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Abstract: Given an obstacle in R
3 and a non-zero velocity with small amplitude at

the infinity, we construct the unique steady Boltzmann solution flowing around such an
obstacle with the prescribed velocity as |x | → ∞, which approaches the corresponding
Navier–Stokes steady flow, as themean-free path goes to zero. Furthermore, we establish
the error estimate between the Boltzmann solution and its Navier–Stokes approximation.
Our method consists of new L6 and L3 estimates in the unbounded exterior domain, as
well as an iterative scheme preserving the positivity of the distribution function.
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1. Introduction

Let � be a smooth bounded open subset of R
3 and � its closure. A gas moves in

�c = R
3\�with prescribed velocity u at infinity and vanishing velocity on ∂�, evolving

according to the incompressible Navier–Stokes equations. The steady boundary value
problem for this system is classical in Fluid Mechanics and a huge amount of literature
has been devoted to it [2,11,18,19,21,26] (see also [12] and references quoted therein).
One of the main difficulties of this problem is related to the presence of the “wake” [28]
and the corresponding slow decay to u of the velocity field at infinity.

In the case of a rarefied gas, an alternative description is possible in terms of the
Boltzmann equation and suitable boundary conditions. In this paper we study the link
between these two descriptions in the small Knudsen numbers and low Mach numbers
regime.

It is well known that in this regime the time dependent Boltzmann equation behaves
as the incompressible Navier–Stokes equation, [3,4,7,14–16,22,24,27]. Much less is
know for the corresponding steadyBoltzmann problem,where the natural L1 and entropy
estimates are not available, and only the entropy production can be exploited.

Ukai and Asano [29,30], see also [31], studied the Boltzmann equation in the ex-
terior domain with fixed Knudsen number. They considered a rarefied gas outside a
piecewise smooth convex domain of R

3, with suitable boundary conditions and a pre-
scribed Maxwellian behavior at infinity. The Maxwellian at infinity was centered at a
small velocity field. For this problem Ukai and Asano were able to prove existence of
the steady solution and its dynamical stability.

Our main result is the construction of the steady solution to the Boltzmann equation
in the exterior domain and the estimate of its closeness to the steady incompressible
Navier Stokes equation when Knudsen and Mach numbers are small. Recently in [9],
we have constructed the solution to the Boltzmann equation for small Knudsen andMach
numbers in a smooth bounded domain, under the action of a suitably small external force
and small variations of the boundary temperature. The exterior problem is even more
difficult, due to the need of good decay properties for large x .

Before describing the difficulties to achieve our program, let us state more precisely
the problem and the result.

We assume that � ⊂ R
3 is a C2 bounded domain, not necessarily convex. Let

x ∈ �c = R
3\� and v ∈ R

3. Let F(x, v) ≥ 0 be the (unnormalized) distribution
function of a rarefied gas in �c with position x and velocity v, satisfying the steady
Boltzmann equation

v · ∇F = 1

ε
Q(F, F), in �c (1.1)

where ∇ ≡ ∇x and

Q( f, g)(v) = Q+( f, g)− Q−( f, g),

Q+( f, g)(v) =
∫
R3

dv∗
∫

{ω∈R3 : |ω|=1}
dωB(ω, v − v∗) f (v′)g(v′∗), (1.2)

Q−( f, g)(v) = f (v)
∫
R3
v∗

∫
{ω∈R3 : |ω|=1}

dωB(ω, v − v∗)g(v∗). (1.3)

Here v′ and v′∗ are the incoming velocities in the elastic collision, defined by

v′ = v − ω(v − v∗) · ω, v′∗ = v∗ + ω(v − v∗) · ω, (1.4)
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and B(ω, V ) is the cross section for hard potentials with Grad’s angular cutoff, so that∫
{|ω|=1} dωB(V, ω) � |V |θ for 0 ≤ θ ≤ 1 depending on the interaction potential. In
particular, B(ω, V ) = |ω · V | for hard spheres and θ = 1.

We assume diffuse reflection boundary condition: Let γ = ∂�×R
3 = γ+ ∪γ− ∪γ0,

with

γ± = {(x, v) ∈ ∂�× R
3 : n(x) · v ≷ 0}, γ0 = {(x, v) ∈ ∂�× R

3 : n(x) · v = 0},
(1.5)

n(x) denoting the normal at x to ∂� pointing inside �. Let

Mρ,u,T := ρ

(2πT )
3
2

exp
[

− |v − u|2
2T

]
, (1.6)

be the local Maxwellian with density ρ, mean velocity u, and temperature T and

μ = M1,0,1 = 1

(2π)
3
2

exp
[

− |v|2
2

]
. (1.7)

On the boundary F satisfies the diffuse reflection condition defined as

F(x, v) = Pw
γ (F)(x, v) on γ−, (1.8)

where

Pw
γ (F)(x, v) := Mw(x, v)

∫
{n(x)·w>0}

dw F(x, w){n(x) · w}, (1.9)

with the wall Maxwellian defined as

Mw = √
2πμ = 1

2π
exp

[
− |v|2

2

]
,

∫
{v·n≷0}

dvMw(v)|n · v| = 1. (1.10)

We also specify the condition at infinity. Since we study the problem in the small Mach
number regime, we assume that the velocity at infinity is of order ε. In other words, fixed
a constant vector u, denoting

vu := v − εu, μu(v) := μ(vu) = M1,εu,1(v), (1.11)

we assume in a suitable sense

lim|x |→∞ F(x, v) = μu(v). (1.12)

Note that we have prescribed the same uniform temperature on ∂� and at infinity for sake
of simplicity, but we believe that a temperature difference of order ε could be included.
We do not discuss this. The case of sufficiently small difference of temperature for fixed
ε has been discussed in [32].

Let the couple velocity field and pressure, (U, p), be solution to the Stationary In-
compressible Navier–Stokes equation (SINS) in �c:

U · ∇U + ∇P = v
U, ∇ ·U = 0, U = 0 on ∂�, U → u, as |x | → ∞
(1.13)
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where v > 0 is the viscosity coefficient. It is convenient to represent U = u + u, with
(u, P) solving

(u + u) · ∇u + ∇P = v
u, ∇ · u = 0, u = −u on ∂�, u → 0, as |x | → ∞.

(1.14)

Solutions to this equation do exist in L p, for any p > 2 and uniqueness is ensured for
|u| small (see e.g. [12], Thm. X.6.4).

Our aim is to show that F ≈ M1,ε(u+u),1 as ε → 0.Moreprecisely, sinceM1,ε(u+u),1 =
μu + ε f1

√
μu + O(ε2), where

f1 = √
μuu · vu, (1.15)

we need to show that ε−1(F − μu) ≈ f1
√
μu as ε → 0 is in L p for any p > 2, with

the same decay of u. Therefore, we set R̃ = ε− 1
2μ

− 1
2

u [F −μu − ε f1
√
μu] and write the

equation for R̃. Let Lu be the usual linearized Boltzmann operator defined as

Lu f = −μ− 1
2

u [Q(μu, μ
1
2
u f ) + Q(μ

1
2
u f, μu)] := ν f − K f, (1.16)

where: ν(v) = ∫
R3×{|ω|=1} dv∗dωB(v − v∗, ω)μ(v∗) is such that 0 ≤ ν0|v|θ ≤ ν(v) ≤

ν1|v|θ ; K is a compact operator on L2(R3
v). Lu is an operator on L2(R3

v) whose null
space is

Null Lu = span{1, vu, |vu|2}√μu, (1.17)

Let Pu be the orthogonal projector on Null Lu. In particular, Lu f1 = 0. Thus we have

v ·∇ R̃+ε−1Lu R̃ = [�u( f1, R̃)+�u(R̃, f1)]+ε 1
2�u(R̃, R̃)+ε

− 1
2 [�u( f1, f1)−v ·∇ f1],

(1.18)
where

�u( f, g) = �+
u( f, g)− �−

u ( f, g),

�±
u ( f, g) = μ

− 1
2

u Q±(μ
1
2
u f, μ

1
2
ug),

�̃u( f, g) = 1

2

[
�u( f, g) + �u(g, f )

]
. (1.19)

To remove the divergent term in (1.18), we note that, since ∇ · u = 0, then

Pu(v · ∇ f1) = 0, (1.20)

and
f2 = L−1

u

[ − (I − Pu)[v · ∇ f1] + �u( f1, f1)
]

(1.21)

is well defined and is in L p for any p > 4
3 , because so is ∇u (see e.g. [12], Thm. X.6.4).

Since u solves the SINS equation, then it is easy to check that

Pu[v · ∇ f2] = 0. (1.22)

Therefore, by setting R = R̃ − ε
1
2 f2, which means F = μu + ε( f1 + ε f2 + ε

1
2 R)

√
μu,

we see that F is a stationary solution to (1.1) if and only if R solves the equation:

v · ∇R + ε−1LuR = L(1)u R + ε
1
2�u(R, R) + ε

1
2 Au, (1.23)
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where

L(1)u R = 2�̃u( f1 + ε f2, R) (1.24)

Au = −(I − Pu)[v · ∇ f2] + 2�̃u( f1, f2) + ε�u( f2, f2). (1.25)

Since u → 0 at ∞, then f1 and f2 also go to 0 at ∞. Thus we have to impose

lim|x |→∞ R = 0. (1.26)

For f ∈ L1(γ±) we define

Pu
γ f = μ

− 1
2

u Pw
γ [μ

1
2
u f ] = √

2π
μ√
μu

zγ+( f ),

zγ±( f )(x) =
∫

{v·n(x)≷0}
dv

√
μu(v)|v · n(x)| f (x, v), (1.27)

zγ±( f )(x) being the outgoing/incoming mass flux at x ∈ ∂�. We will omit the index ±
when there is no ambiguity.

The boundary condition for R is:

R = Pu
γ R + ε

1
2 r, (1.28)

where
r = Pu

γ [ f2 − φε] − ( f2 − φε), on γ−, (1.29)

with φε defined as

φε = ε−2μ
− 1

2
u [M1,ε(u+u),1 − μu − ε

√
μu f1], (1.30)

such that

|φε| ≤ Cβ(|u|2 + |u|2) exp[−β|v|2] for any β <
1

4
. (1.31)

Indeed, for x ∈ ∂�, where u(x) = −u, we have μ = M1,ε(u+u),1 and hence

μ = M1,ε(u+u),1

∣∣∣
∂�

= μu + ε
√
μu f1

∣∣∣
∂�

+ ε2
√
μuφε

∣∣∣
∂�
. (1.32)

and, in consequence of μ = Pw
γ μ, on γ− we have

μu + ε f1μ
1
2
u + ε2φεμ

1
2
u = Pw

γ [μu + ε f1μ
1
2
u + ε2φεμ

1
2
u ]. (1.33)

On the other hand the boundary condition (1.8) for F gives on γ− ,

μu + ε f1μ
1
2
u + ε2 f2μ

1
2
u + ε

3
2 Rμ

1
2
u = Pw

γ [μu + ε f1μ
1
2
u + ε2 f2μ

1
2
u + ε

3
2 Rμ

1
2
u ].

Therefore, subtracting the last two equations

ε2 f2μ
1
2
u + ε

3
2 Rμ

1
2
u − ε2φεμ

1
2
u = Pw

γ [ε2 f2μ
1
2
u + ε

3
2 Rμ

1
2
u − ε2φεμ

1
2
u ],

which implies (1.28).
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Note that, from the definition of Au, it follows that

PuAu = 0. (1.34)

Moreover, it can be checked that

zγ−(r) =
∫

{v·n<0}
dv r

√
μun · v = 0. (1.35)

From the definition of r it follows that

|r |2,− + |r |∞ � |u|. (1.36)

Notation. Depending on the context, we denote ‖ f ‖p = ‖ f ‖L p(�c
x×R3

v)
or ‖ f ‖p =

‖ f ‖L p(�c
x )
or ‖ f ‖p = ‖ f ‖L p(∂�) for 1 ≤ p ≤ ∞. ‖ f ‖ν = ‖ f ν

1
2 ‖2. We set | f |p,± =( ∫

γ± dγ | f (x, v)|p) 1
p , with

∫
γ±

f dγ =
∫
∂�

dS(x)
∫

{v·n(x)≷0}
dv |v · n(x)| f (x, v). (1.37)

Finally, we define

[[ f ]]β,β ′ = ε−1‖(I − Pu) f ‖ν + ε− 1
2 |(1 − Pu

γ ) f |2,+ + ‖Pu f ‖6 + ε 1
2 ‖Pu f ‖3

+ε
1
2 ‖w f ‖∞ (1.38)

with the weight function w(v) = 〈v〉β ′
exp[β|v|2], where 〈v〉 = (1 + |v|2) 12 .

The main result is

Theorem 1.1. Let� be a C2 bounded open set of R3 and�c = R
3\�. Fix u ∈ R

3 such
that 0 < |u| � 1. For any 0 < ε � 1 consider the steady boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v · ∇F = 1

ε
Q(F, F), in �c

F(x, v) = Mw

∫
{v·n>0}

Fv · ndv on γ−,

lim|x |→∞F(x, v) = μu(v).

(1.39)

Then

• the problem (1.39) has a positive solution which can be represented as

F = μu +
√
μu[ε f1 + ε2 f2 + ε 3

2 R], (1.40)

with f1 and f2 given by (1.15) and (1.21), u solving (1.14), and R solving (1.23),
(1.28).

• R satisfies the bound
[[R]]β,β ′ � |u|, (1.41)

for β ′ ≥ 0 and 0 < β � 1
4 .• R is unique in the ball { f : [[ f ]]0,β ′ � |u|}.
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Remark 1.2. Note that while the L2 norm of (I−Pu)R is bounded and actually small as
ε → 0, PuR is bounded uniformly in ε only in L6, while the L3 and L∞ bounds of PuR

are divergent with ε− 1
2 . It turns out that that the L p norm of PuR is bounded for p > 2,

but the bound is not uniform in ε for 2 < p < 6. This is the counterpart of the slow
decay of the velocity field u at infinity, which is well known in Fluid Dynamics, where
it is proved that the L2 norm of u is unbounded. We do not know if a similar statement is
true for R, but it is certainly true for f1 which is linear in u and hence for ε−1(F −μu).

Remark 1.3. We also note that combining the estimates implied by (1.41), it follows that
‖R‖6 is bounded uniformly in ε. In fact, we have ‖PuR‖6 ≤ [[R]] � |u| and

‖(I − Pu)R‖6 ≤ ‖(I − Pu)R‖
1
3
2 ‖R‖

2
3∞ ≤ (ε[[R]]) 13 (ε− 1

2 [[R]]) 23 ≤ [[R]] � |u|.
Since f1 and f2 are also bounded in L6, uniformly in ε, we conclude that ε−1(F −μu)

is bounded in L6 uniformly in ε. The condition at infinity for F is verified in this sense.

Remark 1.4. The uniqueness is proved in the ball { f : [[ f ]]0,β ′ � |u|}. No exponential
decay in v is required for uniqueness.

In Sects. 2–5 we shall consider the following linear problem:

⎧⎪⎪⎨
⎪⎪⎩

v · ∇ f + ε−1Lu f = g, (x, v) ∈ �c

f = Pu
γ f + ε

1
2 r, (x, v) ∈ γ−,

lim|x |→∞ f = 0.
(1.42)

By (1.34) and (1.35), Pug = 0 and zγ−(r) = 0 in the linearization of the problem
(1.23), (1.28). However, to prove the positivity of the solution to (1.1) we are going
to construct, we have to suitably modify the equation (1.1) and in the resulting linear
problem to be studied (1.34) and (1.35) are no more exact but Pug and zγ (r) are small
for ε small. Therefore in the next sections we shall drop the conditions (1.34) and (1.35).

We shall prove the following

Theorem 1.5. Fixed u with 0 < |u| � 1, if ε � 1, the solution to the linear problem
(1.42) satisfies the inequality

[[ f ]]2β,β ′ � M (g, r), (1.43)

where

M (g, r) = ‖ν− 1
2 (I − Pu)g‖22 + ε‖ν− 1

2 g‖23
2
+ ε3‖〈v〉−1wg‖2∞ + ε|wr |2∞,− + |r |22,−

+‖Pug‖22+ε−2|u|−2‖Pug‖26
5
+ε−1|u|−2+2�‖Pug‖26

5
−+(|u|−2+2�+|u|−1ε−1)‖zγ (r)‖22,

(1.44)

for β ′ ≥ 0 and 0 ≤ β � 1
4 and ρ > 0.

Remark 1.6. We note that the terms in the second line of (1.44) vanish when the hydro-
dynamic part of g and the net mass flux of r vanish. This is the case for the problem
(1.23), (1.28). In the modified problem introduced for the proof of positivity they do not
vanish, but their contribution turns out to be small.
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Before going into a short sketch of the arguments we use, it is worth to comment the
choice of the power of ε in front of R, α = 3

2 . Clearly, to deal with the non linear term
is easier when this power is large. However we are limited by the fact that f2 does not
satisfy the boundary conditions and a power α > 2 would require the introduction of
a boundary layer correction with serious regularity issues due to the general geometry
(see [33] for the analysis of such problems). On the other hand α ≤ 3

2 is required to
avoid a divergent contribution from the boundary terms in the energy inequality. It turns
out that the value α = 3

2 is exactly what we need to bound the non linear term thanks to

the uniform estimate we are able to obtain for ε
1
2 ‖PuR‖3.

Our analysis relies crucially on energy inequality to control entropy production. It
gives important information: the microscopic part of the solution (I − Pu)R is of order
ε in L2 and moreover |(1 − Pu

γ )R|2,+ ∼ √
ε.

Our main technical achievement is establishing the linear estimate (1.43), [[ f ]]2
β,β ′ �

M (g, r). The starting point is a new L6 estimate for Pu f in Sect. 3, which extends the
one in the recent paper [9], while the L∞ estimate follows directly from [9]. The key
observation is that the L6 estimate for the macroscopic part of R, PuR, is valid in the
unbounded exterior region, thanks to scaling invariance in the homogeneous Sobolev
space Ḣ1. The proof, which requires a weak formulation and a careful choice of the test
functions, is also based on delicate estimates of the boundary terms.

