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Abstract

To perform massive-scale replica exchange molecular dynamics (REMD) simu-
lations for calculating binding free energies of protein-ligand complexes, we imple-
mented the asynchronous replica exchange (AsyncRE) framework of the binding
energy distribution analysis method (BEDAM) in implicit solvent on the IBM
World Community Grid (WCG) and optimized the simulation parameters to re-
duce the overhead and improve the prediction power of the WCG AsyncRE simu-
lations. We also performed the rst massive-scale binding free energy calculations
using the WCG distributed computing gird and 301 ligands from the SAMPL4
challenge for large-scale binding free energy predictions of HIV-1 integrase com-
plexes. In total there are 10 thousand simulated complexes, 1 million replicas,
and 2000 microseconds of aggregated MD simulations. Running AsyncRE MD
simulations on the WCG requires accepting a tradeo between the number of
replicas that can be run (breadth) and the number of full RE cycles that can
be completed per replica (depth). As compared with synchronous Replica Ex-
change (SyncRE) running on tightly coupled clusters like XSEDE, on the WCG
many more replicas can be launched simultaneously on heterogeneous distributed
hardware, but each full RE cycle requires more overhead. We compared the WCG
results with that from AutoDock and more advanced RE simulations including the
use of attening potentials to accelerate sampling of selected degrees of freedom of
ligands and/or receptors related to slow dynamics due to high energy barriers. We
propose a suitable strategy of RE simulations to re ne high throughput docking
results which can be matched to corresponding computing resources: from HPC
clusters, to small or median-size distributed campus grids, and nally to massive-
scale computing networks including millions of CPUs like the resources available

on the WCG.
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Introduction

There are three critical components for accurate binding free energy prediction using
molecular dynamics simulations which are of importance for structure-based drug de-
sign! 7 in the early stage of computer aided drug discovery: the statistical theory and
computational approximations for binding free energy calculations; the force eld func-
tions and parameters for describing the physical systems involved such as the receptor,
the ligand, and the solvent; the sampling methods for exploring relevant conformational
space. In this report we target the last component, how to combine the replica exchange
sampling methods with our binding energy distribution analysis method (BEDAM)?®
for calculating absolute binding free energy and optimize the simulation strategy for a
distributed resource like the World Community Grid.

Computational methods for calculating binding free energy! 7 generally perform in-
dividual molecular dynamics (MD) simulations at many intermediate thermodynamic
states besides the free and fully coupled states. The MD aggregate times, however, are

9 12

typically limited to the order of microseconds even using high performance computing

(HPC) resources from XSEDE or specialized CPU/GPU computing units'® 5. Devel-
oping more advanced conformational sampling methods in the context of generalized en-

16 31 guch as parallel replica exchange (RE) or parallel tempering methods is one

sembles
way to accelerate the conformational sampling and overcome the timescale challenge due
to high free energy barriers resulting in slow dynamics of biomolecular complexes. How-
ever, conventional RE methods are implemented with synchronous exchanges!® 22:32:33
and are designed for homogeneous environments such as HPC clusters that require the
allocation and maintenance of necessary resources for all replicas during the entire sim-
ulation and are intolerant to the failure of any individual replica simulation. Those
limitations prevent the traditional SyncRE approach from being a feasible solution for
new RE application simulations requiring hundreds to thousands of replicas.3* 3¢

On the other hand the available computing units are not limited to high-end HPC

clusters, there exist massively distributed computing units such as the IBM World Com-
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munity Grid (WCG), a volunteer grid consists of more than 0.7 million members dis-
tributed all over the world and 3.0 million heterogeneous computing units including
personal or public workstations, laptops and mobile devices, installed with di erent op-
erating systems such as Linux, Mac OS, and Windows. Those distributed computing
grids are highly dynamic and heterogeneous due to the volunteer nature of joined mem-
bers, the diversity of the computing units, and random pause or termination of running
jobs. The implementation of conventional RE methods for those distributed computing
grids is di cult and also much less e cient since the slowest computing unit determines
the e ciency of the whole RE simulation. There exists previous attempts to develop
algorithms better suited for heterogeneous computing grids. Serial tempering (ST)37 3
or simulated tempering only carries out a single thread of an MC/MD simulation in posi-
tion space, and updates of the thermodynamic state (such as temperature) of the system
are performed periodically. ST methods can perform simulations on a single computing
unit but requires a pre-estimation of free energy weights at di erent thermodynamics
states and their values are iteratively adjusted to equalize state populations visited.3” 37
Similarly serial replica exchange’ also performs periods of MD simulations in a single
replica but the selections of jumping to other thermodynamic states need corresponding
estimated potential energy distribution functions at those states accumulated from time
series of previous simulations. Other varieties of serial replica exchange such as virtual
replica exchange®' distributed replica sampling*? and simulated tempering distributed
replica sampling®! also need to estimate similar potential distribution functions in other
states during the simulations, which make the massive-scale simulations of complex sys-
tems less applicable.

In recent work we proposed an asynchronous parallel replica exchange (AsyncRE)
methodology*® and corresponding python software package** to utilize massive heteroge-
neous computing grids without pre-estimation of those free energy weights or potential
distribution functions. This AsyncRE framework removes the synchronizing feature
of the standard implementations of parallel replica exchange. This asynchronization

feature make it possible to optimize the usage of heterogeneous HPC clusters and dy-
ACSParagonPlusEnvironment
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namically distributed computing networks. The main idea of AsyncRE is to use a
client-master communication architecture: the local master server assigns all replicas
to one of two states, running or swapping in a dynamic way; running replicas
are submitted for execution of a predetermined amount of simulation time (an MD cy-
cle or period) on a remote client through ssh or BOINC transportation mechanisms
and thermodynamic parameters of swapping replicas are periodically exchanged on
the local server independently of the running replicas; a running replica becomes
a swapping replica once its remote MD cycle is completed and simulation results are
returned to the server. This client-master communication mechanism does not require
a direct network link between compute nodes due to the fact that all exchanges are
managed and conducted by the master process, and the asynchronous exchange feature
does not require a static homogeneous set of compute nodes. This AsyncRE frame-
work allows the loss of compute nodes or replica simulation failures and is able to scale
to very large numbers of replicas and take advantage of heterogeneous and dynami-
cally distributed computational resources, including XSEDE high performance clusters,
university grid networks, and world-wide distributed networks contributed by volun-
teer computing units such as IBM WCG. Our previously developed Python package*
(https://github.com/ComputationalBiophysicsCollaborative/AsyncRE) combines
the AsyncRE framework for job preparations and exchanges with the BOINC server for
job assignments and collections from clients using the Python interface/wrap to sep-
arate the interactions between the MD engine and the BOINC client/server. In this
manuscript, we report the C++ implementation which allows more direct communica-
tions between the IMPACT MD engine, the BOINC Client/Server and the AsyncRE
framework for massive scale simulations involving hundreds of thousands of replicas.
The binding energy distribution analysis method (BEDAM)?® developed in our group
computes absolute binding free energies for receptor-ligand systems in implicit solvent

