Mix,2r) LT i Cl
(3.3) S < Colx|® lr,,
m;(x,7) Ay |x1Ps
~ colx|Pi

with some constant C; > 0. Note that (3.3) holds also with pj(x)/m(x,7) and
M;j(x,2r)/pj(x) in place of M(x,2v)/m;(x,7), since the first two quantities
are bounded above by the third.

Next, we turn our attention to the weight @ of the metric h corresponding
to the local holomorphic frame e; of L on B(x;,2Rj) (see (1.7)). By using the
Taylor expansion of order 2 of @ at x on B(x, |x|), we can write

@;j(z) = viloglzl + Re fj(2) + Axlz — x> + ¢j(2),
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where fj is a holomorphic polynomial, and ¢/ vanishes to order 3 at x. If, then,
¥ < |x|/2, we have by (1.8) that

Aj‘}’5 Za»fAj1’3
<

(3.4) max{|P;(z)| : z € B(x,r)} < (Xl =% = x|
Since €1 (L, h)x = 2wy, it follows by (3.1) that
(3.5) Ax = TeP;(x) = TTECH.

Note that the function log|z| is harmonic on the disc B(x, [x]). Hence, there
exists a holomorphic function F;(z) on B(x, |x|) such that

@;(z) =ReFj(z) + Axlz — x|* + ¢(2).
Consider the holomorphic frame ey = efie; of L on B(x, |x]), so
(3.6)  @j(z) =—-loglex(2)In = @;(z) —ReFj(z) = Aclz — x|* + @j(2)

is the corresponding weight of h. Note that @;(x) = 0.
We conclude Szep 1 by introducing the following function, which is needed
in the sequel:

E(r) := La< e 28" qm(E) = %(1 —e 27,

where dm is the Lebesgue measure on C. If ¥ = 6 > 0, then

2 2
T e72r 6—21’

(37) T(T)ZI_FWSI_FW-

Step 2. We obtain here the upper estimate for P, (x) if x € B(xj,Rj) \ {xj}. Let
S € HY (X\5,LP)

and write S = se%”, where ey is the local holomorphic frame of L on B(x, |x|)

from Szep 1 and s € Ox(B(x,|x[)). Let v, € (0,|x|/4) be an arbitrary num-

ber which will be specified later. It follows from the sub-averaging inequality for
subharmonic functions that

J |5(2) P22l dm(2)
B(x,7p

1S [, = Is(x)1? = -
JB( )e‘zf’)‘X'Z‘x' dm(z)
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By using (3.2), (3.6), and (3.4), we obtain
| s@pe izt amz)
B(x,rp)

_ P2 maxper) w;)
- mj(x,rp)

J |5(2)17e 2 Pi%) w(2)
B(x,rp)

exp(2Y T Ajprylx|~%)

2
o T) [ISI[5-

Moreover,

Yr>0.

1 T
3.8 J e PANZ=X g (2) = ——E(rypdy) < ,
(3.8) B(x,r) =) PAx (rypAs) 2pAx
By combining these estimates, it follows that

2 pAy expQRUTIAjpri|x|T)
PE(rp\pAx) m;(x,7p) '

(3.9) S [, < 1IS]]

Note that
ci(L,h)x _ 2Ax

Wy mp;(x)

By taking the supremum in (3.9) over § € H(OZ) (X\Z,LP) with [IS|l, = 1, we get
by (2.1)

c1(L,h)y T pj(x)

By using (3.5), we obtain

Py(x)<p exp(QUTT A pr]lx|"%).

c1(L,h)y T pj(x)
wyx  2E(ry /TTECOP) Mj(x,1p)

If r,/P = 1, then by (3.7),

Py(x)<p exp(2% 1A jpry x| ).

< 1+ Cyexp(—2mecopry)

with a constant C; > 0. Moreover, if prf, < |x1]%, then
(3.10) exp(QUH A pr)Ix|™%) < exp(2NHA;pr)Ix| ")
<1+ Gprplx|™,
with a constant C; > 0. If, in addition, 7, < C0|X|BJ'/(2BJ'+2A;-), then apply-
ing (3.3), together with these estimates, to the above upper bound on P, (x) yields

Cl (L! h)X
w

X

Py(x) <p (1 + Coe 2TEP) (1 + Cirp x| 7P1) (1 + Cipr) x| =),
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provided that

x| colx|Bi .
0 <7p < T, rp\/ﬁz 1, rp < m, ]91’2 < |x|%i,
J

Setry =p =%, 507 /P = pl/2-a, prg = p!73@, We have shown the following: if

! L -a |x| -a C0|x|ﬁj 1-3a o
3<a<z P i< <2BJ_+2A;,p <|x|%,
then
Py(x) < pM(l + Céefz'”fcolﬂl’z“)
Wx

X (1+Cip~ x| P (1 + Cyp' 3% |x|~%).

With a = %, this implies that there exists a constant C; > 0 such that if
p > C;max{|x| ™83 |x|78i/3 |x |78} = Cf|x| %,
where 0 ; is defined in (1.11), then

Py(x)  wy
p Cl (Lsh)x

< 1+ Cip 3 8x|7Pi + p~18|x|~%).

Step 3. We obtain now the lower estimate for P, (x) if x € B(xj,Rj) \ {x}. As
before, let ¥, € (0, x|/4) be an arbitrary number which will be specified later.
Let x : C — [0, 1] be a smooth function such that x = 1 on the unit disc B(0, 1)
and supp x € B(0,2). If ex is the local holomorphic frame of L on B(x, |x|) from
Step 1, define

- zZ—-X ®
Xp(2) = pj(x)712x (T) , F=xpex’,

SO
|F(x) |5, = pi(x)Te™2PPi¥) = pi(x) 71,

By using (3.2), (3.6), (3.4), and (3.8), we obtain

3.11 J e PP < M(x,27,) exp(2p max |@;])
( ) B(x,2rp) J P Xp( pB(x,Zr,,,)'(pJ|

X [ e 2PAxlz=x1> g (2)
B(x,2ryp)

- M (x,27p)

T exp(24 Ajprylx|~%).