However, to deal with the nonlinear part �u(R, R), the L6 estimate is not sufficient,
some control of the L3 estimate is required. Unlike in the bounded domains, the L6

bound alone cannot imply L3 bound, for |x | → ∞. In fact, the L3 bound requires faster
decay as |x | → ∞, which is a much stronger estimate than L6 estimate. This gain of
lower integrability near infinity can be viewed as opposite to the velocity averaging ideas
which lead to higher integrability gain for bounded |x |. In fact, starting from the bound
for L6 norm, we need to show bounds on lower p’s norms. By working on the balance

laws we can prove a uniform in ε bound for ε
1
2 ‖Pu f ‖3 for |x | � 1, which is sufficient

to close our estimate (Sect. 6).
To this purpose, inspired by Maslova, [23], in Sect. 4, after multiplying the equation

by a smooth spatial cutoff function ζ vanishing at ∂�, we rewrite the macroscopic
projection of the linear Boltzmann equation for f ζ = ζ f as a (non closed) system
for Pu f ζ in the whole space (see Eqs. (4.30)–(4.32)) (in [23] a similar system was
introduced to solve the steady Boltzmann equation with ε = 1, with in-flow boundary
condition and asymptotic Maxwellian with prescribed mean velocity at infinity):

∇x · bζ + εu · ∇xa
ζ = s0,

∇x (a
ζ + cζ )− εv
bζ + εu · ∇xb

ζ = s,

∇x · bζ − εκ
cζ +
3

2
εu · ∇xc

ζ = s4,

where Pu f ζ = [aζ + bζ · vu + 1
2c

ζ (|vu|2 − 3)]√μu and the sources s0, s, s4 depend on
f and on ζ . For |u| � 1 we study the above system via Fourier analysis, by means of a
decomposition of Pu f ζ into high-frequency and low-frequency parts. Of course, in the
large |x | regime the low-frequency part is the difficult one and its treatment requires a
further decomposition in different contributions, the most delicate being the one for the
total mass, momentum and energy fluxes at the boundary, needed in Lemma 5.5, which
are obtained thanks to the condition u �= 0, an ingredient also entering crucially in the
Fluid Dynamic treatment of the problem (see e.g. [12]). We establish in Sect. 5 very
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precise L p estimates p > 2 for the different parts of Pu f , because u �= 0 ensures more
integrability than in the corresponding Stokes system. It is worth to stress that such
arguments, however accurate they are, only produce an estimate of ‖Pu f ‖p ∼ ε−1,

which would not be good enough for our purposes, we need at most ‖Pu f ‖3 ∼ ε− 1
2 to

deal with the non linearity because of the limitation explained before. It is only thanks
to the essential uniform in ε estimate of ‖Pu f ‖6 ∼ 1, that, via a careful estimate of the
mass momentum and energy fluxes at the boundary in Sect. 5.3 and interpolation, we
can obtain a bound

√
ε‖Pu f ‖3 ∼ 1, uniform in ε.

It is well-known that it is challenging to prove positivity for steady Boltzmann solu-
tions. We succeed in this by suitably adapting and extending the positivity-preserving
scheme of Arkeryd and Nouri [1]. When dealing with the diffuse reflection boundary
condition for this new scheme we encounter an extra difficulty with a new term deter-
mining a potential violation of the vanishing net mass flux condition at the boundary, that
is controlled via accurate estimates in the large velocity set and the Ukai trace theorem
[29].

Finallywe prove ourmain theorem in Sect. 6 via iteration, based on the linear estimate
(1.43). A crucial informationwe need to close the iteration is the smallness of the velocity
field when |u| is small. This estimate is proven in the “Appendix A”.

2. Energy Estimate

We shall use in many points the following two lemmas whose proof is standard and can
be found for example in [8]:

Lemma 2.1. Assume that f (x, v), h(x, v) ∈ L p(�c×R
3), p ≥ 2 and v ·∇x f, v ·∇xh ∈

L
p

p−1 (�c × R
3) and f

∣∣
γ
, h

∣∣
γ

∈ L2(∂�× R
3). Then

∫∫
�c×R3

dxdv[(v · ∇xh) f + (v · ∇x f )h] =
∫
γ+

dγ f h −
∫
γ−

dγ f h. (2.1)

Lemma 2.2. Assume �1 is an open bounded subset of R
3 with ∂(�1\�) in C2, such

that {x ∈ �c | d(x,�) ≤ 1} ⊂ �1. We define

γ δ± := {(x, v) ∈ γ± : |n(x) · v| > δ, δ ≤ |v| ≤ 1

δ
}. (2.2)

Then

| f 1γ δ±|1 �δ,�1 ‖ f ‖L1(�1\�) + ‖v · ∇x f ‖L1(�1\�).

Remark 2.3. Since, as proved in [8], page 194, eq. (3.8), |Pu
γ f |2,± � |Pu

γ f 1γ δ±|2,± and

δθ/2 � ν
1
2 � δ−θ/2, from previous lemma applied to ν f 2 we get

|Pu
γ f |2,± �δ ‖ f ‖L2(�1\�) + ‖ν− 1

2 v · ∇ f ‖L2(�1\�). (2.3)

Next two lemmas are useful to bound the boundary terms in the energy inequality:
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Lemma 2.4.
∣∣∣
∫
∂�

dS
∫

{v·n>0}
dv v · n|Pu

γ f |2 −
∫
∂�

dS
∫

{v·n<0}
dv |v · n||Pu

γ f |2
∣∣∣

� ε|u|
∫
γ+

| f |2dγ. (2.4)

∣∣∣
∫
∂�

dS
∫

{v·n>0}
dv v · nPu

γ f (1 − Pu
γ ) f

∣∣∣ � ε|u|
∫
γ+

| f |2dγ. (2.5)

Proof. From the definition of Pu
γ ,∫

{v·n≷0}
dv |v · n||Pu

γ f |2 = √
2π |zγ ( f )|2

∫
{v·n≷0}

dv
√
2πμ2μ−1

u |v · n|.

Since by (1.32)

μ2μ−1
u = μ− μ(μu − μ)μ−1

u = μ− μ[εu · vuμu + ε2φε
√
μu]μ−1

u

= μ− εμu · vu − ε2μφεμ
− 1

2
u ,∫

{v·n≷0}
dv

√
2πμ2μ−1

u |v · n| =
∫

{v·n≷0}
dv

√
2π |v · n|[μ− εμu · vu − ε2μφεμ

− 1
2

u ]

= 1 − ε

∫
{v·n≷0}

dv
√
2π |v · n|μu · (v − εu)

−ε2
∫

{v·n≷0}
dv

√
2πμ|v · n|φε|μμ− 1

2
u = 1 + O(ε|u|).

The last term is bounded because, by (1.32), |φε| � |u|2μ
1
2

−
u . Therefore

∫
{v·n≷0}

dv|Pγ f |2 = √
2π |zγ ( f )|2(1 + O(ε|u|).

Thus
∣∣∣
∫
∂�

dS
∫

{v·n>0}
dv v · n|Pu

γ f |2 −
∫
∂�

dS
∫

{v·n<0}
dv|v · n||Pu

γ f |2
∣∣∣

� O(ε|u|)
∫
∂�

dS|zγ ( f )|2

and this proves (2.4), because
∫
∂�

dS|zγ ( f )|2 ≤ | f |22,+. (2.6)

To prove (2.5) we note that
∫

{v·n>0}
dv v · nPu

γ f (1 − Pu
γ ) f =

∫
{v·n>0}

dv v · n f Pu
γ f −

∫
{v·n>0}

dv v · n|Pu
γ f |2.

∫
{v·n>0}

dv v · n f Pu
γ f = √

2π zγ ( f )
∫

{v·n>0}
dv v · n f μμ− 1

2
u
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= √
2π zγ ( f )

∫
{v·n>0}

dv v · n f [μ
1
2
u + (μ− μu)μ

− 1
2

u ]

= √
2π |zγ ( f )|2 +

√
2π |zγ ( f )|

∫
{v·n>0}

dv v · n f (μ− μu)μ
− 1

2
u

Using again (μ− μu)μ
− 1

2
u = εu · vuμ

1
2
u + ε2φε,

∫
{v·n>0}

dv v · n f (μ− μu)μ
− 1

2
u ≤ ε|u|

( ∫
{v·n>0}

dv v · n f 2
) 1

2

×
( ∫

{v·n>0}
dv v · n[|vu|2μu + ε|u|−2|φε|2]

) 1
2

� ε|u|
( ∫

{v·n>0}
dv v · n f 2

) 1
2

Therefore
∣∣∣
∫
∂�

dS
∫

{v·n>0}
dv v · nPu

γ f (1 − Pu
γ ) f

∣∣∣ � ε|u|
∫
∂�

dS|zγ ( f )|
( ∫

{v·n>0}
dv v · n f 2

) 1
2

≤ ε|u|| f |22,+,
and this concludes the proof. ��
Lemma 2.5. For any η > 0,

∣∣∣
∫
∂�

dS
∫

{v·n<0}
dv|v · n|ε 1

2 r Pu
γ f

∣∣∣ � 1

η
‖zγ (r)‖22 + εη| f |22,+ + ε

3
2 |r |22,−. (2.7)

Proof. We note that

ε
1
2

∫
{v·n<0}

r Pu
γ f dv|v · n| = ε

1
2
√
2π zγ ( f )

∫
{v·n<0}

dv r |v · n|μμ− 1
2

u

= ε
1
2
√
2π zγ ( f )zγ (r) + ε

1
2
√
2π zγ ( f )

∫
{v·n<0}

dv r |v · n|(μ− μu)μ
− 1

2
u

The integral on ∂� of the first term is bounded by

ε
1
2 |√2π

∫
∂�

dS|zγ (r)|zγ ( f )| ≤ 2π

4η

∫
∂�

dS|zγ (r)|2 + ηε
∫
∂�

dS|zγ ( f )|2

� η−1‖zγ (r)‖22 + εη| f |22,+].
The second by is bounded by

∣∣∣ε 1
2

∫
∂�

dS|zγ ( f )|
∫

{v·n<0}
dv r |v · n|(μ− μu)μ

− 1
2

u

∣∣∣

� ε
3
2 |u|

∫
∂�

dS
( ∫

{v·n<0}
dv |v · n||r |2

) 1
2 |zγ ( f )| ≤ ε

3
2 |u|(|r |22,− + | f |22,+)

and we obtain (2.7). ��
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For fixed ε the construction of the solution to the linear problem (1.42) is standard,
see e.g. [23]. To prove Theorem 1.5, we begin with the energy inequality.

Proposition 2.6. For |u| sufficiently small the solution to (1.42) satisfies the inequality

ε−2‖(I − Pu) f ‖2ν + ε−1|(1 − Pu
γ ) f |22,+ � ‖ν− 1

2 (I − Pu)g‖22
+ |u|2‖Pu f ‖26 + (1 + ε

1
2 )|r |22,−

+ (ε|u|)−1‖zγ (r)‖22 + ε−2|u|−2‖Pug‖26
5
+ ‖Pug‖22. (2.8)

Proof. Use (2.1) with h = f . Then, multiplying by ε−1 we have

1

2
ε−1

∫
γ+

dγ f 2 − 1

2
ε−1

∫
γ−

dγ f 2+ε−2
∫
�c×R3

dxdv f Lu f −ε−1
∫
�c×R3

dxdv f g=0.

We use the spectral inequality (see e.g. [6], Th. 7.2.5),

ε−2
∫
�c×R3

dxdv f Lu f � ε−2‖(I − Pu) f ‖2ν .

Moreover, using the Holder inequality to bound |(Pu f,Pug)| ≤ ‖Pu f ‖6‖Pug‖ 6
5
,

ε−1
∣∣∣
∫
�c×R3

dxdv f g
∣∣∣ ≤ ε−1‖(I − Pu) f ‖ν‖ν− 1

2 (I − Pu)g‖2 + ε−1‖Pu f ‖6‖Pug‖ 6
5

≤ η1ε
−2‖(I − Pu) f ‖2ν +

1

4η1
‖ν− 1

2 (I − Pu)g‖22 + η2‖Pu f ‖26 +
1

4η2ε2
‖Pug‖26

5
.

(2.9)

From the boundary conditions, on γ− we have f = Pu
γ f + ε

1
2 r . Hence, using

Lemma 2.5,

ε−1
∫
γ−

dγ f 2 = ε−1
∫
γ−

dγ [Pu
γ f + ε

1
2 r ]2 = ε−1

∫
γ−

dγ (|Pu
γ f |2 + ε|r |2 + 2ε

1
2 r Pu

γ f )

= ε−1
[ ∫

γ−
dγ |Pu

γ f |2 + ε|r |22,− + ε
3
2 |r |22,− +

1

η
‖zγ (r)‖22 + εη| f |22,+

]
. (2.10)

Moreover

ε−1
∫
γ+

dγ f 2 = ε−1
∫
γ+

dγ [(1 − Pu
γ ) f ]2 + ε−1

∫
γ+

dγ [Pu
γ f ]2

+ 2ε−1
∫
γ+

dγ [(1 − Pu
γ ) f ][Pu

γ f ].

The last term is bounded by (2.5) and the second is replaced by
∫
γ−[Pu

γ f ]2 by using

(2.4). Then (|u| + η)| f |22,+ is split into (|u| + η)|(1 − Pu
γ ) f |22,+ + (|u| + η)|Pu

γ f |22,+
Collecting the terms and choosing η = |u|, η1 sufficiently small and η2 = |u|2 we have
the energy inequality

ε−2‖(I − Pu) f ‖2ν + ε−1|(1 − Pu
γ ) f |2,+
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� ‖ν− 1
2 (I − Pu)g‖22 +

1

ε2|u|2 ‖Pug‖26
5
+ (1 + ε

1
2 )|r |22,−

+ (ε|u|)−1‖zγ ‖22 + |u||Pu
γ f |22,+ + |u|2‖Pu f ‖26,

where we have used
∫
γ+

[(1 − Pu
γ ) f ]2 − |u||(1 − Pu

γ ) f |22,+ � |(1 − Pu
γ ) f |22,+ for |u|

sufficiently small. Next we use (2.3) to bound

|u||Pu
γ f |22,+ ≤ |u|‖ f ‖2L2(�1\�) + |u|‖ε−1(I − Pu) f ‖2L2(�1\�) + |u|‖ν− 1

2 g‖2L2(�1\�)

Moreover, we split ‖ f ‖2
L2(�1\�) = ‖(I − Pu) f ‖2L2(�1\�) + ‖Pu f ‖2

L2(�1\�) and bound

‖Pu f ‖2L2(�1\�) � �1‖Pu f ‖26.

Finally, we bound

‖ν− 1
2 g‖2L2(�1\�) � ‖ν− 1

2 (I − Pu)g‖22 + ‖Pug‖22.

We have so proved (2.8). ��
Proposition 2.7. Let w = eβ

′|v|2〈v〉β . Then, for 0 ≤ β ′ � 1/4 and β ≥ 0 we have

ε
1
2 ‖w f ‖L∞(�c) � ε−1‖(I − Pu) f ‖ν + ‖Pu f ‖6 + ε

1
2 |w r |∞ + ε

3
2 ‖〈v〉−1w g‖∞.

(2.11)

Proof. As in [9], Prop. 2.6. ��

3. L6 Estimate of Pu f

Given g and r , we consider the weak version of the linear problem (1.42): for any test
function ψ ,

∫
γ+

dγ fψ −
∫
�c×R3

dxdv f v · ∇ψ + ε−1
∫
�c×R3

dxdv ψLu f

=
∫
�c×R3

dxdv gψ +
∫
γ−

dγ (Pu
γ f + ε

1
2 r)ψ. (3.1)

Remind that Pu f = √
μu[a + b · vu + 1

2 (|vu|2 − 3)]. To get a L6 bound on Pu f
we bound separately the functions a, b and c by means of suitable choices of the test
functions ψ . To this end we will need to solve −
φ = h ∈ L6/5(�c) with Dirichlet or
Neumann boundary conditions.

Lemma 3.1. For exterior domain�c withC2 boundary ∂�, there exists a unique solution
to −
φ = h ∈ L6/5(�c) with either Dirichlet or Neumann boundary conditions such

that
‖∇φ‖L2 + ‖φ‖L6 + ‖∇2φ‖L6/5 ≤ ‖h‖L6/5 . (3.2)
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Proof. We solve−
φ = f ∈ L6/5(�c) by the Lax–Milgram theorem: define a bilinear
form

((∇φ,∇ψ)) ≡
∫
�c

dxdv∇φ · ∇ψ

with the functional h defined by

〈h, ψ〉 ≡
∫
�c

dxdv fψ.

We choose homogeneous Sobolev space Ḣ1(�c), with norm ‖φ‖Ḣ1(�c) = ‖∇φ‖L2(�c)

for Neumnann boundary conditions and Ḣ1
0 (�

c) for Dirichlet boundary conditions.
We have the Sobolev embedding

‖ξ‖L6(�c) � ‖∇ξ‖L2(�c)

(see [10], p. 263). Therefore 〈h, ψ〉 defines a bounded linear functional in Ḣ1(�c) thanks
to the inequality

〈h, ψ〉 =
∫
�c

dxdv fψ ≤ ‖ f ‖L6/5‖ψ‖L6 ≤ ch‖∇ψ‖L2 .

The existence and uniqueness as well as the first two inequalities then follows from
Lax-Milgram theorem. To bound ‖∇2φ‖L6/5 , we take a smooth cutoff function χ such
that


(χφ) = χh + 2∇χ · ∇φ +
χφ ∈ L6/5.

If χ is zero near ∂�, then, by the W 2,p estimate for the whole space, and the fact ∇χ
has compact support,

‖∇2χφ‖L6/5 ≤ ‖χh + 2∇χ · ∇φ +
χφ‖L6/5

≤ ‖h‖L6/5 .

On the other hand, if χ is zero for |x | large, then by the W 2,p estimate for mixed
Dirichlet-Neumann b.c. in a fixed domain, we have

‖∇2(χφ)‖L6/5 ≤ ‖χh + 2∇χ · ∇φ +
χφ‖L6/5 + ‖χφ‖L6/5

≤ ‖h‖L6/5 .

We therefore conclude (3.2). ��
Proposition 3.2. If |u| is sufficiently small we have:

‖Pu f ‖6 � ε−1‖(I − Pu) f ‖ν + ‖(I − Pu) f ‖6 + ‖gν− 1
2 ‖2 + ε− 1

2 |(1 − Pu
γ ) f |2,+

+ ε
1
2 |r |∞ + o(1)[ε 1

2 ‖ f ‖∞]. (3.3)
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Remark 3.3. Note that

‖(I − Pu) f ‖6 ≤ ‖(I − Pu) f ‖1/32 ‖(I − Pu) f ‖2/3∞
= ε1/3‖ε−1(I − Pu) f ‖1/32 ε− 1

2× 2
3 ‖ε 1

2 (I − Pu) f ‖2/3∞

� η‖ε 1
2 (I − Pu) f ‖∞ +

1

η
‖ε−1(I − Pu) f ‖2.

Therefore by choosing η small we obtain

‖Pu f ‖6 � ε−1‖(I − Pu) f ‖ν + ‖gν− 1
2 ‖2 + ε− 1

2 |(1 − Pu
γ ) f |2,+

+ ε
1
2 |r |∞ + o(1)[ε 1

2 ‖ f ‖∞]. (3.4)

Proof.
Step 1:

In order to get a bound for c, we choose the function ψc in (3.1) as

ψc = √
μu(|vu|2 − βc)vu · ∇ϕc,

with βc a suitable constant to be chosen later and ϕc solution to the problem

−
ϕc = c5 in �c, ϕc = 0 on ∂�. (3.5)

Hence, by previous discussion, there is a unique ϕc and

‖∇ϕc‖Ḣ1(�c) ≤ ‖c5‖
L

6
5 (�c)

= ‖c‖5L6(�c)
. (3.6)

We start computing the term
∫
�c×R3 dxdv f v · ∇ψc. We have:

∫
�c×R3

dxdv f v · ∇ψc =
∫
�c×R3

dxdv f vu · ∇ψc + ε
∫
�c×R3

dxdv f u · ∇ψc.

By (3.6), f = Pu f + (I − Pu) f and the Young inequality,

∣∣∣ε
∫
�c×R3

dxdv f u · ∇ψc

∣∣∣ ≤ ε|u|‖c‖56‖ f ‖6 � ε|u|‖Pu f ‖66 + ε|u|‖(I − Pu) f ‖66.

