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Abstract. We study the imaginary parts of the isoscalar electromagnetic and isovector axial form factors
of the nucleon close to the 3π-threshold in covariant baryon chiral perturbation theory. At the two-loop
level, the contributions arising from leading and next-to-leading order chiral πN -vertices, as well as pion-
induced excitations of virtual Δ(1232)-isobars, are calculated. It is found that the heavy baryon treatment
overestimates substantially these 3π-continua. From a phenomenological analysis, that includes the narrow
ω(783)-resonance or the broad a1-resonance, one can recognize small windows near threshold, where chiral
3π-dynamics prevails. However, in the case of the isoscalar electromagnetic form factors Gs

E,M (t), the
radiative correction provided by the π0γ-intermediate state turns out to be of similar size.

1 Introduction

The structure of the nucleon as revealed in elastic electron-
nucleon and (anti)neutrino-nucleon scattering is encoded
in four electromagnetic form factors Gp,n

E,M (t) and two ax-
ial form factors GA,P (t), with t the squared momentum-
transfer. Dispersion theory is a tool to interpret (and cross
check) these scattering data in a largely model indepen-
dent way [1,2]. The nucleon form factors are assumed to
satisfy unsubtracted dispersion relations and their absorp-
tive parts are often parametrized by a few vector me-
son poles. However, such an approach is not in confor-
mity with general constraints from unitarity and analyt-
icity. In particular, the singularity structure of the ππN -
triangle diagram leads to a pronounced enhancement of
the isovector electromagnetic spectral functions on the left
wing of the ρ(770)-resonance. The two-pion intermediate
state can actually be treated exactly (in the energy region
2mπ <

√
t < 1GeV) in terms of the pion charge form

factor Fπ(t) and the p-wave πN partial wave amplitudes
f1
±(t) in the crossed t-channel ππ → N̄N . For the latter

quantities improved results have been obtained in recent
dispersion analyses of πN -scattering [3,4] based on solu-
tions of the Roy-Steiner equations. The calculation of the
isovector electromagnetic spectral functions Im Gv

E,M (t)
in chiral perturbation theory up to two loops [5] is able to
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account (step by step) for the strong enhancement above
the 2π-threshold (which originates from a logarithmic sin-
gularity at tc = 4m2

π − m4
π/M2 = 3.978m2

π on the sec-
ond Riemann sheet), but an additional (adjusted) ρ(770)-
resonance contribution is necessary to reproduce reason-
ably the empirical spectral functions. On the other hand,
the isoscalar electromagnetic form factors Gs

E,M (t) are
usually represented by sums of a few vector meson poles
(ω, φ, s1, s2, s3) [2,6]. The effects of the 3π-continuum on
the spectral functions ImGs

E,M (t) close to threshold have
been calculated in ref. [7] using heavy baryon chiral per-
turbation theory, and it was concluded that these are
small against the tails of an ω(783)-resonance with con-
stant width. In that work [7] the axial spectral function
Im GA(t) near the 3π-threshold was also computed and
the analogous calculation for the induced pseudoscalar
form factor GP (t) has been performed in ref. [8].

The purpose of the present paper is an improved cal-
culation of the 3π-continua in covariant baryon chiral per-
turbation theory. This seems appropriate in view of the ex-
pected size of relativistic corrections:

√
t/M > 3mπ/M =

0.44. In addition to leading order chiral πN -vertices, we
consider also the next-leading order ones (involving the
low-energy constants c1, c2, c3, c4) and we treat the pion-
induced excitation of the low-lying Δ(1232)-resonance, de-
scribed by a Rarita-Schwinger spinor. Our paper is orga-
nized as follows. In sect. 2 we recapitulate the Cutkosky
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cutting rule applied to two-loop diagrams with a 3π-
absorptive part and we present the Lorentz-invariant 3π-
phase space integral in explict form together with all kine-
matical variables. The formulas to project out individ-
ual nucleon form factors from the transition matrix el-
ements of the vector and axial-vector currents are also
given. Section 3 is devoted to the presentation and dis-
cussion of the calculated 3π-spectral function ImGs

E,M (t)
and Im GA(t), separated into contributions from lead-
ing order chiral πN -vertices, next-to-leading order ones,
and the inclusion of explicit Δ-isobars. In each case we
give also convenient formulas, which refer to the non-
relativistic approximation. In sect. 4 we perform a sim-
ple phenomenological analysis by considering the narrow
ω(783)-resonance for Im Gs

E,M (t) and the broad a1(1260)-
resonance for Im GA(t). In the first case this draws our at-
tention to electromagnetic effects and are thus compelled
to compute the radiative correction to ImGs

E,M (t) pro-
vided by the π0γ-intermediate state. The paper ends with
a summary and conclusions in sect. 5.

