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Abstract. We study the imaginary parts of the isoscalar electromagnetic and isovector axial form factors
of the nucleon close to the 3w-threshold in covariant baryon chiral perturbation theory. At the two-loop
level, the contributions arising from leading and next-to-leading order chiral w/N-vertices, as well as pion-
induced excitations of virtual A(1232)-isobars, are calculated. It is found that the heavy baryon treatment
overestimates substantially these 37-continua. From a phenomenological analysis, that includes the narrow
w(783)-resonance or the broad a;-resonance, one can recognize small windows near threshold, where chiral
3m-dynamics prevails. However, in the case of the isoscalar electromagnetic form factors G 5 (t), the
radiative correction provided by the 7%y-intermediate state turns out to be of similar size.

1 Introduction

The structure of the nucleon as revealed in elastic electron-
nucleon and (anti)neutrino-nucleon scattering is encoded
in four electromagnetic form factors G, (¢) and two ax-
ial form factors G4, p(t), with ¢ the squared momentum-
transfer. Dispersion theory is a tool to interpret (and cross
check) these scattering data in a largely model indepen-
dent way [1,2]. The nucleon form factors are assumed to
satisfy unsubtracted dispersion relations and their absorp-
tive parts are often parametrized by a few vector me-
son poles. However, such an approach is not in confor-
mity with general constraints from unitarity and analyt-
icity. In particular, the singularity structure of the 7w N-
triangle diagram leads to a pronounced enhancement of
the isovector electromagnetic spectral functions on the left
wing of the p(770)-resonance. The two-pion intermediate
state can actually be treated exactly (in the energy region
2m, < v/t < 1GeV) in terms of the pion charge form
factor Fi.(t) and the p-wave 7N partial wave amplitudes
fi(t) in the crossed t-channel 7w — NN. For the latter
quantities improved results have been obtained in recent
dispersion analyses of mN-scattering [3,4] based on solu-
tions of the Roy-Steiner equations. The calculation of the
isovector electromagnetic spectral functions Im G, 5,(t)
in chiral perturbation theory up to two loops [5] is able to
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account (step by step) for the strong enhancement above
the 27-threshold (which originates from a logarithmic sin-
gularity at t. = 4m2 — m2/M? = 3.978 m2 on the sec-
ond Riemann sheet), but an additional (adjusted) p(770)-
resonance contribution is necessary to reproduce reason-
ably the empirical spectral functions. On the other hand,
the isoscalar electromagnetic form factors G% /(t) are
usually represented by sums of a few vector meson poles
(w, @, 81, 82,53) [2,6]. The effects of the 3r-continuum on
the spectral functions Im G ,(¢) close to threshold have
been calculated in ref. [7] using heavy baryon chiral per-
turbation theory, and it was concluded that these are
small against the tails of an w(783)-resonance with con-
stant width. In that work [7] the axial spectral function
Im G 4(t) near the 3m-threshold was also computed and
the analogous calculation for the induced pseudoscalar
form factor Gp(t) has been performed in ref. [8].

The purpose of the present paper is an improved cal-
culation of the 37-continua in covariant baryon chiral per-
turbation theory. This seems appropriate in view of the ex-
pected size of relativistic corrections: vt/M > 3m, /M =
0.44. In addition to leading order chiral w/N-vertices, we
consider also the next-leading order ones (involving the
low-energy constants ci, ca, c3, ¢4) and we treat the pion-
induced excitation of the low-lying A(1232)-resonance, de-
scribed by a Rarita-Schwinger spinor. Our paper is orga-
nized as follows. In sect. 2 we recapitulate the Cutkosky
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cutting rule applied to two-loop diagrams with a 3m-
absorptive part and we present the Lorentz-invariant 37-
phase space integral in explict form together with all kine-
matical variables. The formulas to project out individ-
ual nucleon form factors from the transition matrix el-
ements of the vector and axial-vector currents are also
given. Section 3 is devoted to the presentation and dis-
cussion of the calculated 37-spectral function Im G, 5,(t)
and Im G 4(t), separated into contributions from lead-
ing order chiral wN-vertices, next-to-leading order ones,
and the inclusion of explicit A-isobars. In each case we
give also convenient formulas, which refer to the non-
relativistic approximation. In sect. 4 we perform a sim-
ple phenomenological analysis by considering the narrow
w(783)-resonance for Im G ,,(t) and the broad a;(1260)-
resonance for Im G 4 (t). In the first case this draws our at-
tention to electromagnetic effects and are thus compelled
to compute the radiative correction to Im G ,/(t) pro-