By using f = Pu f + (I − Pu) f and the expression of Pu f , we need to compute
∫
�c×R3

dxdv a
√
μuvu · ∇ψc, (3.7)

∫
�c×R3

dxdv b · vu√
μuvu · ∇ψc, (3.8)

∫
�c×R3

dxdv c
|vu|2 − 3

2
√
μuvu · ∇ψc, (3.9)

∫
�c×R3

dxdv v · ∇ψc(I − Pu) f

=
∫
�c×R3

dxdv
√
μu(|vu|2 − βc)vu ⊗ vu : ∇ ⊗ ∇ϕc(I − Pu) f. (3.10)
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Using (3.6), by the Young inequality, the last one is bounded by

‖(I − Pu) f ‖6‖c‖5L6(�c)
≤ 5

6
η‖c‖6L6(�c)

+
1

6
η− 1

5 ‖(I − Pu) f ‖66,

for any η > 0.
With the choice βc = 5 it results

∫
R3

dv(|vu|2 − βc)vu ⊗ vuμu = 0, (3.11)

and the term in (3.7) vanishes. The term (3.8) vanishes because it is odd in vu. Next we
compute the term (3.9). We have

∫
R3

dv vu ⊗ vu
|vu|2 − 3

2
(|vu|2 − βc)μu = 5I. (3.12)

Therefore
∫
�c×R3

dxdv c
|vu|2 − 3

2
√
μuvu · ∇ψc

=
∫
�c

dx c∇ ⊗ ∇ϕc :
∫
R3

dv vu ⊗ vu
|vu|2 − 3

2
(|vu|2 − βc)μu

= 5
∫
�c

dx c
ϕc = −5
∫
�c

dx |c|6 = −5‖c‖6L6(�c)
,

because of (3.5). By (3.2) and Young inequality, we have

ε−1
∣∣∣
∫
�c×R3

dxdv ψcLu f
∣∣∣ ≤ ε−1‖∇ϕc‖L2(�c)‖(I − Pu) f ‖ν

≤ 5

6
η‖c‖66 +

1

6
(4η)−

1
5 [ε−1‖(I − Pu) f ‖ν]6,

for any η > 0.
Similarly, we get

∣∣∣
∫
�c×R3

dxdv ψcg
∣∣∣ � ‖∇ϕc‖L2(�c)‖gν− 1

2 ‖2 ≤ 5

6
η‖c‖66 +

1

6
(4η)−

1
5 ‖gν− 1

2 ‖62,

for any η > 0.
Next we compute the boundary terms. We decompose f on γ as f = Pu

γ f +1γ+(1−
Pu
γ ) f + 1γ−ε

1
2 r .

First consider the term∫
γ

dγ Pu
γ fψc =

∫
∂�

dS(x)∇ϕc ·
∫
R3

dv(n · v)vu(|vu|2 − βc)
√
μuP

u
γ f.

From the expression of Pu
γ f we see that

√
μuP

u
γ f = √

2πμzγ ( f ).
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Therefore, we need to compute
∫
R3 dv

∫
R3 dv(n · v)vu(|vu|2 − βc)μ(v). We have

vu(|v − εu|2 − βc) = v(|v|2 − βc) + ε(−u|v|2 − 2u · vv + βcu)
+ ε2(|u|2v + 2u · vu)− ε3|u|2u.

Since the terms of order ε and ε3 are even in v, after multiplication by v · n, their
contributions vanish (note that the integration in v is on the full R

3, not on {v · n ≶ 0}).
The contribution of the term of order 1 vanishes by the choice of βc (3.11), so we
conclude that∫

γ

dγ Pu
γ fψc = ε2

∫
∂�

dS(x)∇ϕc ·
∫
R3

dv(n · v)(|u|2v + 2u · vu)√μuP
u
γ f.

We need the Sobolev trace theorem to bound ∇ϕc on ∂�.

Lemma 3.4.

‖∇ϕc‖
L

4
3 (∂�)

≤ ‖c‖56.

Proof. If � is a C1 domain in R
N , we have the following trace estimate [20], p. 466:

(∫
∂�

dS(x)|u| p(N−1)
N−p

) N−p
p(N−1) ≤ C(N , p)

(∫
�1\�

dx |u|p +
∫
�1\�

dx |∇u|p
) 1

p

.

(3.13)

This is a consequence of the trace theorem W 1,p(�1\�) → W 1− 1
p ,p(∂(�1\�)), and

the Sobolev embedding in N − 1 dimensional sub-manifold (W 1− 1
p ,p(∂(�1\�)) ⊂

L
p(N−1)
N−p (�1\�) for N−p

p(N−1) = 1
p − 1− 1

p
N−1 ). In particular, with p = 6

5 and N = 3 we have
p(N−1)
N−p = 4

3 . With u = ∇ϕc, we have

‖∇xϕc‖
L

4
3 (∂�)

� ‖c‖5L6(�1\�) ≤ ‖c‖5L6(�c)
. (3.14)

��
Therefore, by Holder inequality,

∣∣∣
∫
γ

dγ Pu
γ fψc

∣∣∣ ≤ ε2|u|2‖∇xϕc‖
L

4
3 (∂�)

‖Pu
γ f ‖L4(γ ).

Since ‖Pu
γ f ‖L4(γ )� ε− 1

2 [ε 1
2 | f |∞] ≤ ε− 1

2 [ε 1
2 ‖ f ‖∞], we obtain

∣∣∣
∫
γ

dγ Pu
γ fψc

∣∣∣�ε2|u|2ε− 1
2 [ε 1

2 ‖ f ‖∞]‖c‖56

� ε2ε− 1
2 |u|2 5

6
‖c‖66 + ε2|u|2

1

6
ε− 1

2 [ε 1
2 ‖ f ‖∞]6. (3.15)

Next, we need to bound
∫
γ
1γ+(1 − Pu

γ ) fψc. We have

∣∣∣
∫
γ

dγ 1γ+(1 − Pu
γ ) fψc

∣∣∣ ≤ ‖∇xϕc‖
L

4
3 (∂�)

‖1γ+(1 − Pu
γ ) f ‖L4(γ ).
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But

‖1γ+(1 − Pu
γ ) f ‖L4(γ ) ≤ [ε− 1

2 ‖1γ+(1 − Pu
γ ) f ‖L2(γ )]

1
2 [ε 1

2 ‖1γ+(1 − Pu
γ ) f ‖L∞(γ )] 12 .

Thus, we conclude that, for any η > 0 and η′ > 0

∣∣∣
∫
γ

1γ+(1 − Pu
γ ) fψcdγ

∣∣∣
� η‖c‖66 + η′[ε 1

2 ‖ f ‖∞]6 + Cη,η′ [ε− 1
2 ‖1γ+(1 − Pu

γ ) f ‖L2(γ )]6
}
. (3.16)

In conclusion the boundary terms are bounded, for any η > 0, η′ > 0, by

∣∣∣
∫
γ

dγψc[Pu
γ f + 1γ+(1 − Pu

γ ) f ]
∣∣∣ ≤ η‖c‖66 + η′[ε 1

2 ‖ f ‖∞]6

+Cη,η′ [ε− 1
2 ‖(1 − Pu

γ ) f )|2.γ+ ]6.
Finally,

∣∣∣
∫
γ−
ε

1
2 dγ rψc

∣∣∣ ≤ ‖∇ϕc‖L4/3(∂�)‖ε
1
2 r‖L4(∂�) ≤ ε

1
2 ‖c‖56|r |∞.

By collecting all the terms and choosing η and η′ sufficiently small we conclude that

‖c‖6 � ε−1‖(I − Pu) f ‖ν + ‖(I − Pu) f ‖6 + (ε|u|) 16 ‖Pu f ‖6 + ‖gν− 1
2 ‖L2(�c×R3)

+ ε− 1
2 |(1 − Pu

γ ) f |2,+ + ε
1
2 |r |∞ + o(1)[ε 1

2 ‖ f ‖∞]. (3.17)

Step 2:
In order to estimate b we shall use two test functions. The first is chosen as follows:

for fixed i, j

ψ = ψ
i, j
b ≡ (v2u,i − βb)

√
μu∂ jϕ

j
b , i, j = 1, . . . , d, (3.18)

where βb is a constant to be determined, and

−
xϕ
j
b (x) = b5j (x), ϕ

j
b |∂� = 0. (3.19)

As before, there is a unique ϕ j
b and

‖∇ϕ j
b‖Ḣ1(�c) ≤ ‖|b j |5‖

L
6
5 (�c)

= ‖b j‖5L6(�c)
. (3.20)

We start computing the term
∫
�c×R3 dxdv f v · ∇ψ i, j

b . We have:

∫
�c×R3

dxdv f v · ∇ψ i, j
b =

∫
�c×R3

dxdv f vu · ∇ψ i, j
b + ε

∫
�c×R3

dxdv f u · ∇ψ i, j
b .

By (3.20) and the Young inequality,

∣∣∣ε
∫
�c×R3

dxdv f u · ∇ψ i, j
b

∣∣∣ ≤ ε|u|‖b j‖56‖ f ‖6 ≤ ε|u|‖Pu f ‖66 + ε|u|‖(I − Pu) f ‖66.
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By using f = Pu f + (I − Pu) f and the expression of Pu f , we need to compute∫
�c×R3

dxdv a
√
μuvu · ∇ψ i, j

b , (3.21)
∫
�c×R3

dxdv b · vu√
μuvu · ∇ψ i, j

b , (3.22)

∫
�c×R3

dxdv c
|vu|2 − 3

2
√
μuvu · ∇ψ i, j

b , (3.23)
∫
�c×R3

dxdv v · ∇ψ i, j
b (I − Pu) f

=
∫
�×R3

dxdv
√
μu(|vu|2 − βb)

2vu ⊗ vu : ∇ ⊗ ∇ϕ j
b (I − Pu) f. (3.24)

Using (3.20), the last one is bounded by

‖(I − Pu)‖6‖b j‖5L6(�c)
≤ 5

6
η‖b j‖6L6(�c)

+
1

6
η− 1

5 ‖(I − Pu)‖66,
for any η > 0. By oddness the terms in (3.21) and (3.23) vanish. We choose βb > 0
such that for all i ,

∫
R3

[v2u,i − βb]μu(v)dv = 1√
2π

∫
R

dv[v2u,1 − βb]e− |vu,1|2
2 dv1 = 0, (3.25)

and we find βb = 1. Note that for such choice of βb and for i �= k, by an explicit
computation ∫

R3
(v2u,i − βb)v

2
u,kμudv = 0,

∫
R3
(v2u,i − βb)v

2
u,iμdv = 2.

As a consequence

∑
k,�

∫
�c×R3

dxdv bkvu,k
√
μuvu,�(v

2
u,i − βb)

√
μu∂�∂ jϕ

j
b

=
∑
k,�

δk,�δ�,i

∫
�c

dx bk∂�∂ jϕ
j
b =

∫
�c

dx bi∂i∂ jϕ
j
b .

We have also

ε−1
∣∣∣
∫
�c×R3

dxdv ψ i, j
b Lu f

∣∣∣ ≤ ε−1‖∇ϕ j
b‖L2(�c)‖(I − Pu) f ‖ν

≤ 5

6
η‖b j‖66 +

1

6
η− 1

5 [ε−1‖(I − Pu) f ‖ν]6,
for any η > 0.

Similarly, we get
∣∣∣
∫
�c×R3

dxdv ψ i, j
b g

∣∣∣ � ‖∇ϕ j
b‖L2(�c)‖gν− 1

2 ‖2 ≤ 5

6
η‖b j‖66 +

1

6
η− 1

5 ‖gν− 1
2 ‖62,
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for any η > 0.
Next we compute the boundary terms. We decompose f on γ as f = Pu

γ f +1γ+(1−
Pu
γ ) f + 1γ−ε

1
2 r . First consider the term

∫
γ

dγ Pu
γ fψ i, j

b =
∫
∂�

dS(x)∇ϕ j
b ·

∫
R3

dv(n · v)(|vu,i |2 − βb)
√
μuP

u
γ f.

Since
√
μuPu

γ f = √
2πμzγ ( f ), we need to compute

∫
R3 dv

∫
R3 dv(n · v)(v2u,i −

βb)μ(v). We have

v2u,i − βb = v2i − βb − 2εuivi + ε
2u2i .

The terms of order 1 and ε2 vanish by oddness. Therefore
∫
γ

Pu
γ dγ fψ

i, j
b = −ε

∫
∂�

dS(x)∇ϕ j
b ·

∫
R3

dv(n · v)2uivi√μuP
u
γ f.

Thus, by using Lemma 3.4,

∣∣∣
∫
γ

dγ Pu
γ fψ i, j

b

∣∣∣ ≤ ε|u|ε− 1
2 [ε 1

2 ‖ f ‖∞]‖b j‖56 � ε
1
2 |u|‖b j‖66 + ε|u|ε− 1

2 [ε 1
2 ‖w f ‖∞]6.

(3.26)
Next, we need to bound

∫
γ
dγ 1γ+(1 − Pu

γ ) fψ
i, j
b . We have

∣∣∣
∫
γ

dγ 1γ+(1 − Pu
γ ) fψ

i, j
b

∣∣∣ ≤ ‖∇xϕ
j
b‖L4/3(∂�)‖1γ+(1 − Pu

γ ) f ‖L4(γ ).

Thus, we conclude that, for any η > 0 and η′ > 0

∣∣∣
∫
γ

dγ 1γ+(1−Pu
γ ) fψ

i, j
b

∣∣∣ � η‖b j‖66+η′[ε 1
2 ‖ f ‖∞]6+Cη,η′ [ε− 1

2 ‖1γ+(1−Pu
γ ) f ‖L2(γ )]6

}
.

(3.27)
In conclusion, for any η > 0, η′ > 0, by

∣∣∣
∫
γ

dγψ i, j
b [Pu

γ f + 1γ+(1 − Pu
γ ) f ]

∣∣∣ � η‖b j‖66 + η′[ε 1
2 ‖ f ‖∞]6

+Cη,η′ [ε− 1
2 ‖(1 − Pu

γ ) f )|2.γ+]6.
Finally,

∣∣∣
∫
γ−

dγ ε
1
2 rψ i, j

b

∣∣∣ � ‖∇ϕ j
b‖L4/3(∂�)‖ε

1
2 r‖L4(∂�) ≤ ε

1
2 ‖b‖56|r |∞.

By collecting all the terms and choosing η and η′ sufficiently small we conclude that

∣∣∣
∫
�c

dx bi∂i∂ jϕ
j
b

∣∣∣ � (ε−1‖(I − Pu) f ‖ν)6 + ‖(I − Pu) f ‖66 + ‖gν− 1
2 ‖62 + ε|u|‖Pu f ‖66

+ η‖b j‖66 + (ε− 1
2 |(1 − Pu

γ ) f |2,+)6 + (ε
1
2 |r |∞)6 + o(1)[ε 1

2 ‖ f ‖∞]6. (3.28)
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To estimate ∂ j (∂ j
−1bi )bi for i �= j , we choose test function

ψ̄
i, j
b = |vu|2vu,ivu, j√μu∂ jϕ

i
b(x), i �= j. (3.29)

We have:∫
�c×R3

dxdv f v · ∇ψ̄ i, j
b =

∫
�c×R3

dxdv f vu · ∇ψ̄ i, j
b + ε

∫
�c×R3

dxdv f u · ∇ψ̄ i, j
b .

By (3.20) and the Young inequality,

∣∣∣ε
∫
�c×R3

dxdv f u · ∇ψ̄ i, j
b

∣∣∣ ≤ ε|u|‖b j‖56‖ f ‖6 ≤ ε|u|‖Pu f ‖66 + ε|u|‖(I − Pu) f ‖66.

By using f = Pu f + (I − Pu) f and the expression of Pu f , we need to compute
∫
�c×R3

dxdv a
√
μuvu · ∇ψ̄ i, j

b , (3.30)
∫
�c×R3

dxdv b · vu√
μuvu · ∇ψ̄ i, j

b , (3.31)

∫
�c×R3

dxdv c
|vu|2 − 3

2
√
μuvu · ∇ψ̄ i, j

b , (3.32)
∫
�c×R3

dxdv v · ∇ψ̄ i, j
b (I − Pu) f

=
∫
�c×R3

dxdv
√
μu(|vu|2 − βc)

2vu ⊗ vu : ∇ ⊗ ∇ϕ j
b (I − Pu) f. (3.33)

Using (3.20), the last one is bounded by

‖(I − Pu)‖6‖b j‖5L6(�c)
≤ 5

6
η‖b j‖6L6(�c)

+
1

6
η− 1

5 ‖(I − Pu)‖66,

for any η > 0.
For j �= i , the O(u) terms in (3.30), (3.31) and (3.32) vanish by oddness in vu,i .

For the same reason the terms of order 1 in (3.30) and (3.32) vanish. The only surviving
term is
∑
k,�

bk∂�∂ jϕ
i
b

∫
�c×R3

dxdv μuvu,kvu,�vu,ivu, j |vu|2 = 21
∫
�c

dx(b j∂i∂ jϕ
i
b + bi∂

2
j ϕ

i
b),

because ∫
R3

dvμuvu,kvu,�vu,ivu, j |vu|2 = 21(δk,�δi, j + δk,iδ�, j + δk, jδ�,i ).

By taking the sum on j this reduces to
∫
�c dx(b6i +

∑
j b j∂ j∂i


−1bi ). The second term
has been bounded in (3.28), thus, to complete the estimate of ‖b‖6 we just need to bound
the remaining terms in the weak formulation (3.1) for ψ = ψ̄

i, j
b . As before, we have

ε−1
∣∣∣
∫
�c×R3

dxdv ψ̄ i, j
b Lu f

∣∣∣ ≤ ε−1‖∇ϕ j
b‖L2(�c)‖(I − Pu) f ‖ν
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≤ 5

6
η‖b j‖66 +

1

6
η− 1

5 [ε−1‖(I − Pu) f ‖ν]6,
and∣∣∣

∫
�c×R3

dxdv ψ̄ i, j
b g

∣∣∣ � ‖∇ϕb j ‖L2(�c)‖gν− 1
2 ‖2 ≤ 5

6
η‖b j‖66 +

1

6
η− 1

5 ‖gν− 1
2 ‖2,

for any η > 0. Finally, expanding, we have

|vu|2vu,ivu, j = |v|2viv j + ε[|v|2(uiv j + u jvi )− 2u · vvivi ]
+ ε2[|u|2viv j ||v|2uiu j − 2u · v(uiv j + u jvi )]
+ ε3[|u|2(u jv j + u jvi − 2u · vuiu j ] + ε4|u|2uiu j .

Therefore in the contribution from Pu
γ f the term of order 0 in ε gives a vanishing

contribution. Therefore, as before
∣∣∣
∫
γ

dγ Pu
γ f ψ̄ i, j

b

∣∣∣ ≤ ε|u|ε− 1
2 [ε 1

2 ‖ f ‖∞]‖b j‖56 � ε
1
2 |u|‖b j‖66 + ε|u|ε− 1

2 [ε 1
2 ‖w f ‖∞]6.

(3.34)
Moreover∣∣∣

∫
γ

dγ 1γ+(1 − Pu
γ ) f ψ̄

i, j
b

∣∣∣ ≤ ‖∇xϕ
j
b‖L4/3(∂�)‖1γ+(1 − Pu

γ ) f ‖L4(γ ).