2 Calculation of three-pion spectral functions

We follow the (standard) definitions for the electromag-
netic and axial form factors of the nucleon as given in
sect. 2 of ref. [7], and remind that each form factor is as-
sumed to satisfy an unsubtracted dispersion relation of
the form

F (t) =
1
π

∫ ∞

t0

dt′
Im F (t′)
t′ − t − iε

. (1)

The threshold t0 for hadronic intermediate states is
t0 = 4m2

π for the isovector electromagnetic form fac-
tors Gv

E,M (t) and the scalar form factor σN (t) [5], while
t0 = 9m2

π for the isoscalar electromagnetic form factors
Gs

E,M (t) and the isovector axial form factors GA,P (t).
The measurable electromagnetic form factors of the pro-
ton and neutron are composed of the isoscalar and isovec-
tor ones as

Gp,n
E,M (t) = Gs

E,M (t) ± Gv
E,M (t), (2)

where the normalizations Gs,v
E (0) = 1/2, Gs

M (0) = 0.440
and Gv

M (0) = 2.353 hold at t = 0.
Figure 1 shows a generic two-loop diagram with a 3π-

intermediate state contributing to the nucleon transition
matrix element of the vector (or axial-vector) current. The
three pions have four-momenta l1, l2, l3 and a, b, c are
their (cartesian) isospin-indices. Exploiting (perturbative)
unitarity in the form of the Cutkosky cutting rules, one
obtains for the imaginary (or absorptive) part of the cor-
responding two-loop amplitude

ImT2-loop = −1
2

∫
dΦ3A · B, (3)

where A denotes the S-matrix for γ∗ → 3π and B the
S-matrix for 3π → N̄N (in the subthreshold region

√
t <

2M). The integral
∫

dΦ3 goes over the Lorentz-invariant

p1

p2

l1, a

l2, b

l3, c

Fig. 1. Generic two-loop diagram γ∗ → 3π → N̄N generating
the three-pion spectral function.

three-pion phase space, whose volume is determined by the
kinematical variable t = (l1+ l2+ l3)2 = (p2−p1)2 and the
pion mass mπ. In the center-of-mass frame the phase space
integration can be expressed as a four-dimensional integral
over two energies (ω1, ω2) and two angular variables (x, ϕ)
by

∫
dΦ3H(. . .)=

1
64π4

∫∫
z2<1

dω1dω2

∫ 1

−1

dx

∫ π

0

dϕH(. . .),

(4)
where z is determined by energy and momentum conser-
vation as

|�l1||�l2| z = ω1ω2 −
√

t(ω1 + ω2) +
t + m2

π

2
,

|�l1,2| =
√

ω2
1,2 − m2

π, (5)

and
√

t > 3mπ denotes the three-pion invariant mass. The
directional cosines,

x = l̂1 · �v, y = l̂2 · �v = xz +
√

(1 − x2)(1 − z2) cos ϕ,
(6)

refer to a unit-vector �v, which is introduced by the momen-
tum of the nucleon. The integration region in the ω1ω2-
plane, specified by z2 < 1 in eq. (4), lies inside a cubic
curve and has the explicit boundaries: ω−

2 < ω2 < ω+
2 ,

with 2ω±
2 =

√
t−ω1±|�l1|[(t−2

√
tω1−3m2

π)/(t−2
√

tω1 +
m2

π)]1/2, and mπ < ω1 < (t − 3m2
π)/2

√
t.

Before eqs. (3), (4) can be applied to calculate spec-
tral functions, one has to project the (individual) electric
and magnetic form factors out of the (isoscalar) current
transition matrix element

ū2V
μu1 = ū2

[
γμF1(t) +

i

2M
σμν(p2 − p1)νF2(t)

]
u1,

(7)
where ū2 and u1 are free Dirac-spinors. This is done by
multiplying V μ with on-shell projectors γ · p2,1 + M and
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taking suitable Dirac-traces

GE(t) = F1(t) +
t

4M2
F2(t) =

(p1 + p2)μ

4M(4M2 − t)
tr {(γ · p2 + M)V μ(γ · p1 + M)} , (8)

GM (t) = F1(t) + F2(t) =

1
4t

tr
{

(γ · p2 + M)V μ(γ · p1 + M)

×
[
γμ +

2M

t − 4M2
(p1 + p2)μ

]}
, (9)

where M = 939MeV denotes the (average) nucleon mass.
The axial and pseudoscalar form factors are projected out
of the isovector axial-current transition matrix element
(proportional to τd/2)