vided by the 7%-intermediate state. The paper ends with
a summary and conclusions in sect. 5.

2 Calculation of three-pion spectral functions

We follow the (standard) definitions for the electromag-
netic and axial form factors of the nucleon as given in
sect. 2 of ref. [7], and remind that each form factor is as-
sumed to satisfy an unsubtracted dispersion relation of

the form ) L F (¢
> 4
F(t) = 7/ dt/,mi(?. (1)
T Ji, t—t—1e

The threshold t; for hadronic intermediate states is
to = 4m2 for the isovector electromagnetic form fac-
tors G /() and the scalar form factor o (t) [5], while
to = 9m?2 for the isoscalar electromagnetic form factors

#.(t) and the isovector axial form factors Ga p(t).
The measurable electromagnetic form factors of the pro-
ton and neutron are composed of the isoscalar and isovec-
tor ones as

GE(t) = G () £ G (1), (2)

where the normalizations G3"(0) = 1/2, G5,(0) = 0.440
and G%,(0) = 2.353 hold at ¢ = 0.

Figure 1 shows a generic two-loop diagram with a 37-
intermediate state contributing to the nucleon transition
matrix element of the vector (or axial-vector) current. The
three pions have four-momenta 1, I, I3 and a, b, ¢ are
their (cartesian) isospin-indices. Exploiting (perturbative)
unitarity in the form of the Cutkosky cutting rules, one
obtains for the imaginary (or absorptive) part of the cor-
responding two-loop amplitude

1
Im Ta-100p = _§/d¢3A - B, (3)

where A denotes the S-matrix for v* — 37 and B the
S-matrix for 3m — NN (in the subthreshold region v/t <
2M). The integral [d®s goes over the Lorentz-invariant
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Fig. 1. Generic two-loop diagram v* — 37 — NN generating
the three-pion spectral function.

three-pion phase space, whose volume is determined by the
kinematical variable t = (I; +1l+13)% = (p2 —p1)? and the
pion mass m.. In the center-of-mass frame the phase space
integration can be expressed as a four-dimensional integral
over two energies (w1, ws) and two angular variables (z, )
by

1 1 ™
/d@gH(...)—W//Z2<1dw1dw2/1dx/o dpH(...),

(4)
where z is determined by energy and momentum conser-
vation as

- t
[L]|l2] 2 = wiwa — \/i(wl + wo) + T,

|11,2| = w%,z —m2, (5)

and vt > 3m, denotes the three-pion invariant mass. The
directional cosines,

r=1 -7, (1 —a2)(1 — 22)cosp,

(6)
refer to a unit-vector ¢, which is introduced by the momen-
tum of the nucleon. The integration region in the wyws-
plane, specified by 22 < 1 in eq. (4), lies inside a cubic
curve and has the explicit boundaries: w; < wy < wy,
with 205 = VI —w; & |1 |[(t — 2v/tw; —3m2) /(t — 2v/tw; +
m2)|Y/2, and m, < w; < (t —3m2)/2V/t.