By collecting the previous bounds we conclude that

‖b‖66 � (ε−1‖(I − Pu) f ‖ν)6 + ‖(I − Pu) f ‖66 + ‖gν− 1
2 ‖62 + (ε− 1

2 |(1 − Pu
γ ) f |2,+)6

+ ε|u|‖Pu f ‖6 + (ε 1
2 |r |∞)6 + o(1)[ε 1

2 f ‖∞]6. (3.35)

Step 3:
Then we bound ‖a‖6. The argument is similar to the one used for c, the only main
difference being in the treatment of the boundary terms.

ψ = ψa ≡ (|vu|2 − βa)vu · ∇xϕa
√
μ =

d∑
i=1

(|vu|2 − βa)vu,i∂iϕa
√
μ, (3.36)

where

−
xϕa(x) = a5,
∂

∂n
ϕa |∂� = 0, (3.37)

whose solution satisfies

‖∇ϕa‖Ḣ1(�c) ≤ ‖|a|5‖
L

6
5 (�c)

= ‖a‖5L6(�c)
. (3.38)

We have∫
�c×R3

dxdv f v · ∇ψa =
∫
�c×R3

dxdv f (v − εu) · ∇ψa + ε
∫
�c×R3

dxdv f u · ∇ψa .

By (3.38) and the Young inequality,
∣∣∣ε

∫
�c×R3

dxdv f u · ∇ψa

∣∣∣ ≤ ε|u|‖b j‖56‖ f ‖6 ≤ ε|u|‖Pu f ‖66 + ε|u|‖(I − Pu) f ‖66.



Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle 787

Proceeding as before, by using f = Pu f + (I − Pu) f and the expression of Pu f ,
we need to compute

∫
�c×R3

dxdv a
√
μuvu · ∇ψa, (3.39)

∫
�c×R3

dxdv b · vu√
μuvu · ∇ψa, (3.40)

∫
�c×R3

dxdv c
|vu|2 − 3

2
√
μuvu · ∇ψa, (3.41)

∫
�c×R3

dxdv v · ∇ψa(I − Pu) f

=
∫
�×R3

dxdv
√
μu(|vu|2 − βa)

2vu ⊗ vu : ∇ ⊗ ∇ϕa(I − Pu) f. (3.42)

Using (3.38), by the Young inequality, the last one is bounded by

‖(I − Pu) f ‖6‖c‖5L6(�c)
≤ 5

6
η‖a‖6L6(�c)

+
1

6
η− 1

5 ‖(I − Pu)‖66,

for any η > 0.
With the choice βa = 10

∫
R3

dv(|vu|2 − βa)(|vu|2 − 3)vu ⊗ vu = 0, (3.43)

and the term in (3.41) vanishes. The term of (3.40) vanishes for the same reason.
Now we compute the term in (3.39): we have

∫
�c×R3

dxdv a
√
μuvu · ∇ψa =

∫
�c

dxa∇ ⊗ ∇ϕa :
∫
R3

dvvu ⊗ vuvu(|vu|2 − βa)μu

= −5
∫
�c

dxa
ϕa = 5‖a‖6L6(�c)
,

because of (3.37). We have used
∫
R3

dxdv vu ⊗ vu(|vu|2 − βa)μu = −5I. (3.44)

As for the boundary term, we have
∫
γ

dγ Pu
γ fψa =

∫
∂�

dS zγ∇ϕa ·
∫
R3

dvμ(v − εu)(|v − εu|2 − βa)n · v

But
∫
R3

dvμvu(|vu|2 − βa)n · v =
∫
R3

dvμvu(|vu|2 − βa)n · vu

+ε
∫
R3

dvμvu(|vu|2 − βa)n · u.
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The second term vanishes by oddness. The first by oddness is
∫
R3

dvμvu,i (|vu|2 − βa)n · vu = ni

∫
R3

dvμ|vu · n|2(|vu|2 − βa) = −5ni .

Therefore
∫
γ

dγ Pu
γ fψa =

∫
∂�

dSzγ n · ∇ϕa = 0,

by theNeumann boundary condition on ϕa . The term
∫
γ
dγ 1γ+(1−Pu

γ ) fψa is estimated
as the similar term for c. By collecting the estimate, we conclude that

‖a‖6 � ε−1‖(I − Pu) f ‖ν + ‖(I − Pu) f ‖6 + ‖gν− 1
2 ‖2

+ (ε|u|) 16 ‖Pu f ‖6 + ε− 1
2 |(1 − Pu

γ ) f |2,+
+ ε

1
2 |r |∞ + o(1)[ε 1

2 ‖ f ‖∞]. (3.45)

In conclusion, for |u| small,

‖Pu f ‖6 � ε−1‖(I − Pu) f ‖ν + ‖(I − Pu)‖6 + ‖gν− 1
2 ‖2 + ε− 1

2 |(1 − Pu
γ ) f |2,+ + ε

1
2 |r |∞

+ o(1)[ε 1
2 ‖ f ‖∞].

��

4. Balance Laws

The mass, momentum and energy balance equations are obtained by projecting (1.42)
on the null space of Lu. Since PuLu = 0, we have:

Pu(v · ∇ f ) = Pug. (4.1)

More explicitly, we write Pug = (a + b · vu + 1
2 (|vu|2 − 3)c)

√
μu, and Pu f = [a + b ·

vu + 1
2 (|vu|2 − 3)c]√μu. We have

∇ · b + εu · ∇a = a, (4.2)

∇P + εu · ∇b + ∇ · τ = b, (4.3)

∇ · b + 3

2
εu · ∇c + ∇ · q = c, (4.4)

where

τ =
∫
R3

dv vu ⊗ vu
√
μu(I − Pu) f, (4.5)

q =
∫
R3

dv
|vu|2 − 3

2
vu

√
μu(I − Pu) f, (4.6)

P = a + c. (4.7)
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We have to supplement Eqs. (4.2), (4.3), (4.4) with boundary conditions following from
(1.42), which are not immediately translated into conditions on a, b, c. Therefore, as in
[23], we introduce a smooth cutoff function

ζ(x) =
{
1 if x ∈ R

3\� and d(x,�) > 1

0 if x ∈ �

and define f ζ = ζ f extended as 0 in �. If f solves the problem (1.42), then f ζ solves
the equation

v · ∇ f ζ + ε−1Lu f ζ = ζg + C in R
3, (4.8)

where
C = f v · ∇ζ. (4.9)

By projecting the equation for f ζ on the null space of Lu we obtain the balance laws

Pu(v · ∇ f ζ ) = PuC + ζPug,

More explicitly, with Pu f ζ = [aζ + bζ · vu + cζ (|vu|2 − 3)/2]√μu and Pζ = aζ + cζ ,
we have,

∇ · bζ + εu · ∇aζ = ζa +
∫
R3

dv C, (4.10)

∇Pζ + εu · ∇bζ + ∇ · τ ζ = ζb +
∫
R3

dv Cv√μu (4.11)

∇ · bζ + 3

2
εu · ∇cζ + ∇ · qζ = ζ c +

∫
R3

dv
1

2
C(|v|2 − 3)

√
μu, (4.12)

where

τ ζ =
∫
R3

dv vu ⊗ vu
√
μu(I − Pu) f

ζ , (4.13)

qζ =
∫
R3

dv
|vu|2 − 3

2
vu

√
μu(I − Pu) f

ζ , (4.14)

and Pζ = aζ + cζ .
It is convenient to write above equations in the Fourier space: The Fourier transform

is normalized as

f̂ (k) = Fx ( f )(k) = 1

(2π)
3
2

∫
R3

dx f (x)eik·x . (4.15)

We have
ik · v f̂ ζ + ε−1Lu f ζ = ζ̂g + Ĉ, (4.16)

By writing

f̂ ζ = (âζ + b̂ζ · vu +
1

2
ĉζ (|vu|2 − 3))

√
μu + (I − Pu) f̂

ζ , (4.17)

the projection on NullLu is

ik · b̂ζ + iεk · uâζ =
∫
R3

dv
√
μuĈ(k, v) + ζ̂a, (4.18)
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ik P̂ζ + ik · τ̂ ζ + iεu · kb̂ζ =
∫
R3

dv vu
√
μuĈ(k, v) + ζ̂b, (4.19)

ik · b̂ζ + 3

2
iεk · uĉζ + ik · qζ =

∫
R3

dv
1

2
(|vu|2 − 3)

√
μĈ(k, v) + ζ̂ c. (4.20)

Let

Bu = L−1
u [(vu ⊗ vu − 1

3
|vu|2I)√μu], Au = L−1

u [1
2
(vu(|vu|2 − 5)

√
μu)] (4.21)

The momentum equation (4.19) then becomes

ik P̂ζ + iεu · kb̂ζ + ik ·
∫
R3

dv Lu f̂ ζBu =
∫
R3

dv vu
√
μuĈ(k, v) + ζ̂b, (4.22)

and the energy equation (4.20) becomes

ik · b̂ζ + 3

2
iεk ·uĉζ +ik ·

∫
R3

dv Lu f̂ ζAu =
∫
R3

dv
1

2
(|vu|2−3)

√
μuĈ(k, v)+ ζ̂ c (4.23)

Substituting from the Eq. (4.16) , Lu f̂ ζ = −εik · v f̂ ζ + ε(ζ̂g + Ĉ),

ik(âζ + ĉζ ) + iεu · kb̂ζ + ik ·
∫
R3

dv [−iεk · v f̂ ζ + ε(ζ̂g + Ĉ)]Bu

= ζ̂b+
∫
R3

dv vu
√
μuĈ(k, v) (4.24)

ik · b̂ζ + iε
3

2
k · uĉζ + ik ·

∫
R3

dv [−iεk · v f̂ ζ + ε(ζ̂g + Ĉ)Au

= ζ̂ c+
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(k, v). (4.25)

Using again (4.17), the term
∫
dv f̂ ζ v · Bu becomes

∫
R3

dv f̂ v · Bu =
∫
R3

dv vu · (âζ + b̂ζ · vu + ĉζ (|vu|2 − 3)/2)
√
μuBu

+
∫
R3

dv v · Bu(I − Pu) f̂
ζ

+ε
∫
R3

dv u · Bu(â
ζ + b̂ζ · vu +

1

2
ĉζ (|vu|2 − 3))

√
μu. (4.26)

The second line vanishes because PuBu = 0. From the properties of Bu, only the b̂
term survives of the first part of first line. Since, again (I−Pu)(vu⊗vu)

√
μu = LuBu,

we obtain∫
R3

dv f̂ ζ v · Bu = b̂ζ
∫
R3

dvBuLuBu +
∫
R3

dv v · Bu(I − Pu) f̂
ζ . (4.27)

As usual, we set
∫
R3 dvBuL−1Bu = vI (independent of u) with v the viscosity coeffi-

cient and we obtain:

ik(âζ + ĉζ ) + iεu · kb̂ζ + εv|k|2b̂ζ + εk ⊗ k ·
∫
R3

dv vBu(I − P) f̂ ζ
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+εik ·
∫
(ζ̂g + Ĉ)Bu

= ζ̂b+
∫
R3

dv vu
√
μuĈ(k, v). (4.28)

Similarly, since (I − Pu)[vu(|vu|2 − 3)/2
√
μu] = LuAu,

ik · b̂ζ + iε
3

2
k · uĉζ + ε κ|k|2ĉζ + εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζAu + εik

·
∫
R3

dv (ζ̂g + Ĉ)Au

= ζ̂ c+
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(k, v), (4.29)

with κ = ∫
R3 dvA LA . Therefore the balance laws in the Fourier space are

ik · b̂ζ + iεk · uâζ = ŝ0, (4.30)

ik P̂ζ + ε[v|k|2 + iu · k]b̂ζ = ŝ (4.31)

ik · b̂ζ + ε [κ|k|2 + 3

2
ik · u]ĉζ = ŝ4, (4.32)

where the transport coefficients v and κ are defined by
∫
dvBuL−1

u Bu = vI and
κ = ∫

dvAuL−1
u Au and the source terms are

ŝ0 =
∫
R3

dv
√
μĈ(k, v) + ζ̂a,

ŝ = −εk ⊗ k ·
∫
R3

dv v(I − Pu) f̂
ζBu − iεk ·

∫
R3

dv (ζ̂g + Ĉ)Bu

+
∫
R3

dv vu
√
μuĈ(k, v) + ζ̂b,

ŝ4 = −εk ⊗ k ·
∫
R3

dv v(I − Pu) f̂
ζAu − iεk ·

∫
R3

dv (ζ̂g + Ĉ)Au

+
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(k, v) + ζ̂ c. (4.33)

To eliminate the pressure P̂ζ from (4.31) we apply the Leray projector� defined, in
Fourier space, by

�̂ = I − k ⊗ k

|k|2 .

We use the short notation

Nσ,β(k) = ε[σ |k|2 + βiu · k].
Thus we get

�̂b̂ζ = N−1
v,1�̂ŝ. (4.34)
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Then we multiply the momentum equation by k and divide by i |k|2 to obtain

P̂ζ +
Nv,1

i |k|2 b̂
ζ · k = k

i |k|2 · ŝ.

From the mass equation we have

b̂ζ · k = −i ŝ0−εu · kâζ . (4.35)

Hence

P̂ +
Nv,1

i |k|2 (−i ŝ0−εu · kâ) = k

i |k|2 · ŝ,

and recalling that â = P̂ − ĉ, we have, for |u| sufficiently small,

P̂ζ =
(
1−ε Nv,1

i |k|2 u · k
)−1[Nv,1

i |k|2 [i ŝ0 − εu · kĉζ ] + k

i |k|2 · ŝ
]
. (4.36)

Subtracting the mass equation from the energy equation and using âζ = P̂ζ − ĉζ , the
equation for ĉζ becomes

(N
κ, 52

)ĉζ − iεu · k P̂ζ = ŝ4 − ŝ0. (4.37)

Replacing the expression of the pressure we obtain

ĉζ = (N )−1
{
ŝ4 − ŝ0+iεu · k

(
1−ε Nv,1

i |k|2 u · k
)−1[Nv,1

i |k|2 i ŝ0 +
k

i |k|2 · ŝ
]}

(4.38)

with

N = N
κ, 52

+ iε2(u · k)2 Nv,1

i |k|2
(
1−ε Nv,1

i |k|2 u · k
)−1

. (4.39)

Then âζ = P̂ζ −ĉζ is obtained by subtracting the expressions of P̂ζ and ĉζ just obtained.
Finally, using (4.35) we compute (1 − �̂b̂ζ ).

5. Estimate of ‖Pu f ‖3

5.1. Splitting of Pu f . We define the small k’s cutoff as a smooth function

j =
{
1 for |k| < 1

0 for |k| > 2
, (5.1.1)

and
jc = 1 − j. (5.1.2)

We will split the source terms s = (s0, s, s4) into five different contributions s(i) =
(s(i)0 , s(i), s(i)4 ), for i = 1, . . . , 5:

s =
5∑

i=1

s(i), (5.1.3)
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The source s(1) corresponds large k’s:

ŝ(1)(k) = jc ŝ. (5.1.4)

Then we split Ĉ(k, v) = F[ f v · ∇ζ ](k, v) as

Ĉ = Ĉs + k · Ĉr , (5.1.5)

with

Ĉs(v) = Ĉ(0, v), (5.1.6)

and

Ĉr (k, v) =
∫ 1

0
dλ∇k Ĉ(λk, v), (5.1.7)

so that

Ĉ(k, v)− Ĉ(0, v) =
∫ 1

0
dλ

d

dλ
Ĉ(λk, v) =

∫ 1

0
dλ k · ∇k Ĉ(λk, v) = k · Ĉr (k, v).

(5.1.8)

We set

ŝ(2)0 (k) = j

∫
R3

dv
√
μuĈs(0, v),

ŝ(2)(k) = j

∫
R3

dv vu
√
μuĈs(0, v), (5.1.9)

ŝ(2)4 (k) = j

∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈs(0, v).

ŝ(3)0 (k) = j
[ ∫

R3
dv

√
μuk · Ĉr (k, v)

]
,

ŝ(3)(k) = j
[
−εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζ (k, v)Bu − iεk ·

∫
R3

dv ĈBu (5.1.10)

+ k ·
∫
R3

dv vu
√
μuĈr (k, v)

]
,

ŝ(3)4 (k) = j
[
−εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζ (k, v)Au − iεk ·

∫
R3

dv ĈAu

+ k ·
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈr (x, v)

]
.

ŝ(4)0 (k) = 0,

ŝ(4)(k) = −jiεk ·
∫
R3

dv ζ̂gBu, (5.1.11)

ŝ(4)4 (k) = −jεik ·
∫
R3

dv ζ̂gAu.
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ŝ(5)0 (k) = jζ̂a,

ŝ(5)(k) = jζ̂b, (5.1.12)

ŝ(5)4 (k) = jζ̂ c.

For i = 1 . . . , 5 we denote by a(i), b(i), c(i) the solution to the system (4.30), (4.31),
(4.32) with sources s(i) and by P(i) = a(i) + c(i) the i-th contribution to the pressure.

Correspondingly we have the decomposition of Pu f into six terms:

Pu f = (1 − ζ )Pu f +
5∑

i=1

Si f, (5.1.13)

with

Si f = √
μu

[
a(i) + vu · b(i) + 1

2
c(i)(|vu|2 − 3)

]
. (5.1.14)

5.2. Estimate of S1 f . The components of S1 f̂ solve the system

ik · b̂(1) + iεk · uâ(1) = ŝ(1)0 , (5.2.1)

ik P̂(1) + ε[v|k|2 + iu · k]b̂(1) = ŝ(1) (5.2.2)

ik · b̂(1) + ε [κ|k|2 + 3

2
ik · u]ĉ(1) = ŝ(1)4 , (5.2.3)

where

ŝ(1)0 = jc
∫
R3

dv
√
μĈ(k, v) + jc ζ̂a,

ŝ(1) = jc
[
−εk ⊗ k ·

∫
R3

dv v · Bu(I − Pu) f̂
ζ − iεk ·

∫
R3

dv (ζ̂g + Ĉ)Bu

+
∫
R3

dv vu
√
μuĈ(k, v) + ζ̂b

]
, (5.2.4)

ŝ(1)4 = jc
[
−εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζAu − iεk ·

∫
R3

dv (ζ̂g + Ĉ)Au

+
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(k, v) + ζ̂ c

]
.

Lemma 5.1. If |u| � 1, and g ∈ L2, then

‖S1 f ‖2 � ε−1[‖Pu f ‖6 + ‖(I − Pu) f ‖2] + ‖gν− 1
2 ‖2. (5.2.5)

Proof. We first estimate P̂(1). For this we use the momentum balance in the form (4.19),
which for the S1 R̂ becomes:

ik P̂(1) + i jck · τ̂ + iεu · kb̂(1) = jc ζ̂b+jc
∫
R3

dv vu
√
μuĈ(k, v). (5.2.6)
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We take inner product of this equation with k
i |k|2 . We obtain

P̂(1) = jc
[
−i |k|−2k · ζ̂b− i |k|−2k ·

∫
R3

dv vĈ√
μu − ε|k|−2u · kb̂(1) · k−|k|−2k · τ̂ · k

]
.