ū2A
μu1 = ū2

[
γμGA(t) +

(p2 − p1)μ

2M
GP (t)

]
γ5u1, (10)

in a similar way

GA(t) = − 1
4(4M2 − t)

tr
{

(γ · p2 + M)Aμ(γ · p1 + M)

×
[
γμ +

2M

t
(p2 − p1)μ

]
γ5

}
, (11)

GP (t) =
M

t(4M2 − t)
tr

{
(γ · p2 + M)Aμ(γ · p1 + M)

×
[
Mγμ +

(
6M2

t
− 1

)
(p2 − p1)μ

]
γ5

}
. (12)

In our calculation the S-matrices A(γ∗ → 3π) and B(3π →
N̄N) are built from chiral vertices and hence the inte-
grand H(. . .) in eq. (4) becomes a rational function of the
Lorentz scalar products

l1 · l2 =
√

t(ω1 + ω2) −
t + m2

π

2
, p1 · p2 = M2 − t

2
,

(13)

l1 · p1,2 =
1
2

(
∓
√

t ω1 − ix
√

4M2 − t |�l1|
)

, (14)

l2 · p1,2 =
1
2

(
∓
√

t ω2 − iy
√

4M2 − t |�l2|
)

. (15)

We note that in the nonrelativistic limit M → ∞ the
nucleon propagators become complex-valued distributions

−1
ix − ε

= πδ(x) + iP
1
x

,

−1
(ix − ε)(iy + ε)

= P
1
x

P
1
y

+ π2δ(x)δ(y)

+iπ

[
P

1
x

δ(y) − δ(x)P
1
y

]
, (16)

and the angular integrations
∫ 1

−1
dx

∫ π

0
dϕ can (and must)

be performed analytically. For example, the outcomes
of the two distributions in eq. (16) are π2 and 2π(1 −
z2)−1/2 arccos(−z).

(a) (b)

(c) (d)  p1

  p1

  p1

  p1

  p2

  p2   p2

  p2

1,  a

2 ,  b

3 ,  c

1,  a

2 ,  b

3 ,  c

1,  a

2 ,  b

3 ,  c

1,  a

2 ,  b

3 ,  c

Fig. 2. Two-loop diagrams contributing to the current matrix
elements under consideration. Their respective combinatoric
factors are 1/2, 1/2, 1, and 1/6.

3 Results of digrammatic calculation and
discussion

In this section we present the results for the spectral func-
tions Im Gs

E,M (t) and ImGA(t) as calculated from leading-
order chiral πN -vertices, next-to-leading order ones, and
pion-induced excitations of virtual Δ(1232)-isobars. Since
one works at all three stages with the same couplings of
the external sources to three pions, we recapitulate these
first. The momentum-dependent (anomalous) coupling of
the virtual photon to three out-going pions πa(l1), πb(l2),
πc(l3) reads [9]

εabc

4π2f3
π

εμναβlν1 lα2 lβ3 , (17)

where the charge factor e has been dropped, and fπ =
92.2MeV is the pion decay constant. On the other hand
the momentum-dependent coupling of the axial source
(with isospin-index d) to three (out-going) pions πa(l1),
πb(l2), πc(l3) is given by [10]

1
fπ

[
δadδbc(l2 + l3 − l1)μ + δbdδac(l1 + l3 − l2)μ

+δcdδab(l1 + l2 − l3)μ
]
. (18)

3.1 Leading-order chiral vertices

The four relevant two-loop diagrams that need to be eval-
uated are shown in fig. 2. In addition to the well-known
pseudovector πN -coupling and the (vectorial) Weinberg-
Tomozawa vertex, one encounters for the axial form factor
GA(t) the chiral contact-vertex with three pions πa(l1),
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πb(l2), πc(l3) absorbed on a nucleon (see right half of di-
agram (d) in fig. 2)

− gA

4f3
π

[
τaδbc γ · (l2 + l3) + τbδac γ · (l1 + l3)

+τcδab γ · (l1 + l2)
]
γ5. (19)

The rational integrand-functions H(. . .) resulting from the
Dirac-traces turn out to be quite lengthy1, and are there-
fore not reproduced here. The four-dimensional phase
space integration in eq. (4) has been performed numer-
ically, setting gA = 1.3 (to have a strong πN -coupling
constant gπNN = gAM/fπ = 13.24) and taking an aver-
age pion mass mπ = 138MeV. The obtained leading or-
der spectral functions ImGs