Before egs. (3), (4) can be applied to calculate spec-
tral functions, one has to project the (individual) electric
and magnetic form factors out of the (isoscalar) current
transition matrix element

y=ly - ¥v=2xz+

7
uaVFHuy = g [V F1(t) + 570" (p2 — p1)u Fa(t) | ug,

2M
(7)

where 4o and wu; are free Dirac-spinors. This is done by
multiplying V# with on-shell projectors - ps 1 + M and
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taking suitable Dirac-traces
t
Gp(t) = Fi(t) + mFﬂt) =
(pl + p2)u
AM (4M?2 — 1)
Gu(t) = Fi(t) + Fa(t) =

tr{(y-p2 + M)V*(y-pr + M)}, (8)

1
{0 p VG )

2M
XAVt m(m +P2)u| ¢ (9)
where M = 939 MeV denotes the (average) nucleon mass.
The axial and pseudoscalar form factors are projected out

of the isovector axial-current transition matrix element
(proportional to 74/2)

e
Ug AMuy = uo |:’Y“GA(t) + MGP@)} Ysu1, (10)

in a similar way

Galt) = = qrppgr—y {2 + M)A 4 )
o+ 2 0] 2 (1)
Gp(t) = t(4M]\gt)tr{(7 -p2 + M)A*(y - p1 + M)
<ot (BE 1) e -p e} a2

In our calculation the S-matrices A(y* — 37) and B(37 —
NN) are built from chiral vertices and hence the inte-
grand H(...) in eq. (4) becomes a rational function of the
Lorentz scalar products

t+m? t
I+l = Vi(w + ws) — 5 pl'p2=M2—§7
(13)
1 . -
ll P12 = 5 (:F\/%wl — 1T\ 4M? —t|ll|> s (].4)
1 , .
l2 P12 = 5 (?\/itdg — 4M? —t‘lg|) . (15)

We note that in the nonrelativistic limit M — oo the
nucleon propagators become complex-valued distributions

-1
T — €
1
(ix —€)(iy +¢€)

1
= 'Pi
wo(x) +i =
_plply 25(x)d(y)

1 1
+im P;é(y) —6(x)P—|,

; (16)

and the angular integrations | _11 dx fOTr dy can (and must)
be performed analytically. For example, the outcomes
of the two distributions in eq. (16) are 72 and 27 (1 —
22)~1/2 arccos(—2z).
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Fig. 2. Two-loop diagrams contributing to the current matrix
elements under consideration. Their respective combinatoric
factors are 1/2, 1/2, 1, and 1/6.

3 Results of digrammatic calculation and
discussion

In this section we present the results for the spectral func-
tions Im G%, ,,(¢) and Im G 4(t) as calculated from leading-
order chiral 7N -vertices, next-to-leading order ones, and
pion-induced excitations of virtual A(1232)-isobars. Since
one works at all three stages with the same couplings of
the external sources to three pions, we recapitulate these
first. The momentum-dependent (anomalous) coupling of
the virtual photon to three out-going pions 7%(1y), 7°(l2),
7w¢(l3) reads [9]

€abe v
m@waﬁh 1515,

(17)
where the charge factor e has been dropped, and f, =
92.2 MeV is the pion decay constant. On the other hand
the momentum-dependent coupling of the axial source
(with isospin-index d) to three (out-going) pions 7*(l1),
7 (lp), m¢(l3) is given by [10]

1
7 [6aadbe(lz + U3 — 11)" + Gpadac(ly + I3 — I2)*
+0cadap(ln + 12 — U3)"]. (18)

3.1 Leading-order chiral vertices

The four relevant two-loop diagrams that need to be eval-
uated are shown in fig. 2. In addition to the well-known
pseudovector m/N-coupling and the (vectorial) Weinberg-
Tomozawa vertex, one encounters for the axial form factor
G 4(t) the chiral contact-vertex with three pions 7%(ly),
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7°(ly), 7¢(I3) absorbed on a nucleon (see right half of di-
agram (d) in fig. 2)

