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Abstract: Given an obstacle in R and a non-zero velocity with small amplitude at
the infinity, we construct the unique steady Boltzmann solution flowing around such an
obstacle with the prescribed velocity as |x| — oo, which approaches the corresponding
Navier—Stokes steady flow, as the mean-free path goes to zero. Furthermore, we establish
the error estimate between the Boltzmann solution and its Navier—Stokes approximation.
Our method consists of new L® and L3 estimates in the unbounded exterior domain, as
well as an iterative scheme preserving the positivity of the distribution function.
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1. Introduction

Let € be a smooth bounded open subset of R3 and Q its closure. A gas moves in
Q¢ = R*\Q with prescribed velocity u at infinity and vanishing velocity on €2, evolving
according to the incompressible Navier—Stokes equations. The steady boundary value
problem for this system is classical in Fluid Mechanics and a huge amount of literature
has been devoted to it [2,11,18,19,21,26] (see also [12] and references quoted therein).
One of the main difficulties of this problem is related to the presence of the “wake” [28]
and the corresponding slow decay to u of the velocity field at infinity.

In the case of a rarefied gas, an alternative description is possible in terms of the
Boltzmann equation and suitable boundary conditions. In this paper we study the link
between these two descriptions in the small Knudsen numbers and low Mach numbers
regime.

It is well known that in this regime the time dependent Boltzmann equation behaves
as the incompressible Navier—Stokes equation, [3,4,7,14-16,22,24,27]. Much less is
know for the corresponding steady Boltzmann problem, where the natural L' and entropy
estimates are not available, and only the entropy production can be exploited.

Ukai and Asano [29,30], see also [31], studied the Boltzmann equation in the ex-
terior domain with fixed Knudsen number. They considered a rarefied gas outside a
piecewise smooth convex domain of R>, with suitable boundary conditions and a pre-
scribed Maxwellian behavior at infinity. The Maxwellian at infinity was centered at a
small velocity field. For this problem Ukai and Asano were able to prove existence of
the steady solution and its dynamical stability.

Our main result is the construction of the steady solution to the Boltzmann equation
in the exterior domain and the estimate of its closeness to the steady incompressible
Navier Stokes equation when Knudsen and Mach numbers are small. Recently in [9],
we have constructed the solution to the Boltzmann equation for small Knudsen and Mach
numbers in a smooth bounded domain, under the action of a suitably small external force
and small variations of the boundary temperature. The exterior problem is even more
difficult, due to the need of good decay properties for large x.

Before describing the difficulties to achieve our program, let us state more precisely
the problem and the result.

We assume that @ C R3 is a C? bounded domain, not necessarily convex. Let
x € Q = R\Qand v € R3. Let F(x,v) > 0 be the (unnormalized) distribution
function of a rarefied gas in Q¢ with position x and velocity v, satisfying the steady
Boltzmann equation

v VF = éQ(F, F), inQ° (1.1)
where V = V, and
O(f, &)(w) = Q¥ (f.8) — O (f, &)
0" (f.9)(v) = fRs dvy /{weR3:m|_1}de(w’ v — ) f(0)g()), (1.2)

O (f,9)) = f(v)/ v*/ doB(w, v — v4)g (V). (1.3)
R} J{weR3:|w|=1}

Here v’ and v, are the incoming velocities in the elastic collision, defined by

V=v—0@-—1) 0, V,=vit+t0@—1)" o, (1.4)
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and B(w, V) is the cross section for hard potentials with Grad’s angular cutoff, so that
f{lw\=1} dwB(V,w) < |V|? for 0 < 6 < 1 depending on the interaction potential. In
particular, B(w, V) = | - V| for hard spheres and § = 1.

We assume diffuse reflection boundary condition: Let y = Q2 x R? = y, Uy_ Uy,
with

yi:{(x,v)eanR3 :n(x)-v 20}, y0={(x,v)EBQXR3 :n(x)-v =0},

(1.5)
n(x) denoting the normal at x to d€2 pointing inside 2. Let
P v —uf?
Myur = exp[— ] (1.6)
(rT)2 2T
be the local Maxwellian with density p, mean velocity «, and temperature 7" and
1 v|?
nw=Mp1= 3 CXP[——]- (1.7
(27)? 2
On the boundary F satisfies the diffuse reflection condition defined as
F(x,v) =P)(F)(x,v) ony_, (1.8)
where
P)?(F)(x,v) = MY (x,v) dw F(x, w){n(x) - w}, (1.9)
{n(x)-w=>0}
with the wall Maxwellian defined as
» 1 v)? w
M :NQnuzz—-wp[———ﬂ, WM @)n-vl=1.  (1.10)
2 2 {vn20)

We also specify the condition at infinity. Since we study the problem in the small Mach
number regime, we assume that the velocity at infinity is of order ¢. In other words, fixed
a constant vector u, denoting

vy = — e, py (V) 1= w(vy) = My ey, 1(v), (L.11)
we assume in a suitable sense

lim F(x,v) = py(v). (1.12)

|x]—00

Note that we have prescribed the same uniform temperature on 92 and at infinity for sake
of simplicity, but we believe that a temperature difference of order ¢ could be included.
We do not discuss this. The case of sufficiently small difference of temperature for fixed
¢ has been discussed in [32].

Let the couple velocity field and pressure, (U, p), be solution to the Stationary In-
compressible Navier—Stokes equation (SINS) in Q€:

U-VU+VP=0vAU, V-U=0, U=00n0dR2, U — u, as|x| > o0
(1.13)
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where v > 0 is the viscosity coefficient. It is convenient to represent U = u + u, with
(u, P) solving
(wu+u)-Vu+VP =vAu, V-u=0, u=—-uond2, u— 0, as|x| — oo.
(1.14)

Solutions to this equation do exist in L?, for any p > 2 and uniqueness is ensured for
[u] small (see e.g. [12], Thm. X.6.4).

Our aimis to show that I &~ M ¢(,+y),1 as€ — 0.More precisely, since M1 ¢(y+u),1 =
M+ ef1 /1y, + 0(s2), where
J1=Viuu - vy, (1.15)

we need to show that e ~1(F — py) ~ fiy/w, ase — Oisin L? for any p > 2, with

- _1
the same decay of u. Therefore, we set R = 8_%/1,11 2F — oy — ef1 /i, ] and write the
equation for R. Let L,, be the usual linearized Boltzmann operator defined as

Luf = —py [0, 1 f) + Qg fo )l :=vf — Kf, (1.16)

where: v(v) = fR3X{|w‘=l}dv*da)B(v — Uy, W)L (vy) is such that 0 < v0|v|9 <v) <

vi|v]?; K is a compact operator on LZ(R%). L, is an operator on LZ(R?)) whose null
space is
Null L,, = span{1, vy, |vu|*}/Tus (1.17)

Let Py, be the orthogonal projector on Null L,,. In particular, L,, fj = 0. Thus we have

v-VR+e ' LyR = [Ty(fi, R)+Tu(R, f)l+e1Ty(R, R)y+e 2 [Ty(f1. f1)—v-V 1],

(1.18)
where
Tu(f 9) =Tu(f.9) =T, ([, 9),
FE(f 9) = a0 (ud £ 1l ),
Tu(f, o) = %[Fu(f, &) +Tulg N]- (1.19)
To remove the divergent term in (1.18), we note that, since V - u = 0, then
Py(v-Vfi) =0, (1.20)
and
H=L' - A=PY-Vfil+Tu(fi. /)] (1.21)

is well defined and is in L? for any p > %, because so is Vu (see e.g. [12], Thm. X.6.4).
Since u solves the SINS equation, then it is easy to check that

Py[v-Vf]=0. (1.22)

Therefore, by setting R = R—e2 Jf2, which means F = py +e(f1 +efa + S%R) NS
we see that F is a stationary solution to (1.1) if and only if R solves the equation:

v-VR+e 'LyR=LOR+eITy (R, R) +e2 Ay, (1.23)
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where
LR =20 (fi +¢f>, R) (1.24)
Ay = —A=PyY[v-VH]+204(f1, f2) +eTu(fo f2). (1.25)

Since u — 0 at oo, then f] and f> also go to 0 at co. Thus we have to impose

lim R =0. (1.26)

[x]—00

For f € L'(y+) we define

_1 1
PEf =y PYInd f1 = meﬂzw(f),

2y, (f)(x) =/ dv/p, ()|v - n(x)] f(x, v), (1.27)

fn(x)20)

2y, (f)(x) being the outgoing/incoming mass flux at x € 9<2. We will omit the index &
when there is no ambiguity.
The boundary condition for R is:

R=PUR+etr, (1.28)
where
r=P)fo— ¢l = (f2—¢e), ony_, (1.29)
with ¢, defined as
_1
b = 21y P [M1 euruy. 1 — B — E/Iou f1], (1.30)
such that .
$el < Cplul® + [u) expl—plv[*]  forany p < - (1.31)
Indeed, for x € 02, where u(x) = —u, we have u = M z+u),1 and hence
H = M1 euru),1 . =y + &/ f1 59 + Szvﬂu¢a . (1.32)

and, in consequence of © = P;}’ W, on y_ we have

1 1 1 1
fo + Ef1 108+ EPepid = P L + efi i+ pepd]. (1.33)
On the other hand the boundary condition (1.8) for F' gives on y_ ,

1 LTt 1 L3 1
[+ efipd + &% foug + e Rug = Py +efipg +&° foud +62 Ru).

Therefore, subtracting the last two equations
2, 5 3p 3 2, % w2 3 dp T 2. 03
e famg +E2 Ry — € ety = Py [e” fapu + €2 Ry — €7 e iy 1,

which implies (1.28).
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Note that, from the definition of A,,, it follows that

P, A, =0. (1.34)
Moreover, it can be checked that
2y (r) = / dvr/uyn-v =0. (1.35)
{v-n<0}
From the definition of r it follows that
7l - +rloo S Il (1.36)
Notation. Depending on the context, we denote || |, = ||f||Lp(Q§XR%) or [ fll, =

1
I fllzreg) ot L fllp = Il fllr@ey for 1 < p < oo | flly = [ fv2 2. We set | f]p,+ =
1
([, dyIf @, v)IP)7, with

fdy =f dS(x) dv|v-nx)|f(x,v). (1.37)
Y+ Q

{vn(x)20)

Finally, we define
[fNpp =& 1A =P flly+e 21 — P)) flo+ + 1Py flle + e2 Py f I3
o2 wf oo (1.38)
with the weight function w(v) = (v)% exp[B[v|2], where (v) = (1 + |v|?)2.

The main result is

Theorem 1.1. Let Q be a C? bounded open set of R and Q¢ = R3\Q. Fixu € R3 such
that 0 < |u] < 1. For any 0 < ¢ < 1 consider the steady boundary value problem

1
v-VF=—Q(F,F), inQ°
&

F(x,v):Mw[ Fv-ndv on y_, (1.39)
{v-n>0}
Iim F(x,v) = uy(v).
[x]—=00
Then
e the problem (1.39) has a positive solution which can be represented as

F =y + i [efi + 2 fr + 27 R, (1.40)
with f1 and f> given by (1.15) and (1.21), u solving (1.14), and R solving (1.23),
(1.28).
e R satisfies the bound
[RIlg.p < lul, (1.41)
forB' > 0and0 < B K }‘.
o Risuniqueinthe ball {f : [[fTlo,p < Iul}.
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Remark 1.2. Note that while the L2 norm of (I — Py) R is bounded and actually small as
e — 0, P, R is bounded uniformly in ¢ only in L°, while the L and L™ bounds of P, R

are divergent with 2. 1t turns out that that the L” norm of P, R is bounded for p > 2,
but the bound is not uniform in € for 2 < p < 6. This is the counterpart of the slow
decay of the velocity field u at infinity, which is well known in Fluid Dynamics, where
it is proved that the L? norm of  is unbounded. We do not know if a similar statement is
true for R, but it is certainly true for f which is linear in # and hence for e N(F = ).

Remark 1.3. We also note that combining the estimates implied by (1.41), it follows that
| R|l6 is bounded uniformly in €. In fact, we have ||PyR|l¢ < [R]] < |u| and

2
3

i 2 11
[@=PwRlle < [X=PORI Rl < ([RI3 (e 2[RID3 < [RT S Iul.
Since f] and f> are also bounded in L°, uniformly in &, we conclude that e =1 (F — j1,,)
is bounded in L uniformly in . The condition at infinity for F is verified in this sense.

Remark 1.4. The uniqueness is proved in the ball {f : [ flo,s’ S |ul}. No exponential
decay in v is required for uniqueness.

In Sects. 2-5 we shall consider the following linear problem:

v-Vi+e lLyf=g, (x,v)eQ°

1
f:P;'f+8§r, (X,U)e)/_, (142)
lim f=0.

|x|—00

By (1.34) and (1.35), P,g = 0 and z;,_(r) = 0 in the linearization of the problem
(1.23), (1.28). However, to prove the positivity of the solution to (1.1) we are going
to construct, we have to suitably modify the equation (1.1) and in the resulting linear
problem to be studied (1.34) and (1.35) are no more exact but P, g and z,, (r) are small
for ¢ small. Therefore in the next sections we shall drop the conditions (1.34) and (1.35).