LT of a

using a single alchemical decoupling path. It is among several implementations
statistical mechanics theory of molecular association equilibria based on atomistic molec-

ular dynamics simulations*%#® that are performed to calculate the free energy di erences
ACSParagonPlusEnvironment
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between neighboring thermodynamic states along prede ned paths connecting the fully
decoupled (apo-protein + free ligand) state to the fully coupled (binding complex) state.
Those paths can be realized as in a physical way such as the potential of mean force
(PMF) method®® constructing the free energy pro le along the distance between the
ligand and the receptor, or in an alchemical way such as double decoupling methods
(decouple the ligand respectively from the receptor site and the solution environments
to vacuum?’ from explicit solvent) and single decoupling as in the BEDAM method
(decoupling the ligand directly from the receptor site to the solution environment in
implicit solvent®) using a parameter ( ;) to de ne intermediate thermodynamic states
and rescale (or weakening) the binding energy (including the intermolecular interactions
and implicit solvation energies) between the ligand and the receptor. In the early imple-
mentation of BEDAM method in the IMPACT® molecular simulation package, parallel
Hamiltonian replica exchange molecular dynamics (HREMD) sampling ( hopping)2¢:4
in the synchronous nearest-neighbor replica exchange scheme (SyncRE) was employed
to realize the conformational di usion along the alchemical path connecting the bound
( » = 1) to unbound states ( , = 0) and accelerate the sampling of the intermolecular
(external) degrees of freedom between the ligand and the receptor by weakening the
binding energies of intermediate states. Recently we have implemented the BEDAM
method in the AsyncRE framework**# to enable asynchronous replica exchange sim-
ulations using heterogeneous HPC clusters and campus distributed computing grids.
In this report, we focus on the combination of BEDAM and AsyncRE framework for
massive-scale simulations of protein-ligand complexes on the IBM WCG.

Due to the rescaling (weakening) feature of binding energy using the parameter
the BEDAM method is capable of carrying out extensive intermolecular conformational
sampling of the relative position and orientation of the ligand with respect to the recep-
tor, an advantage of BEDAM®% 53 over existing free energy perturbation (FEP) and
absolute binding free energies protocols in explicit solvent. BEDAM is particularly well
suited to re ne the prediction results from docking methods and to prioritize the hits for

further lead optimization using more expensive free energy simulation methods. Namely
ACSParagonPlusEnvironment
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docking methods perform the initial search for strong binders using simpli ed confor-
mational sampling and energy scoring functions in order to perform high throughput
virtual screening of large libraries of small molecules (on the order of millions). Then
BEDAM simulations can be started from the initial complexes of the top 10? to 10?
candidates predicted by docking methods and BEDAM can be used to re ne binding
poses and provide more accurate estimations of binding free energies which can be used
to increase enrichment factors. The top predicted results of BEDAM (on the order of 10
to 10% ) can be passed to carry out explicit solvent FEP simulations with more accurate
atomistic simulations of protein-ligand complexes and more detailed physical potentials
and solvation environments.! © Hence BEDAM targets a niche between low resolution
docking methods and high resolution FEP methods in explicit solvent.’%4% with the ma-
jor goal of refining the predicted results from docking methods and significantly reducing
the number of candidates to perform further lead optimization using FEP methods in
explicit solvent.

Although post docking analysis using pharmacophore model lters and visual checks

 in this report we focus on an alternative

can improve initial docking predictions,
BEDAM re nement procedure starting from initial AutoDock predictions using the
SAMPL4 library for the HIV-1 integrase (HIV-1 IN).? % The SAMPL4 library is a
low diversity library of 300 ligands designed to target the LEDGF allosteric site of
HIV-1 integrase, which was the result of a prior lead identi cation campaign.®® The
protocols described here have been implemented for the Fight AIDS@QHome Phase 2
project, using the physics based BEDAM model and AsyncRE computational method
running on the IBM WCG volunteer grid to score the top candidates from the Phase 1
screening using the AutoDock protocol. Massive binding free energy calculations using
replica exchange on heterogeneous distributed volunteer computing networks like WCG
is challenging in part because of the need for optimization of the parameters which
control how the AsyncRE simulation runs on the massive grid to utilize e ciently the

resources in a highly dynamic and heterogeneous environment due to the fact that the

wall clock time to nish a MD simulation at client side is very diverse. This diversity
ACSParagonPlusEnvironment
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is not only because of the diversity from computing units (in CPU speeds and device
types such as desktop, laptop and mobile) but also based on the fact that the simulation
can be paused, stopped and aborted in unpredictable ways. Furthermore, there also
exist di erent kinds of time overheads including the delay of returning results on the
client side and others on the server side such as generating and transferring of input

les, queuing of individual jobs, and exchanges of waiting replicas. Previous attempts
to utilize distributed computing networks to calculate binding free energies were limited

to a few examples®® 5

using short MD simulations without exchanges to build Markov
models utilizing cloud computing. These studies have mostly been focused on protein
folding and large conformational changes.*:%° %3 To our knowledge no systematic studies
for optimizing the simulation parameters and designing general procedures for massive-
scale simulations of protein-ligand binding have been reported. We 1l this gap using
as an example the SAMPL4 library for the HIV-1 integrase, one of several important
viral enzymes® during the life cycle of the HIV-1 virus. Integrase is responsible for
integrating the viral genome into the host genome with the help of the human LEDGF
protein (a transcription factor) linking the HIV-1 integrase to the human chromosome.
The SAMPLA4 library is a focused library developed for lead optimization targeting the
LEDGF binding site of HIV-1 IN and preventing the LEDGF protein from binding to
stop the insertion of the HIV genome into the human genome, consisting of 300 lig-
ands sharing several common molecular sca olds such as benzoic acid, benzodioxole acid,

and benzodioxine acid.?*% Since the SAMPL4 library is not very diverse this presents

a particular challenge to binding a nity predictions based on docking alone.

Methods

Binding energy distribution analysis method (BEDAM)

BEDAM is based on the statistical mechanics theory of molecular association® and the
Widom potential distribution theorem.%® The ligand is decoupled from the complex envi-

ronment with full intermoleculagé@ﬁg@gcg%%ssE(nbv(i)r%ﬁ% state) to an uncoupled (unbound)

8
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state in the implicit solvent environment through a prede ned alchemical path which is
realized by introducing intermediate states with a parameter ( ;) rescaling (or weaken-
ing) the binding energy (including the intermolecular interactions and implicit solvation
energies) between the ligand and the receptor. The BEDAM method® calculates the
absolute binding free energy ~ GY between a receptor P and a ligand L by employing a

p-dependent e ective potential energy function as follows:
Vi, (r) =Vo(r) + »u(r) (1)

where Vo(r) = V(rp) + V(ry) is the total potential energy of the complex including
both the receptor P and the ligand L at the uncoupled (unbound) state in the implicit
solvent, and u(r) = u(rp rp) = V(r) Vo(r) = V(rp rp) V(rp) V(rp)is de ned
as the binding energy for each complex conformation (r = (rp rr)), corresponding to
the di erence between the total e ective potential energies V() with implicit solvation