(5.2.7)
From the definition of τ , (4.5), ‖τ (1)‖2 ≤ ‖(I − Pu) f ‖2. Moreover from the definition
of C, (4.9),
‖Ĉ‖2 = ‖C‖2 � ‖Pu f ‖L2(supp∇ζ ) + ‖(I−Pu) f ‖L2(supp∇ζ ) � ‖Pu f ‖6 + ‖(I−Pu) f ‖2.

(5.2.8)
Therefore

‖P̂(1)‖2 � ‖Pu f ‖6 + ‖(I − Pu) f ‖2 + ε|u|‖b̂(1)‖2. (5.2.9)

To bound b̂(1), we divide (4.31) by ε|k|2 and obtain

b̂(1) = jc
{
ε−1|k|−2

[
− ik P̂(1) − iεu · kb̂(1) −

∫
R3

dv vu
√
μuĈ(k, v)

+ iεk ·
∫
R3

dv v(I − Pu) f̂
ζBu + iεk ·

∫
R3

dv (ζ̂g + Ĉ)Bu

]}
. (5.2.10)

Since |k| > 1, using |u| � 1, we have

‖b̂(1)‖2 ≤ ε−1‖P̂(1)‖2 + ε−1‖Pu f ‖6 + ‖(I − Pu) f ‖2 + ‖gν− 1
2 ‖2, (5.2.11)

from ‖ ∫
ζ̂gBu‖2 ≤ ‖ν− 1

2 g‖2‖ν 1
2Bu‖∞ � ‖ν− 1

2 g‖2.
Using (5.2.11) in (5.2.9) and |u| � 1 we have

‖P̂(1)‖2 � ‖Pu f ‖6 + ‖(I − Pu) f ‖2 + ‖gν− 1
2 ‖2. (5.2.12)

Using (5.2.12) in (5.2.11) we obtain

‖b̂(1)‖2 � ε−1[‖Pu f ‖6 + ‖(I − Pu) f ‖2] + ‖gν− 1
2 ‖2. (5.2.13)

To estimate ĉ(1) we subtract (4.30) from (4.32) and replace â(1) with P̂(1) − ĉ(1):

−iεu · k[P̂(1) − ĉ(1)] +
∫
R3

dv
√
μĈ(k, v) + ε [κ|k|2 + 3

2
ik · u]ĉ(1)

+ iεk ·
∫
R3

dv v(I − Pu) f̂
ζAu

+ εik ·
∫
R3

dv (ζ̂g + Ĉ)Au =
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(k, v). (5.2.14)

Then we proceed as for b̂(1) and obtain:

‖ĉ(1)‖2 � ε−1[‖Pu f ‖6 + ‖(I − Pu) f ‖2] + ‖gν− 1
2 ‖2. (5.2.15)

From the estimates of P̂(1) and ĉ(1) we then obtain also

‖â(1)‖2 � ε−1[‖Pu f ‖6 + ‖(I − Pu) f ‖2] + ‖gν− 1
2 ‖2. (5.2.16)

Thus, we obtain (5.2.5). ��



796 R. Esposito, Y. Guo, R. Marra

To deal with the system (4.30)–(4.32) for |k| ≤ 1 we need several estimates:

Lemma 5.2. Suppose u �= 0 and |k| ≤ 1. Let Nσ,β(k) = ε[σ |k|2 + βik · u], for σ > 0
and β > 0. There is � > 0 such that
(1) For q ∈ [ 32 , 2)

‖jN−1
σ,β‖q � ε−1|u|−1+�, (5.2.17)

and, for 1 < q < 3
2

‖jN−1
σ,β‖q � ε−1. (5.2.18)

(2) For q ∈ [3, 4)
‖jkN−1

σ,β‖q � ε−1|u|−1+�, (5.2.19)

and, for 1 < q < 3
‖jkN−1

σ,β‖q � ε−1, . (5.2.20)

(3)
‖k ⊗ kN−1

σ,β‖∞ � ε−1. (5.2.21)

Proof. For � ≥ 0 we compute the norm (see [23])

‖εj|k|�N−1
σ,β‖qq =

∫
R3

dk|k|q�j|σ |k|2 + βik · u|−q

≤ 2πσ−q
∫ 2

0
dr r2+q(�−2)

∫ π

0
dθ sin θ

[
1+r−2β2σ−2|u|2 cos2 θ

]− q
2

= 2πσ−q

βσ−1|u|
∫ 2

0
dr r3+q(�−2)

∫ r−1β|u|σ−1

0
dz[1 + z2]− q

2 ,

with z = r−1βσ−1|u| cos θ . The integral in dz is finite for q > 1. The integral in dr
is finite for 3 + q(� − 2) > −1. Hence, for � < 2, q < 4

2−� . Therefore, if we split the
integration on r into {r ≤ |u|δ} and {|u|δ < r ≤ 2}, with 0 < δ < 1 to be chosen, we
have the bounds∫ |u|δ

0
dr r3+q(�−2)

∫ r−1β|u|σ−1

0
dz[1 + z2]− q

2 � |u|[4+q(�−2)]δ,
∫ 2

|u|δ
dr r3+q(�−2)

∫ r−1β|u|σ−1

0
dz[1 + z2]− q

2

≤
∫ 2

|u|δ
dr r3+q(�−2)

∫ |u|−δ+1βσ−1

0
dz[1 + z2]− q

2 � |u|1−δ.

By choosing δ = (5 + q(2 − �))−1 < 1, we conclude that

‖εj|k|�N−1
σ,β‖q � |u|− δ

q = |u|−1+�

because δ < 1 and q > 1. Thus, for � = 0 we obtain (5.2.17), for � = 1 we obtain
(5.2.19).

If we bound the integrand in dθ simply by 1, as in the Stokes problem, we get instead

‖εj|k|�N−1
σ,β‖qq ≤ 2π2

∫ 2

0
dr r2+(�−2)q . (5.2.22)

The integral in dr is finite for q < 3
2−� . For � = 0, the integral is bounded when q < 3

2 ,
and hence we get (5.2.18); for � = 1, the integral is bounded when q < 3 and hence we
obtain (5.2.20). Clearly ε|k|2N−1

σ,β � 1 for any k, thus we have (5.2.21). ��
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5.3. Estimate of S2 f . The components of S2 f̂ solve the system

ik · b̂(2) + iεk · uâ(2) = ŝ(2)0 , (5.3.1)

ik P̂(2) + ε[v|k|2 + iu · k]b̂(2) = ŝ(2) (5.3.2)

ik · b̂(2) + ε [κ|k|2 + 3

2
ik · u]ĉ(2) = ŝ(2)4 , (5.3.3)

where

ŝ(2)0 = j

∫
R3

dv
√
μuĈ(0, v),

ŝ(2) = j

∫
R3

dv vu
√
μuĈ(0, v)

]
, (5.3.4)

ŝ(2)4 = j

∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈ(0, v),

We use the notation ψ0 = √
μu, ψα = √

μuvu,α , α = 1, . . . , 3, ψ4 = 1√
6

√
μu(|vu|2 −

3)), so that s(2)α = j(PuĈs, ψα)L2
v
.

Lemma 5.3.

PuĈs = (2π)−
3
2

4∑
α=0

Qαψα, (5.3.5)

with Q = (Q0, . . . Q4),

Qα = −
∫
∂�

dS(x)
∫
R3

dv f v · n(x)ψα(v) +
∫
�1\�

dx(1 − ζ )

∫
R3

dv ψαPug. (5.3.6)

Proof. Since Ĉ(0, v) = (2π)− 3
2
∫
dx f v · ∇ζ , we have

PuĈs = (2π)−
3
2

4∑
α=0

ψα

∫
�c

dx
∫
R3

dv fψαv · ∇ζ.

Since ∇ζ = 0 outside of �1 = {x ∈ R
3 | d(x,�) < 1},

∫
�c

dx
∫
R3

dv ψα(v · ∇ζ ) f =
∫
�1\�

dx
∫
R3

dv ψαv · ∇(ζ f )

−
∫
�1\�

dx
∫
R3

dv ψαζv · ∇ f

=
∫
∂�

dS(x)
∫
R3

dv v · n(x)ζ fψα(v) +
∫
∂�1

dS(x)
∫
R3

dv v · N (x)ζ fψα(v)

−
∫
�1\�

dxζ
∫
R3

dvψαv · ∇ f

= −
∫
�1\�

dx ζ
∫
R3

dv ψαPug +
∫
∂�1

dS(x)
∫
R3

dv v · N (x) fψα(v),
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where N (x) is the exterior normal to ∂�1, because ζ = 0 on ∂� and ζ = 1 on ∂�1 and
we have used by (4.1). On the other hand, integrating (4.1) on �1\� we get

∫
∂�1

dS(x)
∫
R3

dv v · N (x) fψα(v) +
∫
∂�

dS(x)
∫
R3

dv v · n(x) fψα

=
∫
�1\�

dx
∫
R3

dv ψαPug, (5.3.7)

and hence we obtain

Qα = −
∫
∂�

dS(x)
∫
R3

dv f v · n(x)ψα(v) +
∫
�1\�

dx(1 − ζ )

∫
R3

dv ψαPug. (5.3.8)

��

Lemma 5.4 (Estimate of Q’s). If ‖Pug‖L6/5
loc

= ‖Pug‖L6/5(�1\�) is bounded, then

|Q| ≤ ε
(
ε−1‖(I − Pu) f ‖2 + ‖Pu f ‖6 + ‖ν− 1

2 g‖L2(�1\�)
)
+ ε

1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
.

(5.3.9)

Proof. For any h we have

∫
R3

dv n · v√μuh =
∫

{n·v<0}
dv n · v√μu(h − Pu

γ h). (5.3.10)

Indeed

∫
{n·v<0}

dv n · v√μu(h − Pu
γ h) =

∫
{n·v<0}

dv n · v√μuh

−
∫

{n·v<0}
dv n · v√2πμ(v)

∫
{n·v′>0}

dv′ v′ · n√
μuh

=
∫

{n·v<0}
dv · v√μuh +

∫
{n·v′>0}

dv′ v′ · n√
μuh

=
∫
R3

dv n · v√μuh, (5.3.11)

because
∫
{n·v<0} dv n · v√2πμ(v) = −1.
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By (5.3.10) and (1.42),
∫
∂�

dS(x)
∫
R3

dv
√
μu f v · n(x) =

∫
∂�

dS(x)
∫

{v′·n(x)<0}
dv

√
μu( f − Pu

γ f )v · n(x)

= ε
1
2

∫
∂�

dS(x)
∫

{v′·n<0}
dv

√
μur v

′ · n(x).

Therefore, by (5.3.6),

|Q0| ≤ ε
1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
. (5.3.12)

The other components of Q are more involved.
Let η(x) = d(x, ∂�) be the signed distance of x ∈ R

3 from ∂�, positive in�c, well
defined at least when |η(x)| < δ for some sufficiently small δ > 0. Clearly |∇η| = 1.
We consider the family of smooth closed surfaces {Sξ }0≤ξ<δ , defined as Sξ = {x ∈
�c | η(x) = ξ}. We also define, for x ∈ Sξ , n(x) = ∇η(x). We have S0 = ∂� and,
for any ξ > 0, the sets �ξ whose boundaries are Sξ are such that �ξ ⊂ �ξ ′ if ξ < ξ ′.
If we integrate the conservation law on �ξ2\�ξ1 , since the exterior normal to ∂�ξ1 ,
n1(x) = −∇η(x), setting

Qξ,α = −
∫
Sξ

dS(x)
∫
R3

dv f
√
μuv · n(x)ψα(v), (5.3.13)

by Gauss theorem and (4.1) we obtain

|Qξ1,α − Qξ2,α| =
∣∣∣
∫
�ξ1\�ξ2

dx ψαPug
∣∣∣ � ‖Pug‖L6/5(�ξ1\�ξ2 )

, α = 0, . . . , 4.

(5.3.14)
In particular, with

�α = Qα − Q0,α

we have

|�α| � ‖Pug‖L6/5
loc

and hence, since |∇η| = 1, by the coarea formula,

Qα = �α + δ−1
∫ δ

0
dξQξ,α = �α + δ

−1
∫
�δ\�

dx
∫
R3

dv f
√
μuv · n(x)ψα(v).

To estimate Q = (Q1, Q2, Q3), we note that from the decomposition of f =√
μu(a + b · vu + 1

2 (|vu|2 − 3) + (I − Pu) f and the definitions of τ and P ,

Q = � + δ−1
∫
�δ\�

dx[Pn + τ · n + εu · nb].

To get a bound for P , let us denote by P̄ the average of P on�δ\�: P̄ = δ−1
∫
�δ\� Pdx .

Let � be a vector function such that:

∇ ·� = P − P̄ in �δ\�, � = 0 on ∂� ∪ ∂�δ.
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Such a vector function exists and satisfies the bound (see [18])

‖�‖H1(�δ\�) ≤ ‖P − P̄‖L2(�δ\�).

Taking the inner product of the momentum balance law (4.3)

∇(P − P̄) + εu · ∇b + ∇ · τ = b, (5.3.15)

by �, integrating on �δ\� and integrating by parts, we obtain
∫
�δ\�

b ·�dx = −
∫
�δ\�

dx[∇ ·�(P − P̄) + εu · ∇� · b + ∇� : τ ]

+
∫
∂�∪∂�δ

dS[� · n(P − P̄) +�⊗ n : τ + εu(n ·�)(b · n)], (5.3.16)

where A : B = ∑
i, j Ai, j Bi, j . The boundary terms vanish because � = 0 on the

boundary. We have

∣∣∣
∫
�δ\�

b ·�dx
∣∣∣ ≤ ‖�‖6‖‖b‖L6/5

loc
≤ ‖b‖

L6/5
loc

‖∇�‖2, (5.3.17)

by using Sobolev embedding. Therefore, using ∇ ·� = P − P̄ , we obtain

‖P − P̄‖2L2(�δ\�) ≤ ‖∇�‖L2(�δ\�)(‖τ‖L2(�δ\�) + ε|u|‖b‖L2(�δ\�) + ‖b‖
L6/5
loc
)

�‖P − P̄‖L2(�δ\�)(‖(I − Pu) f ‖L2(�δ\�) + ε|u|‖Pu f ‖6 + ‖b‖
L6/5
loc
).

Hence

‖P − P̄‖L2(�δ\�) � ε(ε−1‖(I − Pu) f ‖2 + |u|‖Pu f ‖6) + ‖b‖
L6/5
loc

Therefore, since
∫
�δ\� dx P̄n(x) = 0, we obtain

∣∣∣∣
∫
�δ\�

dx Pn

∣∣∣∣ ≤ ε(ε−1‖(I − Pu) f ‖2 + |u|‖Pu f ‖6) + ‖b‖
L

6
5
loc

.

On the other hand,
∣∣∣∣
∫
�δ\�

dxu · nb
∣∣∣∣ � |u|‖Pu f ‖L6

and ∣∣∣∣
∫
�δ\�

dxn · τ
∣∣∣∣ � ‖(I − Pu) f ‖L2 .

In conclusion

|Q| �δ ε(ε
−1‖(I − Pu) f ‖2 + |u|‖Pu f ‖6) + ‖b‖

L6/5
loc

+ |� |.
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For the estimate of Q4, we use

Q4 = �4 + δ
−1

∫ δ

0
dξQξ,4

= �4 + δ
−1

∫
�δ\�

dx
∫
R3

dv
√
μu

|vu|2 − 3

2
n

· v{[a + b · vu + c
|vu|2 − 3

2
]√μu + (I − Pu) f }

= �4 + δ
−1

∫
�δ\�

dx[b · n +
3

2
εu · nc

+
∫
R3

dv
√
μu

|vu|2 − 3

2
n · v(I − Pu) f ]. (5.3.18)

Toget a bound for
∫
�δ\� dxb·nwenote that, from |Q0−Qξ,0| ≤ ε

1
2 ‖zγ (r)‖2, integrating

on ξ and using again the coarea formula, by (5.3.7)

∣∣∣δ−1
∫
�δ\�

dx[b · n + εau · n] −
∫
∂�

dS[b · n + εu · na]
∣∣∣

≤ ε
1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
(5.3.19)

and ∣∣∣
∫
∂�

dS[b · n + εu · na] − ε

∫
∂�

dSu · na
∣∣∣ ≤ ‖zγ (r)‖2, (5.3.20)

because | ∫
∂�

dSb · n| = | ∫
∂�

∫
R3 dv

√
μu f v · n| ≤ ‖zγ (r)‖2. Hence

∫
∂�

dSb · n =
ε
∫
∂�

dSu · na +O(‖zγ (r)‖2). Now we can replace in (5.3.18) this expression to obtain:

|Q4| ≤ δ−1
∣∣∣
∫
�δ\�

dx
[
εu · n(c − a) +

∫
R3

dv
√
μu

|vu|2 − 3

2
n · v(I − Pu) f

]∣∣∣
+ ε

∣∣∣
∫
∂�

dSu · na
∣∣∣ + ε 1

2 ‖zγ (r)‖2 + ‖Pug‖L6/5
loc
.

The first term in the first line is bounded with ε[|u|‖a‖6 + |u|‖c‖6 + ε−1‖(I− Pu) f ‖2].
The second is bounded by ε|u|‖Pu f ‖L2(∂�×R3) � ε|u|(‖Pu f ‖6 + ε−1‖(I − Pu) f ‖ν +
‖ν− 1

2 g‖2), by using the Ukai trace theorem, Lemma 2.2. ��

Lemma 5.5. If u �= 0, then there is ρ > 0 such that, for any p > 2

‖S2 f ‖p � ε−1|u|−1+�
∑

α=0,...,4

|Qα| � |u|−1+�(ε−1‖(I − Pu) f ‖2

+ ‖Pu f ‖6 + ‖gν− 1
2 ‖2)

+ ε−1|u|−1+�[ε 1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
]. (5.3.21)
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Proof. Step 1: Estimate of�b(2): From (4.34) for the system (4.30), (4.31), (4.32), with
s = s(2), we have

�̂b̂(2) = jN−1
v,1�̂Q. (5.3.22)

By (5.2.17), jN−1
v,1 is bounded by ε−1|u|−1+� in Lq(R3) for 3

2 ≤ q < 2, and hence

‖�̂b̂(2)‖q � ε−1|u|−1+�Q. (5.3.23)

Step 2: Estimate of P(2): by using (4.36) for the system (4.30), (4.31), (4.32), we have

P̂(2) =
(
1 − ε

Nv,1

i |k|2 u · k
)−1[Nv,1

i |k|2 [i ŝ(2)0 + εu · kĉ(2)] + k

i |k|2 · ŝ(2)
]
. (5.3.24)

Since j|k|−q is integrable for any q < 3, we obtain

‖P̂(2)‖q � ε2‖ĉ(2)‖q + |Q| (5.3.25)

Step 3: Estimate of c(2): by using (4.38) for the system (4.30), (4.31), (4.32), we have

ĉ(2) = jN
−1

{
Q4 − Q0 + iεu · k

(
1 − ε

Nv,1

i |k|2 u · k
)−1 k

i |k|2 · Q̂
}
, (5.3.26)

We recall that from the definition of N it follows that |N−1| � |N−1
κ, 52

|. Therefore,
proceeding as before, we obtain by (5.2.17) for 3

2 ≤ q < 2,

‖ĉ(2)‖q � ε−1|u|−1+�(|Q4| + |Q0|) + ε|u||Q|, (5.3.27)

and, in consequence,

‖P̂(2)‖q � |u|−1+�(|Q4| + |Q0|) + |Q| (5.3.28)

Step 4: Estimate of â(2): Using â(2) = P̂(2) − ĉ(2), we have

‖â(2)‖q � ε−1(|u|−1+�(|Q4| + |Q0|) + |Q|). (5.3.29)

Step 5: Estimate of (1 − �̂)b̂(2):
Since (1 − �̂)b̂(2) = k · b̂(2)k|k|−2, using the mass equation, where ŝ(2)0 = jQ0,

which implies k · b̂(2) = −εk · uâ(2) + i jQ0, we have

(1 − �̂)b̂(2) = −ε|k|−2kk · uâ(2)+i |k|−2kjQ0,

and taking the Lq norm we have, using Step 4,

‖(1 − �̂)b̂(2)‖q ≤ ε‖â(2)‖q+|Q0|.
Then, together with Step 1 we obtain

‖b̂(2)‖q � ε−1(|Q4| + |Q0|) + |Q|. (5.3.30)

In conclusion,

‖S2 f̂ ‖q � ε−1|u|−1+�Q, for
3

2
≤ q < 2.