We shall prove the following

Theorem 1.5. Fixed u with 0 < |u| K 1, if ¢ < 1, the solution to the linear problem
(1.42) satisfies the inequality

/N5 p S #(2.r), (1.43)

where
_1 _1 _
Mg, 1) = v 2 —Pygl3+elv 2g||§+e3||<v> YwgllZ, +elwrlZ _ +1rl3 _

2, =202 2y =242 2 —242 —1,-1 2
HIPugla+e = IIPuglls +e™ " ful TPugllg-+(ul T+ [ul T e ) llzy (3,
5

(1.44)

for,B/ZOandOS,B<<A—llandp>0.

Remark 1.6. We note that the terms in the second line of (1.44) vanish when the hydro-
dynamic part of g and the net mass flux of r vanish. This is the case for the problem
(1.23), (1.28). In the modified problem introduced for the proof of positivity they do not
vanish, but their contribution turns out to be small.
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Before going into a short sketch of the arguments we use, it is worth to comment the
choice of the power of ¢ in front of R, o = % Clearly, to deal with the non linear term
is easier when this power is large. However we are limited by the fact that f> does not
satisfy the boundary conditions and a power o > 2 would require the introduction of
a boundary layer correction with serious regularity issues due to the general geometry
(see [33] for the analysis of such problems). On the other hand o < % is required to
avoid a divergent contribution from the boundary terms in the energy inequality. It turns
out that the value o« = % is exactly what we need to bound the non linear term thanks to

the uniform estimate we are able to obtain for e% 1Py R||3.

Our analysis relies crucially on energy inequality to control entropy production. It
gives important information: the microscopic part of the solution (I — Py,) R is of order
¢ in L? and moreover |(1 — PR+ ~ JVE.

Our main technical achievement is establishing the linear estimate (1.43), [ f ]]/23 P <

M (g, r). The starting point is a new L estimate for P, f in Sect. 3, which extends the
one in the recent paper [9], while the L estimate follows directly from [9]. The key
observation is that the L® estimate for the macroscopic part of R, Py R, is valid in the
unbounded exterior region, thanks to scaling invariance in the homogeneous Sobolev
space H'. The proof, which requires a weak formulation and a careful choice of the test
functions, is also based on delicate estimates of the boundary terms.

However, to deal with the nonlinear part I'y (R, R), the L° estimate is not sufficient,
some control of the L3 estimate is required. Unlike in the bounded domains, the L°
bound alone cannot imply L3 bound, for |x| — oco. In fact, the L bound requires faster
decay as |x| — oo, which is a much stronger estimate than L® estimate. This gain of
lower integrability near infinity can be viewed as opposite to the velocity averaging ideas
which lead to higher integrability gain for bounded |x|. In fact, starting from the bound
for L® norm, we need to show bounds on lower p’s norms. By working on the balance

laws we can prove a uniform in & bound for e% 1Py f I3 for |x]| > 1, which is sufficient
to close our estimate (Sect. 6).

To this purpose, inspired by Maslova, [23], in Sect. 4, after multiplying the equation
by a smooth spatial cutoff function ¢ vanishing at <2, we rewrite the macroscopic
projection of the linear Boltzmann equation for f¢ = ¢f as a (non closed) system
for P, f¢ in the whole space (see Eqs. (4.30)—(4.32)) (in [23] a similar system was
introduced to solve the steady Boltzmann equation with ¢ = 1, with in-flow boundary
condition and asymptotic Maxwellian with prescribed mean velocity at infinity):

V, -b* +eu-Via® = s,
V(@b +ct) — e0Ab® +eu-Vib* =5,

3
V, - b5 — ek Act + zeu Vet = 54,

where Py, f¢ = [a% +b% - v, + %c‘“ (Jou|? — 3)1/1t,, and the sources s, s, s4 depend on
fand on ¢. For |u| <« 1 we study the above system via Fourier analysis, by means of a
decomposition of P, f¢ into high-frequency and low-frequency parts. Of course, in the
large |x| regime the low-frequency part is the difficult one and its treatment requires a
further decomposition in different contributions, the most delicate being the one for the
total mass, momentum and energy fluxes at the boundary, needed in Lemma 5.5, which
are obtained thanks to the condition 1t # 0, an ingredient also entering crucially in the
Fluid Dynamic treatment of the problem (see e.g. [12]). We establish in Sect. 5 very
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precise L? estimates p > 2 for the different parts of Py, f, because 1t # 0 ensures more
integrability than in the corresponding Stokes system. It is worth to stress that such

arguments, however accurate they are, only produce an estimate of [Py f|, ~ el

which would not be good enough for our purposes, we need at most ||[Py, f||3 ~ £ to
deal with the non linearity because of the limitation explained before. It is only thanks
to the essential uniform in ¢ estimate of ||Py, f|l¢ ~ 1, that, via a careful estimate of the
mass momentum and energy fluxes at the boundary in Sect.5.3 and interpolation, we
can obtain a bound /¢ ||Py |3 ~ 1, uniform in &.

It is well-known that it is challenging to prove positivity for steady Boltzmann solu-
tions. We succeed in this by suitably adapting and extending the positivity-preserving
scheme of Arkeryd and Nouri [1]. When dealing with the diffuse reflection boundary
condition for this new scheme we encounter an extra difficulty with a new term deter-
mining a potential violation of the vanishing net mass flux condition at the boundary, that
is controlled via accurate estimates in the large velocity set and the Ukai trace theorem
[29].

Finally we prove our main theorem in Sect. 6 via iteration, based on the linear estimate
(1.43). A crucial information we need to close the iteration is the smallness of the velocity
field when |u| is small. This estimate is proven in the “Appendix A”.

2. Energy Estimate

We shall use in many points the following two lemmas whose proof is standard and can
be found for example in [8]:

Lemma 2.1. Assume that f(x, v), h(x,v) € LP(Q°xR?), p > 2andv-V, f,v-V h €
)4
L7 T1(Q° x R?) and f|y,h|y € L*(0Q2 x R?). Then

// dxdv[(v~Vxh)f+(v~fo)h]:/ dyfh—f dyfh. 2.1
Q¢ xR3 Vi y—

Lemma 2.2. Assume Q1 is an open bounded subset of R? with 3(Q\Q) in C2, such
that {x € Q¢ |d(x, Q) < 1} C Q1. We define

1
¥ = {(x,v) € ys:ln(x)-v| > 8, §<|v| < 5h (2.2)

Then
/sl Ssoen 1 li@pne) + v Ve fllLiene)-

Remark 2.3. Since, as proved in [8], page 194, eq. (3.8), |P;f|2’i < |P;flyi |2+ and

892 < V3 < 87%/2 from previous lemma applied to vf2 we get

_1
1Py flax So I fll2@ne + IV 20 Vil 2@ o) (2.3)

Next two lemmas are useful to bound the boundary terms in the energy inequality:
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Lemma 2.4.
‘[ dS/ duv-n|P;f|2—/ dS[ dvlv-nl| P} f12
Q2 {v-n>0} Q2 {v-n<0}
Selul [ 1fPdy. (2.4)
Y+
‘/ dS/ dvv-nPYf(1 - P;)f} el | 1fPdy. 2.5)
Q2 {v-n>0} V+

Proof. From the definition of PY,

/ dv|v~n||P;‘f|2=\/27t|zy(f)|2 deZnuzu;1|v~n|.
{v-n20} { 0}

vnZ

Since by (1.32)

wrugt == — wpyg' = 1 — plew - vaty + &2 de /Ity

2

=1 — epu - vy — &2 ety
_1
/ dvv2r g o - n = / dvv2|v - nllp — epu - vy — £ e iy *]
{v-n20}

{v-n20}

=1—8/ dvv2m|v - nlpu- (v —eu)
{v-n20}

_1
—82/ dov/2m o - nldelimy = 1+ O(elul).
{v-n=0}

-
The last term is bounded because, by (1.32), |¢:| < |u|>us . Therefore

/ QP F12 = V212, (FIP(1 + OCelul).
{v-n20}
Thus
‘/ dsf duu.n|P;‘f|2—/ dS/ dvfv - n|| P f?
Q2 {v-n>0} Q2 {v-n<0}

< 0(s|u|>f dSlz, (f)I?
Q2

and this proves (2.4), because

/ dS|z, (NI < |f134- (2.6)
Q2
To prove (2.5) we note that
/ dvv-nP/f(1=P))f = dvv-nfP)f — dvv-n|P;‘f|2.
{v-n>0} {v-n>0} {v-n>0}

1

/ dvv-nfP)f =~2mz,(f) dvv-nfuuy,’
{v-n>0}

{v-n>0}
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1 _1
= 2mz, (f) - dvv - nflpd + (e — )iy °]

=~/E|Zy<f)|2+@|zy<f>|/{ ) dvv-nf(p — p) iy

_1 1
Using again (1 — pu) iy > = 8- Uyptd + &2,

1

_1 7
[ avoens- ot <eti([avons?)’
{v-n>0} {v-n>0}

1
2

X(/ dv v - nlfou P + elul 2Ig:[2])
{v-n>0}

1

§8|u|(/ dvv'nfz)7
{v-n>0}

Therefore
1
]/ dS/ dvv-nPYf(1 —P;)f‘ < s|u|/ dS|zy(f)|</ dvv-nf2>2
aIQ {v-n>0} aIQ {v-n>0}
< slull 3.4,
and this concludes the proof. 0O
Lemma 2.5. For any n > 0,
3, pu 1 2 2 3112
‘ ds du|v-n|eeryf) S =l MG +enlfB,+e3 3. @)
IR {v-n<0} n
Proof. We note that
_1
s%/ rPY fdvlv-n| = 2321z, (f) dvrlv-nlpuy
{v-n<0} {v-n<0}
1 1 1
=221z, (f)zy (r) + €227z, (f) dvriv-nl(p — )y’
{v-n<0}

The integral on €2 of the first term is bounded by

E%NE/ dS|zy(r>|zy<f)|si—”/ dS|zy(r)|2+ne/ dSlz, (f)I?
02 n Jag 02

S Mizy N3 +enl £13.,]:

The second by is bounded by

1 _1
e [ asin ([ durloenle o
Q {v-n<0}

3 2)2 3 2 2
sertl | as( [ dvlvenilr?) iz, (01 = el -+ 1B
0 {v-n<0}

and we obtain (2.7). O
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For fixed ¢ the construction of the solution to the linear problem (1.42) is standard,
see e.g. [23]. To prove Theorem 1.5, we begin with the energy inequality.

Proposition 2.6. For |u| sufficiently small the solution to (1.42) satisfies the inequality
— — 1
e A=POFIF+e 1= PO, S Iv A= Py)gl3
1
+uPIPufIE+ L+ eDrl3

+(eluD) iz ()13 + e—2|u|—2||P,.lg||2g + IPugli3. (2.8)

Proof. Use (2.1) with h = f. Then, multiplying by ¢! we have

1 1
—5*1/ dyfz__{l/ dyf2+872/ dxdvauf—fl/ dxdvfg=0.
2 ” 2 y_ QCxR3 QcxR3

We use the spectral inequality (see e.g. [6], Th. 7.2.5),

e_zf dxdv fLyf 2 e 20— Py) f%.
Q¢ xR3

Moreover, using the Holder inequality to bound |(Py, f, Py, g)| < [Py fll6lIPugll 6

_ _ _1 _
: 1\/ dxdufg| < e IA= POV A= POglz + e IPu S lslPuglly
xR
1

1 I
<me A =P FII?+—Iv 2A = Pgl? + mlPufIIZ +
<me “A=PfI; 4mllv I =Pwgly +mlPuflis e

IPugl?.
5
(2.9)

From the boundary conditions, on y_ we have f = P}}* f+ 77 Hence, using
Lemma 2.5,

5—1/ dyf2=s—1/ dy[P;f+s%r]2=s—1/ dy(|P;f|2+s|r|2+2g%rP;f)
- _ Y-
- 3 1
—¢ 1[/ dyIPJ’;‘f|2+g|r|%’_+82|r|%’_+;||zy(r)||%+8n|f|%’+]. (2.10)
Y-

Moreover

5—1/ dyf2=8_1/ dy[(l—P;>f]2+s‘1/ dy [P} [T
Y+ Y+

Y+

*28_1/V dy[(1 = PO FILPY f1.