Ta(sbc (12 + l3) + Tb(sac v (ll + l3)

i

+7e0ab 7 - (I + 12)] s (19)
The rational integrand-functions H(. . .) resulting from the
Dirac-traces turn out to be quite lengthy', and are there-
fore not reproduced here. The four-dimensional phase
space integration in eq. (4) has been performed numer-
ically, setting ga = 1.3 (to have a strong wN-coupling
constant g-yn = gaM/fr = 13.24) and taking an aver-
age pion mass m, = 138 MeV. The obtained leading or-
der spectral functions Im G%(¢), Im G5, (t) and Im G 4(t)
in the low-energy region 3m, < v/t < 6m, are shown in
fig. 3 by red, blue and green lines, respectively. A loga-
rithmic scale is used to make visible the very small values
in the threshold region. The dashed lines in fig. 3 corre-
spond to the nonrelativistic approximation. For the lead-
ing terms in the 1/M-expansion of the electromagnetic
spectral functions one can actually give convenient for-
mulas

Vit—may
T G5, (t) = g4 dw

( mAEVE Jom,
><( —4m?2)32 \(w, t)

3 t
gA // dwldwg
241
><|ll||l2|\/ 1 — z2 arccos(—
Vi—mar
gaM 3
T Sy, VR

x [w® — 4m2 + g% (5bw® — 8m2)] A(w, 1),
(21)

(20)

Im Gy, (t) =

with the abbreviation A(w,t) = [t — (w + m;)?][t — (w —
my)?] and w denotes a 2m-invariant mass. The prefac-
tor M in Im G%,(t) originates from the magnetic cou-
pling id x (py — p1)/2M. The analogous (nonrelativis-
tic) formula for Im G4(¢) can be found in eq. (26) of
ref. [7] and that for ImnGp(t) in egs. (4), (5) of ref. [8].
We do not discuss here Im Gp(t), since this form factor
is dominated (at low momentum transfers) by the pion-
pole term Gp(t)™ = 4g.nnMfr/(m2 — t). Note that
eq. (20) includes in the first two lines also the leading
1/M-correction to Im G#%(t) coming from the two dia-
grams (a) and (b) in fig. 2 proportional to g4. By inspec-
tion of fig. 3 one observes that the heavy baryon treat-
ment (used in ref. [7]) leads to an overestimation of the
spectral functions near the 37-threshold by about a fac-
tor of 2 to 3. This noteworthy property of the chiral 3x-
continua points to sizeable relativistic corrections of mag-
nitude t/M > 3m, /M = 0.44.

1A code with these expressions can be obtained from the
authors upon request.
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Fig. 3. Spectral functions Im G%(t) (red), Im G3,(t) (blue),
and Im G 4(t) (green) calculated with leading order chiral 7w N-
vertices. The dashed lines correspond to the nonrelativistic ap-
proximation.

3.2 Second-order chiral vertices

Next, we compute the spectral functions with vertices
from the second-order chiral = N-Lagrangian. The perti-
nent S-matrix for the absorption of two pions 7¢(I1), 7°(I2)
on a nucleon reads

2cymZ+ (p+p)-llp+p)la+esli-lo

21
7f2 ab 4M2
f2 EabeTeauul lQa (22)
where p and p’ denote in-going and out-going nucleon four-
momenta. This 27-contact vertex enters now diagrams (a)
and (b) in fig. 2. Note that due to the contraction with
€abe Only the (last) cs-term contributes to Im G5 )/ (),
whereas all four ¢;-terms contribute to Im G4 p(t). For
the numerical evaluation of [d®s HY(...), we choose first
the (rounded) Values cp = —0. 8GeV 1y =33GeVTL,
cs = —4.7GeV~! and ¢4 = 3.4 GeV~! of the second-order
low-energy constants [11]. Similar values are often em-
ployed in N®LO chiral NN-potentials and they are con-
sistent with recent determinations from 7 /N-dispersion re-
lation analyses [12] or fits of chiral 7N-amplitudes to
pion-nucleon scattering phase shifts [13]. With this cho-
sen input the results for the spectral functions Im G%(t),
Im G5, (t) and Im G 4(¢) are shown in fig. 4. One sees that
these (formally) subleading corrections are roughly of sim-
ilar size as the leading order terms displayed in fig. 3. A
more detailed comparison reveals that the c4-contribution
to Im G%(t) is suppressed for 3m, < /t < 5m, and
this suppression is more pronounced for Im G35,(¢). On
the other hand the combined ¢;-contributions to Im G 4(t)
exceed the leading order axial spectral function already
for v/t > 3.7m,. The latter feature is explained by the
large value of the low-energy constant c3. The dashed lines
in fig. 4 refer to the nonrelativistic approximation, which
again leads to an overestimation by about a factor 2. In the
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nonrelativistic limit the following integral-representations
can be derived for the electromagnetic spectral functions:

\f—mw
Im G5, () = SWAC;G\[/ —4m2)32 \(w, 1),

(23)
Vi—-m
s gacaM T 3/2
Im G5, (t) = =~ d —4
m ]W() 2(47r)5f7§t/2mﬂ ’lU( m )
AMw, t
/MW, 1) [t—wQ—mi— WOl (90
3t
and for the axial spectral functions
Vi—mn
ImGa(t / dw /w? — 4m2
alt) = (4fr) 772\f
2
><{?C)4(w2 —4m2)(t — w? —m?2)
AMw, t
+ (1g7 )[c (2m?2 — w?) — 4eym
+ 2% g2 wQ)] } (25)
Vi—m
gaM? / T
ImGp(t) = d
mOrO) = S =)0 o,

xy/w? —4m2 { [03(27713r —w?) —deym?2

2

2 a2 = )] |2 02 2
6 t

—3w?m?2 — m — )\(w,t)}

—|—%4(w2 — 4m2) [t(4w® + 5m2)

—4t? — w’m? +m}] } (26)
where the latter expression includes also pion-pole di-
agrams (axial source — 7 — 37 — NN) involving
the chiral mr-interaction. As a good check, one can ver-
ify that the combination Im G 4(t) + (t/4M?)Im Gp(t),
related to the divergence of the isovector axial-
current, scales as m2. Note that the dw-integrals in
egs. (20), (21), (23), (25), (26) can be solved in terms
of square-root and logarithmic functions.

The previously used low-energy constants ¢; stem from
determinations at the one-loop level of chiral perturbation
theory. Therefore, we employ as an alternative the values
(c1,c,c3,¢4) = (—2.2,2.5,—6.3,4.3) GeV~!, which were
deduced in ref. [14] from a covariant tree-level calculation
of mN-scattering, including constraints from the inelastic
processes TN — wwN. The corresponding results for the
spectral functions Im G%(t), Im G5, (¢t) and Im G 4(t) are
shown in fig. 5. By comparison to fig. 4, one recognizes for
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Fig. 4. Spectral functions Im G%(¢), Im G3,(¢), and Im G 4 (¢)
calculated with second-order chiral = N-vertices for low-energy
constants (ci,c2,c3,c4) = (—0.8,3.3,-4.7,3.4) GeV . The
dashed lines correspond to the nonrelativistic approximation.
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Fig. 5. Spectral functions Im G (t), Im G3,(t), and Im G 4 (¢)
calculated with second-order chiral = N-vertices for low-energy
constants (ci,c2,c3,c4) = (—2.2,2.5,—6.3,4.3) GeV . The
dashed lines correspond to the nonrelativistic approximation.

the electromagnetic spectral functions Im G%, ,,(t) ~ c4
the obvious enhancement factor 1.26 from the larger ¢4-
value, while the axial spectral function Im G 4 (t) increased
by roughly a factor 1.5. Besides this weak enhancement
the pattern of curves in fig. 4 and fig. 5 is the same. At
this point one should also note that ¢; = —2.2 GeV~! gives
(at tree-level) a nucleon sigma-term of oy = —4cym?2 =
167 MeV, which exceeds the empirical value by about a
factor 3.