6769 of the fully coupled (bound) and decoupled (unbound) states of the complex

e ects
with the same xed internal conformations. The standard free energy of binding for this

system can be calculated as®®

G)= kpThhCVye+ Gpy= kgThhCVy,. kT / dupy(u)e™ (2)

with the rst ideal term on the right kg7 InC°V,4. = kgTln V{';ge represent-
ing the entropic change when moving the free ligand in the volume ( V) of stan-
dard concentration into the volume of the binding site ( Viye ) and the second one
Gy, = kgT [ dupo(u)e” “ denotes the total free energy change when turning on the
interaction energies between the receptor and the ligand. Moreover kg is the Boltz-
mann constant, T is temperature, C° (=1M) is the the standard concentration of ligand
molecules. and pg(u) is the probability distribution of binding energy (u(r)) collected

in an appropriate decoupled ensemble of conformations in which the ligand is present in

the binding site but the interact&(aggapaegtgrv]%?& Etrk/?r Leceptor and the ligand are turned o
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but both molecules are present in the solvent continuum. To obtain a good estimation
of po(u) for biomolecules with slow dynamics, a series of discretized , values between
0 and 1 are introduced to represent intermediate thermodynamic states and depict an
alchemical path decoupling the ligand from the complex environment with full interac-
tions in the receptor site ( , = 1) to a pure solvent state without protein interactions
( » =0). In practice the G}, can be calculated by reweighting analysis of all snapshot
binding energies of all thermodynamic states using the unbinned UWHAM™ or similar
methods.”™

Comparing with the docking methods with empirical docking score functions, one of
the advantages of the BEDAM method is the ability to capture the entropic changes for
binding processes®®%5!. In the BEDAM method, the binding process can be decomposed
into two separate steps: 1) the ligand and the receptor reorganizes its conformational
(internal and external) ensembles in the unbound state to match corresponding distri-
butions in the bound complex; 2) the receptor-ligand interactions are created in the
binding site with no entropic change involved due to the fact of no change in the con g-
urational ensemble of the binding partners. The free energy change for the second stage
can be calculated as the average binding energy at the fully coupled state ( , = 1) ,
represented by  G¢; =< u >pgr. We should emphasize that G, not only includes the
interaction energies between the ligand and the receptor but also includes the solvation
contribution (the di erence of implicit solvation energy between the bound and unbound
state). In contrast, there are both entropic and enthalpic changes in the rst stage due
to the reorganization of conformational ensembles, denoted as the reorganization free
Hence the standard binding free energy can be described as

energy Gf= GY

reorg*

V= G+ G = G°%  +<u>n (3)

reorg

We should mention that using of implicit solvation model is crucial to achieve the
decomposition of binding free energy and the single-path decoupling of the BEDAM

method. Namely the ligand is only decoupled from the coupled complex environment

ACSParagonPlusEnvironment
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to the free state in the solution and the additional decoupling from the solution to the
vacuum as in the double decoupling method is not necessary since the solvation energies
can be evaluated from the ligand and receptor conformations through the AGBNP2
solvation model.%” % Tmplicit solvent models could also lead to faster convergence of free
energies than explicit models due to lack of solvent uctuations although simulations
with implicit solvation are more di cult to parallelize due to the relatively small number
of atomic sites and the complexity of algorithms to evaluate the Born radii.%” % For some
systems which require explicit representation of water mediated interactions around the
binding site, simulations using implicit models may not fully capture the ligand binding
e ects and become less accurate than that using explicit solvation models as in the

double decouple method.*”

WCG AsyncRE implementation of BEDAM method

The early implementation of the BEDAM method was accomplished in the SyncRE
scheme through the MPI implementation in the IMPACT*® simulation package target-
ing homogeneous HPC clusters where all CPUs involved in an RE simulation have the
same speed but with a limited number (tens) of replicas due to the necessity of synchro-
nization of replica exchange. To overcome this synchronization limitation and enable
large-scale simulations (thousands) using heterogeneous HPC clusters and distributed
computing resources, recently we proposed the AsyncRE framework**and developed a
corresponding python package?* where only the replicas in the local waiting list can
participate in the exchange process using an algorithm for the sampling of the state per-
mutation space which does not require the prior identi cation of neighboring states and
attempts to exchange two replicas are randomly picked but follow the same Metropolis
criterion and repeated many (M3 to M® where M is the total number of replicas on
the exchange queue) times to reach the in nite swap limit.*377 This Python package
(https://github.com/ComputationalBiophysicsCollaborative/AsyncRE) has been
installed to perform AsyncRE simulations on XSEDE high performance resources, and

on BOINC distributed computi}&%sgg;cgggg]ﬁu ?Etn\;l;%rlglr%% tUniversity, Brooklyn College at
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CUNY.44476 The Python interface/wrap separate the direct communication between
the MD engine and the BOINC server and there is also no direct data transferring be-
tween the MD engine and the BOINC client for the screensaver visualization. In this
way we can minimize the tasks for code development of new implementations using
di erent MD engines, which is more suitable for setting up small or median size com-
puting grids up to  10® computing units. For massive computational grids such as the
IBM WCG grid involving hundreds of thousands of computing units, in this report we
introduce the C++ implementation (See Fig. 1 for the corresponding work ow for Figh-
tAIDS@Home Phase 2 re nement) which allows more directly communications between
the IMPACT MD engine and the BOINC Client, and between the BOINC Server and the
AsyncRE framework for massive scale simulations involving hundreds of thousands of
replicas, although it shares the same framework of AsyncRE algorithm with the Python
implementation for HPC clusters and university grids. We have summarized the major

di erences and provided more implementation details in Supporting Information.

Remote Clients of Volunteer Grid

Energies Extracted

BOINC Server — > AsyncRE Framework

Jobs Management «€———  RE Exchanges
Jobs Queued

Local Coordinate Server

o
q‘r”/¢ Results Results
Q

AutoDock Virtual Screening BEDAM Free Energy Refinement

—>
Top Ligands

Figure 1: Schematic work ow of IBM implementation of the AsyncRE framework.

Beside the di erent implementations of BEDAM targeting various computing re-
ACSParagonPlusEnvironment
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sources, as an alternative way to accelerate conformational sampling of slow dynamics
from receptor or ligand, we have also introduced attening potentials on selected bonded
and nonbonded intramolecular interactions to lower corresponding energy barriers and
accelerate the conformational sampling of internal degrees of freedom of ligands and or
receptors (See a short summary on this methodology in Supporting Information and
more details in Ref.”®""). Further improvement of sampling for WCG simulations can
be achieved by combining this attening feature with the WCG AsyncRE framework

which is under development.

Metrics to evaluate the e ciency of the REMD algorithm

There is no universally accepted metric for evaluating the sampling e ciency in REMD
simulations but there are several methods described in previous work such as the replica

relaxation correlation time and end-to-end transit time of the replica state index,™

78 80

variances of the estimated means of relevant observables, slowest eigenvalue of the

1

Markov chain from analyzing the state transition matrix,?' root-mean-square deviation

(RMSD) of related observables of test simulations from the corresponding reference

82,83 and our previous statistical ine ciency analysis*® by extracting the total

simulation,
e ective relaxation time of the binding energy at = 10 ( , in Eq.1 is shortened
as  for better notation here after), which includes all relaxation e ects both from
MD simulations and replica exchange mixing. To include all of the relaxation times
at di erent values and the replica exchange mixing time, we borrow the idea of the
di usion coe cient in coordinate space® and de ne the di usion coe cient of the replica
exchange system in the space as
<(s 4)P>

D = 4
2< > (>

where the average is (< >) calculated through all states, ;; is life time of state ;
measuring the total simulation time of a replica stays in the ; state before jumping to

any di erent state ;, ; 1s the jump di erence of a replica from the ; state to

ACSParagonPlusEnvironment
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any di erent state ;.