The last term is bounded by (2.5) and the second is replaced by [ v [Pj}1 f1? by using
(2.4). Then (lu] + )| f13, is split into (u| + |1 = PH I3, + (ul +mIPFfI3,

Collecting the terms and choosing 1 = |u], 7 sufficiently small and 7, = |u|> we have
the energy inequality

e NA=PYfIF+e (1= P flos
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1 1 1
ST IA = Py)gll; + WnPuguzg +(1+e2)|rf5 _
+(Elul) " lzy 15 + Wl PYF 154 + P[P f G,

where we have used [, [(1 — PO = ull(1 = POfE, 2 11— PYFI5, for [u|
sufficiently small. Next we use (2.3) to bound

_ _1
Py f B0 < Tl F 720,00 + 1Ulle ™ A =P Fl72g,\q) + U1V 2811720, q)

Moreover, we split ||f||%2(91\m = |- Pu)f||%2(91\9) + ||Puf||i2(91\9) and bound

IPuf117 200 q) S 20 IPufIG:

Finally, we bound

_1 _1
7281172 g0 S V72 A = Pugll3 + IPugll.
We have so proved (2.8). O

Proposition 2.7. Let w = eﬁ/“"z(v)ﬁ. Then, for0 < B’ < 1/4 and B > 0 we have

1 _ 1 3 _
e2lwflire@ey S e A =P fllv +IPuflle+ 2w rloo + €21 (v) " w gl
@2.11)

Proof. Asin [9], Prop. 2.6. O

3. L Estimate of P,, f

Given g and r, we consider the weak version of the linear problem (1.42): for any test
function v,

/ dyfy — dxdv fv-Vy +¢e7! / dxdvy Ly f
Vi Qe xR3

Q¢ xR3

=/ dxdvgl//+/ dy (PYf +e2r)y. 3.1)
Q¢ xR3

Remind that Py f = /fula + b - vy + 5(Jvu|> — 3)]. To get a L® bound on Py f
we bound separately the functions a, b and ¢ by means of suitable choices of the test
functions . To this end we will need to solve —A¢ = h € L%3(Q¢) with Dirichlet or
Neumann boundary conditions.

Lemma 3.1. For exterior domain Q€ with C* boundary 3, there exists a unique solution
10 —A¢p = h € L3 (Q) with either Dirichlet or Neumann boundary conditions such

that
IVl 2+ @lls + V2@l e < llhllLors. (3.2)
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Proof. Wesolve —A¢ = f € L%3(Q°) by the Lax—Milgram theorem: define a bilinear
form

(Yo, Vi) = / drdv Ve - Vi
QC

with the functional / defined by
o = [ axdo .
Q(,’

We choose homogeneous Sobolev space HY(Q), with norm ol g (@) = VOl L2

for Neumnann boundary conditions and H()l (2¢) for Dirichlet boundary conditions.
We have the Sobolev embedding

16N Loy S NIVEN 1200y

(see [10], p. 263). Therefore (h, ¥) defines a bounded linear functional in H'(Q°) thanks
to the inequality

o) = [ dxdo £ur < 1f s I le < IV

The existence and uniqueness as well as the first two inequalities then follows from
Lax-Milgram theorem. To bound || V29| 16/5, we take a smooth cutoff function x such
that

A(x¢) = xh+2Vx - Ve + Axep € L5,

If x is zero near 32, then, by the W2 ? estimate for the whole space, and the fact V
has compact support,

IV2x@lipers < lixh+2Vx - Vo + Axll o/
< Ikl pess-

On the other hand, if x is zero for |x| large, then by the W2P estimate for mixed
Dirichlet-Neumann b.c. in a fixed domain, we have

IV2(x D)l pers < Iixh+2Vx -V + Axdll o + I x Pl Los5
< Iallpess.

We therefore conclude (3.2). O

Proposition 3.2. If [u| is sufficiently small we have:

IPuflls S e A =P Fllu + 1A =P flls + llgv 22+ 2[(1 = P2 flas
+87|r oo + 0(D)[e2 || floo]- (3.3)



Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle

Remark 3.3. Note that

1A =Py flls < A =P LIV 1A =P fIZ
= e A= Py £ e ¥ ez (@ = Py £11 2

SnlleZ(@—Py) flloo + ;ns—l(l — Pyl

1/3 2/3

Therefore by choosing 1 small we obtain

— 1 1
Py flle S e IA=Pflly+llgv 22+ 2|1 = PY) flas
1 1
+e2 oo +o(D[e2]| flloo]-
Proof.

Step 1:
In order to get a bound for ¢, we choose the function ¥, in (3.1) as

Ve = Vitu(lvul® = Bovu - Voo,

with B, a suitable constant to be chosen later and ¢, solution to the problem
—Age = inQ°, ¢.=0o0nd.

Hence, by previous discussion, there is a unique ¢, and

190l < 1€°1 g o = el o

We start computing the term foxR3 dxdvfv - V.. We have:

779

(3.4)

(3.5)

(3.6)

/ dxdva'Vl//L.:/ dxdvau'V1//c+8/ dxdv fu- V.
Q¢ xR3 Q¢ xR3 Q¢ xR3

By (3.6), f =P, f + I — Py) f and the Young inequality,

(e/ dxdv fu- Vi,
”XR?’

By using f =Py f + (I — Py) f and the expression of P,, f, we need to compute

dxdva/uyvy - Ve,

Jo
Joes

dxdv b - vy uyvy - Ve,

QxR
| u|2
V MUy - Ve,
QxR

/ dxdvv-Vy . I—-Py)f

Q¢ xR3

=/Q . dde«/Mu(|Uu|2_IBC)Uu®Uu : V®V¢C(I—Pu)f,
¢ X

< elulllcl2l flle S elulPy £1IS + elul[| (L — Py £11S.

(3.7)

(3.8)

(3.9)

(3.10)
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Using (3.6), by the Young inequality, the last one is bounded by

5 1
10 =P Fllslelfoge, = Znllelfsge + 20 3IA =P FIE,

for any n > 0.
With the choice B, = 5 it results

fﬂ@ dv(Jvy]? = Be)vy ® vupy =0, (3.11)

and the term in (3.7) vanishes. The term (3.8) vanishes because it is odd in v,,. Next we
compute the term (3.9). We have

o> =3
dvvy @ vy———(|vul” — B = SL (3.12)
R3 2
Therefore
/ d)cdvcI J,uuvu V.

Q¢ xR3
. > =3

= _dch@V%' 3 dUUu®UuT(|Uu| — Bty

= 5/ dx cAge = —5/ dx [e[® = =5lle]| 7o g
C Q(‘
because of (3.5). By (3.2) and Young inequality, we have
e ‘ / 3 dxdv I/ICLuf‘ = e! Vel 2@ IX—=Py)fllv
(,'X

5 1 1
§8n||0||2+6(4n) Sle A =Py £11,1°,

for any n > 0.
Similarly, we get

_1 5 6 1 _1, _l.
) dxdvyreg| S IVecl 2o llgv™2ll2 < —nllcllg + —(4m) 75 llgv2 I3,
¢ wR3 6 6

for any n > 0.
Next we compute the boundary terms. We decompose f ony as f = P; f+1,, Q-

1
P;‘)f + lyfs'fr.
First consider the term

[arperu=[ aswva: [ wm vndup - povmrys
Y
From the expression of PJ’;l f we see that

VP f =27 pzy ().
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Therefore, we need to compute [p3 dv [z dv(n - v)vy([vy|> — Be)n(v). We have
vu(lv — eul* — B) = v(jv]* — Be) + e(—ufv* — 2u - vv + Bew)
+e(Jul>v +2u - vu) — 3 ultu.

Since the terms of order ¢ and &3 are even in v, after multiplication by v - n, their
contributions vanish (note that the integration in v is on the full R, not on {v - n s 0)).
The contribution of the term of order 1 vanishes by the choice of . (3.11), so we
conclude that

/dVPy“fwc = ¢? /m dS(x)Ve, - /M dv(n - u)(|u|2u+2u.vu)mp;f.
y 3

We need the Sobolev trace theorem to bound V¢, on 9€2.

Lemma 3.4.

5
< llcllg-
190l 4 0 = 1

Proof. If Qisa C! domain in RY, we have the following trace estimate [20], p. 466:

0\ 7V 7
</ dS(x)|ul N ) < C(N, p) </ dx|u|p+/ dx|Vu|p)
Q Q\Q Q1\
(3.13)
This is a consequence of the trace theorem W!7(Q\Q) — W1_7 ”(a(szl\sz)) and
the Sobolev embedding in N — 1 dimensional sub-manifold (W1_7 PRQ1\Q) C

1—1
L N P (Ql\Q) for (N 1) 1 N—_pl). In particular, with p = g and N = 3 we have
pEVN_pl) = %. With u = V., we have
< 5
” X§0C” (39) ||c||L6(Ql\Q) = ”C”LG(QC)' (314)
O

Therefore, by Holder inequality,

| /y dy Py fre] = WlIVagell g o 1P Fllisgy)-
Since || P2 fll 4 S & 21621 flool < &7 2[62 ] flloc], we obtain

21 2. —5r L 5
Selul“e"2[e2 ]| flloo]llclly

[ arriru
Y
1 5 1 1.1
Sele z|u|26||c||2+82|u|2ge 2[e2 ]| fllool®. (3.15)
Next, we need to bound fy 1, (1- P)}‘) f.. We have

\/dylml POV

= [IVagell 4 (aQ)II1y+(1 = P fliLa)-



782 R. Esposito, Y. Guo, R. Marra

But
Iy, (1= P Fll oy < L6201, (1= P fll 22 2 1L, (1= P2 £l
Thus, we conclude that, for any n > 0 and ' > 0
| fy L, (1 = P2 foedy
S nllellg+n'1e21 ook’ + Cyle 2, (1 = PO fll2gI?}. G.16)
In conclusion the boundary terms are bounded, for any n > 0, " > 0, by
(fydw//c[P;‘f+1y+(1 — PO F1] < nllel+n'le? [ £ lloo]®

+Cyle 2 11— P2 ]2, 10

Finally,

i |
1 Lo
< IVeclianpalle2riiispa) < €2licllglrloo.

[ edarr

By collecting all the terms and choosing n and n’ sufficiently small we conclude that
— 1 _1
llelle S & IA—=Py) £l + 1A =P fll6 + (luD)® [Py flls + 12V 2 | 2 (e xr5)
_1 1 1
+e 2[(1 = P)) flo+ + €2 |rloc + 0o(D[e2 | flloo]- (3.17)
Step 2:

In order to estimate b we shall use two test functions. The first is chosen as follows:
for fixed i, j

V=, =02 = B)VEadiel, ii=1,....d, (3.18)

where S, is a constant to be determined, and
J _ 5 J _
—Axp,(x) =bj(x),  @,loe =0. (3.19)
As before, there is a unique <p[§ and

i 3 —1b:I°
Ve, i1y = 111b;] IILg(m = 110l176(qc)- (3.20)

We start computing the term fQCxR3 dxdvfv - Vlﬁé’j. We have:

/ dxdv fv- Vi’ =/ dxdv fo, - Vi’ +5/
Q¢ xR3 Q¢ xR3

dxdv fu- vy,
Q¢ xR3

By (3.20) and the Young inequality,

E / oo BF00 fu- V| < elulllb 131 /lls < elullPu £+ elull @ = P 715,
C xR
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By using f =Py f + (I — Py) f and the expression of P,, f, we need to compute

/ dxdv a/igvy - VY7, (3.21)

Q¢ xR3

/ dxdvb - vy Uy vy - Vl/f (3.22)
‘XR}

f dxdvc 4/uuvu leb , (3.23)
QxR

f dxdvuv - Vw (I —P)f
QL‘
- /Q L rdv (ol = ) uu @ v V@ Vg AP S (324)
X
Using (3.20), the last one is bounded by

5 1 _1
5 6 _1 6
1= Pl gy = 2151860, + 7 H I =PI,

for any n > 0. By oddness the terms in (3.21) and (3.23) vanish. We choose 8 > 0
such that for all 7,

oy, 1 12

/R 0 Bl (o = Wi, — frle S du =0, (325

1
2w /IR
and we find B, = 1. Note that for such choice of g, and for i # k, by an explicit
computation

/H; (Wi = Be)vg udv = 0,
/R%(vﬁ,i — Bp)vg judv = 2.
As a consequence

> dde b T, B ety
QxR

k.l
=Zak,us@,i/ dxbkaeam{:/ dx b; ;0,9
™ Q¢ Qc

‘We have also

g—l(/ dxdv w;’jLuf‘
Q¢ xR3

IA

e IVELll 2o A =P £l

5 |
< gnllb/||2+6n S — Py £11,1°,

for any n > 0.
Similarly, we get
_lo1
3 lgv2S,

.. . 1 5 1
| / dxdv | <1V} ll20r gy 2 12 < Znllbslig +
¢ xR3 6 6
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for any n > 0.
Next we compute the boundary terms. We decompose f ony as f = P; f+1,, -

P;) [+ lyfsér. First consider the term
f dy PY fry! = /m dS() Ve - /RS dv(n - v)(lvu,il* = Bo)/Hu Py f.
1

Since /ity P} f = ~2mpzy (f), we need to compute Jr3dv [pzdv(n - v)(vi’i _
Bp) i (v). We have

2

2 2 2
Uy — By =v; — Bp — 2eu;v; +£7u5.

The terms of order 1 and &2 vanish by oddness. Therefore
/y P;d)/fl,//;;j =—¢ /m dS(x)Vgj - /R3 dv(n - v)2uv; /i P f.