Bergman Kernel Asymprotics 605
Since xf} < pj(x)~1, this implies

(3.12) W= [ xeriie
B(x,2ryp)

™ Mj(x,21p)
C2pAx pj(x)

exp(2"‘f+4AjpT,2 [x|~%).

Note that any non-compact Riemann surface admits a complete Kihler met-
ric, since it is a Stein manifold by Behnke-Stein [3]. Hence, if X is a Riemann
surface and X is a discrete closed set, then X \ = admits a complete Kihler metric.
By assumptions (B) and (C), Ric,, = —2mBw, ¢;(L?,hyp) = 2pew on X \ 2.
So, if p > B/&, we can solve the d-equation using [17] (see Theorem 2.1): if
0 = OF € L%’I(X \ X, L7, loc), there exists G € L%’O(X \ X, L?,loc) such that
0G = 0 = OF and

el =], 1610 =

2
< e s |01, .

Since B B
10X, 1% < 10X 110 ()17, 2,

where [|0x|| denotes the maximum of |dx|, we get by (3.11)
07 w =J ox,, 12 2P%iw
JX\Z| |h” B(x,zrp)| Xp'

_ TloxXI1* Mj(x, 2rp)
T 2Acpri pj(x)

exp(2N A pr x| %),

Thus,
1 mloxl> 1 M;j(x,2r)
pe 2Ax prp  pj(x)

3.13) |Gl = exp (2% A;pr3|x| %),

Since G = OF = 0 on B(x,7p), G is holomorphic on B(x,7,). Hence, the
estimate (3.9) applies to G on B(x,7,) and gives

|G(x) Iip < HGHiE(T:?;TX) exp(za;llﬁfgﬂ txj).
By using (3.13), we obtain

mlloxl? 1 M;(x,2rp)
2eE(rp\/pAyx) prp mj(x,7p)
Ifr, /P = 1, then E(rpy/pAx) = E(/TEC)) by (3.5). So,
Cs Mj(x,2rp)

pry mj(x,7p)

Ge) i, < (207! exp(2% A pry x| 7).

(3.14) G5, <pj(x)! exp(2%*5 A pr}|x| =),

with a constant C5 > 0.
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Set S =F —G € HY(X \ 3,LP), as 0S = 0F — 0G = 0. By (3.12) and (3.13),
we have

ISI[2 < (IFlp + 1Gl,)?
. M;(x,27p)
- 2pAx pj(x)

= 2
. s 0
exp(2N A pr) x| %) (1 + 71/!7 XJE) .

Moreover, if

VG (M )\
Q(X’T’”)':Tp\/?(mj'(x,rp)) epH APy ) <,

then, by using (3.14), it follows that

1SGO [h) = UF () |, = 16 [n,)? = ()71 = Qx, 7))

Therefore,
|1SGo) [}
Pp(x) >~
|IS1[,
ci(L,h)y  pj(x) (1-Q(x,1p))?
wy  Mj(x,2rp) RS .k ; en
(1+Tp\/ﬁ) exp(2Y T A pry Ix|7Y)

Ifry < colx|Bi/(2Pi*2A") and pr} < 1x]%, then by (3.3) and (3.10),

C: C
Q(x,7p) < G (1 + Clrplx|BN12(1 + Cprilx| =) < —5,
Tp/P /P

for some constant C; > 1. We may assume that C; > oxIl//c. Applying this
estimate on Q (X, 7p), together with (3.3) and (3.10), to the above lower bound
on Py (x) yields

c1(L,h)x

X

(3.15) Py(x)=p

(5)
Yp /P

’ 27
C
(1+Clrylx|=Bi)(1 + C; r5|x|“f)(1+ 6 )
1"y 3PTp Yo /P

X

if
colx|Pi
2b+247

[x|

B , .
P>, 0<1p <, Tpp > Cg, 1p < pry < |x|%.
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We again let v, = p~%, so 1, /p = p'/*7%, pry = p'3. Then, (3.15)
implies the following: if

1 1 B i2-a C e XL colxlP s, «;
3<A<3P>0p >Cop <7 p <2Bj+2A;,p < |x]%,
then

I_C’ a—1/2\2
Py(x) = pCI(L;h)x ( P )

wx  (1+Cip=alx|™B (1 + CGypl-3a]x|~%) (1 + Copa-112)2
By taking a = %, we conclude that there exists a constant C; > 0 such that if

p > Cymax{|x| ™83, |x|78i/3 |x |78} = )| x| %,

then
Py(x)  wy _ _g. _ o
——X > 1 - Cy(p 8 |x|Fi + p 18| x| %),
PN 7(p77% x| p- "t lx[7%)
This concludes the proof of Theorem 1.1. O

Proof of Theorem 1.2. Here, L = Kx. The proof is analogous to the proof
of Theorem 1.1, with the only difference that we apply Theorem 2.2 instead of
Theorem 2.1 in order to solve the d-equation in Step 3. For the leading term of
the expansion, observe that

R
Kyy - _ @
c1(Ky, h™) @ by (2.6). O
Proof of Corollary 1.3. Let Cj be the constant from Theorem 1.1. Then,
dist(x,x;) > (Cj/p)"% = (Cj/p)"%.

Hence, by Theorem 1.1, and by using that «;/6; < é and Bj/0; < %, we obtain

p c(l,h)x

1| < Cj(p~8dist(x, x;) "% + p~3/8dist(x, x;) i)
< Ci(p™ 8 (pICT% + p=3 B (p €)M

< Ci(p~U-MI8 4 p=30-MI8) < oCip=U-/8

We give now a semi-global version of Theorem 1.1. Let K C X be a compact
setand let =N K = {x1,...,Xm}. Fix a constant Ry > 0 with the property that
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every point X € K has a coordinate neighborhood Uy centered at x such that the
coordinate disc B(x,2Ry) € Uy and

dist(B(xj,2R0), 2\ {xj}) =Ry, 1=<j=m.
Define

x:=max{xj: 1 <j<m}, A:=max{A;:1=<j=<m},
B:=max{f;:1=<j=mj}, A'::max{A;-:ISjSm},

where «j, A and Bj,A;' are as in (1.8) and (1.10), respectively. We have the
following result.