System preparation and computational details
BCD toy model

The toy model complex is b-cyclodextrin-heptanoate as depicted in Fig. 2 was used to
benchmark the ported IMPACT MD engine and the WCG implementation of AsyncRE
framework. It is one of host-guest systems well investigated in our previous algorithm
developments and benchmarking work.*!%2 Besides the standard tests for the IMPACT
MD engine to reproduce single point energies, we performed standard 1D BEDAM sim-
ulations at 16 values (0.0, 0.001, 0.002, 0.004, 0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7,
0.8, 0.9, 0.95, and 1.0) using the OPLS-AA force eld,3%%¢ the AGBNP2 implicit solvent
model,% and three di erent implementations of RE framework: a) SyncRE using MPI
targeting homogeneous HPC clusters; b) AsyncRE framework implemented by Python
interface for median-size campus computing grids such as Temple Grid; ¢) AsyncRE
framework implemented by C++ for massive-scale distributed grids such as the IBM
WCG grid. The MD period for the SyncRE simulations is 100 steps (0.2 ps) and 10,000
steps (20ps) for both types of AsyncRE simulations. From Fig.2b we can see that all sim-
ulations (after 10ns) converge to the consistent binding energy distributions at =10
which supports the correctness of the di erent implementation of RE frameworks (Syn-
cRE on NSF XSEDE and other HPC clusters, AsyncRE on heterogeneous campus grids.
and massive AsyncRE on IBM WCG).

HIV-1 integrase

The 301 ligands (53 experimental binders and 248 nonbinders, 451 protein-ligand com-
plexes considering the protonation states and other tautormeric extensions of ligands) of
HIV-1 IN complexes were prepared previously® for the HIV-1 integrase virtual screen-
ing SAMPL4 challenge® with the aim of predicting likely binders to the LEDGF
8,50 52

site of integrase®” using the BEDAM method for binding free energy calculations

ACSParagonPlusEnvironment
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Figure 2: (a) Side and top view of b-cyclodextrin-heptonoate complex, (b) binding en-
ergy distributions of A=1.0 at the temperature of 300K calculated from the BEDAM
simulations using three different RE implementations.

Docked structures for all ligands were obtained by the flexible docking procedure us-
ing AutoDock Vina for the SAMPL4 challenge® and initial reference crystal complex
with the PDB ID 3NF8 as shown in Fig. 3. Only the best docking conformation of
each complex was selected to perform the binding free energy refinement for the orig-
inal simulations using the SyncRE framework on HPC resources and submitted to the
SAMPLA4 challenge.>® The tremendous computing resources of IBM WCG grid allow us
to include the remaining top 8 predicted poses from AutoDock Vina in addition to the
best one for each of 451 protein-ligand complexes and extend the number of replicas
per complex from the original 20 to 100 as listed in the Supporting Information. This
corresponds to 900 replicas per complex (100 replicas/pose x 9 poses). Furthermore
all simulation parameters, force field parameters, and restraint methods were kept the
same as the previous work®® as described in more detail in the Supporting Information.
We performed different types of AsyncRE BEDAM simulations for the SAMPL4 ligands
as listed in Table 1 using the WCG resources. The first set of WCG simulations for
the SAMPLA library were carried out using the independence sampling scheme with the
same 20 A values as the original SAMPL4 submission but without exchange feature and
the simulations were extended to all 9 predicted poses from AutoDock. A large MD

period of 100,000 steps was selected in order to minimize the number of resubmissions
ACS Paragon Plus Environment
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(hence the overhead) due to the fact that an individual job on the client side is limited
to a few hours of the CPU running time (after removing any pauses and interrupts) and
a maximum return time of 7 days (namely a job is considered as failed if it can not
be returned in 7 days) based on the previous setting for other projects on WCG. The
remaining two sets of WCG simulations of the whole SAMPLA4 library use the AsyncRE
framework to perform exchanges among 100 replicas ( 100  states) but with di erent
MD periods of 10,000 (20 ps) and 50,000 (100 ps) steps per exchange cycle respectively.
For a comparison, we also include attening AsyncRE simulations that were carried out

previously " on the Temple University Grid.

Figure 3: Graphic representation of HIV-1 IN complex from PDB ID 3NF8. The red
sticks on the bottom show the corresponding ligand bound to the LEDGF site.

Results and Discussion

Optimization of simulation parameters

In the conventional parallel synchronous replica exchange (SyncRE) framework, each
replica is assigned a di erent thermodynamic state (a  value in this report) and peri-
odically, after all of the replicas complete a given number of steps (MD period), replicas
attempt to exchange their current state assignments with typically one of their nearest
neighbors at adjacent thermodynamic states. Exchange attempts are accepted based
on well-established microscopic reversibility requirements.® 223233 To improve the ef-

ciency and convergence, conventional REMD has been extended mostly through the

ACSParagonPlusEnvironment
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Table 1: Summary table for di erent types of BEDAM simulations performed for all SAMPL4 HIV-1

IN complexes.

abbreviation WCG-Indp?®  WCG-10KP  WCG-50K¢ Flat-Alld
starting pose® docking docking docking docking
simulation time per replica 3.0ns 1.2ns 3.0ns 3.0ns
exchange scheme No AsyncRE AsyncRE AsyncRE
number of replicasf 20 100 100 20
used docking poses 9 9 9 1
total of replicas per complex 180 900 900 20
MD period 200ps 20ps 100ps 2ps
attening type no no no torsional+
nonbonded

binders 53 53 53 53
nonbinders 248 248 248 248
total MD simulations ( s) 243.5 487.1 1217.7 27.1
computer resource WCG WCG WCG Temple Grid

AWCG simulations without replica exchange (independence sampling);

bWCG AsyncRE simulations with a MD period of 10K steps;

“WCG AsyncRE simulations with a MD period of 50K steps;

dAsyncRE simulations using the local Temple Grid with attening potentials applied to ligands;
€All docking poses are from the AutoDock Vina predictions for the original SAMPL4 submission;

fSee all lambda values listed in Supporting Information for more details.
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24,2527 29,36,88 95

modi cation of the Hamiltonian as for example our recent addition of

biasing potentials for BEDAM simulations.” On the other hand, some studies focused

19,21,36,96

on expanding the exchange dimensions and optimizing the setting of simulation

parameters not limited to the number and distribution of replicas (such as  values?” and

18,98 100) 74,101

temperatures , the number of exchange attempts, and exchange frequency
(MD period). 8283102103 Although the e ciency and convergence analysis of SyncRE MD
in comparison with conventional MD without exchange has been performed in many
previous studies.”™ 80,104 108 there still exist debates on how to best select simulation pa-
rameters such as the length of individual MD simulations (MD or exchange period) and
the number of exchanges attempted after a MD period. Early results showed that the
e ciency of REMD could be signi cantly reduced when the MD period is smaller than a

104 106

certain size, while recent studies®?®3 found that the e ciency increases monoton-

74,101,106,109

ically as the MD period becomes smaller. Previous ndings also illustrated

that the number of exchange attempts should be chosen as frequently as feasible so as
to reach a so-called in nite swap limit. 75-192,103,110

The characteristics of the WCG distributed computing grid are unsuitable for Syn-
cRE, we implemented an asynchronous RE protocol which di ers from SyncRE in various