Thus, by using Lemma 3.4,

i, j 11 1 1.1
\/dyP;fw,i’f\ < elule™2[e2 1 flloolIbsl5 < £2 ulllb I +elule™2[e2 wf ool
v

N (3.26)
Next, we need to bound [, dy1,, (1 — PY) f,”. We have

| / dy 1, (1= PO Fuy? | < 190 lomamy I, (L= PO Fllzagy)-
Y
Thus, we conclude that, forany n > O and ' > 0

i, j 1 1
| [ @yt a= B0 | S a1 £l €t 1L, 1= P F 12, 1)
14

(3.27)
In conclusion, for any > 0, n" > 0, by

(/dng”[P;f+1y+<1 — YL S nllbj I8 +n'Te7 11 flloo1®
Y

£yl 2L = P 2,15

Finally,
Lo j 1 1
\/ dy e2ryy| S 190) s 1827 g = e IBI3|oo-
V=
By collecting all the terms and choosing 1 and 5’ sufficiently small we conclude that

i 1
| /Q dx bididjeg| S eI = P 100+ 10 =P FI§+ w2 IS +elulP £ 1S

16 L pu 6 L 6 1 6
+0llbjllg + (€7 21(1 = P)) fl2,4)” + (€2[r]o0)” + o(D[e2 ] flloc ] (3.28)
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To estimate 9;(9; A~Lb)b; fori # j, we choose test function

Uy = oulPou v, e eh(x), i # . (3.29)
‘We have:
/ dxdv fv- vy :/ dxdv fvu-Vlﬁ,’;”H/ dxdv fu- Vi,
Q¢ xR3 Q¢ xR3 QcxR3

By (3.20) and the Young inequality,
{s/ o P fu- V| < el 131 ls < elullPu f 1§+ elul 1= Pu) £ 1.
C xR

By using f =Py f + (I — Py) f and the expression of P,, f, we need to compute

f dxdv a/igvy - VU7, (3.30)
Q¢ xR3
/ dxdvb - vy Uuvy - Vl//b , 3.31)
LXR3
N u|2—3
— K A MHulu- th ) (3.32)
QxR

/ dxdvv - Vw (I —Pyf
QcxR3

= / . dxdv /jiy (Joul? = Be) vy @ vy : V@ Ve L= Py) . (3.33)
QxR

Using (3.20), the last one is bounded by

1
X =Puw)llellb, IILG(QL nllb IILG(QC)+ 3 IA P,

)T 6
for any n > 0.
For j # i, the O(u) terms in (3.30), (3.31) and (3.32) vanish by oddness in vy ;.

For the same reason the terms of order 1 in (3.30) and (3.32) vanish. The only surviving
term is

Z bkagaﬂp,’;/ . dxdv py vy g Vi, eVy,i Vu, j |vu|2 =21 / dx(b;0; 8‘/g01‘; + b,~8]2<pl’;),
QxR Q¢

because
/3 dU,Uquu,kvu,Evu,ivu,j|Uu|2 = 21(8k,0i,j + Sk,i8e,j + Ok, jSe.i)-
R
By taking the sum on j this reduces to ch dx (b6 + Z] bjdjo; AT 'b;). The second term

has been bounded in (3.28), thus, to complete the estlmate of b ||6 we just need to bound
the remaining terms in the weak formulation (3.1) for ¢ = df . As before, we have

= Ao L] < e IVl 1= P £l
CX 3
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6,1 1. 4 6
=< n||bj”6+g77 Sem =Py flIu]7,

ANl W

and
7| < _1 5 6 1 _1. 1
[ axdvdyle| S 1V, lia@elgv i < 2nlbilI§+ cn S igv~ta,
c xR3 6 6
for any n > 0. Finally, expanding, we have
2 2. 2000 i) — 2 .
[Vl Vy,iVu,j = [v] ViVj +e[|v] (ulv./+qul) u - v v;]
211012 2
+e[[ulfvivjlv] uwu; — 2u- v(wv; +uju;)]
+83[|u|2(ujvj +ujv; — 2u - v +84|u|2uiuj.

Therefore in the contribution from P}’ f the term of order 0 in & gives a vanishing
contribution. Therefore, as before

~i,j 1.1 1 1.1
\fdyP;‘fvf,;”\ < elule™2[e2]| flloollIb; 15 < £2ulllbjllg + elule™2[e2 wf o]’
14

(3.34)
Moreover

\ / dy1,, (1= PO fU | < 1Ve@ a5 ooy 1Ly, (1= P2 Fll o)

14

By collecting the previous bounds we conclude that
_ _1 _1
118 < A =P £+ 1A =P FIE+l1gv 2115 + 7211 = PP fl2.4)°
1 1

+e[ul|Py flle + (22 [r|oo)® + 0(D[e? fllool®. (3.35)

Step 3:

Then we bound ||a||¢. The argument is similar to the one used for ¢, the only main
difference being in the treatment of the boundary terms.

d
¥ =va = (vul* = B)vu - Vaga/it = Y _(Ivul® = B)vuidigas/it,  (3.36)
i=1

where 5
—Apa(x) = a’, - alse =0, (3.37)
whose solution satisfies
. 5 _ 5
IV@all g1(qey = lllal ”L%(m = llalizs(qe- (3.38)

We have

/ dxdva~V1ﬂa=/ dxdvf(v—su)-Vl/fa+8/ dxdv fu- V.
Q¢ xR3 Q¢ xR3

Q¢ xR3

By (3.38) and the Young inequality,

\s/ o v s V| < elulllb; gl ls < elulIPuf Il +eulll(X—Pu) £ .
C xR
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Proceeding as before, by using f = P, f + (I — P,,) f and the expression of P, f,
we need to compute

/ dxdva./myvy - Vi, (3.39)
Q¢ xR3
/ dxdv b - vV - Viba, (3.40)
¢ R3
/ \///Luvu Vi, (3.41)
QxR

/ dxdvv-Vy,dI—-Py)f
QexR3
= fﬂ _ dxdo V(e = B v @ v s V@ Veu = Pu) f. (3:42)
<R3
Using (3.38), by the Young inequality, the last one is bounded by

1
73— PS¢,

- Pu)f”ﬁ”C”Lé(Q( 5

) — 677”a||L6(Qc) + -

for any n > 0.
With the choice 8, = 10

/ dv(val? = B)(vul = 3)va @ vy = 0, (3.43)
R3

and the term in (3.41) vanishes. The term of (3.40) vanishes for the same reason.
Now we compute the term in (3.39): we have

/ dxdv a/iegvy - Vg = / dxaV ® Vo, : / dvvy ® vuvu((vul? = Ba) by
Q¢ xR3 c R3
_ _ 6
=-5 fQ dradg, =5]all§s g
because of (3.37). We have used
/3 dxdv v, ® vu(|vu|2 — Ba)ry = =51 (3.44)
R
As for the boundary term, we have
/ dyP}’;‘f@[/a = / dSz, Ve, - / dop(v — ew)(jv — eul? — Ba)n - v
y Q2 R3
But
/ dvpvy (Jvul® = Ba)n - v =/ dvpvy (Jvul* = Ba)n - vy
R3 R3

+e / dvpvy (Jvg|* — Ba)n - u.
R3
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The second term vanishes by oddness. The first by oddness is
2 _ 2 2 _
/ dvpvyi([oul™ — Ba)n - vu = n; / doplvy - nl"(Joul” — Ba) = —5n;.
R3 R3
Therefore

/dyP;‘ftpa =/ dSzyn - Ve, =0,
y Q2

by the Neumann boundary condition on ¢,. The term | Y dy1,, (1— P)ﬁ‘) f g isestimated
as the similar term for c. By collecting the estimate, we conclude that

lalle < e~ 1A= Py) flly + 1A —Py) flle + lIgv~ 2 |l2
+ (el S Py flls + 21— PY) flos
+£7|r oo + 0(D)[e2 [ flloo]- (3.45)

In conclusion, for |u| small,

- 1 _1 1
Py flle S e IA=P Sl + 1A =PYlls+llgv 22+ 21(1 = P flos +2|rloo
1
+o(D)[e2] fllco]-

4. Balance Laws

The mass, momentum and energy balance equations are obtained by projecting (1.42)
on the null space of L,,. Since P,,L,, = 0, we have:

P,(v-Vf)=Pyg. 4.1)

More explicitly, we write P,,g = (a+ b - vy, + %(|vu|2 — 3)c)ﬁu, andP,f =[a+b-
v + 3 (Jvu|? = 3)c] /It . We have

V-b+eu-Va=na, 4.2)
VP+eu-Vb+V -1 =0, 4.3)
3
V-b+§8u-Vc+V-q=c, (4.4)
where
r= fR v ® v T~ PO . 4.5)
lvu|? — 3
q= - dv Tvuv pu (X —Py) f, (4.6)

P=a+c. (4.7)
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We have to supplement Egs. (4.2), (4.3), (4.4) with boundary conditions following from
(1.42), which are not immediately translated into conditions on a, b, c. Therefore, as in
[23], we introduce a smooth cutoff function

" 1 ifx e R\Qandd(x, Q) > 1

{x) = —
0 ifx e

and define f¢ = ¢ f extended as 0 in Q. If f solves the problem (1.42), then f¢ solves

the equation
vV e Ly ff =¢g+C in R, (4.8)

where
C=fv-V¢. 4.9)

By projecting the equation for £¢ on the null space of L, we obtain the balance laws
Pu(v-Vf9) =PyC+(Pyg,

More explicitly, with P, f¢ = [a% +b¢ - vy +¢E (Juy|? — 3)/21/mt, and P¢ = a® +cf,
we have,

V-b§+su~Va§=§a+/R%de, (4.10)
VP§+su~Vb§+V~r§=§b+/R%dev\/ﬁu (4.11)
Vb + ;su. Vb +V gt = ;c+/R3 dv %C(|v|2 — 3y (4.12)

where
¢ = /Rg dv vy ® vy /i (T —Py) £5, (4.13)
q¢ = /Rg dv W%vu\/m(l—m)ff, (4.14)

and P® =a® +cfb.
It is convenient to write above equations in the Fourier space: The Fourier transform
is normalized as

~ 1 .
fk) =F(fHk) = 3 / dxf(x)e’. (4.15)
(2m)2 JR3
‘We have . D
ik-vfS+e 'Ly fS =rg+C, (4.16)
By writing
FE =@ +b% vy + %é§(|vu|2 — )/, + L —Py) f5, 4.17)

the projection on NullL,, is

ik -b° +ick -uat = /R3 dv /i, C(k, v) + a, (4.18)
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ikPS +ik 7% +ieu-kb® =f dv vy /12, C(k, v) + b, (4.19)
R3
. ~ 3 . ~ . 1 2 A o~
ik-b* + Ezsk utt +ik-q* = | dv §(|vu| —3)/uC(k, v) +Zc. (4.20)
R3
Let
_ 1 1
By =Ly (v ® vy — §|vu|2l>ﬁu1, = Ly 5 ulual® = 5) V)] (421
The momentum equation (4.19) then becomes
ikP% +icu-kb® +ik / dv L, f* %, =/ dv vy /i, Clk, v) + b, (4.22)
R3 R3
and the energy equation (4.20) becomes
A 3 . 1 . N
ik-bf+§iak.ué¢+ik-/ dv L, f¢ ., =/ dv§(|vu|2—3)ﬂu0(k, v)+Cc (4.23)
]R3 ]R3
Substituting from the Eq. (4.16) , Ly f¢ = —sik - vf¢ +e(zg +C),

ik(@% + %) +isu - kbt +ik-/

dv[—iek - vf¢ +e(Cg+C)] By
]R3

= b+ /R v Va0, Clk, v) (4.24)
ik.54+is%k.uéf +ik-/R3dv[—isk-vf< +e(Cg+0) A
= ot /R3 dv %(|vu|2 —3) /i, Clk, v). (4.25)
Using again (4.17), the term [ dv f¢v - %, becomes
/R3 dv fv- By, = N dv vy - (@5 + b - vy +E (Joul? = 3)/2) V1, B
+/1R3dvv-%u(I—Pu)f§

. 1
+g/ dvu- By (@ +b° - vy + Eéé“(|vu|2 — 3V, (4.26)
R3

The second line vanishes because Py, %, = 0. From the properties of %,,, only the b
term survives of the first part of first line. Since, again (I - Py) (vy ® vy) /1, = Ly %,
we obtain

/ dvfivﬁu:z%/ dv%uLu%’u+/ dvv- B0 —Py) f¢. (4.27)
R3 R3 R3

As usual, we set ng dv B, L' B, = vl (independent of 1) with v the viscosity coeffi-
cient and we obtain:

k(@ + %) +ieu- kb +ev|k|*b +ck Qk - f dv v, (1 —P)f¢
R3



Hydrodynamic Limit of a Kinetic Gas Flow Past an Obstacle 791
+eik - /@ +C) %y
= b+ f dv v/, Clk, v). (4.28)
R3
Similarly, since (I — Py)[vy(Jvu|* — 3)/2/1t, ] = Ly,
A 3 N
ik - bt +is§k ulf ve kP +ek @k - f dvvd —Py) fS ot +cik
R3
: / dv (Zg +C)
R3
—~ 1 ~
=Cc+ /R} dv §(|vu|2 -3/, Clk, v), (4.29)

with k = fR3 dv & Lo/ . Therefore the balance laws in the Fourier space are

ik - b% +ick -uat = 3, (4.30)

ikP¢ +e[vlk)® +iu-k)b* =§ 4.31)
. 3

ik - b +e [k|k|> + Eik ‘ulét = 34, (4.32)

where the transport coefficients v and « are defined by [ dv&,Ly 1%, = vl and
K= f dvat L 1 o7, and the source terms are

So = /R3 dvﬂ(f’(k, v)+§:a,
§= —ak@k-/ﬂvdvv(l—l’u)ﬁ@u —isk-/}R%dv(2§+CA)¢@u
+/R3 dv vuﬁué(k, v)+§Ab,
4 = —ak®k-/Rgdvv(I—Pu)ffsz{u—isk-/R%dv(Eg+CA)szu
+ /R3 dv%(lvu|2 —3) /1, Clk, v) + . (4.33)

To eliminate the pressure P¢ from (4.31) we apply the Leray projector IT defined, in
Fourier space, by

A k
H:[_&k.
Ik

‘We use the short notation
N p(k) = e[o |k|* + Biu - k].