We recall the Hausdorff–Young inequality: if 1 < q ≤ 2 and 1
p + 1

q = 1, then

‖ f ‖p ≤ ‖ f̂ ‖q . (5.3.31)

By the Hausdorff–Young inequality then we have (5.3.21) with p = q
q−1 > 2. ��
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5.4. Estimate of S3 f . The components of S3 R̂ solve the system

ik · b̂(3) + iεk · uâ(3) = ŝ(3)0 , (5.4.1)

ik P̂(3) + ε[v|k|2 + iu · k]b̂(3) = ŝ(3) (5.4.2)

ik · b̂(3) + ε [κ|k|2 + 3

2
ik · u]ĉ(3) = ŝ(3)4 , (5.4.3)

where

ŝ(3)0 = j
[ ∫

R3
dv

√
μuk·Ĉr (k, v)

]
,

ŝ(3)(k) = j
[
−εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζ (k, v)Bu − iεk ·

∫
R3

dv ĈBu

+ k ·
∫
R3

dv vu
√
μuĈr (k, v)

]
, (5.4.4)

ŝ(3)4 (k) = j
[
−εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζ (k, v)Au − iεk ·

∫
R3

dv ĈAu

+ k ·
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuĈr (x, v)

]
.

Lemma 5.6.

‖
∫
R3

dv
√
μuvujk·Ĉr‖∞ ≤ ‖Pu f ‖6 + ‖(I − Pu) f ‖ν (5.4.5)

Proof. Recall from (5.1.7),

∣∣∣
∫
R3

dv
√
μuvujk·Ĉr

∣∣∣ =
∣∣∣
∫
R3

dv
√
μuvuj

∫ 1

0
dλ

d

dλ

∫
dxeiλk·xC(x, v)

∣∣∣

=
∣∣∣
∫
R3

dv
√
μuvuj

∫ 1

0
dλ{ik · x}

∫
dx eiλk·xC(x, v)

∣∣∣
≤

∫
R3

dv
√
μu|vu|2

∫
�1

dx |x |
∫
R3

dv (|Pu f (x, v)| + |(I − Pu) f (x, v)|)
� ‖ f ‖6 + ‖(I − Pu) f ‖ν,

because supp(∇ζ ) ⊂ �1. ��
Lemma 5.7. If |u| � 1 and ε � 1,

‖S3 f ‖2 � ε−1‖Pu f ‖6 + ε−1‖(I − Pu) f ‖2. (5.4.6)

Proof. Step 1: Estimate of �b(3):
From (4.34) for the system (5.4.1), (5.4.2), (5.4.3), with s(3) given by (5.4.4), we

have
�̂b̂(3) = N−1

v,1�̂ŝ(3), (5.4.7)

where

ŝ(3) = j
[
εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζBu − iεk ·

∫
R3

dv ĈBu

+ k ·
∫
R3

dv vu
√
μuĈr (k, v)

]
,
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By (5.2.20), jkN−1
v,1 is bounded by ε−1 in L2(R3), and hence

∥∥∥jN−1
v,1�̂k·

∫
R3

dv vu
√
μuĈr (k, v)

∥∥∥
2

� ε−1
∥∥∥

∫
R3

dv vu
√
μuk·Ĉr (k, v)

∥∥∥∞
≤ ε−1‖Pu f ‖6 + ε−1‖(I − Pu) f ‖ν,∥∥∥jεN−1
v,1�̂k

∫
R3

dv Ĉ(k, v)Bu

∥∥∥
2
�

∥∥∥
∫
R3

dv Ĉ(k, v)Bu

∥∥∥∞ �‖Pu f ‖6 + ‖(I − Pu) f ‖ν,

by using (5.4.5).
On the other hand, by Lemma 5.2, k ⊗ kN−1

σ,β ∈ L∞, so

∥∥∥iεjN−1
v,1�̂k ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζBu

∥∥∥
2

� ‖(I − Pu) f ‖ν .

therefore we have

‖�̂b̂(3)‖2 � ε−1‖Pu f ‖6 + ε−1‖(I − Pu) f ‖2.
Step 2: Estimate of P(3): by using (4.36) for the system (5.4.1), (5.4.2), (5.4.3), we have

P̂(3) =
(
1−ε Nv,1

i |k|2 u · k
)−1[Nv,1

i |k|2 [i ŝ(3)0 + εu · kĉ] + k

i |k|2 · ŝ(3)
]
. (5.4.8)

Taking the L2 norm, for ε � 1 we get

‖P̂(3)‖2 ≤ ε2‖ĉ(3)‖2 + ‖Pu f ‖6 + ‖(I − Pu) f ‖ν (5.4.9)

Step 3: Estimate of c(3): by using (4.38) for the system (4.30), (4.31), (4.32), we have

ĉ(3) = (N )−1
{
s(3)4 −s(3)0 +iεu·k

(
1−ε Nv,1

i |k|2 u·k
)−1[Nv,1

i |k|2 i ŝ
(3)
0 +

k

i |k|2 ·ŝ(3)
]}
, (5.4.10)

with

ŝ(3)4 (k) = j
[
εk ⊗ k ·

∫
R3

dv v(I − Pu) f̂
ζ (k, v)Au − iεk ·

∫
R3

dv ĈAu

+
∫
R3

dv
1

2
(|vu|2 − 3)

√
μuk · Ĉr (k, v)

]
.

We recall that from the definition of N , it follows that |N−1| � |N−1
κ, 52

|. Therefore,
proceeding as before, we obtain

‖ĉ(3)‖2 � ε−1‖Pu f ‖6 + ‖(I − Pu) f ‖2. (5.4.11)

and, in consequence,
‖P̂(3)‖2 ≤ ‖Pu f ‖6 + ‖(I − Pu) f ‖2 (5.4.12)

Step 4: Estimate of â(3): Using â(3) = P̂(3) − ĉ(3), we have

‖â(3)‖2 � ε−1‖Pu f ‖6 + ‖(I − Pu) f ‖2. (5.4.13)

Step 5: Estimate of (1 − �̂)b̂(3):
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Since (1− �̂)b̂(3) = k · b̂(3)k|k|−2, using the mass equation which implies k · b̂(3) =
−εk · uâ(3)+i ŝ(3)0 , we have

(1 − �̂)b̂(3) = −ε|k|−2kk · uâ(3)+i |k|−2kŝ(3)0

− i |k|−2k ·
[ ∫

R3
dv vu

√
μĈr (k, v) + ε

∫
R3

dv Ĉ(k, v)Bu

]
,

and taking the L2 norm we have, using Step 4,

‖(1 − �̂)b̂(3)‖2 ≤ ε‖â(3)‖2 + ‖Pu f ‖6 � ‖Pu f ‖6 + ‖(I − Pu) f ‖ν .
Then, together with Step 1 we obtain

‖b̂(3)‖2 � ε−1‖Pu f ‖6 + ‖(I − Pu) f ‖ν . (5.4.14)

��

5.5. Estimate of S4 f . The components of S4 f̂ solve the system

ik · b̂(4) + iεk · uâ(4) = ŝ(4)0 , (5.5.1)

ik P̂(4) + ε[v|k|2 + iu · k]b̂(4) = ŝ(4) (5.5.2)

ik · b̂(4) + ε [κ|k|2 + 3

2
ik · u]ĉ(4) = ŝ(4)4 , (5.5.3)

where

ŝ(4)0 (k) = 0, (5.5.4)

ŝ(4)(k) = −jiεk ·
∫
R3

dv ζ̂gBu, (5.5.5)

ŝ(4)4 (k) = −jεik ·
∫
R3

dv ζ̂gAu. (5.5.6)

Lemma 5.8. Let p ≥ 2 and assume g ∈ L
3p
3+p . Then

‖S4 f ‖p � ‖ν− 1
2 g‖ 3p

3+p
, (5.5.7)

Proof. We proceed as in the proof of Lemma 5.7:
Step 1: Estimate of �b(4):
From (4.34) for the system (4.30)–(4.32), with s = s(4),

�̂b̂(4) = N−1
v,1�̂ŝ(4). (5.5.8)

Since for the multipliers kN−1
b,1�̂k direct computations yields

∂ lk{εkN−1
b,1�̂k} �l |k|−l ,
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with constants independent of ε, by Mihlin–Hormander’s [17,25] multiplier theorem,
we deduce

‖∇�b(4)‖ 3p
3+p

=
∥∥∥∇F−1[N−1

v,1�̂(εjik ·
∫
R3

dv ζ̂gBu)]
∥∥∥ 3p

3+p

� ‖ν− 1
2 g‖ 3p

3+p
, (5.5.9)

by the Sobolev estimate

‖�b(4)‖p � ‖∇�b(4)‖ 3p
3+p

� ‖ν− 1
2 g‖ 3p

3+p
.

Step 2: Estimate of P(4): by using (4.36) for the system (4.30)–(4.32), we have

P̂(4) =
(
1 + ε

Nv,1

i |k|2 u · k
)−1[Nv,1

i |k|2 [εu · kĉ(4)] + k

i |k|2 · ŝ(5)
]
, (5.5.10)

from which we get

‖P(4)‖p � ε2‖c(4)‖p + ε‖ν− 1
2 g‖ 3p

3+p
. (5.5.11)

Step 3: Estimate of c(4): by using (4.38) for the system (4.30)–(4.32), we have

ĉ(4) = (N )−1
{
s(4)4 + iεu · k

(
1 + ε

Nv,1

i |k|2 u · k
)−1 k

i |k|2 · ŝ(4)
}
, (5.5.12)

with

s(4)4 = εik ·
∫
R3

dv ζ̂gAu.

This implies

‖c(4)‖p ≤ ‖ν− 1
2 g‖ 3p

3+p
. (5.5.13)

In consequence

‖P̂(4)‖p ≤ ε‖ν− 1
2 g‖ 3p

3+p
. (5.5.14)

Step 4: Estimate of â(4): Using â(4) = P̂(4) − ĉ(4), we have

‖a(4)‖p � ‖ν− 1
2 g‖ 3p

3+p
. (5.5.15)

Step 5: Estimate of (1− �̂)b̂(4): Since (1− �̂)b̂(4) = k · b(4)l k|k|−2, using the equation

for the mass we have (1 − �̂)b̂(4) = −ε|k|−2kk · uâ(4), and hence, by Step 4

‖(1 −�)b(4)‖p ≤ ε‖a(4)‖p � ε‖ν− 1
2 g‖ 3p

3+p
. (5.5.16)

Then, together with Step 1 we obtain

‖b(4)‖p � ‖ν− 1
2 g‖ 3p

3+p
. (5.5.17)

��
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5.6. Estimate of S5 f . The components of S5 f̂ solve the system

ik · b̂(5) + iεk · uâ(5) = ŝ(5)0 , (5.6.1)

ik P̂(5) + ε[v|k|2 + iu · k]b̂(5) = ŝ(5) (5.6.2)

ik · b̂(5) + ε [κ|k|2 + 3

2
ik · u]ĉ(5) = ŝ(5)4 , (5.6.3)

where

ŝ(5)0 (k) = j

∫
R3

dv
√
μuζ̂Pug,

ŝ(5)(k) = j

∫
R3

dv
√
μuvζ̂Pug, (5.6.4)

ŝ(5)4 (k) = j

∫
R3

dv
√
μu

1

2
(|v|2 − 3)ζ̂Pug.

Lemma 5.9. Let p > 2. Suppose that ζPug ∈ Lq, 1 < q <
2p
p+2 . Then there is ρ > 0

such that
‖S5 f ‖p � ε−1|u|−1+�‖ζPug‖q . (5.6.5)

Proof. By Hausdorff–Young inequality (5.3.31),

‖S5 f ‖p � ‖̂S5 f ‖ p
p−1

. (5.6.6)

We have

�̂b̂(5) = N−1
v,1�̂j

∫
R3

dv
√
μuvζ̂Pug. (5.6.7)

Therefore, if 1 < r and r p
p−1 < 2, so that we can usewith (5.2.17), then, with 1

q +
1
q ′ = 1,

we have

‖�̂b̂(5)‖ p
p−1

≤ ‖N−1
v,1‖r p

p−1
‖ζ̂Pug‖ p

p−1
r

r−1
� ε−1|u|−1+�‖ζ̂Pug‖q ′

� ε−1|u|−1+�‖ζPug‖q , (5.6.8)

where q ′ = p
p−1

r
r−1 , where we have used (5.2.17) in the second inequality and again

the Hausdorf-Young inequality in the last step. Since p−1
r >

p
2 , then q = pr

p+r−1 =
p

p−1
r +1

<
2p
p+2 . Since r > 1, then q > 1. ��

5.7. Proof of Theorem 1.5.

Proposition 5.10. If u �= 0 and ε � 1, then there is ρ > 0 such that,

ε
1
2 ‖Pu f ‖3 � ‖Pu f ‖6 + |u|−1+�ε−1‖(I − Pu) f ‖2 + o(1)‖ν− 1

2 g‖L2(�1\�)
+ ε

1
2 ‖ν− 1

2 g‖ 3
2
+ |u|−1+�[ε− 1

2 ‖zγ (r)‖2 + ε−1‖Pug‖
L

6
5

−
]
. (5.7.1)
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Proof. To get the L3 bound of Pu f we proceed as follows: we look at the problem in R
3

by passing to the cut-offed problem. Thus we obtain Pu f = (1 − ζ )Pu f +
∑5

i=1 Si f .
Since 1− ζ(x) = 0 if x /∈ �1 = {x | d(x,�) ≤ 1}, ‖(1− ζ )Pu f ‖3 � ‖Pu f ‖6. For the
other terms we use the previous lemmas.

The bounds in previous subsections are too singular in ε for our purposes. Therefore,
we take advantage of the uniform-in-ε estimate of ‖ζPu f ‖6 to improve the estimate of
‖ζPu f ‖3 by means of interpolation between the L6 norm and some lower norm. Since

‖
5∑

i=1

Si f ‖6 ≤ ‖Pu f ‖6, (5.7.2)

we have

‖S1 f + S3 f ‖6 ≤ ‖Pu f ‖6 + ‖S2 f ‖6 + ‖S4 f ‖6 + ‖S5 f ‖6. (5.7.3)

Therefore, using (5.3.21), (5.5.7) and (5.6.5) with p = 6, we obtain:

‖S1 f + S3 f ‖6 � ‖Pu f ‖6 + |u|−1+�(ε−1‖(I − Pu) f ‖2 + ‖Pu f ‖6 + ‖gν− 1
2 ‖2)

+ ε−1|u|−1+�[ε 1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
] + ‖ν− 1

2 g‖2
+ ε−1|u|−1+�‖ζPug‖ 6

5

� ‖Pu f ‖6 + |u|−1+�ε−1‖(I − Pu) f ‖2 + |u|−1+�‖gν− 1
2 ‖2

+ |u|−1+�[ε− 1
2 ‖zγ (r)‖2 + ε−1‖Pug‖L6/5

loc
]. (5.7.4)

Note that only the last line is singular in ε, but we will apply the inequality in a situation
where zγ (r) and Pug are small in ε.

For S1 f + S3 f , by (5.2.5) and (5.4.6) (by interpolation (‖ f ‖r ≤ ‖ f ‖θp‖ f ‖1−θq with

r−1 = θp−1 + (1 − θ)q−1)) we obtain, with r = 3, p = 2, q = 6 and θ = 1
2 ,

ε
1
2 ‖S1 f + S3 f ‖3 ≤ (ε‖S1 f + S3 f ‖2) 12 ‖S1 f + S3 f ‖

1
2
6

� [‖Pu f ‖
1
2
6 + ‖(I − Pu) f ‖

1
2
2 + ε

1
2 ‖ν− 1

2 g‖
1
2
2 ]

×
[
‖Pu f ‖6 + |u|−1+�ε−1‖(I − Pu) f ‖2 + |u|−1+�‖gν− 1

2 ‖2

+ |u|−1+�[ε− 1
2 ‖zγ (r)‖2 + ε−1‖Pug‖L6/5

loc
]
] 1
2

� ‖Pu f ‖6 + |u|−1+�ε−1‖(I − Pu) f ‖2 + (ε + |u|−1+�)‖ν− 1
2 g‖2

+ |u|−1+�[ε− 1
2 ‖zγ (r)‖2 + ε−1‖Pug‖L6/5

loc
]. (5.7.5)

As for S4 f , we have from Lemma 5.8 with p = 3,

ε
1
2 ‖S4 f ‖3 � ε

1
2 ‖ν− 1

2 g‖ 3
2
. (5.7.6)

For S5 f we use Lemma 5.9 with p = 3 and hence 1 < q < 6
5 .
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By (5.3.21), by interpolation we obtain,

ε
1
2 ‖S2 f ‖3 � ε

1
2

[
|u|−1+�(ε−1‖(I − Pu) f ‖2 + ‖Pu f ‖6 + ‖ν− 1

2 g‖2)

+ ε−1|u|−1+�[ε 1
2 ‖zγ (r)‖2 + ‖Pug‖L6/5

loc
]
]θ‖S2 f ‖(1−θ)6 , (5.7.7)

with θ such that 1
3 = θp−1 + 1

6 (1 − θ), and hence θ = 1
2
+
when p = 2+. Therefore, by

Young inequality,

ε
1
2 ‖S2 f ‖3 � ε

1
2 |u|−1+�(ε−1‖(I − Pu) f ‖2 + ‖Pu f ‖6 + ‖ν− 1

2 g‖2)
+ |u|−1+ρ[‖zγ (r)‖2 + ε− 1

2 ‖Pug‖L6/5
loc

]. (5.7.8)

Combining the estimates we obtain (5.7.1). ��
Now we have all the information needed to prove Theorem 1.5.