143,75: 1) Only a portion of all simulated replicas are available locally on the server

respects
side to participate in the exchange process and the rest (half of the total number of repli-
cas for our WCG simulations) reside on the client side for individual MD simulations;
2) Because the randomness of available replicas makes the nearest-neighboring exchange
scheme of the SyncRE not feasible, we developed a random pairwise exchange scheme
whereby many pairs of replicas (not limited to the nearest neighboring replicas) in the
waiting pool are randomly selected for exchange attempts so as to reach the in nite swap
limit; 3™ 3) AsyncRE simulations generally require relatively large MD periods (>
1 picoseconds = 500 MD steps) to minimize overheads (such as preparation and trans-
portation of input and output les between the coordination server and the computing

clients, random pauses of the computing client, and the job queuing time on the server)

relatively to the running time of a MD period. Due to the characteristics of AsyncRE
ACSParagonPlusEnvironment
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and the dynamic and heterogeneous nature of computing grids, it is di cult to perform
a direct comparison on e ciency and convergence between the AsyncRE simulations on
the WCG and the SyncRE simulations. To optimize and guide our AsyncRE simulations
on WCG, we consider two simulation parameters for our benchmarking tests using the
AVX38789 ligand from the SAMPLA4 library: a) the total number of replicas varying
from 20 to 1000 (Note that Table 1 only lists the simulations using 20 and 100 replicas
for the whole SAMPL4 library.) to test the e ect of larger numbers of replicas which can
result in more overlaps among the binding energy distributions of replicas and increase
the accepted ratio of exchanges; and b) the MD period varying from 10 thousand to 50
thousand steps to reduce the communication overhead at the expense of frequency of
exchanges but this might lead to slower equilibration.

Table 2 shows the accepted ratios of exchanges (the total number of successful exchanges
divided by the total number of attempted exchanges) calculated from di erent benchmarking
tests of WCG AsyncRE simulations for the AVX38789 ligand in complex with HIV-1 IN.
While its value is not a ected by the MD period, the accepted ratio almost doubles as the
number of  states is increased from 20 to 1000 albeit not in a linear way. For example,
the accepted ratio of accepted changes to exchange attempts increases only slightly (0.2 to
0.22) when the number of  states is increased from 100 to 1000. The increase of accepted
ratio is based on the fact that increasing the number of states increases the overlap
of binding energy distributions of two exchanged replicas. The corresponding accepted
ratios calculated from the SyncRE simulations for the original SAMPL4 submission
are around 0.5 where the exchanges are attempted only between nearest neighboring
states (with more overlaps in binding energy distributions) and results in more successful
exchanges when the total number of attempted exchanges is xed. Instead, AsyncRE
simulations require many more attempted exchanges to reach a similar swap limit. 4377
Due to the insensitivity to the MD period, the accepted ratio is not a good quantity to
optimize the simulation parameters. Similar trends can be found on the mean square
jump of  values ( < ;; 2> ) as shown in Fig. 4a. On the contrary, the mean life

time of replicas ( < ; > in the unit of picoseconds) decreases as the MD period is
ACSParagonPlusEnvironment
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decreased and its value approaches to a limit (the MD period) as the number of replicas
is increased to 1000 as exhibited in Fig.4b. Figure 4c displays the di usion coe cients
(D ) in the space (de ned in Eq. 4) which include both e ects of the mean square
jump of  values and the mean life time of replicas. It is pronounced that the di usion
coe cient decreases as the MD period is increased when the number of replica is xed.
The di usion coe cient also exhibits a large increase (almost doubled) when the number
of replicas is increased from 20 to 100. However, there are no signi cant changes (only

10%) to the di usion coe cient as the total number of replicas is increased from 100
to 1000 with the MD period is xed. Based on this observation we selected 100 replicas
for each AsyncRE WCG simulation of the whole SAMPL4 library. Because there are
more than 4 fold increase of the di usion coe cient, in principle we should select 10
thousand steps for the MD period instead of 50 thousand if there exists no overhead (or
the same percentage of overhead) for exchanges and queuing on the server between two
adjacent MD periods. However, reducing the MD period will increase the number of
cycles required of replica resubmission (when the total number of simulated MD steps
is xed for each replica) and increase the percentage of the overhead that dynamically
depends on the available WCG resources and the settings of clients and server. We will
discuss the e ects of the MD period in more detail in the following section where we
analyze two sets of WCG AsyncRE simulations for the whole SAMPL4 library using
MD periods of 10 and 50 thousand steps respectively.

Table 2: Accepted ratios of exchanges calculated from di erent benchmarking tests of WCG
AsyncRE simulations for the AVX38789 ligand in complex with HIV-1 IN.

20 s 100 s 1000 s

10K steps  0.134 0.198 0.217

30K steps  0.138 0.198 0.217

50K steps  0.139 0.193 0.218

Overhead analysis due to the heterogeneity of WCG simulations

We conducted two sets of Async%§%%ﬁ@%mi}g§&rﬁwith MD periods of 10K and 50K
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Figure 4: Optimization measures. (a) mean square of lambda jumps, (b) mean lifetime

of lambda state, and (c) the diffusion coefficient calculated from BEDAM simulations
with different combinations of the number of lambda states (20, 100 and 1000) and the
MD period from WCG benckmarking tests on the AVX38789 ligand in complex with

HIV-1 IN.
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respectively). Each set includes 451 complexes and 9 predicted poses from AutoDock for each
complex. There are 100 replicas for each BEDAM simulation started from each pose. In total,
thereare 2 451 9 100 = 811 800 replicas and with half of them (405,900) submitted for MD
simulations on the WCG client side and half of them checkpointed to disk and participating
in exchanges on the WCG master server side. The total available computing units for the
Fight AIDS@Home Phase 2 project uctuates around 100,000. Therefore at any one time
roughly three quarters of submitted MD jobs are waiting for execution on the WCG BOINC
server and only one quarter are running on client CPUs. To perform the overhead analysis
we de ne four quantities that can be found or calculated from the returned info les of
WCG simulations: 1) the MD CPU time which represents the wall clock time for a
computing unit to complete a period of MD simulation of 10K or 50K steps without any
pauses (temporally idling due to the occupation of the volunteer CPU by other tasks) on
the client side; 2) the replica client time which denotes the total wall clock time that
a replica resides on a client node including restarting if any from a crashed job and the
delay in returning a completed MD job (A MD job is considered as failed if it can not be
returned within one week); 3) the replica server time which accounts for the total wall
clock time that a replica stays on the WCG server side including the time spent on the
exchange process of AsyncRE and the time spent on the MD execution queue of BOINC
server when the replica is selected for the next cycle of MD period after exchanges; 4)
The replica cycle time (=replica client time + replica server time) which is calculated
from the wall clock time di erence between two sequentially returned MD jobs for the
same replica (Its mean value multiplied by the total number of RE cycles is equal to
the mean value of wall clock time to nish the total simulation per replica). There is
no direct way to obtain the replica server time (from the returned info les of WCG
simulations) but we can get the value by subtracting the replica client time from the
corresponding replica cycle time after performing a one to one match.