Thus we get
[16* = N 15 (4.34)
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Then we multiply the momentum equation by k and divide by i|k|? to obtain

Nt’l{k k N

Pt o+ - 5.
ilk|? ilk? =

From the mass equation we have

bt -k = —iSo—eu - kab. (4.35)
Hence
+ o2l is—eu-ka) = kg
iR iR =

and recalling that & = P — ¢, we have, for |u| sufficiently small,

N N =1 Ny
¢ _ v,1 1 . e
Ps = (1 8l|k|2 k) [ |k|2[zso gU- ket ]+ -

|2>

: ] (4.36)

Subtracting the mass equation from the energy equation and using a¢ = P¢ — &, the
equation for ¢4 becomes

(N, )& —igu-kP* =54~ 5. (4.37)

Replacing the expression of the pressure we obtain

& = (W) 5a — forien-k(1-s 20 k)_l[N"li“w l,];z@]} (438)

Ikl2 ilk
with N |
N = 2 LD
N=N,s+ie’(u-k) |k|2(1 Al k) . (4.39)

Thenat = P% —¢&¢ is obtained by subtracting the expressions of P¢ and é just obtained.
Finally, using (4.35) we compute (1 — I1b%).

5. Estimate of ||P, f|3

5.1. Splitting of Py, f. We define the small k’s cutoff as a smooth function

1 for k| <1
j= , (5.1.1)
0 for k| > 2
and
i“=1-j. (5.1.2)

We will split the source terms s = (so, §, s4) into five different contributions s@ =
(sé'),g(i) s(')) fori =1,...,5:

5
s= s@ (5.1.3)
i=1
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The source sV corresponds large k’s:
sM (k) = j°s. (5.1.4)

Then we split C(k, v) = F[fv - VZ](k, v) as

C=Cs+k-C,, (5.1.5)
with
Cs(v) = C(0,v), (5.1.6)
and
1
Crk,v) = / dAViC(Ak, v), (5.1.7)
0
so that

R R La . 1 R R
C(k, v) — C(0, v)=/ dxﬁcm, v):/ drk - ViC(rk,v) =k - Cr(k, v).
0 0

(5.1.8)
We set
s k) = /RS dv /12,C5 (0, v),
§P ) = /R A0, G0, v), (5.1.9)

n . 1 n
§$P00 =i | dv=(vul? = 3)i,Cs (0, v).
R3 2

0w =i /R dv ik Gk )]
§O %) = i[_sk ®k- /Rz dvo( —Py) f4 (k, v) By — ick - /Rx WCHy (5.1.10)
+k - / dv vy /12, G (k, U)]»
R3
k) =i[-ek @k / dv (I = Py) f€ (k, v) o, — iek - / v Coy
R3 ®

1 )
+k- / dv = (Jog 2 = 3) /i, Cr (x. v)].
R3 2
5P ) =0,

9w = —jiek~/ dv g By, (5.1.11)
]R3

5 (k) = —jeik - /R3 dv Lg.ot,.
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587 ) = jla,
5O (k) = jcb, (5.1.12)
5 () = iZe.

Fori = 1...,5 we denote by a®, b @ the solution to the system (4.30), (4.31),

(4.32) with sources s) and by P() = a® + ¢ the i-th contribution to the pressure.
Correspondingly we have the decomposition of Py, f into six terms:

5
Puf=(1—0Puf+) Sif, (5.1.13)
i=1
with
S f = M[a(i) + Uy »® + éc(i)ﬂvu'z _ 3)]. (5.1.14)

5.2. Estimate of S1 f. The components of S| f solve the system

ik - bW +igk-ua® =3, (5.2.1)

ikPD +elolk|? +iu- kb =5 (5.2.2)
3

ik - bW + & [ic|k)? + ik ule® =50, (5.2.3)

where
30 = / v JiC (k) + 1€,
) ch[_gk(gk./ dvv.%u(I—Pu)ff—igk-/ dv (7g +C) By
R3 R3
+/ dv vy /71, Clk, v)+{b], (5.2.4)
3
s = [ ek @k - / duu(I—Pu)fi%—iek./ dv (Zg +C)
3 R3
1 . N
+/ dv = (Jog 2 = 3) Vi, Clk, v)+§c].
R3 2
Lemma 5.1. If [u| < 1, and g € L?, then

1S1 /112 S e IPuflls + 1A =P fll21 + llgv~2 2. (5.25)

Proof. We first estimate P For this we use the momentum balance in the form (4.19),
which for the S; R becomes:

ikPD +ii% -t +icu- kb = jC{b+jC/ dv vy /12, Clk, v). (5.2.6)
R3
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We take inner product of this equation with # We obtain

PO = jc[—i|k|’2k Eb— ik "2k - /R} dvvC iz, —elk|2u-kbD - k—[k| "2k - 2 k]

(5.2.7)

From the definition of 7, (4.5), [t V||, < ||I — Py) f|l>. Moreover from the definition
of C, (4.9),

ICll2 = ICll> £ IPufll 22 supp vy + 1A =Po) fll 2 (uppvey S IPuflle+ 1T —=Pu) £l

(5.2.8)

Therefore A A
1PVl S P flls + 1A= Py) fllz + elul 15D . (5.2.9)

To bound 5V, we divide (4.31) by &|k|? and obtain
b = jc{s_l |/<|—2[ —ikPW —jeu. kb — f dv vy /12, C(k, v)
R3

+iek-/ dv v(I—Pu)fé“gBuﬂdc-/ dv (§+é)%u]]. (5.2.10)
R3 R3
Since |k| > 1, using |u| < 1, we have

A~ A~ 1

16DV N2 < e PPl + e IPufllo + 1A =P fla+lgv 22, (5:2.11)

— 1 1 _1
from || [ ¢gBull2 < V2820V Bulleo S IV72gll0.

Using (5.2.11) in (5.2.9) and |u| < 1 we have

~ 1
1PV S P flle+ 1A —=Py) fll2+ llgv 2 2. (5.2.12)
Using (5.2.12) in (5.2.11) we obtain

1612 < e P fllo + 10— Py) Fll2] + gy ™2 . (5.2.13)
To estimate ¢(1) we subtract (4.30) from (4.32) and replace aV) with P — &(1;
—ieu- k[P — M)+ fR} dv JuC(k, v) + ¢ [k |k|* + %ik e
+igk - fR3 dv v —Py) f¢ o,
+eik - /W dv (Cg +C) Ay = /RS dv %(|vu|2 -3/, Clk,v).  (52.14)
Then we proceed as for h™ and obtain:

N _ _1
1602 < e MIPuflle + 1A = Py) £ll21+ Igv~ 2|2 (5.2.15)
From the estimates of P and ¢ we then obtain also

N _ _1
16D < e IPy flle + T —Py) Fll2l + llgv™ 2 |2 (5.2.16)
Thus, we obtain (5.2.5). O
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To deal with the system (4.30)—(4.32) for |k| < 1 we need several estimates:
Lemma 5.2. Suppose u # 0 and |k| < 1. Let Ny g(k) = elo|k|?> + Bik - ul, foro > 0
and B > 0. There is 0 > 0 such that
(1) Forqel3,2)

iNg pllg S & ulte, (5.2.17)
and, for 1 < q < %
N, gllg S e (5.2.18)
(2) Forg €[3,4)
IjkN, ﬁ||q < e Nue, (5.2.19)
and, for1 < g <3
kN, gllg S et (5.2.20)
3)
Ik @ kN, plloo S &' (5.2.21)

Proof. For £ > 0 we compute the norm (see [23])

leilk| Ny gl = /R dk|k|7lo k| + ik - u| ™

2 e _4q
< 2na—q[ drr2+4“—2>/ o sin9[1+r—2,320—2|u|2cos2 9] 2
0 0

- -

2mo 1 r= Blulo p

= ; drr”q([ 2)/ dz[1+22]°%
o~ u| 0

with z = r~!fo~!|u| cos 6. The integral in dz is finite for ¢ > 1. The integral in dr
is finite for 3 + (¢ — 2) > —1. Hence, for £ < 2, g < %. Therefore, if we split the

integration on r into {r < |u|®} and {|u|® < r < 2}, with 0 < § < 1 to be chosen, we
have the bounds

u |5 3 2 r*lf}|u\a*1 21—4 4 2
/ dr p3ac= )/ dz[1 +2217% < |ul4+a =210
0 0

2 r’lﬁlu\a’l 4
/ dr p3rat=2) f dz[1+7%]"2
|8 0

) |u| =5+ o1 ]
< / dr pFta=2) / dz[1+2%172 < Jul' ™.
lul® 0
By choosing § = (5+¢(2 — £))~! < 1, we conclude that

~

TEEN-LI < fulm 8 = - 1+e
leilkl" N, gllg < Tul @ = Jul

because 6 < 1 and ¢ > 1. Thus, for £ = 0 we obtain (5.2.17), for £ = 1 we obtain
(5.2.19).
If we bound the integrand in d6 simply by 1, as in the Stokes problem, we get instead

2
lejlk|“ Ny plid < 2712/ dr 223, (5.2.22)
' 0
The integral in dr is finite for g < ﬁ For ¢ = 0, the integral is bounded when g < —,

and hence we get (5.2.18); for £ = 1, the integral is bounded when ¢ < 3 and hence we
obtain (5.2.20). Clearly s|k|2N;/13 < 1 for any k, thus we have (5.2.21). O
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5.3. Estimate of Sy f. The components of Sy f solve the system

where

ik-b? +isk - ua® =3,
ikP® +e[olk|? +iu - k]p? = 5@

. 3 .
ik 5P e ekl + Sik-ue® = 52,

:s:(gz) —j /R3 dv ﬂué(o, v),
@ / a7z, L0, )]
R3

~ )3 1 5
& =J/RS dv > (Juul® = 3) Vi, L0, v),

797

(5.3.1)
(5.3.2)

(5.3.3)

(5.3.4)

We use the notation o = /i, Vo = /I Vue, @ =1,...,3, ¥4 = ﬁ\/ﬁu(|vu|2 -
3)). so that 57 = jPyCs. Va) 2.

Lemma 5.3.

with Q = (Qo, . . .

4
P =213 Quta.

a=0

04),

(5.3.5)

Q4 = —/ dS(x)/ dv fv-n(x)wa(v)+/ dx(1 — C)/ dv Yo Pyg. (5.3.6)
a0 R3 Q1\Q R3

Proof. Since C(0,v) = (2)"2 [ dxfv - V¢, we have

4
P.C, = 2m) "2 Z%/ dx/ dv fau - VL.
a0 Q¢ R3

Since V¢ = 0 outside of Q1 = {x € R3 |d(x, Q) < 1},

/dx/ dv P (v - VO) f = dx/ dv v - V(f)
c R3 Q\Q R3

—/ dx/ dvyuCv-Vf

one Jr?

/ dS(x) f dvv - nEf Ya (V) + / dS(x) / v - NCOLf Y (v)
IR R3 02 R3

—/ dx;/ dvgv -V f
Q\Q R3

—/ dx{/ deaPug+/ dS(x)/ dvv - N(x)fig(v),
Q1\Q R3 Q) R3
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where N (x) is the exterior normal to 921, because ¢ = 0on d2and ¢ = 1 on 92 and
we have used by (4.1). On the other hand, integrating (4.1) on 2;\2 we get

/ dS(x)/ dvv'N(x)flﬂa(v)+/ dS(x)/ dvv-n(x)fvy
A R3 a0 R3

=/ dx/ dv ¥, Pug, (5.3.7)
Q\Q R3

and hence we obtain

Qo = —/ dS(x)/ dv fv~n(x)1pa(v)+/ dx(1 —c)/ dv Y Pyg. (5.3.8)
LI’ R3 Q\Q R3

Lemma 5.4 (Estimate of Q’s). IfIIPugIILe/s = [Pugllzor5(q,\q) is bounded, then
loc

_ _1 1
QI < &(e A =Pl +IPuflle+ v 2g||L2(521\§2)) +e2|zy ()2 + IIPugllLle/s-
(5.3.9)

Proof. For any h we have

/ dvn - v/ puh = / dvn - v/ (h — P;h). (5.3.10)
R3 {n-v<0}
Indeed

/ dvn-w/uu(h—P;h) :/ dvn - v/ uh
{n-v<0} {

n-v<0}

—/ dvn - vv/2m u(v) dv' v - nyunh
{n-v<0}

{n-v">0}

:/ dv ~v4/,uuh+/ dv' v - nuh
{n-v<0}

{n-v'>0}

=f dvn - v/puuh, (5.3.11)
R3

because [}, , o dvn - vv/2mpu(v) = —1.
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By (5.3.10) and (1.42),

/ dS(x)/ dvy/i, fv-n(x) =/ dS(x) dv /e, (f — P;‘f)v-n(x)
aQ R3 IQ

{v-n(x)<0}

— g7 / ds(x) dv /i, r v - n(x).
Q2 {v/-n<0}

Therefore, by (5.3.6),
1
|Qol < €2z (N2 + IIPugIILle/§~ (5.3.12)

The other components of Q are more involved.