3.3 Inclusion of explicit A(1232)-isobars

The sizeable magnitude of the low-energy constants cz 3.4
is explained by large contributions from the A(1232)-
resonance, which strongly couples to the mN-system. The
covariant description of the A(1232)-isobar with spin and
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isospin 3/2 requires a Rarita-Schwinger spinor field ¥,,. In
this formulation the spin-3/2 propagator (vector-index 3
to a) takes the (common) form [10]

iv-P+Ma
3 M5 - P2

2P, Py
M3

Povs — vals

<3go¢,8 Ya VB + M ) ’
(27)

with P the four-momentum of the propagating A(1232)-
isobar. In order to keep the two-loop calculations
tractable, we choose minimal forms of the vertices for the

coupling of an in-going pion to AN and AA, which read

394
AJNTY(1):  — 17,
™ (1) 2\/§fﬂ' 1
3
AgAg®(ly): 94 9Py - 1275 Op. (28)

10 fx

The isospin transition operator T, satisfies the relation
TaTbT = (204b — P€abeTe) /3, and for the isospin-3/2 opera-
tor O, (a 4 x 4 matrix) the reduction formula T,0,T] =
(5i€abe — OabTe + 40acTh — OpeTa)/3 is relevant. The cou-
pling constants in eq. (28) obey the ratios gx-ya/grNnN =
3/vV/2 and gran/g=nn = 1/5 as inferred from large-N.
QCD [15]. One should note that extended versions of the
vertices in eq. (28) with further off-shell parameters have
been proposed [10,15], but these parameters are not well
determined. Since no direct empirical information is avail-
able, the relation gzaa = gznn /5 is commonly used [15].
Alternative and more sophisticated approaches to treat
the A(1232)-isobar in chiral perturbation theory (e.g.,
small-scale expansion and d-counting) have been devel-
oped in refs. [16-19].

Employing the just described formulation of vertices
and propagators, we have derived the (extremely lengthy)
integrand-functions H(...) for Im G ,(t) and Im G 4(t)
from the diagrams with single and double virtual A(1232)-
excitation (analogs of diagram (c) in fig. 2). The corre-
sponding numerical results are shown by the full lines
in fig. 6. By comparison with fig. 4 one observes that
the spectral functions get appreciably reduced by the
energy-dependent A-propagators. The suppression factor
is about 2 to 3 for ImGg(t) and Im G4 (t), whereas it
amounts to about 7 to 8 for Im G/ (t). Of course, the
physics here and in sect. 3.2 is somewhat different. The ¢;-
parameters represent more than the A-intermediate state
(céA) = —ch) = 2051A) ~2.9GeV~!) and there are partly
compensating effects from single and double A-isobar ex-
citation. It is also instructive to present formulas which
refer to the nonrelativistic approximation. For doing that
we take first the limit of AN-degeneracy, Ma = M, and
then expand in 1/M. This way one obtains for the electric
spectral function

3¢3t 5 //
_gAT (142
(47r)5f7§< +2> L derdes

X|a\|l;\Marccos(fz),

where the factor (1 + 5/2) displays the separate contri-
butions from AN and AA. Likewise, one finds for the

Im G5 (t) =

(29)
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Fig. 6. Spectral functions Im G (t), Im G3,(t), and Im G 4 (¢)
calculated from diagrams with single and double propagation
of A-isobars. The dashed lines refer to the nonrelativistic ap-
proximation.

magnetic spectral function

3 Vi—may
s _ gAM
G0 = g [,

x /w2 — 4m2 (8mZ — 5w*)\(w, t),

which is opposite to the term proportional to g% in
eq. (21). This opposite sign and the factor (1 + 5/2) can
be deduced from the spin- and isospin-algebra involved in
the (nonrelativistic) three-pion to nucleon coupling, which
has to be spin-independent (spin-dependent) for the elec-
tric (magnetic) form factor. The dashed lines in fig. 6
correspond to the nonrelativistic approximations written
in egs. (29), (30) as well as to a more complicated for-
mula for limps,—pr—oo ImGA(t). One can see that the
proposed nonrelativistic approximation strongly overes-
timates the results for spectral functions with A(1232)-
excitation based on fully relativistic kinematics. In the
case of Im G%,(t) there is even a difference in sign.