The probability distributions of MD CPU times calculated from two sets of WCG
AsyncRE simulations are displayed in Figure 5a. The most probable value (mode) for

a client to complete a MD period of 50K steps is 5 hours, almost 5 times longer than
ACSParagonPlusEnvironment
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that for 10K steps (1 hour) which is also consistent with the mean values as listed in
Table 3. Figure 5b shows the corresponding distributions of replica client times, with
the most probable values (1.1 and 9.1 hours for 10K and 50K respectively) not more
than twice larger in comparison with the corresponding values of MD CPU time as listed
in Table 3. The mean values of the replica client times behave in a di erent way for
these two sets of WCG AsyncRE simulations: The mean value from 10K simulations (

6.9 hours) is almost 5 times larger than the mean value (1.3 hours) of MD CPU
time but there is only twice larger for 50K simulations. Namely the 10K simulations
have much larger overhead (5 .vs. 2) on the client side due to the fact that although
the returning time of a MD job can be distributed in a wide distribution due to the
heterogeneity of CPU speeds and operation settings of client computers, the maximum
return time for a MD job is the same (7 days) for both sets of simulations as exhibited
by the unsymmetrical long tail distributions in Figs.5b. Similar distributions of replica
cycle times are shown in Fig. 5c¢. The mode values (see Table 3) from the simulations
of 10K and 50K MD periods are around 60 and 70 hours respectively and there is an
exponential tail at the longer time side due to the random selection of exchanged replicas
to be submitted to a MD simulation on the client side, with the mean values of 74.6
and 113.2 hours (for 10K and 50K respectively). The reason that those two modes are
so close is that the replica server time (calculated by subtracting the replica client time
from the replica cycle time) is more than 60 hours for those two sets of simulations, and
their mean values ( 67.7 and 99.6 hours for 10K and 50K respectively) take the major
part (91% and 88% for 10K and 50K respectively) of the mean replica cycle time ( 74.6
and 113.2 hours for 10K and 50K respectively) as listed in Table 3. For an ideal case
when there is no overhead from the server, theoretically the minimum value of mean
replica sever time should be the same as the mean value of replica client time since only
half number of total simulated replicas are assigned to run MD jobs on the client side
and half of them stay on the server side. Namely, on average a replica has to wait for
an additional period of replica client time to be resubmitted for the next cycle of MD

simulation. Hence, the minimum value of the mean replica cycle time is twice ( 13.9
ACSParagonPlusEnvironment
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and 27.2 hours for 10K and 50K respectively) as the mean value of the replica client
time. Assuming that we can reduce the mean value of replica server time by a factor
of 4 if we do not over submit the WCG grid and the mean value of replica client time
is the same as before, then the mean values of replica cycle times are 23.8 and 38.5
hours for 10K and 50K respectively (1.7 and 1.4 times of the minimum values of mean
replica cycle time). Hence, when considering the overhead from both the client and the
server sides together, the nal overall overheads are 8.5 (5 on the client side 1.7 on
the server side) and 2.8 (2 on the client side 1.4 on the server side) times for 10K
and 50K simulations respectively when the WCG grid is not over submitted. Because
of the heterogeneity of WCG simulations and the di erent percentages of overhead as
illustrated in Fig.5 and Table 3, the average value of the total wall clock time to nish
a total of 600,000 MD steps (1.2ns) for each replica using 10K MD period is around 3
times larger than that when using a 50K MD period.

Although the percentage of overhead is considerable large (8.5 and 2.8 times for 10K
and 50K respectively without over-submission) , the advantage of WCG simulations
becomes more obvious when we consider the total number of available computing units
and the total number of simulations we can submit. Table 4 lists the estimations of wall
clock time for di erent types of BEDAM simulations performed for all 451 SAMPL4
HIV-1 IN complexes. The total MD length per replica has been normalized to 1.2ns for
a consistent comparison. Our original SAMPL4 submission required 2 millions service
unit (SU, 1 core per hour) in total on XSEDE HPC clusters and 48 days to nish all
jobs when using 1000 cores at the same time. One set of WCG AsyncRE simulations
for the SAMPLA4 library needs 90M SUs (around 9 years allocations for a big computing
project) and would take 2160 days to nish on XSEDE if the same 1000 cores are used
to running all jobs without considering the queuing time. Using the current available
resources (100,000 cores) for the Fight AIDS@Home Phase 2 project the required time
to mnish 1.2ns per replica for one set of AsyncRE simulations is only 56 days for the
50K MD period and 180 days for 10K MD period respectively. We should emphasize

that the number of required days can be reduced greatly (19 and 59 days respectively)
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if the WCG grid is not over submitted (with 400,000 CPUs available) to reduce the
average queuing time on the BOINC server (and the replica server time), by 14 and 36
days respectively for the ideal case without any overhead from the server. Furthermore, a
signi cant reduction can also be achieved on the client side by using a much smaller value
of the maximum return time of MD jobs and asking the clients return the completed

jobs as soon as possible.
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Figure 5: Statistical distributions calculated from 405,900 replicas for each SAMPL4
library and 600,000 MD steps in total for each replica: (a) MD CPU time (wall clock
time to complete a MD period after removing the idling time due to random pauses of
MD simulation at client side); (b) replica client time (wall clock time for a replica stays
on the client side), (b) replica cycle time (wall clock time for a replica stays on the server

side).
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Table 3: Execution time statistics calculated from two sets of AsyncRE WCG simulations for the
451 SAMPL4 HIV-1 IN complexes (in the unit of hours).

oNOYTULT D WN =

MD period di erent time mode mean standard deviation
replica cycle time 58.8  74.60 49.67

10K Steps replica server time - 67.67 -
replica client time 1.14 6.93 5.95

MD CPU time 0.9 1.34 0.64

replica cycle time 70.8 113.15 64.34

50K Steps replica server time - 99.57 -
replica client time 9.06  13.58 7.81

MD CPU time 4.62 6.46 2.70

Table 4: Wall clock time estimates for di erent types of BEDAM simulations of the 451 SAMPL4

HIV-1 IN complexes. In this analysis, the total MD length per replica is normalized to 1.2ns for

without overhead from the server

consistency.
abbreviation WCG-Indp WCG-10K  WCG-50K Flat-All
Exchange scheme No AsyncRE AsyncRE  AsyncRE
number of replicas 20 100 100 20
docked poses 9 9 9 1
total MD ( s) 97.4 487.1 487.1 10.8
total CPU hours required on XSEDE 18M 90M 90M 2M
total wall clock time on XSEDE (days)
. 432 2160 2160 48
base on 1000 cores available
total wall clock time on WCG (days)
. 25 180 56
based on 100,000 cores available
total wall clock time on WCG (days) 5 19
based on 400,000 cores available
total wall clock time on WCG(days)
36 14
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Binding free energy predictions of whole SAMPLA4 library