Let n(x) = d(x, 9€2) be the signed distance of x € R3 from 9<2, positive in Q€, well
defined at least when |n(x)| < & for some sufficiently small § > 0. Clearly |Vn| = 1.
We consider the family of smooth closed surfaces {Sg¢}o<g<s, defined as Sg = {x €
Q€ | n(x) = &}. We also define, for x € S¢, n(x) = Vn(x). We have Sy = 92 and,
for any & > 0, the sets ¢ whose boundaries are S¢ are such that Q¢ C Qg if § < &',
If we integrate the conservation law on ¢, \€2¢,, since the exterior normal to 9,
n1(x) = —Vn(x), setting

Qo = _/S dS(x) /R‘ dv f/ v - n(x) e (v), (5.3.13)
: ;

by Gauss theorem and (4.1) we obtain

S IPugliponso \apy): @ =0..... 4.
(5.3.14)

Q%0 — Qtral = ‘/ dx Yo Pug
le \Qéz

In particular, with

oy = Qo — QO,ot
we have

@al S IPugll o

and hence, since |Vn| = 1, by the coarea formula,

F)
0. =wa+a—1/ 45 0 =wa+5—1/ dxf dv f/fiav - 1V ).
0 Qs\Q R3

To estimate Q = (01, 02, Q3), we note that from the decomposition of f =
VR (@+b vy + %(|vu|2 —3)+ { —Py)f and the definitions of 7 and P,

Q:g+5_1f dx[Pn+ 1 -n+e¢eu-nbl.
Qs5\Q

To get a bound for P, let us denote by P the average of P on 25\Q: P = 57! an\Q Pdx.
Let ® be a vector function such that:

V- ®=P—PinQs\Q, ®=00ndQUQ;.
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Such a vector function exists and satisfies the bound (see [18])

1l @n) < 1P = Pll2gne)-
Taking the inner product of the momentum balance law (4.3)
V(P—P)+eu-Vb+V.-1=0, (5.3.15)

by @, integrating on 25\ €2 and integrating by parts, we obtain
f b-CDdx:—/ dx[V-®(P —P)+esu-VO -b+ VD : 1]
2\Q 2\Q
+ / dS[® - n(P — P)+®@n:1+eum- ®)(b-n)l, (5.3.16)
QU

where A : B =}, A; ;B ;. The boundary terms vanish because ® = 0 on the
boundary. We have

\/ b+ bdx| < I@lellBll o5 < 18] 05 VI, (5.3.17)
Qs5\Q loc loc

by using Sobolev embedding. Therefore, using V- ® = P — P, we obtain

P — Plliz(ga\m = VPl Itz +elullbl 2 @) + ”b”Lf,f)

SIP — Pll 2o (1A =Py Fll 205 0) + €Ll IPyfll6 + IIBIILIG@).
Hence

IP = Plli2ong S e IA=P) flla+ullPyfle) + 1ol /s

Therefore, since '/QB\Q dx Pn(x) = 0, we obtain

/ dxPn
Qs5\Q

On the other hand,

<e(e  IA=Py) fll2+ ulPuflls) + 0] 5 -

loc

S 1ullPy fll s

/ dxu-nb
Qs5\Q

/ dxn -t
Qs\Q
In conclusion

101 Ss &6~ 1A= Py) fll2 + [ullPy fll6) + 16l Lo/s + 1z

and

SIA=Py) fllz2.
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For the estimate of Q4, we use

$
Qs =y +8! / d§ Q¢ 4

=w4+6 1/ dx/ dv/u
Qs5\Q R3

ollatb vyt 3 “' 3 Vi + A= PO f)

2 _
|u|

3
=W4+8*1f dx[b-n+ —eu-nc
5\ Q 2
| — 3
+ dvA/uuTn v —=Py) f1. (5.3.18)
R3

To get abound for fgé\Q dxb-n wenote that, from | Qo— Q¢ o] < ez Iz, ()2, integrating
on £ and using again the coarea formula, by (5.3.7)

‘5—1f dx[b-n+8au-n]—/ dS[b - n + eu - nal
Q5\Q I
1
<e&Z|zy (M2 + ||Pug||Llﬁ/§ (5.3.19)

and
‘/ dS[b - n + eu - nal —e/ dSu-na‘ < llzy ")l (5.3.20)
1Y 1Y

because | [, dSb - n| = | [y [z dv /i, fv - n| < |z, (r)|l2. Hence [, dSb-n =
£ fm dSu-na+ O(||lzy (r)ll2). Now we can replace in (5.3.18) this expression to obtain:

2
|u|

|04 <6 “/ dx su n(c—a)+/ dv/fg ———= ~v(I—Pu)f]‘
Qs5\Q
+e\f asu- nal + edizy ()2 + IPugll .
a0 loc
The first term in the first line is bounded with [|ul||a|le + [ulllcll¢ + & | (X — Py) fll2].
The second is bounded by &|u| ||Puf||Lz(3QXR3) S elul(IPy flle + g1 dA=Pyfl,+
||v_%g l2), by using the Ukai trace theorem, Lemma 2.2. O

Lemma 5.5. If u # O, then there is p > 0 such that, for any p > 2

1821, S e ul™ 3" 1Qal S 7 A =Py 12

_1
+[Puflle +llgv—212)
1
+e e 2, (M) 12 + Pugll o/s]. (5.3.21)
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Proof. Step 1: Estimate of [1»®: From (4.34) for the system (4.30), (4.31), (4.32), with
s = s(z), we have . R
6? =N, 11Q. (5.3.22)

By (5.2.17), jN;} is bounded by e ~!|u|~1*¢ in L¢(R?) for 3 < ¢ < 2, and hence
162, < e ul~*e Q. (5.3.23)
Step 2: Estimate of P@: by using (4.36) for the system (4.30), (4.31), (4.32), we have

~ N, -1r N,
P(Z):(l—e 0.1 k) [ Ul['A(2)+8u kP + —

g@)] (5.3.24)

Ikl2 k|2 ilk[?
Since j|k|~4 is integrable for any ¢ < 3, we obtain
PPN, S &Py +12] (5.3.25)
Step 3: Estimate of c?: by using (4.38) for the system (4.30), (4 31), (4.32), we have
A2) _ o] _ . ) _ Nu 1 -
¢@ —iN {Q4 00 +icu k(l et k) |k|2 Q} (5.3.26)

We recall that from the definition of N it follows that |N_ | < |NK_é |. Therefore,
proceeding as before, we obtain by (5.2.17) for % <qg <2,
16PN < e Hul =" Qal + Qo) + €lul| Q] (5.3.27)
and, in consequence,
1Py S 1= Q4] + Qo)) + 1] (5.3.28)
Step 4: Estimate of @@ Using 4@ = P® — @ we have
&P < e~ (ul~*2(1Qal +1Q0D) +12D. (5.329)

Step 5: Estimate of (1 — [1)6®:
Since (1 — [)H?® = k - b@k|k|~2, using the mass equation, where s(z) = jQo,
which implies & - b® = —gk -ua® + i1Qo, we have

(1 — HP = —elk|2kk - ua®+i|k|~2kj Qo,
and taking the L4 norm we have, using Step 4,
(1= 6P, < ella® 14+ Qol.
Then, together with Step 1 we obtain
16y < &' (1Qal +1Qol) + Q- (5.3.30)

In conclusion,
3
1821l S 7' i7" Q, forJ <g <2
We recall the Hausdorff—Young inequality: if 1 < ¢ < 2 and % + 5 = 1, then

1Ay < 1 Fllg- (5.331)
By the Hausdorff-Young inequality then we have (5.3.21) with p = qul >2. 0O
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5.4. Estimate of Sz f. The components of S3R solve the system

ik - b +isk -ua® =35, (5.4.1)

ikP® +elvlk? +iu-k]b® = § (5.4.2)
~ 3 . .

ik-b® + e [ic|k|? + Sik- ule® =59, (5.4.3)

where
9 = j[fR3 dv L, k-G (k. v)],

$OU) =i ek k- / dv v —Py) f* (k. v) By — ick - / dvC,

R3 R3

+k- [ dv vy /71, Cr (k. v)], (5.4.4)
R3

5 =il —ek@k- | dvod =Py fEk, v) Ay —ick- | dvlCer,
N R3 R3

1, )
+1<-/R3 dv 3 (vl —S)ﬂucr(x,v)].

Lemma 5.6.
l /N dv«/ﬁuvujk-(frlloo <Py flle + 1A —=Py) flly (5.4.5)

Proof. Recall from (5.1.7),

1 d )
_ ‘f dvy/i vujf d,\—/dxe”’f‘xax,v)
R3 u 0 d)n
1
- )/ dv /72, vui dk{ik-x}/dx ey, v)’
R3 0

‘ /R3 dv /72, vuik-Cr

s/ dvﬁuw/ dx|x|/ dv (P £ (x, )] + (T = Pu) £ x, v)))
R3 Q1 R3

S lle + 1A =Pu) £,

because supp(V¢) C 1. O
Lemma 5.7. If Ju| € 1l and ¢ K 1,

1S3 £12 S &7 IPuflls + &~ 1A =Py fl2. (5.4.6)

Proof. Step 1: Estimate of TT6™):
From (4.34) for the system (5.4.1), (5.4.2), (5.4.3), with s given by (5.4.4), we
have
6™ = N, (1159, (5.4.7)

where

§¥ =j[8k®k-/ dvv(I—Pu)f{%u—iSk'f dv CAy
R3 R3

+k~f dv vy /71, Cr (k. v)],
R3
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By (5.2.20), jkN;} is bounded by e in L?(R?), and hence

HjN;‘lﬁk./ dv vy 77,Cr k0| 55—1“/ av vk G, )|
’ R3 2 R3 e’}
<e "Puflle+e  IA—PYfllv,

”;sN—l Tk f
3

by using (5.4.5).
On the other hand, by Lemma 5.2, k ® kN;/l3 € L™, so

u OOS Py flle + 1A —=Pu)fllv,

fieivg ke k. [ avoa—pofial, <1a-rosi.

therefore we have
169y S e Py flle + &~ (L= Py) fl2.
Step 2: Estimate of P®:. by using (4.36) for the system (5.4.1), (5.4.2), (5.4.3), we have

R No.i ~INo1. .3 .k
P<3>=(1 . k) [ 5 +eu- kel + — - <3>]. 54.8
“ilk? Ikl2 llklz[l ekl ilk|? : ( )

Taking the L? norm, for ¢ < 1 we get
1PN < 1692+ [Py fllo + 1A= Pu) £l (5.4.9)
Step 3: Estimate of c?: by using (4.38) for the system (4.30), (4.31), (4.32), we have

N N k
&3 = (N)~ { B _ B -k(l v.1 k) [ 0153, A<3>]] 5.4.10
= (V) s —so wiewk(1=en au oty 6410

with

k) =i[ek @ k- / dv v(I = Py) £ (k, v)o — sk f dvCory
R R

+/ du1(|uu|2—3)¢ﬁuk.ér(k,v)].
]R3 2

We recall that from the definition of N, it follows that |N71| < |NK_5 |. Therefore,
%)

proceeding as before, we obtain

16PN S e Py flis + 1T =Py £l (5.4.11)

and, in consequence,
PPNz < 1Py flls + 1A —Py) fll2 (5.4.12)

Step 4: Estimate of 4®: Using a® = P® — 3 we have
1aD N2 S e HIPufll + 1A= Pu) f - (5.4.13)

Step 5: Estimate of (1 — [1)6®:
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Since (1 — [M)H® =k - 13(3)k|k|_2, using the mass equation which implies k - b =

—ck - u&(3)+i§(g3), we have

(1 —)6D = —elk|2kk - ua® +i k| 2455
— ik - [/ dv vu /TGy (k, v) + e/ dvCk, v).@u],
R3 R3
and taking the L2 norm we have, using Step 4,
11 = D6D 2 < ela® 2+ IPuflls < IPuflle + 1A= Pu) flv.
Then, together with Step 1 we obtain
1602 < e IPu flls + 1A —Py) £ 1. (5.4.14)