E(t), Im Gs
M (t) and ImGA(t)

in the low-energy region 3mπ <
√

t < 6mπ are shown in
fig. 3 by red, blue and green lines, respectively. A loga-
rithmic scale is used to make visible the very small values
in the threshold region. The dashed lines in fig. 3 corre-
spond to the nonrelativistic approximation. For the lead-
ing terms in the 1/M -expansion of the electromagnetic
spectral functions one can actually give convenient for-
mulas

Im Gs
E(t) =

gA

8M(8π)4f6
π

√
t

∫ √
t−mπ

2mπ

dw

×(w2 − 4m2
π)3/2λ(w, t)

+
3g3

At

(4π)5f6
π

∫∫
z2<1

dω1dω2

×|�l1||�l2|
√

1 − z2 arccos(−z), (20)

Im Gs
M (t) =

gAM

4(8π)4f6
πt3/2

∫ √
t−mπ

2mπ

dw
√

w2 − 4m2
π

×
[
w2 − 4m2

π + g2
A(5w2 − 8m2

π)
]
λ(w, t),

(21)

with the abbreviation λ(w, t) = [t − (w + mπ)2][t − (w −
mπ)2] and w denotes a 2π-invariant mass. The prefac-
tor M in Im Gs

M (t) originates from the magnetic cou-
pling i�σ × (�p2 − �p1)/2M . The analogous (nonrelativis-
tic) formula for ImGA(t) can be found in eq. (26) of
ref. [7] and that for ImGP (t) in eqs. (4), (5) of ref. [8].
We do not discuss here Im GP (t), since this form factor
is dominated (at low momentum transfers) by the pion-
pole term GP (t)(π) = 4gπNNMfπ/(m2

π − t). Note that
eq. (20) includes in the first two lines also the leading
1/M -correction to Im Gs

E(t) coming from the two dia-
grams (a) and (b) in fig. 2 proportional to gA. By inspec-
tion of fig. 3 one observes that the heavy baryon treat-
ment (used in ref. [7]) leads to an overestimation of the
spectral functions near the 3π-threshold by about a fac-
tor of 2 to 3. This noteworthy property of the chiral 3π-
continua points to sizeable relativistic corrections of mag-
nitude

√
t/M > 3mπ/M = 0.44.

1 A code with these expressions can be obtained from the
authors upon request.

3 3.5 4 4.5 5 5.5 6
t
1/2

   [m]

0.0001

0.001

0.01

0.1

Im G
E
(t)

Im G
M

(t)

Im G
A

(t)

with leading-order N-vertices

Fig. 3. Spectral functions Im Gs
E(t) (red), Im Gs

M (t) (blue),
and Im GA(t) (green) calculated with leading order chiral πN -
vertices. The dashed lines correspond to the nonrelativistic ap-
proximation.

3.2 Second-order chiral vertices

Next, we compute the spectral functions with vertices
from the second-order chiral πN -Lagrangian. The perti-
nent S-matrix for the absorption of two pions πa(l1), πb(l2)
on a nucleon reads

− 2i

f2
π

δab

[
2c1m

2
π+

c2

4M2
(p + p′)·l1(p + p′)·l2 + c3l1 ·l2

]

+
ic4

f2
π

εabeτeσμν lμ1 lν2 , (22)

where p and p′ denote in-going and out-going nucleon four-
momenta. This 2π-contact vertex enters now diagrams (a)
and (b) in fig. 2. Note that due to the contraction with
εabc only the (last) c4-term contributes to Im Gs

E,M (t),
whereas all four ci-terms contribute to ImGA,P (t). For
the numerical evaluation of

∫
dΦ3 H(. . .), we choose first

the (rounded) values c1 = −0.8GeV−1, c2 = 3.3GeV−1,
c3 = −4.7GeV−1 and c4 = 3.4GeV−1 of the second-order
low-energy constants [11]. Similar values are often em-
ployed in N3LO chiral NN-potentials and they are con-
sistent with recent determinations from πN -dispersion re-
lation analyses [12] or fits of chiral πN -amplitudes to
pion-nucleon scattering phase shifts [13]. With this cho-
sen input the results for the spectral functions ImGs

E(t),
Im Gs

M (t) and ImGA(t) are shown in fig. 4. One sees that
these (formally) subleading corrections are roughly of sim-
ilar size as the leading order terms displayed in fig. 3. A
more detailed comparison reveals that the c4-contribution
to Im Gs

E(t) is suppressed for 3mπ <
√

t < 5mπ and
this suppression is more pronounced for ImGs

M (t). On
the other hand the combined ci-contributions to ImGA(t)
exceed the leading order axial spectral function already
for