Theorem 3.1. Let (X,3, w,L,h) verify assumptions (A)—(C), and let K C X
be a compact set with ¥ N K = {x1,...,Xm}. Assume that h and w satisfy (1.8)
and (1.10), respectively.

Then, there exists a constant C = C(K, 2, w,L,h) > 1 such that if x € K \ 2

and p > Cdist(x,2) =%, where § = max{g, 8B/3,8a, then

Py(x)  wy

L. 178 dj —x 4 308 §; B
p c(L,h)x Il =C(p dist(x,%) %+ p dist(x, =) 7P).

Proof. Let

K :=K\ |JB(xj,Rj).
j=1

There exist a positive number 7y < R¢ and points yj € K, 1 < j < m’ such that
K’ c UjL; B(yj, 7o) and

dist(B(¥j,21),%) =1y, 1=<j=m'.

We have to estimate Py (x) for x € B(j, 7). Note that h is of class C? and
w is of class C% in a neighborhood ofB(yj,ZTo). As in (1.9), we write w(z) =
pj(z)dm(z), where pj = ¢y on B(¥,27), 1 < j < m’, with some constant
co > 0. If Mj(x,r) and m;(x, ) are defined as in Step 1 of the proof of Theorem
1.1, we have that (3.3) holds for ¥ < #,/2 with 8; = 0 and some constant C; > 0.
Next, we can choose a holomorphic frame ex of L on B(x,7y) C B(yj,2ry) for
which the corresponding weight @; of h verifies (3.6) and

max{|(¢;(z)| : z € B(x,7)} < Cgr?, ¥ <,

with some constant Cg > 0. Moreover, Ax > TT&C).
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Proceeding as in Szep 2 and Step 3 of the previous proof, we show that there
exist po € N and a constant Cy > 0 such that if% <a < %, p > po, and
pl/27a@ > Cj, then

Py(x) < pw(l + Cé(e‘z"fcépl’“ L pa 4 ploiay),
Wx
(3.16) R
Py(x) = po= X (1 _ g (pa 12 4 poa 4 plday),

X

By choosing a = % in (3.16), we see that there exists p, € N such that if p > p|,
then
Py(x)  wy

— X 1| <3Cip U8,
p (L h)y op

Together with Theorem 1.1, this completes the proof of Theorem 3.1. O

4. APPLICATIONS

In this section we examine some situations when the parameters & and B can
be explicitly calculated. We consider metrics with logarithmic singularities and
hyperbolic metrics with parabolic singularities (cusps) or conical singularities.

4.1. Metrics with logarithmic singularities. Let X be a Riemann surface
and ¥ C X be a discrete closed subset. Let (w be a Hermitian metric of class
C? on X. Let (L, h) be a holomorphic line bundle on X with singular metric h
(see [18], [34, p. 97]). We assume that h is smooth on X \ T and has weights with
logarithmic singularities at 3; that is, in (1.7) we have @ (z) = v;log|z|+yj(2),
with v; = 0 and @; € C3(B(xj,2R;), where @ j(z) = —log|ej|p is a local weight
around Xx;.

In this situation, we have & = B = 0, so from Theorem 1.1 we obtain imme-
diately the following result.

Corollary 4.1. Let X be a Riemann surface and 3 C X be a discrete closed
subset. Let w be a Kihler metric of class C* on X such that Rice, = —21Bw, for
some B > 0. Let (L, h) be a holomorphic line bundle on X, where h has weights with
logarithmic singularities at 3, it is smooth on X \ X, and ¢1 (L, h) = 2&w holds in the
sense of currents on X, for some € > 0. Let Py(x) be the Bergman kernel function of
H?z)(X,L’”). Then, for any xj € X and any compact set K C X withK N3 = {x}},
there exists Cj = Cj(K) > 0 such that if x € K, then

Py (x) Wx

. r 1/8
p CI(L!h)X

1| <Cjp V8, forp > Cjdist(x,x;) 8.

Note that on a compact Riemann surface, the Ricci curvature is automatically
bounded below. Given a compact Riemann surface, a line bundle (L, hy) with
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smooth metric of positive curvature and a finite set = C X, we can always construct
a singular Hermitian metric h with the properties of Corollary 4.1. We can take
h = hgexp(—¢&y), where € > 0 is small enough and ¢ a smooth function on X\ =
with ¢/(z) = log|z — x| in a neighborhood of x; € .

Consider a non-compact Riemann surface X endowed with a Kihler metric
of class C? on X such that Ric,, = —2mBw, for some B > 0. One can consider,
for example, a hyperbolic domain in P! endowed with the Poincaré metric, or a
domain in C endowed with the Euclidean metric. Recall that a hyperbolic domain
X c P! is a domain such that P!\ X contains at least three points. Since X is Stein,
X admits a strictly subharmonic exhaustion function @. Let = C X be a discrete
closed subset. The metric exp(—x (@) —) on the trivial bundle L = X X C satisfies
the conditions of Corollary 4.1 for some convex increasing function ¥ : R = R
and for  as above.

Remark 4.2. In terms of the Nadel multiplier ideal sheaves (see, e.g., Defini-
tion 2.3.1 in [34]), we deal in Corollary 4.1 with a singular metric h on L with
c1(L,h) = 2¢&w such that the zero variety of the multiplier ideal sheaves 7(h) of
h equals 2. We have H?z) (X,LP) = H(X,O0(L?) ® 1(hP)), the space of global
sections of the sheaf O(LF) ® 7(h”). By [25, Theorem 1.8], if X is compact, the
Bergman kernel function P, (x) of H 0(X,0(LP)®7(h?)) has the full asymptotic
expansion (1.3) on compact sets of X \ X.

4.2. Poincaré metric on the punctured disc. Let us consider X = D and
3 = {0}. We endow the punctured disc Y := D* = D\ {0} with the Poincaré
metric ds? = (|z|log|z|?)2|dz|?, that is,

i dzadz
4.1 = ents |
D © T 21z R og 1z
This is a complete Kihler metric with Gauss curvature R, = —4, or equivalently,

Ricy = —4w (see (2.6)). The metric w fulfills condition (B’).
Lemma 4.3. We have x = B = 3.