To perform quantitative comparisons for the retrospective predictions of the whole li-
brary from di erent types of BEDAM simulations, we calculated the receiver operating
characteristic (ROC) curves as shown in Fig. 6 using the experimental crystallographic
data available.? Note that there are 53 binders based on the available crystal structure
data for the SAMPL4 library and they are expected to be weak binders since most
of them have a nities more than 200 M via surface plasmon resonance (SPR) and
only 8 ligands were provided binding a nities by the SAMPL4 Challenge organizers. >
To aggregate the WCG simulations which include 451 complexes (301 unique ligands
plus protonation and tautomeric states) and 9 poses for each complex, we have applied
the following strategy: a) select the minimum value of binding free energies calculated
from 9 BEDAM simulations started from 9 di erent poses for each complex; b) then
select the minimum value from the simulations with di erent chemical extensions (such
as the di erent protonation and tautormeric states) but for the same ligand as done
for previous work.?*™ The ROC curves calculated from the binding free energy ( G9)
predictions are shown in Fig. 6a and corresponding values of the area under the curves
(AUC) are listed in Table 5. It can be seen that the free energy scores from all BEDAM
simulations (obtained with or without exchange) increase the AUC value in comparison
with that from the AutoDock predictions. The AUC value from the BEDAM simu-
lations with Independence sampling (represented by WCG-Indp ) have the smallest
increase ( 9%). The AUC values calculated from the other two sets of WCG simula-
tions with the exchange feature have larger improvements of  20% (50,000 MD steps,
denoted as WCG-50K ) and  22% (10,000 MD steps, denoted as WCG-10K ). The
most signi cant improvement ( 50%) is from the BEDAM simulations with both the
selected intramolecular torsional and nonbonded interactions attened (represented by

Flat-All ). We should emphasize that it is well-known that docking methods are better
suitable for libraries with very diverse ligands instead of the focused libraries as is the
SAMPILA4 library in this report. Furthermore, the AutoDock predictions are the raw out-

put and there are post processin%dgggggéio%ﬁaSﬁ(\j/ho%s n;%}nlgrmacophore model ltering and
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visual checking that can improve the docking predictions.?*53%* Our BEDAM binding
free energy prediction provides an alternative approach to the re nement of docking re-
sults. In real applications, our BEDAM calculations should start from the best docking
predictions after post analysis of ltering and prioritization using other fast models. In
comparison with the AUC value from the original SAMPL4 BEDAM simulations using
SyncRE framework on XSEDE,®® both WCG AsyncRE simulations with exchange show
only slight improvements (1% for WCG-50K and 2% for WCG-10K respectively) but
have already achieved the same rank (2nd out of 25 submissions) in SAMPL4 Challenge.
This result is mainly due to two facts: 1) The WCG AsyncRE simulations have an ex-
change frequency more than 100 times slower than the SyncRE simulations on XSEDE;
2) Although the AsyncRE simulations on the WCG have 45 times larger aggregated
simulation time (9 poses and 5 times more lambda values), simulations from pose 6 to 9
(as we show below) have worse predictions than that of pose 1 to 5 and reduce the e ec-
tive aggregated simulation time to only 25 times larger. The corresponding ROC curves
using the average binding energy ( G9; =< u >pgy) predictions are illustrated in Fig.
6b. It is obvious that all AUC values using average binding energies from all BEDAM
simulations are greatly reduced in comparison with that from the binding free energy
predictions. Especially at the cuto of top 20% of inactives the distinguishing binders
from nonbinders is close to a random selection. The inferior prediction from the average
binding energies implies that besides the binding energy component the reorganization
free energy component is also crucial and they are correlated in a way to enhance the
discrimination between binders and nonbinders.

The AUC values focus on the performance of predictions for the whole library. In-
stead the enrichment factor measure as de ned in the Supporting Information is better
suitable for evaluating the prediction power of early recognition from a library, which
tells us how many more actives (binders in our analysis) can be found within an early
recognition fraction (such as 20%) of the ordered library based on a given score rel-
ative to a random distribution. Table 5 also shows calculated enrichment factors at

20% (EF20) and 40% (EF40) cuto . Similar observations as the AUC values can be
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found: All EFs using binding free energies ( G¢) calculated from BEDAM simulations
have more than 20% improvements in comparison with the raw AutoDock predictions;
The WCG simulations with independence sampling have the smallest increases (21% for
EF20 and 26% for EF40); The EF values for the two sets of WCG AsyncRE simulations
show improvements of 20 30% for EF20 and 40 50% for EF40; Obviously the attening
simulations have the largest increases (46% for EF20 and 53% for EF40). From Table
5 it is also clear that the EF values using average binding energies are worse than that

from binding free energies indicating the importance of reorganization free energies.
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Figure 6: (a) ROC curves of di erent types of BEDAM-based screening for the SAMPL4
library using binding free energy ( Gf) scores; (b) Same as in (a) but using average
binding energy ( G9;, =< u >pgy) scores.

Binding free energy predictions from di erent docking poses

As with most free energy calculation methods, the BEDAM method relies on docked
poses or crystal structures to start a simulation. The tremendous WCG resources allow
us to re ne the docking predictions not only based on the best predicted pose but also
alternative poses according to the docking scores. The WCG results shown in Fig. 6
and Table 5 were obtained by selecting the minimum (most favorable) binding free energy
scores among the 9 scores calculated from individual BEDAM simulations started from each

of 9 di erent poses of the same complex. In Fig. S2 of Supporting Information we display

corresponding ROC curves of the binding free energies calculated from all trajectories of 9
ACSParagonPlusEnvironment
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Table 5:  Area under curve (AUC) and enrichment factor (EF) values calculated from binding
free energy ( GY) and average binding energy ( G9;, =< u >pz) scores from di erent
BEDAM simulations (1.2ns per replica) of SAMPL4 library.

AutoDock WCG-Indp WCG-50K  WCG-10K FLat-All
AUC( GY) 0.593 0.650 0.658 0.812
0.541
AUC(< u >gp) 0.577 0.572 0.573 0.529
N
Pose min™  ppoga ( G?) 1.314 1.591 1.595 1.689 2.745
EF40P( G9) 1.070 1.349 1.489 1.582 1.989
EF20%(< u >gp) 1.314 0.843 0.938 0.845 1.417
EF40P(< u >p1) 1.070 1.210 1.210 1.117 1.224
14 AUC( GY) 0.566 0.583 0.598
Pose avg 0.535
AUC(< u >gp) 0.622 0.581 0.598

AEF20 = enrichment factors at 20% cuto ; PEF40= enrichment factors at 40% cuto ;
caggregated to the minimum value from 9 di erent poses; Yaverage value from 9 poses.

poses by simple averaging (denoted as pos avg). It is clear that such equal treatment for all 9
poses results in a worse prediction of AUC values as listed in Table 5, implying that many
simulations are still trapped in a local equilibrium state instead of reaching a global one.
Such local equilibrium properties become more obvious when we check the Spearman
ranking order correlations between the results calculated from 1.2ns trajectories and that
from 3.0ns as shown in Fig. S3 of Supporting Information. Both the WCG AsyncRE
simulations using a MD period of 50K steps and the attening BEDAM simulations have
rank order correlations larger than 0.95 (highly correlated) at two di erent simulation
times. To optimize the computing resources for future simulations we are interested in
the prediction performance from individual docking poses in addition to that aggregated
from all 9 poses for the same complex. Fig. S4 exhibits the ROC curves of binding free
energies calculated from the WCG AsyncRE BEDAM simulations using the MD period
of 10K steps and started from each one of 9 di erent poses predicted by AutoDock (See
Fig. S5 in Support Information for corresponding simulations using 50K MD period).
The corresponding AUC values are plotted in Fig. 7 (see Table S1 for the values in
detail). Generally the AUC values calculated from individual poses are smaller than