√
t > 3.7mπ. The latter feature is explained by the

large value of the low-energy constant c3. The dashed lines
in fig. 4 refer to the nonrelativistic approximation, which
again leads to an overestimation by about a factor 2. In the
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nonrelativistic limit the following integral-representations
can be derived for the electromagnetic spectral functions:

Im Gs
E(t)=

gAc4

2(8π)4f6
π

√
t

∫ √
t−mπ

2mπ

dw(w2−4m2
π)3/2λ(w, t),

(23)

Im Gs
M (t)=

gAc4M

2(4π)5f6
πt

∫ √
t−mπ

2mπ

dw (w2 − 4m2
π)3/2

×
√

λ(w, t)
[
t − w2 − m2

π − λ(w, t)
3t

]
, (24)

and for the axial spectral functions

Im GA(t) =
gA

(4fπ)4π2
√

t

∫ √
t−mπ

2mπ

dw
√

w2 − 4m2
π

×
{

2c4

3
(w2 − 4m2

π)(t − w2 − m2
π)

+
λ(w, t)

t

[
c3(2m2

π − w2) − 4c1m
2
π

+
c2 + c4

6
(4m2

π − w2)
]}

, (25)

Im GP (t) =
gAM2

64π2f4
π(t − m2

π)t3/2

∫ √
t−mπ

2mπ

dw

×
√

w2 − 4m2
π

{[
c3(2m2

π − w2) − 4c1m
2
π

+
c2 + c4

6
(4m2

π − w2)
][

3m2
π

t
(w2 − m2

π)2

−3w2m2
π − m4

π − λ(w, t)
]

+
c4

6
(w2 − 4m2

π)
[
t(4w2 + 5m2

π)

−4t2 − w2m2
π + m4

π

]}
, (26)

where the latter expression includes also pion-pole di-
agrams (axial source → π → 3π → N̄N) involving
the chiral ππ-interaction. As a good check, one can ver-
ify that the combination ImGA(t) + (t/4M2) Im GP (t),
related to the divergence of the isovector axial-
current, scales as m2

π. Note that the dw-integrals in
eqs. (20), (21), (23), (25), (26) can be solved in terms
of square-root and logarithmic functions.

The previously used low-energy constants ci stem from
determinations at the one-loop level of chiral perturbation
theory. Therefore, we employ as an alternative the values
(c1, c2, c3, c4) = (−2.2, 2.5,−6.3, 4.3)GeV−1, which were
deduced in ref. [14] from a covariant tree-level calculation
of πN -scattering, including constraints from the inelastic
processes πN → ππN . The corresponding results for the
spectral functions Im Gs

E(t), Im Gs
M (t) and ImGA(t) are

shown in fig. 5. By comparison to fig. 4, one recognizes for

3 3.5 4 4.5 5 5.5 6
t
1/2

   [m]  

0.0001

0.001

0.01

0.1

Im G
E
(t)

Im G
M

(t)

Im G
A

(t)

with second-order N-vertices

(c
1
, c

2
, c

3
, c

4
) = (-0.8, 3.3, -4.7, 3.4) GeV

-1

Fig. 4. Spectral functions Im Gs
E(t), Im Gs

M (t), and Im GA(t)
calculated with second-order chiral πN -vertices for low-energy
constants (c1, c2, c3, c4) = (−0.8, 3.3,−4.7, 3.4) GeV−1. The
dashed lines correspond to the nonrelativistic approximation.

3 3.5 4 4.5 5 5.5 6
t
1/2

   [m]  

0.0001

0.001

0.01

0.1

Im G
E
(t)

Im G
M

(t)

Im G
A

(t)

with second-order N-vertices

(c
1
, c

2
, c

3
, c

4
) = (-2.2, 2.5, -6.3, 4.3) GeV

-1

Fig. 5. Spectral functions Im Gs
E(t), Im Gs

M (t), and Im GA(t)
calculated with second-order chiral πN -vertices for low-energy
constants (c1, c2, c3, c4) = (−2.2, 2.5,−6.3, 4.3) GeV−1. The
dashed lines correspond to the nonrelativistic approximation.

the electromagnetic spectral functions Im Gs
E,M (t) ∼ c4

the obvious enhancement factor 1.26 from the larger c4-
value, while the axial spectral function ImGA(t) increased
by roughly a factor 1.5. Besides this weak enhancement
the pattern of curves in fig. 4 and fig. 5 is the same. At
this point one should also note that c1 = −2.2GeV−1 gives
(at tree-level) a nucleon sigma-term of σN = −4c1m

2
π =

167MeV, which exceeds the empirical value by about a
factor 3.