Proof- We use (1.13), (1.7), (1.8) and (1.9), (1.10). We have
@(2) = - log 2| - log | log z[* | - 2 log?2,

hence,

W(z) = —log|log(x? + ¥?)| - %logZ,

with z = x + iy. By explicitly calculating 03¢ and 92 9, ¢, we obtain that for
any ¥ € (0,1) there exists a constant C = C, such that [03y(2)| < Clz|73,
1020, @ (2)| < Clz|73 for |z| < r. By symmetry, we obtain the same estimates
for 85y, 0x 03 . Thus, & = 3.
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We have p(z) = (Iz|log|z|?) 2. Note that, by direct calculation, we obtain

102p(z)| < |z|73, and by symmetry, we obtain the same estimate for |d:p(2)|.
Thus, B = 3. |

By Theorem 1.2 and Lemma 4.3, we obtain the following result.

Corollary 4.4. Let Py(x) be the Bergman kernel function of H)y (D*,Kp.).
Lerv € (0,1). Then, there exists C = C(v) > 1 such that if 0 < |x| < v and
p > Clx |2, we have

-1

Pp(X) TT ~1/8 -3
‘ » 2 <Cp [x|™°.

An explicit expression of the Bergman kernel on the punctured unit disc was
derived in [2, (3.7)]. By modifying slightly [2, Proposition 3.3], we can show that

2 4
=—p-— P — 00
4.2) Py (x) ey +0(e °P), p ,

outside a fixed neighborhood of the origin (or more generally, outside a shrinking
neighborhood [2, (3.9)]). Note that in [2], the metric (4.1) is normalized such
that its Gauss curvature equals —2 and one works with a line bundle L satisfying
2mci(L,h) = w; hence, the first two coefficients of the expansion differ from
those in [2] (see also Remark 4.8). Corollary 4.4 is concerned with the behavior
of the Bergman kernel inside a neighborhood of the origin.

4.3. Hyperbolic metrics with parabolic singularities. We consider the Rie-
mann sphere P! = CU oo with m > 3 marked points £ = {x1,...,Xm}. By using
a Mébius map we can assume that X, = o. Let Y = P!\ 3. By the uni-
formization theorem, Y is the quotient H/T', where H is the upper half-plane, and
I' ¢ PSL(2,R) is a finitely generated torsion-free Fuchsian group acting on H by
linear fractional transformations. The Poincaré metric on H descends to Y and
gives a complete Kihler metric ds? of constant curvature —1. By [39, Lemma 2],
the metric ds? has the form ds? = e?|dz|2, where @ is a smooth function on Y
verifying @,z = %eq’ and

—2log|z — xjl = 2log | log|z — xj|| + O(1),

Q(z) = asz—-xj, l<j<m-1,
—2loglz| —2log |log|z|| + O(1), asz — Xxpy = .

Lemma 4.5. Foreach j =1,...,m, we have xj = Bj = 3.

Proof- Since the curvature is constant —1, we have @; = %e‘p = p. Without
loss of generality, we may assume j = 1 and x1 = 0. Near z; = 0, we have

@(z) = —2log|z| - 2log |10g|z| | +0(1).
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By [39, Lemma 2], there exist C > 0 such that near 0 we have

(4.3) l@:|

< —.
V4

In the rest of the proof, we denote by C a constant that may change from line to
line. By [39, Lemma 2] (see also [39, (1.7), (1.8)]), there exists ci,...,Cm—1 such
that

1 2 mn 1 Cl
(4.4) Pzz =502 = 2 <2(2 - x;)2 *Z —xi>

(the righthand side is actually the Schwarzian derivative of the inverse of the pro-
jection H — H/T = Y, and cy,..., cm—1 are called accessory parameters). By (4.3),
(4.4),

C
Q22| < Iz Dear z1 =0,

and

m—1 1 Ci
~ ~ i
Pzzz = Pz Pzz Z ((Z —z;)3 + (z—- Zi)2> -

i=1
Hence,

| | < ¢ =0

Qzzz| < Zp near z; = 0.
1

Now, p; = @2: = 5eP@_; thus,

C
lpz| = |Qozz] < EE near z; = 0.

Further, ¢ = @ + 2log|zl; hence, W, = @, + z7 ' and Y.z = Qo2 + 2273,
Wzzz = Pzzz. We deduce that oy = B; = 3. r

By Theorem 1.2 and Lemma 4.5, we obtain the following result.

Corollary 4.6. Let Y := P!\ S withS = {x1,...,Xm}, M = 3 be endowed
with the induced Poincaré metric of constant curvature —1. Let Py (x) be the Bergman
kernel function ofH(Oz) (Y,KY). Then, forany j = 1,...,m, and any compact set
K c P withK N X = {x}}, there exists Cj = Cj(K) > 0 such that if x € K, then

1 =24,

2P
‘M — 1| = Cip VB dist(x,x) 3, for p > C;dist(x, x;

p
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Note that the space H{y, (Y,KY) is the space of cusp forms of weight 2p on
Y, so Pp(x) is the Bergman kernel of the cusp forms.