O

5.5. Estimate of S4 f. The components of S4 f solve the system

ik-b® +igk-ua® = 35", (5.5.1)
ikP® +e[olk|? +iu-k]p® =§@ (5.5.2)
R 3
ik -b™ + & [ic|k)? + Sik- ule® =¥, (5.5.3)
where

5P ) =0, (5.5.4)
s k) = —jisk - / dv g By, (5.5.5)

R3
5 (k) = —jeik / dv Cg.cty. (5.5.6)

R3

3
Lemma 5.8. Let p > 2 and assume g € L?pl’. Then
_1
IS4 fllp < v 28ll 30 . (5.5.7)
+p
Proof. We proceed as in the proof of Lemma 5.7:
Step 1: Estimate of [T6™:
From (4.34) for the system (4.30)—(4.32), with s = s,
6@ = N (1159, (5.5.8)

Since for the multipliers kN, % Ik direct computations yields

dp{ekN, | Tk} <) 1k|
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with constants independent of ¢, by Mihlin-Hormander’s [17,25] multiplier theorem,
we deduce

VIO, = [V Gk [ avgg)

3p ~ S v zg”;;;, (5.5.9)

3+p

by the Sobolev estimate

_1
I, S IVIED ) 2 < v 28l 20 -
+p 3+p

Step 2: Estimate of P®:. by using (4.36) for the system (4.30)—(4.32), we have

) N “IFN, k
@ _ o1 [ v,1 A(4) ) A(5)i|
p (1+si|k|2u k) ol ke g ) (5.5.10)

from which we get
P9 < e, +ellv 2 gl 30 - (5.5.11)
3+p

Step 3: Estimate of c®: by using (4.38) for the system (4.30)—(4.32), we have

N. -1
&® — N’{ Dy k(1+ b1 k) — A<4>} 5.5.12
™) jewk(1+e i l|k|2 8 (5.5.12)
with
s£4):£ik~/ du@%.
R3
This implies
e, < v 2gl 3 - (5.5.13)
3+p
In consequence
1PN, < elv2gl s, . (5.5.14)
3+p

Step 4: Estimate of a™®: Using a® = P® — ¢™® | we have

-1
la®lp S Iv2gll (5:5.15)
+p

Step 5: Estimate of (1 — ﬁ)5(4): Since (1 — 12[)13(4) =k- bl(4)k|k|_2, using the equation
for the mass we have (1 — ﬁ)5(4) = —5|k|_2kk -ua™, and hence, by Step 4

_1
I =p PN, < elalp S elv2gll 2 - (5.5.16)
+p
Then, together with Step 1 we obtain
1591, S V"2 gl 3 (5.5.17)
+p

O
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5.6. Estimate of Ss f. The components of S5 f solve the system

ik b +isk -ua® =355, (5.6.1)
ikP® +e[olk|? +iu- k] =§O (5.6.2)
3
ik -6 + & [ic|k|? +5ik- ule® =35, (5.6.3)
where
A(s) . —
0 = [ av iR,
(5.6.4)

5(5)(]() = j/ﬂ@ dv /1, vePyg,

. 1 —
50 (k) = J/ dv /12,5 (0] = 3)CPyg.

Lemma 5.9. Let p > 2. Suppose that (Pyg € L9, 1 < q < T Then there is p > 0

such that
ISs£1lp < e ul~ "I cPuglly. (5.6.5)
Proof. By Hausdorff—Young inequality (5.3.31),
ISsfllp S IIszllﬁ. (5.6.6)
We have
16 = N, 1 1j / v/, vEPyg. (5.6.7)
Therefore, if 1 < randr— < 2, sothat we can use with (5.2.17), then, with = +% 1,
we have
116 2 < INg 1, 2 ICP o ST T Puglly
(5.6.8)

—1,,,-1
Se lulm e Pugllg,

where ¢/ = % —, where we have used (5.2.17) in the second inequality and again
the Hausdorf Young inequality in the last step. Since pT_l > £, theng = 5 b =

Sincer > 1,theng > 1. 0O

_pr P
@H = 1“'2

5.7. Proof of Theorem 1.5.
Proposition 5.10. If u #~ 0 and ¢ < 1, then there is p > 0 such that,
2Py fll3 S IPuflls + [ul =2 A =Py fll2 + oDV 2gll20\0)
1 _1 _1+Q 1 —1
+ezflvT2glls + |ul [e72llzy (D2 +¢ IIPuglng—]- (5.7.1)



808 R. Esposito, Y. Guo, R. Marra

Proof. To get the L bound of P, f we proceed as follows: we look at the problem in R3
by passing to the cut-offed problem. Thus we obtain Py, f = (1 — )Py f + le: 1Sif.
Since 1 —¢(x) =0ifx ¢ Q1 = {x [d(x, ) < 1}, (1 = Py fll3 < [Py flle. For the
other terms we use the previous lemmas.

The bounds in previous subsections are too singular in ¢ for our purposes. Therefore,
we take advantage of the uniform-in-¢ estimate of ||¢P,, f||¢ to improve the estimate of
1Py I3 by means of interpolation between the L% norm and some lower norm. Since

5
1Y "8iflls < 1Py flls, (5.7.2)

i=1

we have
ISt f+S3fll6e < IPuflle +1IS2f 1l + 1S4 flle + 1S5 fll6- (5.7.3)

Therefore, using (5.3.21), (5.5.7) and (5.6.5) with p = 6, we obtain:

IS1f +83 1l S IPwflls + Iul~ (e 1A = Pu) fll2 + IPu flls + llgv™2 112)
+e7 i 0le2 2, () 2+ IPugll os1 + v 2 g1l
+e ul T IePygll o
S P fls + )~ 2™ A = Py £l + ul 2 gv 2 2
+ 72 2 () + o IPugl ). (5.7.4)
Note that only the last line is singular in &, but we will apply the inequality in a situation

where z,, (r) and P, g are small in €.
For S1 f +S3 f, by (5.2.5) and (5.4.6) (by interpolation (|| ||, < ||f||‘;||f||;_9 with

r~l=0p~'+ (1 —6)g™")) we obtain, withr =3, p=2,g =6and 0 = 1,

1 1 1
e2S1f +85£1ls < (eIS1f + 83 £ )2 1811 + 85 £ g
1 1 1 1 1
SUPLSlg +1A=Py [y +e2[v72gl3]
1
X[ IP flo + ™26~ @ = o) £ + 1w~ v 3

-1 _1 -1 2
R O ENCTIER | FTR]
oc

_ _ _ _1
S Py flle + |~ e @ =Py fllo + (e + [u 7 *0) v 2 gl

B - —1
+ul e 2|lzy (M2 +e ||Pug||L;3/§]- (5.7.5)
As for S4 f, we have from Lemma 5.8 with p = 3,
1 . _1
e2[Safls S ez lv=2glls. (5.7.6)

For S5 f we use Lemma 5.9 with p =3 and hence 1 < g < g.
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By (5.3.21), by interpolation we obtain,

1 1 1
e2182 /113 S &2 [l 70 A= Pu) 2+ IPu f s + v 2g)

—1), —l+or.+ o (1-0)
+e  ul [€2||Zy(r)||2+||Pu8||L16/§]] IS2/1g s (5.7.7)

with 6 such that % =op~ '+ é(] — 6), and hence 6 = %+ when p = 2*. Therefore, by
Young inequality,

1 1 _ _ _1
e2(ISaflls S e2ful~ e (M = Pyu) flla + Py fllo + IV 2gll2)
_ _1
+ul "Lz, () 2 + & 2IPugllors]- (5.7.8)

Combining the estimates we obtain (5.7.1). O
Now we have all the information needed to prove Theorem 1.5.
Proof of Theorem 1.5. To bound the first two terms of [[ /g, g', we use Proposition 2.6.
Then we use Proposition 2.7 in 3.4:
(1= o) Py flls S (1 +0(1) +[ul ) [ A = Pu) flly + 211 — P2 flas]
+ v gl + el

+o(D)[e2 [wrloo + £ | (v) " wglloo]. (5.7.9)

Using this in (2.8), if u] is so small that [u|(1 + o(1) + |u|~"**)(1 —o(1))~! < I, we
obtain
_ _ _1 _1 1
e IA=PFIT+e 1A= PO f, S Iv ZA=Pygl5+ v 2 gl + 2|
1 3
+o(D)] e [wrloo +e31(0) " wglloo] |+ 1713 + (elu) ™2, ()13

+e 7l IPugll + IPugll). (5.7.10)
Using this in (3.4) we obtain a similar bound for ||Py, f|l6:

_1 1 1
1P flls S 102 = Pu)gl +ulllv =2 gllz +23 [rloc
1 3 —
+o(D)]e2wrloe + 271 (1) wgllo]

+Irl3_ + lu) Mz, ()3 + e—2|u|—2||Pug||§ +[Pugll3.  (5.7.11)

Using (5.7.10) and (5.7.11) in (2.11) we get a similar bound for g2 lwf ||co- Finally,

using (5.7.10) and (5.7.11) in (5.7.1) we obtain the bound on 8% [IPy f 3. Rearranging
the terms we obtain (1.43). O



810 R. Esposito, Y. Guo, R. Marra

6. Construction of the Positive Solution to the Non Linear Problem

6.1. Positivity scheme. In order to construct a non negative solution to the problem (1.1)
we use a modification of the argument introduced in [1].

We define F* = max{F, 0} and F~ = max{—F, 0}, sothat F = F*— F~—. Consider
the system

v-VF = ¢ NO(F*, F*) —20(uy, F7)]in QF, 6.1.1)
F| =PY(F*ondQ, lim F = u,. 6.1.2)
- Y Ix|—0

Proposition 6.1. Let F € L solve problem (6.1.1), (6.1.2). Then F~ = 0 and F*
solves the Boltzmann equation.

Remark 6.2. Since F~ = 0, F is non negative.

Proof. In fact, the equation for F~ is

—v-VF~ =& "p-[Q"(F*, F) = Q(uu. F) — Q(F ", w1, F~| =0.

because F~ # 0 implies F* = 0, and hence the term 1p- o Q 7 (F*, F*) = 15—
F*v(F*) = 0. Moreover, since F > 0 on y_, if follows that F~ = 0 on y_. Since
F — py >0as|x|] - oo, then F~ — 0 as |x| > o0.

By multiplying this equation by — ,u;] F~ and integrating, we obtain:

F~ 2
/ dxdvpg v Vu =—¢! / dxdvlp- 40O (F*, FOF~pug!
Qo xR3 2 Qo xR3

+8_1/ dxdvlp-sopy FTIQtw, F7) + Q(F ™, )]
Q¢ xR3
By the spectral inequality,

- / dxdvlp-ouy ' FLQ(u, F) + Q(F ™, )]
Q¢ xR3

= —/ o Grdvn FTIQGu, F7) + QP )l 2 I =P F .
QxR
Therefore by also integrating by parts the Lh.s., we obtain

1
—/ dS(x)/ dvpg v -n(F)? +e A -P)F|3
2 Jaaxr3 R3

§ —8_1/ ddelF—#0Q+(F+, F+)F_/J,L_ll <0
Q¢ xR3
This implies that F~ = 0 on y*, thus F~ = 0 on y. Moreover (I — P)F~ = 0 and
hence Q(uy, F7)+ Q(F~, iy) = 0. Thus
—0v - VF_ = 8_]1F7750Q+(F+’ F+) Z O
Therefore F~ satisfies
v-VF~ <0 inQ° F =0 ony.

This implies that F~ < 0, but F~ > 0 by definition and hence F~ = 0 identically.
Then, F = F* and (6.1.1) coincides with the Boltzmann equation (1.1) and (6.1.2) is
the usual diffuse reflection boundary condition (1.8). O
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Therefore, to construct a positive solution to (1.1) we need to construct a solution to
(6.1.1), (6.1.2). We need some notation:
Let x = 1jyj<g=m, X = ljyz¢—m = 1 — x where m > 0 is such such that

f + eI, x (fi +&f2) > 0. (6.1.3)

Such anm certainly exist because, by definition fj and by [5] f2, are bounded by /i, P,
for some s > 1, where P; is a polynomial of degree s in v.

Since, for 8 > 0, exp[—e’ﬂ 1< ! for any £ > 0, in the rest of this section we shall
use the short notation

e® = exp[—e#], forsome B > 0. (6.1.4)

Recall that
0< Ml,s(u+u),l = Uyt &4 My f1 +82\/ HuQ@s. (6.1.5)

We denote

2= fi+e(xfo+ xde)-

By (6.1.3), if x = 1, then u, + /2 > 0, and the same is true if x = 1 by (6.1.5).
Therefore

Hy + /02 > 0.
We decompose
3
F=py+e/pu,2+e2R /. (6.1.6)
Then we define

R if oy + 6 /T2 + 67 JIE R >0

R = s R , (6.1.7)
—& 2(puy+e2yp,)  ifpu+e2pm, +e2 /i R <0

and L

R=R-R. (6.1.8)
It follows that
F* =y +e/in2+e2 R, (6.1.9)
3 .