3.3 Inclusion of explicit Δ(1232)-isobars

The sizeable magnitude of the low-energy constants c2,3,4

is explained by large contributions from the Δ(1232)-
resonance, which strongly couples to the πN -system. The
covariant description of the Δ(1232)-isobar with spin and



Page 6 of 9 Eur. Phys. J. A (2019) 55: 16

isospin 3/2 requires a Rarita-Schwinger spinor field Ψα. In
this formulation the spin-3/2 propagator (vector-index β
to α) takes the (common) form [10]

i

3
γ · P + MΔ

M2
Δ − P 2

(
3gαβ − γαγβ − 2PαPβ

M2
Δ

+
Pαγβ − γαPβ

MΔ

)
,

(27)
with P the four-momentum of the propagating Δ(1232)-
isobar. In order to keep the two-loop calculations
tractable, we choose minimal forms of the vertices for the
coupling of an in-going pion to ΔN and ΔΔ, which read

ΔαNπa(l1): − 3gA

2
√

2fπ

lα1 Ta,

ΔαΔβπb(l2):
3gA

10fπ
gαβγ · l2γ5 Θb. (28)

The isospin transition operator Ta satisfies the relation
TaT †

b = (2δab − iεabcτc)/3, and for the isospin-3/2 opera-
tor Θa (a 4 × 4 matrix) the reduction formula TaΘbT

†
c =

(5iεabc − δabτc + 4δacτb − δbcτa)/3 is relevant. The cou-
pling constants in eq. (28) obey the ratios gπNΔ/gπNN =
3/
√

2 and gπΔΔ/gπNN = 1/5 as inferred from large-Nc

QCD [15]. One should note that extended versions of the
vertices in eq. (28) with further off-shell parameters have
been proposed [10,15], but these parameters are not well
determined. Since no direct empirical information is avail-
able, the relation gπΔΔ = gπNN/5 is commonly used [15].
Alternative and more sophisticated approaches to treat
the Δ(1232)-isobar in chiral perturbation theory (e.g.,
small-scale expansion and δ-counting) have been devel-
oped in refs. [16–19].

Employing the just described formulation of vertices
and propagators, we have derived the (extremely lengthy)
integrand-functions H(. . .) for Im Gs

E,M (t) and ImGA(t)
from the diagrams with single and double virtual Δ(1232)-
excitation (analogs of diagram (c) in fig. 2). The corre-
sponding numerical results are shown by the full lines
in fig. 6. By comparison with fig. 4 one observes that
the spectral functions get appreciably reduced by the
energy-dependent Δ-propagators. The suppression factor
is about 2 to 3 for ImGE(t) and Im GA(t), whereas it
amounts to about 7 to 8 for ImGM (t). Of course, the
physics here and in sect. 3.2 is somewhat different. The ci-
parameters represent more than the Δ-intermediate state
(c(Δ)

2 = −c
(Δ)
3 = 2c

(Δ)
4 � 2.9GeV−1) and there are partly

compensating effects from single and double Δ-isobar ex-
citation. It is also instructive to present formulas which
refer to the nonrelativistic approximation. For doing that
we take first the limit of ΔN -degeneracy, MΔ = M , and
then expand in 1/M . This way one obtains for the electric
spectral function

Im Gs
E(t) =

3g3
At

(4π)5f6
π

(
1 +

5
2

)∫∫
z2<1

dω1dω2

×|�l1||�l2|
√

1 − z2 arccos(−z), (29)

where the factor (1 + 5/2) displays the separate contri-
butions from ΔN and ΔΔ. Likewise, one finds for the

3 3.5 4 4.5 5 5.5 6
t
1/2

   [m]

0.0001

0.001

0.01

0.1

Im G
E
(t)

Im G
M

(t)

Im G
A

(t)

with explicit (1232)-isobars 

(-1) 

Fig. 6. Spectral functions Im Gs
E(t), Im Gs

M (t), and Im GA(t)
calculated from diagrams with single and double propagation
of Δ-isobars. The dashed lines refer to the nonrelativistic ap-
proximation.

magnetic spectral function

Im Gs
M (t) =

g3
AM

4(8π)4f6
πt3/2

∫ √
t−mπ

2mπ

dw

×
√

w2 − 4m2
π(8m2

π − 5w2)λ(w, t), (30)

which is opposite to the term proportional to g3
A in

eq. (21). This opposite sign and the factor (1 + 5/2) can
be deduced from the spin- and isospin-algebra involved in
the (nonrelativistic) three-pion to nucleon coupling, which
has to be spin-independent (spin-dependent) for the elec-
tric (magnetic) form factor. The dashed lines in fig. 6
correspond to the nonrelativistic approximations written
in eqs. (29), (30) as well as to a more complicated for-
mula for limMΔ=M→∞ Im GA(t). One can see that the
proposed nonrelativistic approximation strongly overes-
timates the results for spectral functions with Δ(1232)-
excitation based on fully relativistic kinematics. In the
case of Im Gs

M (t) there is even a difference in sign.