Let us now point out the interpretation of Corollaries 4.4 and 4.6 in terms of
classical Bergman kernels for function spaces. Let us consider a general hyperbolic
domain Y C C, thatis, C \ Y contains at least two points. As above, Y admits an
induced Poincaré metric ds? = p(z)|dz|? of constant curvature —1. For p € N,
we define the Petersson scalar product

4.5) (frg)p = ij(z>ﬁp1-v(z> dm(2)

on the space L%,(Y) := {f : Y — C measurable : ||f||%J = (f,f)p < oo} (see,
e.g., [31, p. 88]), where dm(z) = (i/2) dz A dz is the Euclidean volume form.
Set

ﬂl%,(Y) ={f € L%,(Y) : f holomorphic},

which is a closed subspace ofL%J (Y). Denote by I1,, : L%, (Y) — 54%, (Y) the orthog-
onal projection and by IT, (-, -) its reproducing kernel. If {f;} is an orthonormal
basis of (ﬂ%,(Y), (+,)), then I, (z,w) = X; fj(2)fj(w). The restriction on
the diagonal z — I1,(2) := X;|fj(2)|? is the Bergman kernel function for the

Petersson scalar product. Note that any element S € H{, (Y,KY) is of the form
S = f(dz)®?, where f € O(Y). Let S’ = f'(dz)®? be a further element of
HP, (Y,KY). By (2.5),

(S, ww = fF1(d2)®P | fyw = 2P f.f7p' 7P dm(2),
hence, (S,S") = 27(f, f')p. The map

AZ(Y) — H),) (Y,K}),
f =272 f(dz)®"

is an isometry. Therefore,
(4.6) P,(z) =M, (2)p(z)7?, zeY.

By Corollary 4.6 and (4.6), we obtain the following result.

Corollary 4.7. LetY = P\SwithS = {x1,...,Xm}, m = 3, and write ds* =
p(2)|dz|? for the induced Poincaré metric of constant curvature —1 on'Y. Let 11, (2)
be the Bergman kernel function associated with the Petersson scalar product (4.5).
Then, for any j = 1,...,m, and any compact set K C Pl withKn3 = {x}, there
exists Cj = Cj(K) > 0 such that if z € K, then

2mlL, (2)p(2) P
p

)—24'

—1| = Cjp~"8dist(z,x;) %, forp > C;dist(z, x;
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A similar statement can be proved for the Bergman kernel I, (z) of the Pe-
tersson scalar product on D* by using Corollary 4.4 (see [21, Section 5] for the
explicit formula of the Bergman kernel IT, (z) for D*).

Remark 4.8. Let Y C P! be an arbitrary hyperbolic domain endowed with
the induced Poincaré metric of constant Gauss curvature —1. Let Py (x) be the
Bergman kernel function of H?z)(Y, Kf;). By Theorem 6.1.1 of [34], Theo-
rem 3.11 of [35], Pp(x) has a full asymptotic expansion (1.3) on compact sets
of Y. Actually, by [2, Corollary 2.4] the expansion reads

Py(x) = % - ﬁ +0(p™™), p— o
Indeed, by = 1/(21) by (2.6). The Gauss curvature of ¢;(Ky, hXY) being -2,
the scalar curvature of ¢; (Ky, hXY) is7Y = —41 by (2.8). Hence, by = —1/(41).
All other coeflicients vanish by [2, Corollary 2.4], so the remainder is O (p~).

IfY =P"\EwithE = {x1,...,xm}, m = 3, we refer to [2] for a weighted es-
timate near the punctures for the global Bergman kernel compared to the Bergman
kernel of the punctured disc.

4.4. Hyperbolic metrics with conical singularities. e consider again the
Riemann sphere P! = CU o with m marked points £ = {x1,...,xm}, m > 3. By
using a Mobius map we can assume that x;, = . Suppose thata;, 1 < j <m
are real numbers such that

m
(4.7) aj<1, > aj>2.
j=1

Then,
Y =P\ {x1,...,xXm} =C\ {x1,...,Xm-1}

admits a unique Kihler metric of constant curvature —1, which on P! is with
conical singularities of order a; (or angle 277(1 — a;)) at xj, 1 < j < m (see [40,
Section 2] and references therein). This metric has the form ds? = e®|dz|?, where
@ is a smooth function on Y verifying

1
Qzz = Eem,
(4.8) (2) = —2ajloglz —xj|+0(1), asz-xj, l<j=sm-1I,
® B -2(2—am)loglz| + O(1), asz — xpy = co.
Lemma 4.9. Foreach j=1,...,m, we have xj = Bj = 1 + 2a;.

Proof- Since the curvature is constant —1, we have @ = %e‘p = p. Without
loss of generality, we may assume j = 1 and x; = 0. By [40, Lemma 2 and (9)],
we have
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4w
(1= w2’
with w(z) = z!"% g(z), g holomorphic near x; = 0, g(0) # 0.

4.9) e?

The function w is a multi-valued meromorphic function on P! with ramification
points at {x1,...,Xm}, and it becomes single-valued on the universal cover of Y.

Let us consider the function F(z) = (1 — a1)g(z) + zg'(z), holomorphic
near 0, F(0) = (1 —a;)g(0) = 0. By (4.9),

@(z) = -2a;log|z|+y(z)+log4, where @(z) = logIF(Z)|2—2log(l—|w|2).

Let us denote /(z) = —log(1—|w|?). We have ¢, = (F'/F) + 2, with (F'/F)
holomorphic near 0. Thus, we only have to estimate the derivatives of (. By a
direct computation, we obtain

rrr o=

2(w'w)3 3w w” w? L _ww
(I-|wl?)3  A1-lw»2 1-|wl?)’

(ijzzz =
Taking into account (4.9), there exists C > 0 such that near 0 we have

lw| < Clz|'™4, lw’| < Clz|™,

4.10
(4.10 lw"”| < Clz|™'"%,  |w"'| < Clz|™* 4.

By (4.9) and (4.10), we infer that near 0,
[Bzzz] < CIZP700 4 2|40 42|71 720) < Clz| 172,
We have used here that a; < 1. The previous estimate implies

(4.11) (Y2221 SC|Z|7172al-

We estimate now p; and /;;; simultaneously. We have

- 1
Qzz: =Wz =2Q;3 = Eew =p

SO Pz = Wiz = %e‘p(pz. On the other hand, @, = —a /z + F'/F + 2{),, where
P, =ww/(l-|wl?),so @, < Clz|'72%. We deduce that |@,| < Clz|7L.
Since e® < Clz|™ 2%, we deduce

(4.12) ozl = [Wzzz] < C|Z|7172a1-

By symmetry, we obtain estimate similar to those in (4.11) and (4.12) for @;;:
and ps, W53, which show that o1 = B1 = 1 + 2a;. O
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The (1, 1)-form associated with ds? is w = (i/2)e® dz A dZ; thus,
) - e? _
Ricy, = —10 alog7 = —i@,:dz AdZ = —w.