Proof of Theorem 1.5. To bound the first two terms of [[ f ]]β,β ′ , we use Proposition 2.6.
Then we use Proposition 2.7 in 3.4:

(1 − o(1))‖Pu f ‖6 � (1 + o(1) + |u|−2+2ρ)
[
ε−1‖(I − Pu) f ‖ν + ε− 1

2 |(1 − Pu
γ ) f |2,+

]
+ ‖ν− 1

2 g‖2 + ε 1
2 |r |∞

+ o(1)[ε 1
2 |wr |∞ + ε

3
2 ‖〈v〉−1wg‖∞]. (5.7.9)

Using this in (2.8), if |u| is so small that |u|(1 + o(1) + |u|−1+ρ)(1 − o(1))−1 < 1
2 , we

obtain

ε−2‖(I − Pu) f ‖2ν + ε−1|(1 − Pu
γ ) f |22,+ � ‖ν− 1

2 (I − Pu)g‖22 + |u|[‖ν− 1
2 g‖2 + ε 1

2 |r |∞
+ o(1)

[
ε

1
2 |wr |∞ + ε

3
2 ‖〈v〉−1wg‖∞]

]
+ |r |22,− + (ε|u|)−1‖zγ (r)‖22

+ ε−2|u|−2‖Pug‖26
5
+ ‖Pug‖22. (5.7.10)

Using this in (3.4) we obtain a similar bound for ‖Pu f ‖6:

‖Pu f ‖6 � ‖ν− 1
2 (I − Pu)g‖22 + |u|[‖ν− 1

2 g‖2 + ε 1
2 |r |∞

+ o(1)
[
ε

1
2 |wr |∞ + ε

3
2 ‖〈v〉−1wg‖∞]

]

+ |r |22,− + (ε|u|)−1‖zγ (r)‖22 + ε−2|u|−2‖Pug‖26
5
+ ‖Pug‖22. (5.7.11)

Using (5.7.10) and (5.7.11) in (2.11) we get a similar bound for ε
1
2 ‖w f ‖∞. Finally,

using (5.7.10) and (5.7.11) in (5.7.1) we obtain the bound on ε
1
2 ‖Pu f ‖3. Rearranging

the terms we obtain (1.43). ��
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6. Construction of the Positive Solution to the Non Linear Problem

6.1. Positivity scheme. In order to construct a non negative solution to the problem (1.1)
we use a modification of the argument introduced in [1].

We define F+ = max{F, 0} and F− = max{−F, 0}, so that F = F+−F−. Consider
the system

v · ∇F = ε−1[Q(F+, F+)− 2Q(μu, F
−)] in �c, (6.1.1)

F
∣∣∣− = Pw

γ (F
+) on ∂�, lim|x |→0

F = μu. (6.1.2)

Proposition 6.1. Let F ∈ L∞ solve problem (6.1.1), (6.1.2). Then F− = 0 and F+

solves the Boltzmann equation.

Remark 6.2. Since F− = 0, F is non negative.

Proof. In fact, the equation for F− is

−v · ∇F− = ε−11F−�=0[Q+(F+, F+)− Q(μu, F
−)− Q(F−, μu)], F−

∣∣∣− = 0.

because F− �= 0 implies F+ = 0, and hence the term 1F−�=0Q
−(F+, F+) = 1F−�=0

F+ν(F+) = 0. Moreover, since F > 0 on γ−, if follows that F− = 0 on γ−. Since
F → μu > 0 as |x | → ∞, then F− → 0 as |x | → ∞.

By multiplying this equation by −μ−1
u F− and integrating, we obtain:

∫
�c×R3

dxdvμ−1
u v · ∇ (F−)2

2
= −ε−1

∫
�c×R3

dxdv1F−�=0Q
+(F+, F+)F−μ−1

u

+ ε−1
∫
�c×R3

dxdv1F−�=0μ
−1
u F−[Q(μu, F

−) + Q(F−, μu)]
By the spectral inequality,

−
∫
�c×R3

dxdv1F−�=0μ
−1
u F−[Q(μu, F

−) + Q(F−, μu)]

= −
∫
�c×R3

dxdvμ−1
u F−[Q(μu, F

−) + Q(F−, μu)] � ‖(I − Pu)F
−‖22.

Therefore by also integrating by parts the l.h.s., we obtain

1

2

∫
∂�×R3

dS(x)
∫
R3

dvμ−1
u v · n(F−)2 + ε−1‖(I − P)F−‖22

� −ε−1
∫
�c×R3

dxdv1F−�=0Q
+(F+, F+)F−μ−1

u ≤ 0

This implies that F− = 0 on γ +, thus F− = 0 on γ . Moreover (I − P)F− = 0 and
hence Q(μu, F−) + Q(F−, μu) = 0. Thus

−v · ∇F− = ε−11F−�=0Q
+(F+, F+) ≥ 0.

Therefore F− satisfies

v · ∇F− ≤ 0 in �c, F− = 0 on γ.

This implies that F− ≤ 0, but F− ≥ 0 by definition and hence F− = 0 identically.
Then, F = F+ and (6.1.1) coincides with the Boltzmann equation (1.1) and (6.1.2) is
the usual diffuse reflection boundary condition (1.8). ��
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Therefore, to construct a positive solution to (1.1) we need to construct a solution to
(6.1.1), (6.1.2). We need some notation:

Let χ = 1|v|<ε−m , χ̄ = 1|v|≥ε−m = 1 − χ where m > 0 is such such that

μu + ε
√
μuχ( f1 + ε f2) > 0. (6.1.3)

Such anm certainly exist because, by definition f1 and by [5] f2, are bounded by
√
μuPs ,

for some s > 1, where Ps is a polynomial of degree s in v.
Since, for β > 0, exp[−ε−β ] � ε� for any � > 0, in the rest of this section we shall

use the short notation

ε∞ = exp[−ε−β ], for some β > 0. (6.1.4)

Recall that
0 ≤ M1,ε(u+u),1 = μu + ε

√
μu f1 + ε

2√μuφε. (6.1.5)

We denote

Q = f1 + ε(χ f2 + χ̄φε).

By (6.1.3), if χ = 1, then μu + ε
√
μQ ≥ 0, and the same is true if χ̄ = 1 by (6.1.5).

Therefore

μu + ε
√
μQ ≥ 0.

We decompose

F = μu + ε
√
μuQ + ε

3
2 R

√
μu. (6.1.6)

Then we define

R̄ =
⎧⎨
⎩
R if μu + ε

√
μQ + ε

3
2
√
μuR ≥ 0

−ε− 3
2 (μu + εQ

√
μu) if μu + εQ

√
μu + ε

3
2
√
μuR < 0

, (6.1.7)

and
R̃ = R̄ − R. (6.1.8)

It follows that

F+ = μu + ε
√
μuQ + ε

3
2 R̄

√
μu. (6.1.9)

F− = ε
3
2 R̃

√
μu. (6.1.10)

Indeed, if F(x, v) > 0, then

F+ = F = μu + ε
√
μuQ + ε

3
2 R

√
μu = μu + ε

√
μQ + ε

3
2 R̄

√
μu.

Moreover, if F(x, v) ≤ 0, then ε
3
2 R ≤ −(μu + εQ

√
μu) and hence

0 = μu + εQ
√
μu + ε

3
2 R̄

√
μu = F+,

and

F− = F+ − F = μu + ε
√
μQ + ε

3
2 R̄

√
μu − (μu + ε

√
μQ + ε

3
2 R

√
μu)

= ε
3
2 (R̄ − R)

√
μu = ε

3
2 R̃

√
μu.
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Lemma 6.3. We have the following inequalities:

|R̄| ≤ |R|, (6.1.11)

|R̃| ≤ 1{μu+ε
√
μuQ+ε

3
2 R̄<0}2|R|, (6.1.12)

|R̄1 − R̄2| ≤ |R1 − R2|, (6.1.13)

|R̃1 − R̃2| ≤ 2|R1 − R2|
(
1{μu+ε

√
μuQ+ε

3
2 R1

√
μu<0} + 1{μu+ε

√
μuQ+ε

3
2 R2

√
μu<0}

)
.

(6.1.14)

Proof. Indeed, μu + εQ
√
μu + ε

3
2
√
μuR < 0 implies R < 0 and hence ε

3
2 |R̄| =

−ε 3
2 R̄ = √

μ−1
u (μu + ε

√
μuQ) < −ε 3

2 R = ε
3
2 |R|, which proves (6.1.11). More-

over, |R̃| ≤ (|R| + |R̄|)1{μu+ε
√
μ(Q+ε

1
2 R̄)<0} ≤ 2|R|1{μu+ε

√
μ(Q+ε

1
2 R̄)<0} which proves

(6.1.12). Furthermore given F1 and F2, we have

|F+
1 − F+

2 | ≤ |F1 − F2|.
|F−

1 − F−
2 | ≤ 2|F1 − F2|.

In fact, fixed (x, v),without loss of generality suppose F1(x, v) ≥ F2(x, v). If F2(x, v) >
0 there nothing to show. Thus assume F2(x, v) ≤ 0. If F1(x, v) ≤ 0 then F+

1 (x, v) =
F+
2 (x, v) = 0 and the inequality is obviously verified. Therefore we only need to con-

sider the case F1(x, v) > 0 and F2 ≤ 0. We have

|F+
1 (x, v)− F+

2 (x, v)| = F1(x, v) ≤ F1(x, v)− F2(x, v) = |F1(x, v)− F2(x, v)|.
Moreover, since F− = F+ − F , |F−

1 − F−
2 | ≤ |F+

1 − F+
2 | + |F1 − F2| ≤ 2|F1 − F2|.

Therefore, with Ri defined by (6.1.6) and R̄i by (6.1.9), it follows that

ε
3
2 |R̄1 − R̄2| = √

μ
−1
u |(F+

1 − μu − ε
√
μuQ)− (F+

2 − μu − ε
√
μuQ)|

= √
μ

−1
u |F+

1 − F+
2 | ≤ √

μ
−1
u |F1 − F2|

= √
μ

−1
u |(F1 − μu − ε

√
μuQ)− (F2 − μu − ε

√
μuQ)|

= ε
3
2 |R1 − R2|.

Hence (6.1.13) is proved. Furthermore

|R̃1 − R̃2| ≤ 2|R1 − R2|(1{μu+ε
√
μu(Q+ε

1
2 R1)<0} + 1{μu+ε

√
μu(Q+ε

1
2 R2)<0}). (6.1.15)

In fact, since F−
1 − F−

2 vanishes outside of the set

{μu + ε
√
μu(Q + ε

1
2 R1) < 0} ∪ {μu + ε

√
μu(Q + ε

1
2 R2) < 0}

and ε− 3
2 |F1 − F2| = |R1 − R2|, we have

|R̃1 − R̃2| = ε− 3
2
√
μ

−1
u |(F−

1 − μu − ε
√
μuQ)− (F−

2 − (μu − ε
√
μuQ)|

= ε− 3
2
√
μ

−1
u |F−

1 − F−
2 |



Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle 813

≤ 2ε− 3
2
√
μ

−1
u |F1 − F2|(1{μu+ε

√
μu(Q+ε

1
2 R1)<0} + 1{μu+ε

√
μu(Q+ε

1
2 R2)<0})

= 2|R1 − R2|(1{μu+ε
√
μu(Q+ε

3
2 R1)<0} + 1{μu+ε

√
μu(Q+ε

3
2 R2)<0}).

��
As for the boundary conditions, we have

μu + ε f1μ
1
2
u + ε2(χ f2 + χ̄φε)μ

1
2
u + ε

3
2 Rμ

1
2
u

= Pw
γ [μu + εχ f1μ

1
2
u + ε2(χ f2 + χ̄φε)μ

1
2
u + ε

3
2 R̄μ

1
2
u ].

Therefore, subtracting this equations from (1.33),

ε2χ( f2 − φε)μ
1
2
u + ε

3
2 Rμ

1
2
u = Pw

γ [ε2χ( f2 − φε)μ
1
2
u + ε

3
2 R̄μ

1
2
u ].

Hence
R = Pu

γ R + ε
1
2 r̄ + Pu

γ R̃, (6.1.16)

with

r̄ = Pu
γ [χ( f2 − φε)] − χ( f2 − φε).

We have ∥∥∥
∫
R3

dv[μu +
√
μuεQ]v · n

∥∥∥∞ = ε∞ on ∂�. (6.1.17)

In fact∫
R3

dv(μu + (ε f1 + ε
2φε)

√
μu)v · n =

∫
R3

dvM1,ε(u+u),1v · n = εn · (u + u) = 0,

(6.1.18)

on ∂� because u = −u on ∂�, see (1.14). We have also
∫
R3 dv(μu + ε

√
μu f1)v ·n = 0

on ∂� and hence
∫
R3 dv

√
μuφεv ·n = 0 on ∂�. Therefore, by (1.31), since u|∂� = −u,

∣∣∣
∫
R3

dv n · v√μuχφε

∣∣∣ =
∣∣∣ −

∫
R3

dv n · v√μuχ̄φε

∣∣∣ ≤ e−ε−m |u|2 � ε∞ on ∂�.

(6.1.19)
Since Pu f2 = 0, in the same way we obtain

∣∣∣
∫
R3

dvn · v√μuχ f2
∣∣∣ =

∣∣∣ −
∫
R3

dv n · v√μuχ̄ f2
∣∣∣ ≤ e−ε−m |u|2 � ε∞ on ∂�,

(6.1.20)
because | f2| ≤ √

μuP�|(|∇u| + |u|2) and ∇u is bounded in L p for any p > 4
3 and

(6.1.17) follows.
The boundary conditions for F imply∫

R3
Fdv v · n = −

∫
{v·n>0}

dv F−n · v,

on ∂�. Therefore we have∫
R3

dv
√
μuRv · n = −

∫
v·n>0

dv
√
μu R̃n · v + O(ε∞)
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Lemma 6.4. ∥∥∥
∫
v·n<0

dv r̄
√
μun · v

∥∥∥∞ � ε∞. (6.1.21)

Proof. Wehave r̄ = Pu
γ (χ f2−χ̄φε)−(χ f2−χ̄φε) and, using (5.3.10),

∫
v·n<0 dv r̄

√
μun·

v = ∫
R3 dv

√
μu(χ f2 − χφε)n · v. (6.1.19) and (6.1.20) imply (6.1.21). ��

We rewrite the problem (6.1.1), (6.1.2) using the decompositions (6.1.6) and (6.1.9).
Recalling the definitions of f1, f2 and the incompressible Navier–Stokes equations, we
are reduced to construct the solution to the problem:

v · ∇R + ε−1LuR = L(1)u R̄ + ε
1
2�u(R̄, R̄) + ε

1
2 Āu, (6.1.22)

R
∣∣∣
γ−

= Pu
γ R + ε

1
2 r, (6.1.23)

where

L(1)u R̄ = 2�̃u(Q, R̄), (6.1.24)

Pu Āu = Pu[χ̄v · ∇(φε − f2)] (6.1.25)

(I − Pu) Āu = (I − Pu)(v · ∇(χ f2 + χ̄φε))

−�̃u(2 f1 + ε(χ f2 + χ̄φε), χ f2 + χ̄φε) + ε
−1Lu[χ̄(φε − f2)], (6.1.26)

r = r̄ − ε− 1
2 Pu

γ R̃. (6.1.27)

In fact, recalling (1.21) and (1.20), we have

Lu(χ f2)− �u( f1, f1) + (I − Pu)(v · ∇ f1) = −Lu(χ̄ f2),

and

Pu(v · ∇χ f2) = −Pu(v · ∇χ̄ f2),

so that

v · ∇(χ f2) = (I − Pu)(v · ∇(χ f2))− Pu(v · ∇(χ̄ f2)).

Therefore,

Āu := ε−( 12 + 3
2 )

{
ε{(I − Pu)(v · ∇ f1) + Lu(χ f2)− �u( f1, f1)} + εLu(χ̄φε)

+ε2v · ∇(χ f2 + χ̄φε)− ε2�̃u((χ f2 + χ̄φε), 2 f1 + ε(χ f2 + χ̄φε))
}

= −ε−1Lu(χ̄ f2) + ε
−1Lu(χ̄φε) + (I − Pu)(v · ∇(χ f2))

−Pu[(v · ∇(χ̄ f2)) + v · ∇(χ̄φε)− �̃u((χ f2 + χ̄φε), 2 f1 + ε(χ f2 + χ̄φε))

= ε−1Lu[χ̄(φε − f2)] + Pu[v · ∇(χ̄(φε − f2))] + (I − Pu)(v · ∇(χ f2 + χuφε))

−�̃u((χ f2 + χ̄φε), 2 f1 + ε(χ f2 + χ̄φε)).

Proposition 6.5. Let X ∈ L p(�c × R
3) and X̄ and X̃ be defined as X̄ and R̃, as in

(6.1.7) and (6.1.8). Assume p > 1, |u| � 1, Then:
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(1) Let w(v) be such that w−1 � √
μβu〈v〉−β ′

for some 0 < β � 1 and β ′ > 0. If

ε
1
2 ‖wX‖∞ is bounded, then

|Pu
γ X̃ |2,− � [ε(|u| + ε 1

2 ‖wX‖∞)]1+β |X |2,+. (6.1.28)

|Pu
γ X̃ |∞,− � [ε(|u| + ε 1

2 ‖wX‖∞)]1+β |X |∞,+. (6.1.29)

(2) Given X1 and X2 such that ε
1
2 ‖wXi‖∞ are bounded, then,

|Pu
γ [X̃1 − X̃2]|2,− � [ε(|u| + max

i=1,2
(ε

1
2 ‖wXi‖∞))]1+β |X1 − X2|2,+. (6.1.30)

|Pu
γ [X̃1 − X̃2]|∞,− � [ε(|u| + max

i=1,2
(ε

1
2 ‖wXi‖∞))]1+β |X1 − X2|∞. (6.1.31)

(3) �±
u (X̄ , X̄) ≤ �±

u (|X |, |X |)| and |�±
u (X̄1, X̄1) − �̃±

u (X̄2, X̄2)| � �̃±
u (|X1| +

|X2|, |X1 − X2|).
Proof. To prove (6.1.28), note that

1{μu+ε
√
μu{Q+ε

1
2 X}<0} ≤ 1{√μu<ε(|Q|+ε 1

2 ‖wX‖∞)w−1}

Therefore, by (6.1.12), since w−1 � √
μβu〈v〉−β ′

for some 0 < β � 1 and β ′ > 0, and
|Q| � |u|√μu〈v〉� for some � > 0, we have

|Pu
γ X̃ | ≤ 2

μ√
μu(v)

∫
v′·n>0

dv′√μu(v′)|v′ · n|1{√μu(v′)<ε(|Q|+ε 1
2 ‖wX‖∞w−1)}|X |dv′

≤ 2‖X |v · n| 12 ‖L2
v

μ√
μu(v)

×
( ∫

R3
dv′w−2(v′)1{√μu(v′)<ε(|Q|+ε 1

2 ‖wX‖∞w−1)}μu(v
′)|v′ · n|

) 1
2

� [ε(|u| + ε 1
2 ‖wX‖∞)]1+β‖X |v · n| 12 ‖L2

v

μ√
μu(v)

, (6.1.32)

because
∫
R3 dv′〈v〉−2β ′

(v′)|v′ · n| � 1 by choosing β ′ > 2. Therefore

∫
γ−

dv|Pγ X̃ |2 � [ε(|u| + ε 1
2 ‖wX‖∞)]2+2β |X |22,+, (6.1.33)

so (6.1.28) is proven.
We also have

|Pu
γ X̃ | ≤ ‖X‖∞

μ√
μu(v)

( ∫
R3

dv′w−2(v′)1{√μu(v′)<ε(|Q|+αw−1)}μu(v
′)|v′ · n|2

) 1
2

� [ε(|u| + ε 1
2 ‖wX‖∞)]1+β‖X‖∞

μ√
μu(v)

, (6.1.34)

from which (6.1.29) follows.
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To prove (2), we observe that, if ‖wXi‖∞ ≤ α, by (6.1.14)

|Pu
γ (X̃1 − X̃2)| ≤ 4α

μ√
μu(v)

∫
v′·n>0

dv′√μu(v′)v′

·n|X1 − X2|1√μu(v′)<4εαw−1}dv
′. (6.1.35)

The rest of the proof is as before.
Statement (3) follows immediately from (6.1.11) and (6.1.13). ��

Proposition 6.6. Let u be the solution to the incompressible Navier–Stokes equations.
Then, if ε � 1,

• for any p > 1
‖Pu Āu‖p � ε∞; (6.1.36)

• for any p > 4
3

‖(I − Pu) Āu‖p � |u|; (6.1.37)

•
‖ν− 1

2 L(1)u X̄‖p � |u|‖X‖ 3p
3−p

for p < 3, (6.1.38)

‖ν− 1
2 L(1)u X̄‖p � |u|‖wX‖∞ for p ≥ 3. (6.1.39)

Proof. First note that, by (6.1.25), since f1 = √
μuvu · u and f2 = ∑3

i, j=1Bi, j∂i u j +

L−1
u �u( f1, f1), we obtain

Pu Āu = Pu

{
χ̄vu · ∇φε + χ̄

3∑
j1, j2, j3=1

u j2∂ j1u j3v j1L
−1
u �u(vu, j2

√
μu, vu, j3

√
μu)

+ χ̄
[√

μu

3∑
j1, j2, j3=1

v j1B j2. j3∂ j1∂ j2u j3

]}
. (6.1.40)

We recall that from [12], Th. X.6.4, we know that, if u �= 0, then u ∈ L p for any
p > 2, Du ∈ L p for any p > 4/3 and D2u ∈ L p for any p > 1. Therefore, for any
p ≥ 1, ‖uDu‖p � 1. Moreover, for any β > 0,

χ̄μ
β
u ≤ exp[−β

2
ε−2m] � ε∞, (6.1.41)

and we obtain that the second term is less than ε∞ in L p-norm, for any p ≥ 1. From the

definition of φε we have Dφε ∼ μ
1
2
u |u||Du| and hence also the first term is less than ε∞

in L p-norm, for any p ≥ 1. Finally, since ‖D2u‖p � 1 for any p > 1, the third term is
less than ε∞ in L p-norm, for any p > 1, so the first item of Proposition 6.6 is proved.