4 Phenomenological analysis and π0γ
intermediate state

In this section we want to find out the low-energy re-
gion, where the 3π-continua calculated in covariant baryon
chiral perturbation theory could become physically rel-
evant. For that purpose we compare our results with
the spectral functions produced by the respective lowest-
lying vector-meson resonance. For the isoscalar electro-
magnetic form factors Gs

E,M (t) this is obviously the nar-
row ω-meson with mass mω = 783MeV and decay width
Γω = 8.5MeV = (7.6+0.7+0.2)MeV [20]. In this decom-
position of Γω the first two entries refer to the dominant
decay modes ω → π+π0π− and ω → π0γ. The reason-
able assumption of ω(783)-meson dominance in the region
3mπ <

√
t < 7mπ leads to the following complex-valued
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Fig. 7. Isoscalar electromagnetic spectral functions Im Gs
E,M

(t) assuming ω(783)-meson dominance.

form factors:

Gs
E,M (t) =

(0.50, 0.44)m2
ω

m2
ω − t − imωΓω(t)

, (31)

with Γω(t) an energy-dependent ω-meson decay width.
The numbers 0.50 and 0.44 in the numerator of eq. (31)
are the isoscalar charge and isoscalar magnetic moment of
the nucleon. Modelling the two dominant decay modes by
appropriate contact-couplings, one gets

Γω(t) =
h2

mωt

∫ √
t−mπ

2mπ

dw
[
(w2 − 4m2

π)λ(w, t)
]3/2

+
h′2

mωt
(t − m2

π)3, (32)

with the parameters h = 2.72GeV−3 and h′ =
0.040GeV−1 adjusted to the partial decay widths. We
note as an aside that with this modelling of Γω(t) the
denominator in eq. (31) becomes zero at t = (32.17 −
0.340 i)m2

π, corresponding to a complex ω-meson pole at√
t = (782.8 − 4.14 i)MeV.

The resulting imaginary parts ImGs
E,M (t) are shown

in fig. 7. The resonance curves for the electric and mag-
netic form factor are almost equal, due to similar normal-
izations 0.50 � 0.44. One sees that in the region 3mπ <√

t < 5mπ the 3π-only contributions from the ω(783)-
resonance fall below the (combined) chiral 3π-continua,
whereas the additional π0γ-mode introduces appreciable
strength in the threshold region. In view of this striking ef-
fect, one is compelled to compute the radiative correction
to the isoscalar electromagnetic spectral functions coming
from the π0γ-intermediate state. The pertinent S-matrix
for π0 → γγ reads (−iαem/πfπ)εμναβkα

1 kβ
2 , where (k1, μ)

and (k2, ν) pertain to out-going photons. The one-loop
calculation of both diagrams γ∗ → π0γ → N̄N requires
only one angular integration (m2

π − t)/(32πt)
∫ 1

−1
dx, such

that the π0γ-contribution to the isoscalar electromagnetic

2 3 4 5 6
t
1/2

  [m]

0.0001

0.001

Im G
E
(t)

Im G
M

(t)

  intermediate state

3 leading order

Fig. 8. Contributions to the isoscalar electromagnetic spectral
functions Im Gs

E,M (t) from the π0γ-intermediate state com-
pared to leading order 3π-spectra.

3 4 5 6 7 8 9 10 11
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1
-meson dominance 

Im G
A
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Fig. 9. Axial spectral function Im GA(t) assuming a1-
meson dominance. The two sets of (light and dark green)
curves correspond to masses and widths of (ma1 , Γa1) =
(1.3, 0.38) GeV [21] and (ma1 , Γa1) = (1.2, 0.48) GeV [22].

spectral functions can be given in analytical form

ImGs
E(t)=

αemgA(t − m2
π)2

(4πfπ)2(4M2 − t)

{
− 1

4
+

κv

3

(
t − m2

π

16M2
− 1

+
m2

π

4t

)
+

(1 + κv)M2√
t(4M2 − t)

arccos
√

t

2M

}
, (33)