that obtained by aggregating to E]ggagégl blsrgn\‘/flzl}cl)%% é)rftbmdmg free energies from all 9
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poses of the same complex implying that aggregation by the minimum value does help to
improve the accuracy of overall prediction. They are also correlated among the di erent
WCG simulations (See Fig. S3 for the comparisons of individual binding free energies)
which is consistent with the fact that di erent types of simulations were started from
the same individual poses. Using a smaller MD period increases the AUC values, which
is also in agreement with the di usion coe cient analysis shown in 4c. A more careful
comparison also shows that the AUC values have large uctuations from pose 1 to 5
implying the best pose (top 1) predicted by AutoDock might not be the best candidate
for BEDAM simulations (for example, WCG BEDAM simulations from the top 2 and
top 5 poses have larger AUC values). We can also nd that the AUC values decrease
to lower values from pose 6 to 9 which means that it is not necessary to include all 9
poses into the WCG AsyncRE simulations and top 1 to 5 poses from the AutoDock
predictions are good enough for this SAMPLA4 library. We should point out that this
is only an observation based on Fig. 7 and for a more rigorous comparison we should
perform the accumulative analysis of AUC values by aggregating the minimum values of
binding free energies from top 1 to top 9 poses. The conclusion might di er depending
on which ligand and also the parameter selection for the AutoDock predictions. In fact
for more advanced BEDAM simulations using attening potentials, we can only use one

pose but achieve a high AUC value as shown in Fig.6 and Table 5.

Conclusion

We implemented and optimized the AsyncRE framework of BEDAM method on the
IBM WCG volunteer grid for massive-scale binding free energy calculations using the
OPLS-AA force eld for describing receptor-ligand complexes and the AGBNP model for
implicit solvent e ects. We discussed the general procedure on how to select the simula-
tion parameters of BEDAM and re ne the AutoDock prediction. We also performed the

rst massive-scale binding free energy calculations using distributed computing gird and

AsyncRE framework with 2 451 9 =8 118 complexes and 811 800 replicas submitted
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Figure 7: AUC values of ROC curves using binding free energy ( Gj) scores calculated
from di erent types of BEDAM simulations started from di erent individual poses (1 to
9) predicted by AutoDock for the SAMPLA4 library . The red line corresponds the AUC
value obtained by aggregating to the minimum (most favorable) binding free energy
from all BEDAM simulations (WCG AsyncRE 10K) started from 9 di erent poses of
the same complex. All other three lines shows the AUC values of binding free energies
using individual poses only (1 to 9) without aggregation from di erent poses.

to the WCG volunteer gird at same time. Namely for the WCG AsyncRE simulations we
extended the number of lambda states to 100 and included 9 poses from the AutoDock
predictions for each HIV-1 IN complex to remediate the slower di usion in lambda space
due to the use of much longer MD periods than the HPC SyncRE simulations to reduce
the overhead. The free energy scores obtained from WCG AsyncRE simulations are
comparable with those from the SyncRE simulations and show signi cant improvements
over the initial AutoDock predictions although they are worse than those from more
advanced REMD that includes the attening potentials to selected degrees of freedom
of ligands. Running asynchronous REMD on WCG is a tradeo : We sacri ce rapid
simultaneous RE exchanges (in depth) with little overhead in order to gain many more
simulations (in breadth) on heterogeneous hardware but more overhead per replica.
The binding free energies from the attening AsyncRE BEDAM simulations show
signi cant improvement on discriminating binders and nonbinders in comparison with
the initial AutoDock predictions and BEDAM simulations without the attening fea-

ture. Using attening simulations can also reduce the number of poses for each simulated
ACSParagonPlusEnvironment
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complex and the requirements on computing resources since the attening potentials can
help to accelerate sampling of internal degrees of freedom of the ligand /receptor and ad-
just the pose during a simulation. However there is also a tradeo between the selected
number of degrees of freedom for attening and the simulation time to sample all of
the relevant space similar to the REST methods in FEP calculations.?”® Namely im-
provement from the convergence of simulations in the relevant coordinate space might
be weakened by including unnecessary internal coordinates into attening.?”-*® Hence,
using attening BEDAM simulation is the best strategy to re ne the AutoDock results
when we have prior knowledge about ligand libraries and/or particular receptors. For
example we can perform cluster analysis of the binding pocket to identify related de-
grees of freedom of receptor exibility using crystallographic data, MD simulations, or
induced- t docking studies. On the other hand we can consider the degrees of freedom
from ligand exibility using our chemical knowledge and other studies such as exible
docking that can specify the rotatable dihedral angles to explore the conformational
exibility of ligands. The attening BEDAM simulations reported here were performed
in a AsyncRE framework using a local campus grid on Temple University including 5000
CPUs. The implementation of attening BEDAM on the IBM WCG grid is underway.
The use of AsyncRE simulations without attening on the WCG Grid is a good
choice when we do not have su cient prior knowledge concerning which degrees of
freedom to apply attening potentials to or when the number of complexes is very large
and an automatic work ow to select related internal degrees of freedom is not available.
Considering the smaller overhead and insigni cant reduction to AUC values, choosing
an MD period of 50K and 100 states to run on the WCG is a better choice than that
of 10K. We also found that the AUC values from the BEDAM simulations started from
individual poses decrease signi cantly at large number of pose (after 5). This means
that we could perform simulations for the 5 top poses predicted by AutoDock which will
reduce the requirement of computing resources close to 45%. We note that a factor of 4
attributable to overhead is from the waiting (queuing) times on the IBM BOINC server

after jobs are submitted (this is included in the replica server time). The reason for this
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is that the number of jobs submitted to the grid is more than three times the number of
CPUs available (0.1 million) to our Fight AIDS@Home Phase 2 project (though there
are 3.0 million CPUs in the entire WCG grid). This part of the overhead can be
removed when the available CPUs are increased to a desired number or the number of
jobs is reduced using fewer poses or ligands. The real overhead ( 8.5 and 2.8 times for
10K and 50K respectively without over-submission) can also be reduced further by using
a much smaller value of the maximum return time of MD jobs on the client side or/and
increasing the frequency of checking returned MD jobs and performing exchanges on
the server side. In fact, we were able to tweak the settings of client machines and the
server in such a way that the overall is reduced to less than a factor of 2 on our local
Temple University Grid. We should point out that although the largest benchmark test
on the SAMPLA4 library is 1000 lambda values per complex, the AsyncRE framework and
computing resources support running hundreds of thousands of replicas per complex if it
is required such as in multi-dimensional REMD simulations. For the WCG simulations
of the whole SAMPL4 library, we submitted jobs including 8,118 complexes and 811,800
replicas at the same time. In principal, we can use all 811,800 replicas for the same
complex. We did not run the simulation in this way because the gain from increasing
the total number of replicas becomes less signi cant after its value is increased to 100
based on the di usion coe cient analysis.

In summary, combining the BEDAM method with the distributed computing network
enables the massive-scale re nement directly on docking predictions and generates good
candidates for further lead optimization using more high resolution FEP methods in
explicit solvent. We expect that such protocols will become more routine in the near
future as massive-scale distributed computing resources such as WCG gird, Amazon

Cloud, and Internet of Things, become more widely available.
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Supporting Information

More information about the system preparations, AsyncRE attening BEDAM, reweight-
ing analysis, and other related topics are included. This material is available free of

charge via the Internet pubs.acs.org.
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