(30)

4 Phenomenological analysis and 7%~
intermediate state

In this section we want to find out the low-energy re-
gion, where the 37-continua calculated in covariant baryon
chiral perturbation theory could become physically rel-
evant. For that purpose we compare our results with
the spectral functions produced by the respective lowest-
lying vector-meson resonance. For the isoscalar electro-
magnetic form factors G, 5,(¢) this is obviously the nar-
row w-meson with mass m, = 783 MeV and decay width
I, =85MeV = (7.6+0.7+0.2) MeV [20]. In this decom-
position of I, the first two entries refer to the dominant
decay modes w — 777’71~ and w — 7%y. The reason-
able assumption of w(783)-meson dominance in the region

3m. < Vt < Tm, leads to the following complex-valued
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Fig. 7. Isoscalar electromagnetic spectral functions Im G'% s
(t) assuming w(783)-meson dominance.

form factors:

(0.50,0.44)m2,
m2 —t —imy L, (t)’

Bou(t) = (31)

)

with I, (t) an energy-dependent w-meson decay width.
The numbers 0.50 and 0.44 in the numerator of eq. (31)
are the isoscalar charge and isoscalar magnetic moment of
the nucleon. Modelling the two dominant decay modes by
appropriate contact-couplings, one gets

2 VEi—my .
() = % /2 dw[(w? — 4m2)A(w, £)] /2

h/2

My

+ (t - m72'r)37

(32)

My

with the parameters h = 2.72GeV~2 and h' =
0.040 GeV~! adjusted to the partial decay widths. We
note as an aside that with this modelling of I,(¢) the
denominator in eq. (31) becomes zero at ¢ = (32.17 —
0.3404)m2, corresponding to a complex w-meson pole at
Vit = (782.8 — 4.147) MeV.

The resulting imaginary parts Im G%; ,,(¢) are shown
in fig. 7. The resonance curves for the electric and mag-
netic form factor are almost equal, due to similar normal-
izations 0.50 ~ 0.44. One sees that in the region 3m, <
Vt < 5m, the 3m-only contributions from the w(783)-
resonance fall below the (combined) chiral 3w-continua,
whereas the additional 7°y-mode introduces appreciable
strength in the threshold region. In view of this striking ef-
fect, one is compelled to compute the radiative correction
to the isoscalar electromagnetic spectral functions coming
from the 7%y-intermediate state. The pertinent S-matrix
for 7 — ~v reads (—iaem/ﬂfﬁ)ewagk‘f‘kg, where (kq, )
and (ko,v) pertain to out-going photons. The one-loop
calculation of both diagrams v* — 7%y — NN requires
only one angular integration (m2 —t)/(32mt) f_11 dz, such

that the 7°v-contribution to the isoscalar electromagnetic
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Fig. 8. Contributions to the isoscalar electromagnetic spectral
functions Im G,/ (t) from the 7°4-intermediate state com-
pared to leading order 3mw-spectra.
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Fig. 9. Axial spectral function ImGa(t) assuming ai-
meson dominance. The two sets of (light and dark green)
curves correspond to masses and widths of (me,,l,,) =
(1.3,0.38) GeV [21] and (ma,,Ia,) = (1.2,0.48) GeV [22].

spectral functions can be given in analytical form

Qemga(t —m?2)? 1 Ky [t—m2
MG = r@mz—n\ "1 3 \toaz
m2 (1 + ky) M? t
+4t> —+ m I'CCOS 2]\4}7 (33)
QemgaM?(t —m2)2 (1 K, t 4+ 2m?2
Im G3, (t) = LD R () T e
mG )= ranE = 23 8M2

2 2

+mw> G h i) r cos\/i}7 (34)
t 2\/t(4M? —t) 2M

with K, = kp — k, = 3.706 the (large) isovector anoma-
lous magnetic moment and e, = 1/137. Note that one
averages here over proton and neutron form factors, while
the 7" N-coupling ~ 73 introduces an opposite sign for
the magnetic moment term. The curves resulting from
the expressions in egs. (33), (34), with threshold behavior
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2)2) are drawn in fig. 8. One ob-

Im GSEyM(t) ~ (t — m?
serves that in the region 3m, < v/t < 4m, the radiative
corrections due to the 7%y-intermediate state exceed the
(leading order) chiral 37-continua (dashed-dotted lines in
fig. 8). This behavior is explained kinematically by the
fast decrease of the 3m-phase space towards the threshold
V't = 3m,., while the 7%y-phase space remains open down
to \/i = M.