ImGs
M (t)=

αemgAM2(t − m2
π)2

(4πfπ)2(4M2 − t)t

{
1
2

+
κv

3

(
2− t + 2m2

π

8M2

+
m2

π

t

)
+

4M2 − (2 + κv)t
2
√

t(4M2 − t)
arccos

√
t

2M

}
, (34)

with κv = κp − κn = 3.706 the (large) isovector anoma-
lous magnetic moment and αem = 1/137. Note that one
averages here over proton and neutron form factors, while
the π0N -coupling ∼ τ3 introduces an opposite sign for
the magnetic moment term. The curves resulting from
the expressions in eqs. (33), (34), with threshold behavior
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Im Gs
E,M (t) ∼ (t − m2

π)2, are drawn in fig. 8. One ob-
serves that in the region 3mπ <

√
t < 4mπ the radiative

corrections due to the π0γ-intermediate state exceed the
(leading order) chiral 3π-continua (dashed-dotted lines in
fig. 8). This behavior is explained kinematically by the
fast decrease of the 3π-phase space towards the threshold√

t = 3mπ, while the π0γ-phase space remains open down
to

√
t = mπ.

In analogy to eq. (31) the nucleon axial form factor
GA(t) dominated by the a1-resonance reads

GA(t) =
gAm2

a1

m2
a1

− t − ima1Γa1(t)
, (35)

with the (proper) axial-vector coupling constant gA =
1.27 [20]. The mass and width of the broad a1-meson are
still under debate, due to conflicting results from differ-
ent experiments. A very recent partial wave analysis of
diffractive dissociation data (π−p → π−π+π−p) by the
COMPASS Collaboration [21] finds the (central) values
ma1 = 1.3GeV and Γa1 = 0.38GeV. On the other hand
the values extracted from τ -lepton decays in ref. [22] are
ma1 = 1.2GeV and Γa1 = 0.48GeV, while a later re-
analysis in ref. [23] gave a somewhat lower a1-mass of
ma1 = 1.12GeV. The analysis of the multidimensional
BABAR data with modified currents from chiral reso-
nance theory in ref. [24] has led to a similar value of
ma1 = 1.09GeV. Moreover, the Joint Physics Analy-
sis Center Collaboration [25] extracted from the ALEPH
data on τ− → π−π+π−ντ a complex a1-pole position of
ma1 − iΓa1/2 = (1.21 − 0.29 i)GeV. The model employed
in ref. [25] is based on approximate three-body unitary
and the singularity structures related to ππ-subchannel
resonances were carefully addressed.

The full lines in fig. 9 show the axial spectral function
Im GA(t) using the specific form of Γa1(t), which follows
from integrating (interfering) Breit-Wigner functions for
the ρ(770)-resonance over the 3π-phase space (see sect. 3
in ref. [23]). The dashed lines were obtained with the phe-
nomenological parametrization of Γa1(t) from ref. [26],
which describes separately the regions below and above
the ρπ-threshold t = (mρ + mπ)2. The light and dark
pair of curves refer to the parameter sets (ma1 , Γa1) =
(1.3, 0.38)GeV [21] and (ma1 , Γa1) = (1.2, 0.48)GeV [22],
which are clearly distinguished by their shifted peaks. By
comparison with the full (green) lines in figs. 3 and 4 one
can recognize an energy window near threshold, 3mπ <√

t < 5mπ, in which the chiral 3π-continua do prevail.
However, such tiny contributions to the axial spectral
function are presumably irrelevant for physical observ-
ables.

5 Summary and conclusions

In this work we have studied the imaginary parts of the
isoscalar electromagnetic and isovector axial form fac-
tors of the nucleon close to the 3π-threshold. The con-
tributions to ImGs

E,M (t) and Im GA(t) arising from chi-
ral πN -vertices at leading and next-to-leading order, as

well as pion-induced Δ(1232)-excitations have been cal-
culated and compared with each other. It was found
that the heavy baryon approach overestimates these chiral
3π-continua substantially. Moreover, leading and next-to-
leading order contributions to the chiral 3π-continua are of
similar size, due to the large low-energy constants c1,2,3,4.
From a phenomenological analysis, that included the nar-
row ω(783)-resonance or the broad a1(1260)-resonance,
one could recognize small windows near threshold, where
chiral 3π-dynamics prevails. However, for ImGs

E,M (t) the
radiative correction provided by the π0γ-intermediate
state becomes actually more relevant in the region close
to threshold. Although the net result of our covariant cal-
culation of the 3π-spectral functions in chiral perturba-
tion theory is still uncertain, one can nevertheless con-
clude that these chiral 3π-continua for the nucleon form
factors are too weak to influence physical observables in a
significant way.
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