Note that w induces a Hermitian metric h on Ky = Kpily = Opi1 (=2) |y with
curvature

1 .. 1
c1(Ky,hy) = e Ricy = peeiC)

In the chart C, the metric h has weight

1, e? @ log2
Po = log =5 =5 - =5

By letting z = 1/, we obtain in coordinate  near Xy, = o that

ds? = e®1/0) ||d_5|42 - e¥' ©)qz 12,
, 1
@)= (Z) —4log|Cl = —2amlog|C| + O(1) asT — 0.

As before, in this chart the weight of hy is @1 = @'/2 — log2/2. It follows that
he extends to a singular Hermitian metric on Kp1 which does not have positive
curvature measure since @ cannot be all less than or equal to 0.

Note that w > ¢ Q for some positive metric Q on P! if and only if a; = 0 for
all 1 < j < m. We conclude that (P!, Z, w, Kp1, hy,) verify assumptions (A)—(C)
ifand onlyifa; = 0, 1 < j < m; hence, Theorem 1.1 applies in this case.

Corollary 4.10. Let Y := P!\ 2 withS = {x1,...,Xm}, m = 3, be en-
dowed with the Kihler metric w of constant curvature —1 and conical singularities
of order aj € [0,1) ar xj (cf (4.7), (4.8)). Let Py be the Bergman kernel function
0fH?2)(Y,K)’f) associated with w and he. Then, for any j = 1,...,m and any
compact set K C P! with K N X = {xj}, there exists Cj = Cj(K) > 0 such that, for
x € K and p > Cjdist(x,x;)~80+2a)),

' 21Py(x)
14

1 ' < Cjp~V8dist(x, x;) 1120,

5. RIEMANN SPHERE WITH TwO CONICAL SINGULARITIES

In this section, we calculate explicitly the Bergman kernel and study its scaling
asymptotics near conical singularities by using rescaled coordinates involving the
magnetic length, suggested by [8]. We also interpret our results in terms of the
density of states on the lowest Landau level.
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5.1. Metrics with conical singularities. We take the line bundle L = O(1)
on the projective space P!, endowed with the Hermitian metric h, given by the
logarithmically homogeneous plurisubharmonic function on C2,

Qa(t,z) = ﬁlog(ltlza +1z*%), O0<a<l.
Consider the standard embedding z € C = [1: z] € PL. Then, wg := ¢1(L, ha)
is given by

a

_ c -1
(5.1) Wal|c=dd@a(l,z) 12Tr|z|2(1—a)(1+|z|2a)2

dz A dz,

and is the Kihler form associated with the metric

a

2
m|z]20-a) (1 + |z|24)2 |dz|

ds? =

on P! with conical singularities of order a (or angle 21 (1 — a)) at 0 and .
This surface is sometimes also called american football or spindle. Thus, w, is

polarized by (L, ha). Moreover, J wgy = 1and
[P)l

a
|z]2(0=a) (1 + |z]|24)2
=41mmaw, +211(1 —a)(5(0) + §())

Rice, = —i00log oy

in the sense of currents on P!, where §(0) = (i/2)8¢dz A dZ and & is the Dirac
measure at 0. So, w, has constant Gauss curvature on C* (and also on P!, in the
sense of distributions)

Ry, = Ricw, =4ma.
, w0,
Let us define the function ¢ on P!,
5.2) ({t:2) = Llog 22— herev e R
. W : =% Og|t|2“+ |Z|2“’ where s

and consider on L¥ = O(p) the singular Hermitian metric
(5.3) hy =e 2V hg”.
We have that

(5.4) ci(LP,hy) = (p —V)wga + v(0).
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The motivation for adding the weight  in the metric hy, is to create a d-distribution
independent of p in the curvature, which can be interpreted as the Aharonov-
Bohm flux in the magnetic field (see Section 5.2).

Let P,f,l’v be the Bergman kernel of the Hilbert space H?Z) (P1\ {0, 00}, LP) of
L2-integrable holomorphic sections of L? relative to the metrics hp and wg. Let
(+,+)p denote the corresponding inner product.

Proposition 5.1. In the above setting, we have that
(5.5) Pp(z):=Py(2)
jz|20) P |z

e

with z € C, where B is the Euler Beta function,
0, ifv<a,

Jo =max{|v—al+1,0} = {[v—a]+1, ifv = a,

and | x| is the largest integer < x. Moreover, Py (z) = O(IZIZ(jO’V))ﬁr z near 0,
and

-V, ifv <0,
Jo—v=1-{v}, ifv=0and0 < {v} < a,
1-{v}, ifv=0anda=<{v}<l,
where {x} := x — | x]). In particular, 0 < Pp(0) < +co if and only if v € N, in
which case P, (0) = (p —v)/a + 1.

Proof- For 0 < j < p, we obtain that

in2 |z|2U=V) a , -
121 = | (o ey gz (1 w02 A 02

+00 zaTZ(j—vHZa—l
= L) (1 + TZa)(p—v)/a+2 dr.

By using the substitution 2% = x /(1 — x), it follows that
5.6 2]} =B <1 + %, 1+ %) <o ifand only if jo < j < p.

Since (Zj,zk)p = 0 for j # k, we conclude that

EIR
Pp(2) = > v
=]
J=Jo p

which yields the desired formula for P,. The remaining assertions are straightfor-
ward. O
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Remark 5.2. 1f v > 0, the function ¢ defined in (5.2) is quasisubharmonic
and has a pole at 0 with Lelong number v. Whena = 1and 0 < v < 1, w; is the
Fubini-Study metric on P'; hence, it is smooth, and P,},‘V(Z) ~ |z|7%Y blows up
at 0. So, the presence of a logarithmic pole at 0 in the Hermitian metric h on L
makes Py, (0) become infinite. On the other hand, if v = 0 and 0 < a < 1, then
P,‘,l’O(O) ~ p/a while Pg’o(z) ~ p for z # 0, by Theorem 1.1. So, the presence
of a conical singularity in w, at 0 makes P, peak at 0. Proposition 5.1 shows that
the following “interference” can appear in the presence of both a logarithmic pole
at 0 in hj and a conical singularity at 0 in wg: ifa < v < 1, then P,f,l’v(O) =0.