In analogy to eq. (31) the nucleon axial form factor
G 4(t) dominated by the a;-resonance reads

2
gamg,

m2 —t —img, I, (t)

Ga(t) = , (35)

with the (proper) axial-vector coupling constant g4 =
1.27 [20]. The mass and width of the broad a;-meson are
still under debate, due to conflicting results from differ-
ent experiments. A very recent partial wave analysis of
diffractive dissociation data (7~p — 7 77 p) by the
COMPASS Collaboration [21] finds the (central) values
Mg, = 1.3GeV and I, = 0.38GeV. On the other hand
the values extracted from 7-lepton decays in ref. [22] are
mq, = 1.2GeV and I, = 0.48GeV, while a later re-
analysis in ref. [23] gave a somewhat lower a;-mass of
mq, = 1.12GeV. The analysis of the multidimensional
BABAR data with modified currents from chiral reso-
nance theory in ref. [24] has led to a similar value of
mg, = 1.09GeV. Moreover, the Joint Physics Analy-
sis Center Collaboration [25] extracted from the ALEPH
data on 7= — 77T v, a complex a;-pole position of
Ma, — ilg, /2 = (1.21 — 0.294) GeV. The model employed
in ref. [25] is based on approximate three-body unitary
and the singularity structures related to wm-subchannel
resonances were carefully addressed.

The full lines in fig. 9 show the axial spectral function
Im G 4(t) using the specific form of I, (¢), which follows
from integrating (interfering) Breit-Wigner functions for
the p(770)-resonance over the 3m-phase space (see sect. 3
in ref. [23]). The dashed lines were obtained with the phe-
nomenological parametrization of Iy, (t) from ref. [26],
which describes separately the regions below and above
the pm-threshold ¢ = (m, + my)? The light and dark
pair of curves refer to the parameter sets (mg,,la,) =
(1.3,0.38) GeV [21] and (myq,, Iu,) = (1.2,0.48) GeV [22],
which are clearly distinguished by their shifted peaks. By
comparison with the full (green) lines in figs. 3 and 4 one
can recognize an energy window near threshold, 3m, <
Vt < 5my, in which the chiral 3m-continua do prevail.
However, such tiny contributions to the axial spectral
function are presumably irrelevant for physical observ-
ables.

5 Summary and conclusions

In this work we have studied the imaginary parts of the
isoscalar electromagnetic and isovector axial form fac-
tors of the nucleon close to the 3m-threshold. The con-
tributions to Im G% ),(t) and Im G4 (%) arising from chi-
ral wN-vertices at leading and next-to-leading order, as
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well as pion-induced A(1232)-excitations have been cal-
culated and compared with each other. It was found
that the heavy baryon approach overestimates these chiral
3m-continua substantially. Moreover, leading and next-to-
leading order contributions to the chiral 3m-continua are of
similar size, due to the large low-energy constants ci 23 4.
From a phenomenological analysis, that included the nar-
row w(783)-resonance or the broad a;(1260)-resonance,
one could recognize small windows near threshold, where
chiral 37-dynamics prevails. However, for Im G )/ (t) the

radiative correction provided by the w%vy-intermediate
state becomes actually more relevant in the region close
to threshold. Although the net result of our covariant cal-
culation of the 3w-spectral functions in chiral perturba-
tion theory is still uncertain, one can nevertheless con-
clude that these chiral 3m-continua for the nucleon form
factors are too weak to influence physical observables in a
significant way.
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