Toprove the second itemwefirst observe that, for any p > 1,‖�u(χ f2+χ̄φε, f j )‖p �
1. This follows as the estimate of ‖�u( f1, f1)‖p. Next we need to take care of the term
ε−1Lχ̄ (I−Pu)(v · ∇ f1) entering in f2. Since this is proportional to Du this is bounded
in L p for p > 4

3 . The diverging factor ε−1 is dealt with using (6.1.41).
To prove third item we remind that ‖u‖3 � |u| for |u| � 1 (proof in “Appendix A”)

and hence also ‖ f1‖3 � |u|. We use the definition of L(1)u , the inequalities (6.1.11) and

for any p ≥ 1 and q−1 + q ′−1 = 1, ‖ν− 1
2�u( f, g)‖p ≤ ‖ν 1

2 f ‖pq‖g‖pq ′ with q such

that pq = 3 and hence pq ′ = 3p
3−p to conclude. ��
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6.2. Iteration. The construction of the solution is obtained as follows: we define the
sequence {R}∞�=0 as: R0 = 0; R�+1 is the solution to the linear problem

v · ∇R�+1 + ε
−1LuR�+1 = L(1)u R̄� + ε

1
2�u(R̄�, R̄�) + ε

1
2 Āu, (6.2.1)

with boundary conditions

R�+1 = Pu
γ R�+1 + ε

1
2 r�, (6.2.2)

where
r� = r̄ − ε− 1

2 Pu
γ R̃�. (6.2.3)

By denoting ḡ = L(1)u R̄� + ε
1
2�u(R̄�, R̄�) + ε

1
2 Āu, we are reduced to the linear problem

studied in the previous sections.
Remind the definition (1.38) of [[ · ]]β,β ′ . Since in the rest of this section β and β ′ are

fixed, we drop the indices. Let X be the Banach space of the functions X (x, v) such
that [[X ]] is finite.
Theorem 6.7. There are ϑ < 1 and c0 � 1 such that, if ε � 1 and |u| ≤ c0ϑ , and

sup
0≤ j≤�

[[R j ]] ≤ ϑ, (6.2.4)

then
[[R�+1]] < ϑ. (6.2.5)

Moreover, there is λ < 1 such that

[[R�+1 − R�]] ≤ λ[[R� − R�−1]]. (6.2.6)

Therefore R� converges [[ · ]]-strongly to R ∈ X which solves (6.1.22), (6.1.23).

Proof. ByTheorem 1.5, we need to show that, when g = ε
1
2�u(R̄�, R̄�)+L

(1)
u R̄�+ε

1
2 Āu

and r = r̄ + ε− 1
2 Pu

γ R̃�, if ε � 1, |u| � 1, thenM (g, r) < ϑ .
We need to bound all the term in the right hand side of (1.44). To estimate the norms

of �u( f, h) we state the following

Proposition 6.8. We have the following estimates: let X ∈ X . Then

ε
1
2 ‖ν− 1

2�u(X̄ , X̄)‖2 � [[X ]]2, (6.2.7)

ε
1
2 ‖ν− 1

2w�u(X̄ , X̄)‖∞ � ε− 1
2 [[X ]]2, (6.2.8)

ε
1
2 ‖ν− 1

2�u(X̄ , X̄)‖ 3
2

≤ ε− 1
2 [[X ]]2. (6.2.9)

Proof. We make use of the following inequality (see [9]):

‖ν− 1
2�±( f, h)‖ qp

q+p
� ‖ν 1

2 f ‖q‖h‖p, (6.2.10)

In particular, for q = 3, p = 3 we get

‖ν− 1
2�±

u ( f, h)‖ 3
2

≤ ‖ν 1
2 f ‖3‖h‖3, (6.2.11)

and for q = 3, p = 6,

‖ν− 1
2�±

u ( f, h)‖2 ≤ ‖ν 1
2 f ‖3‖h‖6. (6.2.12)
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We will also use
‖ν− 1

2�±( f, h)‖2 � ‖ f ‖ν‖h‖∞, (6.2.13)
and

‖〈v〉−1�±
u ( f, h)‖∞ ≤ ‖ f ‖∞‖h‖∞. (6.2.14)

By (6.1.11),

|�±
u (X̄ , X̄)| ≤ �±

u (|X̄ |, |X̄ |) ≤ �±
u (|X |, |X |).

We split |X | ≤ |(I − Pu)X | + |PuX |. We have

�±
u (|X |, |X |) ≤ �±

u (|(I − Pu)X |, |(I − Pu)X |) + �±
u (|PuX |, |PuX |)

+ 2�̃±
u (|(I − Pu)X |, |PuX |),

where �̃±
u ( f, g) = 1

2 [�±
u ( f, g) + �

±
u (g, f )].

Using (6.2.12) we get

ε
1
2 ‖ν− 1

2�±
u (|PuX |, |PuX |)‖2 � (ε

1
2 ‖PuX‖)3‖PuX‖6 ≤ [[X ]]2. (6.2.15)

Using (6.2.13) we get

ε
1
2 ‖ν− 1

2�±
u (|(I − Pu)X |, |(I − Pu)X |)‖2 ≤ ε(ε

1
2 ‖(I − Pu)X‖)∞(ε−1‖(I − Pu)X‖ν)

≤ ε[[X ]]2. (6.2.16)

Similarly,

ε
1
2 ‖ν− 1

2 �̃±
u (|(I − Pu)X |, |PuRn|)‖2 ≤ ε(ε

1
2 ‖PuX‖)∞(ε−1‖(I − Pu)X‖ν) ≤ ε[[X ]]2.

(6.2.17)
Therefore (6.2.7) follows. Moreover, by (6.2.14), (6.2.8) follows.
Since

ε
1
2 ‖�±(|(I − Pu)X |, |(I − Pu)X |)‖ 3

2
≤ ε

1
2 ‖(I − Pu)X‖23,

and, by interpolation, ‖(I − Pu)X‖3 � ‖(I − Pu)X‖
1
2
ν ‖(I − Pu)X‖

1
2
6 , then

ε
1
2 ‖�±(|(I − Pu)X |, |(I − Pu)X |)‖ 3

2
≤ ε

3
2 (ε−1‖(I − Pu)X‖ν‖)‖(I − Pu)X‖6.

Since

‖(I − Pu)X‖6 � ε
1
3 ‖ε−1(I − Pu)X‖

1
3
ν ε

− 1
3 ‖ε 1

2 (I − Pu)X‖
2
3∞ ≤ [[X ]], (6.2.18)

we have
ε

1
2 ‖�±(|(I − Pu)X |, |(I − Pu)X |)‖ 3

2
≤ ε

3
2 [[X ]]2. (6.2.19)

Moreover,

ε
1
2 ‖�̃±(|(I − Pu)X |, |PuX |)‖ 3

2
≤ (ε

1
2 ‖PuX‖3)‖(I − Pu)X‖3

� (ε
1
2 ‖PuX‖3)‖(I − Pu)X‖

1
2
ν ‖(I − Pu)X‖

1
2
6 ≤ ε

1
2 [[X ]]2. (6.2.20)

Finally

ε
1
2 ‖�±(|PuX |, |PuX |)‖ 3

2
≤ (ε

1
2 ‖PuX‖3)‖PuX‖3

≤ ε− 1
2 (ε

1
2 ‖PuX‖3)2 ≤ ε− 1

2 [[X ]]2. (6.2.21)

and (6.2.9) follows. ��
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Now we are ready to bound the several terms entering inM .

Proposition 6.9. If |u| � 1 and ε � 1 then, with

!� = sup
0≤ j≤�

[[R j ]],

we have

M
(
ε

1
2�u(R̄�, R̄�) + L(1)u R̄� + ε

1
2 Āu, r�

)
� !4

� + |u|2!2
� + ε|u|2 + ε∞. (6.2.22)

Proof. With g = ε
1
2�u(R̄�, R̄�) + L(1)u R̄� + ε

1
2 Āu, we have

‖ν− 1
2 (I − Pu)g‖22 ≤ ε‖ν− 1

2�u(R̄�, R̄�)‖22 + ‖ν− 1
2 L(1)u R̄�‖22 + ε‖ν− 1

2 (I − Pu) Āu‖22
� [[R�]]4 + |u|2[[R�]]2 + ε|u|2, (6.2.23)

by using (6.2.7), (6.1.38), (6.1.36) and (6.1.37).
The next term in (1.44) is

ε‖ν− 1
2 (ε

1
2�u(R̄�, R̄�) + L(1)u R̄� + ε

1
2 Āu)‖23

2

≤ ε‖ν− 1
2 ε

1
2�u(R̄�, R̄�)‖23

2
+ ε‖ν− 1

2 L(1)u R̄�‖23
2

+ ε‖ν− 1
2 ε

1
2 Āu‖23

2
� [[R�]]4 + ε|u|[[R�]]2 + ε4|u|2, (6.2.24)

by using (6.2.9), (6.1.38), (6.1.36) and (6.1.37).
Then we have

ε3
∥∥∥〈v〉−1w

[
ε

1
2�u(R̄�, R̄�) + L(1)u R̄� + ε

1
2 Āu

]∥∥∥2∞
≤ ε3

∥∥∥〈v〉−1wε
1
2�u(R̄�, R̄�)

∥∥∥2∞ + ε3
∥∥∥〈v〉−1wL(1)u R̄�

∥∥∥2∞ + ε3
∥∥∥ε 1

2 〈v〉−1w Āu

]∥∥∥2∞
� ε2[[R�]]4 + ε2|u|[[R�]]2 + ε2|u|2, (6.2.25)

by using (6.2.8), (6.1.39), (6.1.36) and (6.1.37).
Since Pug = Pu Āu, the term ‖Pug‖22 + ε−2|u|2‖Pug‖26

5
in (1.44) is bounded by ε∞

using (6.1.36). Next we bound

‖zγ (r�)‖22 � ‖zγ (r̄)‖22 + ε−1‖zγ (Pu
γ R̃�)‖22. (6.2.26)

The first term is bounded by ε∞ using (6.1.21). Moreover, by (6.1.28),

(ε
1
2−2σ |u|−2+2� + |u|−1ε−1)ε−1‖zγ (Pu

γ R̃�)‖22
≤ ε−2|u|−1[ε(|u| + ε 1

2 ‖wR�‖∞)]2(1+β)|R�|22,+
≤ ε2β |u|−1(|u| + ε 1

2 ‖wR�‖∞)2(1+β)|R�|22,+
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To bound |R�|2,+ we use Lemma 2.2 and (6.2.1) with � replaced by �− 1 to obtain

|R�|22,+ � ‖PuR�‖26 + (ε−1‖(I − Pu)R�‖ν)2 + ε‖ν− 1
2�u(R̄�−1, R̄�−1)‖2

+ ‖ν− 1
2 L(1)u R̄�−1‖22

+ ε‖ν− 1
2 Āu‖22 � [[R�]]2 +!4

� + |u|2!2
� + ε|u|2, (6.2.27)

by using (6.2.7), (6.1.38), (6.1.36) and (6.1.37). Hence, since ! < ϑ < 1, for ε � 1
we have

(ε−2σ |u|−2+2� + |u|−1ε−1)ε−1‖r�)‖22
� ε∞ + ε2β |u|−1(|u| + [[R�]])2(1+β){[[R�]]2 +!4

� + |u|2!2
� + |u|2}

� !4
� + |u|2!2

� + ε|u|2 + ε∞, (6.2.28)

The terms |r |22,−is treated in a similar way. As for ε|wr |∞ we proceed as before using
(6.1.29), (6.2.8), (6.1.39) and (6.1.36) and (6.1.37).

Collecting the estimates, since ε < 1, we conclude that

M
(
ε

1
2�u(R̄�, R̄�) + L(1)u R̄� + ε

1
2 Āu, r�

)
� !4

� + |u|2!2
� + ε|u|2 + ε∞ (6.2.29)

��
Since !� ≤ ϑ , from (1.43) we obtain

[[R�+1]]2 ≤ ϑ2[ϑ2 + c20ϑ
2 + c20 + ε

∞ϑ−2] < ϑ2, (6.2.30)

provided that

ϑ2 + c20ϑ
2 + c20 + ε

∞ϑ−2 < 1.

This is verified if ϑ � 1, ε � 1, c0 � 1.
The same arguments prove (6.2.6), by using (6.1.13) and (6.1.14). The sequence

{R�} thus converges strongly to R such that [[R]] < ϑ . It is standard to check that R
solves (6.1.22). Since convergence in [[ · ]] implies pointwise convergence, by (6.1.14)
it follows that R satisfies (6.1.23). ��

Therefore F = μu+εQ+ε
3
2 R solves the problem (6.1.1), (6.1.2) and hence it is positive

by construction. Moreover, it is in L∞, even if not uniformly bounded in ε. We can use
Proposition 6.1 to conclude that it is also solution to the original problem (1.1), with
boundary condition (1.8) and condition at infinity (1.12). The same estimates also prove
uniqueness in the larger space because we can drop the assumption β > 0 which was
used before only to deal with terms appearing in the modified problem (6.1.1), (6.1.2).
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Appendix A. Bounds on the Velocity Field

Proposition A.1. If |u| is sufficiently small, then the solution to the problem

U · ∇U + ∇ p = 
U, ∇ ·U = 0, in �c (A.1)

lim|x |→∞U = u, U
∣∣∣
∂�

= 0, (A.2)

is such that
‖U − u‖p � |u|, for any p ≥ 3. (A.3)

Proof. We first construct w(x) such that ∇ · w(x) = 0, lim|x |→∞ w(x) = u, and
w(x)|∂� = 0, with |w(x) − u| = 0 for x sufficiently large. In fact (see [18]) we can
choose

w = u − curl[χ(d(x, ∂�))(u2x3, u3x1, u1x2)],
where χ(z) is smooth with χ(z) = 1 for x < 1

2 and χ(z) = 0 for z ≥ 1. By construction
∇ · w = 0. Moreover, we have

curl[χ(d(x, ∂�))(u2x3, u3x1, u1x2)]
= χ ′(d(x, ∂�))∇xd(x, ∂�)(u2x3, u3x1, u1x2) + χ(d(x, ∂�))u

=
{
u x ∈ ∂�,

0 d(x, ∂�) > 1.

Clearly w− u is compactly supported and ‖w‖Ws,p � |u| for any p ≥ 1 and any s ≥ 0.
We then seek for U = w + v, with v such that

w · ∇v −
v + ∇ p = −(w + v) · ∇w +
w − v · ∇v (A.4)

lim|x |→∞ v = 0 v
∣∣
∂�

= 0. (A.5)

We construct the approximating sequence solving

w · ∇v� −
v� + ∇ p� = −(w + v�) · ∇w +
w − v�−1 · ∇v� (A.6)

lim|x |→∞ v� = 0 v�
∣∣
∂�=0 = 0, (A.7)

for � ≥ 1 and v0 = 0.
Step 1: By energy estimate and weak solution theory, we can show there is a solution v
to (A.4), (A.5), unique for |u| � 1, which is the weak limit of {v�} and for any �

‖∇v�‖L2 + ‖v�‖L6 � |u|.
Step 2: We now show that v ∈ L3 and ‖v‖L3 � |u|. Using ∂ ju = 0, ∇ · v� = 0 and
∇ · w = 0, we write the i-th component of (A.6) as

3∑
j=1

[u j∂ jv
�
i −∂2j v�i ]+∂i p� = −

3∑
j=1

∂ j
[−∂ jwi+(w j−u j )v

�
i +v

�
j (wi−ui )+w jwi+v

�−1
j v�i

]
.

(A.8)
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In Fourier space, we have (using the Leray Projector �, and k · v̂(k) = 0):

̂∂mv
�
i =

3∑
j=1

kmk j
|k|2 + iu · k �̂F{ − ∂ jwi + (w j − u j )v

�
i + v

�
j (wi − ui ) + w jwi + v

�−1
j v�i

}
.

We have
∣∣∣∂ lk kmk j

|k|2 + iu · k �̂
∣∣∣ ≤ 1

|k|l ,

independent of u. Hence we can use the Mihlin–Hormander theorem. Therefore, by

Sobolev embedding in 3D (W 1, 32 ⊂ L3) and the compact support of w − u, we obtain

‖v�‖L3 ≤ sup
m

‖∂mv�‖ 3
2

≤ ∥∥ − ∂ jwi + (w j − u j )v
�
i + v

�
j (wi − ui ) + w jwi + v

�−1
j v�i

∥∥
L

3
2

� |u|(1 + ‖v�‖6) + ‖|v�−1||v�|‖
L

3
2

� |u| + ‖v�‖L3‖v�−1‖L3 .

Therefore, ifwe assume the recurrence hypothesis sup
0≤m≤�−1

‖vm‖L3 ≤ C |u|, by choosing
|u| � 1 we obtain

‖v�‖L3 ≤ C |u|,
and the limit satisfies ‖v‖L3 ≤ C |u|.
Step 3: By differentiating the equation, from the energy inequality for the derivative we
obtain ‖Dv‖6 � |u| and hence ‖v‖∞ � |u|. By interpolation we conclude (A.3). ��
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