Next, we let |z|?% = ay/p and, inspired by [8], we are interested in the limit
as p — oo of the scaled Bergman kernel function

1 ay 1/(2a)
(5.7) Fp(y) =Fp" (y) := ;P{Z’V ((7) ) , ¥=0.

Recall the definition of the Mittag-Leffler function

R <
Ers(C) = > NCAETL

Jj=0

where ¥ > 0, s = 0, and T is the Euler Gamma function.
Theorem 5.3. In the above setting, we have that

1 .
Fp(y) = EyUO?V)/aenyl/a,H(jo—V)/a(yl/a) asp — o,
locally uniformly for y € (0, +0) (or for yy € [0, +0) when jo— v = 0).
Observe that the theorem gives a scaling asymptotics of the Bergman kernel

for z approaching the singularity at 0 (at oo, respectively) as p — oo. Specifically,
if |z|** = ay/p, then

Py(2) = gy(joiv)/aeiyEl/a,l-#(jo—v)/a(yl/a) asp — oo.
In particular, if v = 0, we obtain that
Py(z) = geiyEl/a,l(yl/a) as p — oo,
and
P,(0) = Z +1.

For the proof of Theorem 5.3, we need the following lemmas.
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Lemma 5.4. If v = 0 and s = 1, then

I'(r +5s)
I'(s)

<e2(r +5)".

Moreover,

[(r+s) ) )
lim To)s 1 locally uniformly in ¥ > 0.

Proof. By Stirling’s formula, we have for all x > 0 that

X
I(x) = 1/2—Tr (£> el where 0 < p(x) < 1
x \e 12x
I'r+s) [ s _T( Z)S roars)—p(s)
IGs) T+5e 1+5 (r+s)e .

Since s = 1, u(r +s) — u(s) < % Moreover, (1 +7/s)* < e, so the inequality
in the statement follows. Next,

[r+s) _ S <1 + Z>S (1 + Z)Te“(”s)‘“(s) -1
I'(s)s” Y +s s s

as s — o0, locally uniformly for v > 0. O

Thus,

The next lemma is very simple and we omit its proof.

Lemma 5.5. Let f,(C) = Z;OZO cn,jC7 be entire functions such that ¢y j — d;j
asn — oo, for all j = 0. Assume that there exists §; > 0 such that |cn,j| < &;
for all n, j, and that the function g(T) = X7, E;C7 is entire. Then, the function
f(@©) =25 A;C is entire and fn — f asm — oo locally uniformly on C.

Proof of Theorem 5.3. We have

Fp(y)

ay —(p-v)/a ((/‘Ly)(jo_v)/a
1+ p pl+lo-vi/a

p—in r (2 + P - ") (ay)ile

= r(1+J+JO_V>r(1+p_J_JO>pj/a
a a

~,
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where

p—Jo '
Gp(y) = Z cp iy’
j=0

r (2 I V) al+Gtio-viia
_ a
i = Jtjo—v pP—J—Jo
TR PR
By Lemma 5.4, we have that for all p, j,
T <2 4 %) ql+tiov)/a

r (1 N %) pl+U+io=v)/a

1+(j+jo—v)/a
e1/12(<2+p—v>g> < Y,
a p
for some constant C > 1. Moreover, for j fixed,
I (2 LP- V) ql+tio-v)/a
lim a =1.
P=®r <1 u> pl+U+io=via
Hence,
c/ 1
0<cpj< R lim cp j = R
F(1+J Jo ) P (1+J Jo )
a a
Now, by Lemma 5.5, f,(Q) := p JO C,MCJ — E1/a,1+(jo-v)/a(C) locally uni-

formly on C. So, Gp(y) = fp(yl/“) = E1/a1+Go—v)/a(y /“) locally unlformly
in ¥ > 0, and the proof is complete.

We conclude this section with a closed formula for P5*” in the case when
a = 1/s for some positive integer s.

Proposition 5.6. If v = 0 and a = 1/s, where s > 0 is an integer, then

1 s—1 1+e2‘rr€i/3|z|2/s ps
_ 51/s,0 _ 1
P,(z) = P,"*"(2) <v+s>(1+£21< R ) )

Notably, Py (0) = sp + 1, while Py has the following asymptotic expansion on C\ {0}:
for every M > 1, there exists 0 = O(M) > 0 such that if 1/M < |z| < M, then

Py(z) =p + % +0(e7 ).
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Proof. By Proposition 5.1,

P,(2) = 1 ﬁ |Z|21
PR (1 + |z |Ms)ps B +sj,1+s(p—1)
14
_ sp+1 ps 2j
_—(1+|Z|2/s)ps JZO(J5>|Z| .

If C = e2™/5 we have that

s—1 ps s—1 p
z(l + Cﬁy)ps _ Z (7{5>yk Z gk—f =5 z <P5)ysj’
Y j—o \JS

£=0 k=0 =0

since C¢ = 1 if s divides k, and -y C* = 0 if s does not divide k. The
conclusion follows if we let v = |z|2/* in the above formula. O

1 .

Thus, the Bergman kernel Pp/S’O has the same structure (4.2) as in the case of

the punctured disc endowed with the Poincaré metric; namely, the first two terms
are non-vanishing and the remainder has exponential decay (cf. Remark 4.8).

5.2. Density of states on the lowest Landau level. Here, we comment
on the relation of the results in the previous subsection to the density-of-states
function on the lowest Landau level (LLL) on singular surfaces. The surface with
the metric (5.1) is pictured on Figure 5.1. In physics terms, (5.4) means that the
constant magnetic field (not pictured on Figure 5.1) B = p — v is turned on, with
flux lines everywhere perpendicular to the surface.

In addition, there is a delta-function (Aharo-

v nov-Bohm) flux v localized exactly at the north

pole (see Figure 5.1), so that the total flux of the

magnetic field p € Z through the compact surface

is an integer. In terms of the singular metric (5.3),

the AB-flux v is the Lelong number of the weight

@ from (5.2). This is the compact surface version

of the setup of [8] where density of states was stud-
ied on a flat cone with a boundary.

As was already pointed out in Remark 5.2, the
Bergman kernel (5.5) diverges as Pp(z) ~ |z|?¥
for v < 0 and for 0 < {v} < a. This is because
the Hermitian norm |2°|3, of the identity section
2% (5.6) corresponding to the LLL wave function
with the smallest angular momentum is singular at
z = 0 for these values of v, while the section is
L?-normalizable. The question may arise whether

FIGURE 5.1. Spindle
with cone angle a and
Aharonov-Bohm flux v.
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this section shall be kept in the spectrum. Here, we answer this question in the
affirmative. The singular value of P, (0) is an artifact of the delta-function form
of the AB-flux, which should be smeared over some e-neighborhood around zero.
Hence, the density is also smoothed out in this neighborhood.

This leads to an interesting effect, when the AB-flux v is allowed to vary over
the real line, say, in the range 0 < v < co. Between 0 < v < a, the density P, (0) is
peaked, while at @ < v < 1 it drops to zero: P, (0) = 0. This pattern then repeats
in the interval [1,2] and so on. This is a manifestation of the Laughlin’s “shift
register” on the LLL, first described in the original argument for the quantization
of the Hall conductance [32]. As v becomes greater than a, the identity section
(wave function) z° becomes non-normalizable (5.6) and drops from the spectrum
of physical states, that is, disappears into the conical singularity. At the same
time, a new L2-normalizable section localized at the equator emerges so that the
total number of states is preserved. (In Laughlin’s setting of annulus geometry,
the wave functions travelled from the outer to the inner edge of the annulus, as
AB-flux varied form 0 to 1.)

One consequence of Theorems 1.1 and 1.2 is that at a certain small distance
(in units set by magnetic length £3 ~ 1/p) away from the singular point the
Bergman kernel tends to its constant value 27tP, ~ p. Thus the interesting be-
havior of the density profile happens around a small area near the singular point
which shrinks as p tends to infinity. One way to study the density profile, sug-
gested in [8], is to use the rescaled coordinate )y = p|z|**/a in order to zoom in
on the point z = 0. Remarkably, this leads to the universal finite result for the
density profile near the conical singularity in Theorem 5.3, in agreement with the
results of [8] for the flat cone.

5.3. Metrics with a logarithmic pole. We consider again P! and the metric
wgq with conical singularities at 0 and oo, defined in (5.1). But here, we endow
the line bundle L = O(1) with the Hermitian metric h determined by the pluri-
subharmonic function

1 -

2av log(1t1** + |z]**), O0<a<1,0<v<l.

@(t,z) =vlog|z| +

We let h, = h®? be the induced metric on L?. Note that @ (1, z) has a logarith-
mic pole at 0 with Lelong number v, and

ci(L?,hy) = p(1 =v)wga + pvé(0).

Let P, = Py be the Bergman kernel of H(Oz)(IP’1 \ {0, 00}, L?), the Hilbert
space of L?-integrable holomorphic sections of L? relative to the metrics hp, and
wga. By a calculation similar to the proof of Proposition 5.1, we obtain the fol-
lowing result.
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Proposition 5.7. In the above setting,

|Z|2(jn—pV)

a,v _
Pl’ (z2) = (1+ |Z|2a)p(1—v)/a

p—Jjp 2j

X > — |Z‘|/ —,

J-:OB<1+J Jp=pv | P Jn)
a a

z e,

where j, = |pv —al+1. We have j, —pv € (-a,1 —al, and j, —pv = —{pVv}
when a = 1. Moreover, if v =1, then jp = p and P%!(z) = 1.

Next, we study the behavior of the scaled Bergman kernel function Fp'" de-
fined as in (5.7) by setting [z]24 = ay/p. Specifically:

1 a 1/(2a)
Fp(y) = Fp¥(y) := ;Pg’v ((%) ) , ¥=0.

The difference with Section 5.1 is that now the sequence {F»},>1 no longer has a
limit, but it is relatively compact and its limit points are determined by the limit
points of the bounded sequence {j, — pv}p>1. Note that when Vv is irrational,
the latter sequence is dense in the interval [-a, 1 — al].

Theorem 5.8. In the above setting, assume that px — © is a sequence of positive
integers such that

Jpr —Pkv — 0 €[-a,l-al]
ask — oo, Then,

Fp (v) — 1%((1 C ) 0laeIIYE (1= v) ),

locally uniformly for y € (0,+). Hence, the Bergman kernel has the following
scaling asymptotics near 0:

Py, (2) =

w((l _ V)y)e/ae—(l—V)yEl/a,H@/a(((1 — V)y)l/a)’

where |z|** = ay [ pk.

Proof. Arguing as in the proof of Theorem 5.3, we write

1 ‘ ay -p(1-v)/a
Fy(y) = Ey(lp*’”v”“ <1 + 7) Gp(y),
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where
P—Jp

Gp(y) = Z cp iy,
j=0

I <2 n M) al+ltip=pv)/a
a
1+ J+Jjp—pVv rli+ p—J—Jp p1+(j+jn—pv)/a
a a
By Lemma 5.4, we have that for all p, j,
r (2 + M) alTU+rip—pv)ia
a

T <1 L Pz il_ jp) pl+Utip=pv/a

< olin2 ((2+ v(la— v)) %

Cp.j =

I+(j+jp—-pVv)ia ]
) <!,

for some constant C; > 1. By Stirling’s formula, T'(x) > x~1/2(x/e)*. Then,
O<cpi<Clj e, p=1,0<j<p-—j,

with some constant C; > 1 (here, 0° := 1). By using Lemma 5.4 again, we
conclude that for j fixed,

. (1 _V)1+(j+9)/a
llm Cpk’j =

koo r <1 s 9)
a
Now, Lemma 5.5 implies that
Gp (V) = (1= WAE 4100 (1 = v)y)14),

as k — oo, locally uniformly in y > 0. This completes the proof. O
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