F~ =Ry, (6.1.10)

Indeed, if F(x, v) > 0, then
F*=F = Mu+8«/ﬁuo@+8%R«/ﬁu = uu+sﬁo@+sgﬁﬁu.
Moreover, if F(x, v) < 0, then S%R < —(py + SQM) and hence
0=y +e°@\/,u_u+a%I§\/ﬁu = F",
and
F™=F*'— F = py+eJi2+e? Ryl — (i +e/H2+ 62 RIL,)
— eI (R— R)Jii, =i Rl
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Lemma 6.3. We have the following inequalities:

IR| < IR, 6.1.11)
2R, 6.1.12)

IR <1 3
{nute /i, 2+e2 R<0}

IR — R2| < |R1 — Ral, (6.1.13)

|Ry — Ra| <2|Ry — Ra| | 1 3 +1 3 :
{nute /i, Z+e2 Ry /1, <0} {nute /i, Z+e2 Ry /v, <0}

(6.1.14)
Proof. Indeed, py + 2. /it + S%ﬁuR < 0 implies R < 0 and hence 8%|R| =

—€%R = ﬂ;l(uu +e/un2) < —S%R = 8%|R|, which proves (6.1.11). More-

over, |[R| < (|R| +|R]1 2IR|1

| 1 which proves
{nu+e/it(2+£2 R) <0}

<
{Mu+gﬁ(g+s%é)<0} -
(6.1.12). Furthermore given F; and F;, we have

|F — FS| < |F1 — Fa|.
|F| — F, | <2|F — B2l

Infact, fixed (x, v), withoutloss of generality suppose F1(x, v) > F>(x, v).If Fo(x, v) >
0 there nothing to show. Thus assume F>(x, v) < 0. If Fi(x, v) < 0O then F1+(x, v) =
F3 (x,v) = 0 and the inequality is obviously verified. Therefore we only need to con-
sider the case Fj(x, v) > 0 and F» < 0. We have

|F{'(x,v) = F5 (x, 0)| = Fi(x,v) < Fi(x,v) = F2(x,v) = |F1(x,v) = F(x, v)].

Moreover, since F~ = F* — F, |F| — Fy| = |Ff — Ff|+|F1 — F»| <2|F — Fal.
Therefore, with R; defined by (6.1.6) and R; by (6.1.9), it follows that
e3 IRy — Rol = ity ((Ff — i — e/In2) — (Ff — i — £/ 2)]
= i |Ff — Ff < Ji, ' |F1 — B
= iy 1(F1 = iy — e/ 2) — (Fy — oy — £/ 2)|
= e3|R| — Ral.

Hence (6.1.13) is proved. Furthermore

IR| — Ra| < 2[Ry — R2|(1 ). (6.1.15)

1
(kT 233 RY<0) T (re Jiw(24e 3 Ry <0)
In fact, since F;” — F, vanishes outside of the set
1 1
{u + e/ (Z+e2Ry) < 0} U {uy + e/ ptu (2 +6e2Ry) < 0}
and e~3 |F| — Fa| = |[R; — Ra|, we have

~ ~ _3 — _ _
IR — Ryl = &2 /iy |(F — o — /10 2) — (Fy = (ttu — £/ 2)]|
_3 1, e _
=e 2/u, |Fj —F, |
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_3 -1
<2e72 F— R +1
=< ﬁu I 2l( {Hu+8«/ﬂu(~@+8%Rl)<0} {Mu+5«/ﬂu(g+5%R2)<0})

=2|R; — Ry 3 +1 3 ).
{pu+e /1 (2+e2 R1) <0} {u+e /i (2+e2 Ry) <0}
O
As for the boundary conditions, we have
1, B 13 1
M +Efipeg + &= (X fo+ XPe)iti + €2 Riug
1 _ 131
= PPl pu +exfimed + & (0fr+ X + &7 Ruil.
Therefore, subtracting this equations from (1.33),
1 3 1 1 3 - 1
e x(f2 — )i + &7 Rud = PYLe” x (f — pe)ni + 2 Rugl.
Hence . _
R:P;R+87F+P;R, (6.1.16)
with
r= P;[X(fZ — @) — x(f2 — Pe).
We have
H/ dv[uuh/_uueg]v-nH =% on Q. 6.1.17)
R3 o0
In fact
f3 dv(uy + (ef1 +82¢8)\/ﬂu)v n= /3 dvM ey, 1v-n=¢én- (u+u) =0,
R R
(6.1.18)

on 02 because u = —uon 9<2, see (1.14). We have also ng dv(pu+e/m, f)v-n=0
on d€2 and hence fR3 dvﬁu¢€v -n = 0 on d€2. Therefore, by (1.31), since u|yo = —u,

<e P <e® ondQ.

(6.1.19)

)/R3dvn~v\/ﬂx¢s =‘—/ﬂ;{3dvn~v\/ﬂi¢s

Since Py, fo = 0, in the same way we obtain

‘/ dvn - U«/:U«qu2‘ = ‘ —/ dvn - U«/Mu)_(fZ‘ <e " <e™ onodQ,
R3 R3
(6.1.20)
because |f2| < /u, Pel(IVul + |u|*) and Vu is bounded in L? for any p > ‘3—‘ and
(6.1.17) follows.
The boundary conditions for F imply

/ dev~n=—/ dvF n-v,
R3 {v-n>0}

on 0€2. Therefore we have

/ dvﬂuRv~n=—f dvﬂuﬁnov+0(8°°)
R3 v-n>0
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Lemma 6.4.
Hf dv uun~vH < e, 6.1.21)
v-n<0 0

Proof. Wehaver = P;(sz—)2¢8)—(xf2—)2¢g)and, using (5.3.10), fv_n<0 dvr./uyn-
v = fR3 dv /iy (xfo — x¢e)n - v.(6.1.19) and (6.1.20) imply (6.1.21). 0O

We rewrite the problem (6.1.1), (6.1.2) using the decompositions (6.1.6) and (6.1.9).
Recalling the definitions of fi, f> and the incompressible Navier—Stokes equations, we
are reduced to construct the solution to the problem:

v-VR+e 'LyR=LOR+eIT(R, R) +e2 Ay, (6.1.22)
R| = PR +elr, (6.1.23)
where

LR =2I,(2, R), (6.1.24)
P Ay =Py[xv- V(ge — f2)] (6.1.25)

A=P)Ay = A =P V(xf2+ X))
—TuQfi+e(Xfo+ XPe), X o+ Xe) + & LulX (¢e — f2)],  (6.1.26)
r=F—e PR, (6.1.27)

In fact, recalling (1.21) and (1.20), we have

Ly(xf2) = Tu(f1. f) + X =Py)(v -V f1) = —=Lu(X f2).

and
Pu(v-Vxf) =—-Pu(v-Vx ),
so that
v-V(xf2) = A =PI V(xf2) —Pulv- V(X f2).
Therefore,

Awi= T A= PO@- VA + Luf2) = Tulfis S0} + eLu(Xbe)

4620 V(xfa+ 79e) = 2 Tu(OUf2 + 580, 261 + 202 + 70)

= —e '"Lu(x ) +e ' Lu(Xge) + A= P)(v - V(xf2))
—Pu[(v - V(F )+ V(X$e) — Tu((xfo + X9e). 21 + e(x fo + X))

= e "Lul{ (e — 1 +Pulv- V(X (@ — )]+ A =P - V(X f2 + xude))
—Tu((fa + Xbe). 21 + (0 fa + X be)).

Proposition 6.5. Let X € LP(Q¢ x R3) and X and X be defined as X and R, as in
(6.1.7) and (6.1.8). Assume p > 1, |u| < 1, Then:
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(1) Let w(v) be such that w! < ﬁﬁ(v)_ﬁ, for some 0 < B K land B/ > 0. If

8% lwX || oo is bounded, then
IPEX D= S [e(lul + 2 [wX o)) X |24 (6.1.28)
PEX |~ S Teul + &2 |wX o) [ X]oo, - (6.1.29)
(2) Given X and X, such that 8% [lwX;|lco are bounded, then,
|PY[X) = Xallo,— S [e(ul + g?é(s% lwXilloo)]?1X1 = Xal2.4. (6.1.30)

PYX, — X < T wX; X, — X 6.131

|PIX1 = Xalloo,~ < [e(ul + max (&2 [[wX; o)) 1X1 = Xaloo.  (6.1.31)

(3) TEX,X) < TEIXI, XD and [TEX ), X1) — TE(X0, X2)l S TEIX| +
[Xol, 1 X1 — Xal).

Proof. To prove (6.1.28), note that

1 1 <1 1
{nu+e /i {2+e2 X} <0) {(Viru<e(|2]+e 2 |lwX loo)w ™!}

Therefore, by (6.1.12), since w™! < ﬁﬁ(v)_ﬂ, forsome 0 < B <« 1 and 8/ > 0, and
12| < |u|\/ﬁu(v)e for some £ > 0, we have

v /‘L / /
|[PYX| <2 dv'\/ g ()" - nl
v vy (V) S0 !

1
<2 X[v-nl2,2

X |dv’

1
(Wru)<e(|2l+e2 [wX [oow™))

n
(V)

X dv'w 21 | v v’~n>i
(/R3 ) {«/uu(v’><a(|2|+efnwxnoowfl)}uu( ) |

1 1 73
S le(ul+e2 [wX )P IX v - 0|22 : (6.1.32)

(V)

because [z dv'(v) "2 (v)|v' - n| < 1 by choosing B > 2. Therefore
R ~ 10y g

~ 1
f dv| Py X 1% < [e(ul + 2 [wX |l P 1X13 .., (6.1.33)

0 (6.1.28) is proven.
‘We also have

1

U M B NS 2)7
|PVX|§”X”OOW<A;@dUw W/ <o 2ty P @DV - 1
1 iz
< le(lul + 2w X 1loo) ™1 X lloo , (6.1.34)
My (V)

from which (6.1.29) follows.
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To prove (2), we observe that, if |wX;|lcc < &, by (6.1.14)

[P} (X1 — X2)| <4 / VAT OLYY
y V1 () S0 B

nIXy = Xoll s dV (6.1.35)

The rest of the proof is as before.
Statement (3) follows immediately from (6.1.11) and (6.1.13). O

Proposition 6.6. Let u be the solution to the incompressible Navier—Stokes equations.
Then, ife < 1,

e forany p > 1

IPyAull, S &> (6.1.36)
e foranyp > %
1A =P Ayllp < ul; (6.1.37)
[ ]
_1 -
V2L S WX a0 forp <3, (6.1.38)
-P
l -
W 2LPX, S ullwX o for p > 3. (6.1.39)

Proof. First note that, by (6.1.25), since fi = /i, vy -u and fr = Z?,j:l By o +
L;'Tu(f1. f1), we obtain

3
Pudu =Pufivu - Voo + 7 Y updiupv Ly Tulu /iy Ve /)
J1,J2,j3=1

3
+X|:\/ﬁu Z Ujl‘%)jzﬁajlajz”ja“' (6.1.40)

J1.J2,73=1
We recall that from [12], Th. X.6.4, we know that, if u # 0, then u € L? for any
p >2,Du e LP forany p > 4/3 and D*>u € L? for any p > 1. Therefore, for any
p =1, [luDul, < 1. Moreover, for any 8 > 0,

T < exp[—ge‘z’"] Se”, (6.1.41)

and we obtain that the second term is less than ¢ in L?-norm, for any p > 1. From the

1

definition of ¢, we have D¢, ~ w2 |u||Du| and hence also the first term is less than £
in LP-norm, for any p > 1. Finally, since ||D2u|| » < 1 forany p > 1, the third term is
less than £°° in L”-norm, for any p > 1, so the first item of Proposition 6.6 is proved.

To prove the second item we first observe that, forany p > 1, [Ty (x fa+x P, [i)llp S
1. This follows as the estimate of ||y (f1, f1) |l ,. Next we need to take care of the term
e '"Lxd—=P)(-Vf1) entering in f>. Since this is proportional to Du this is bounded
in L? for p > %‘. The diverging factor ¢ ! is dealt with using (6.1.41).

To prove third item we remind that |lu||3 < |u| for [u] < 1 (proof in “Appendix A”)
and hence also || f1]l3 < |u|. We use the definition of Lﬁl), the inequalities (6.1.11) and
forany p > land g~' +¢'~! = 1, [V 2Tu(/, Ay = ”V%f”pq”g”pq/ with g such

that pg = 3 and hence pq’ = i—pp to conclude. O
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6.2. Iteration. The construction of the solution is obtained as follows: we define the
sequence {R }fv;’o:O as: Rop = 0; Ry, is the solution to the linear problem

V- VRpst +&  LyRest = LRy + 2Ty (Ry, Ry) + 82 Ay, (6.2.1)
with boundary conditions
Res1 = P)/Rewi + E%rtz, (6.2.2)
where : y
re=F—¢& 2P)/Ry. (6.2.3)

By denoting g = LR, + €2y (Ry. Ry) +£2 Ay, we are reduced to the linear problem
studied in the previous sections.

Remind the definition (1.38) of [[ - ]|g,g'. Since in the rest of this section 8 and B’ are
fixed, we drop the indices. Let .2 be the Banach space of the functions X (x, v) such
that [[X]] is finite.

Theorem 6.7. There are 9 < 1 and co K 1 such that, if ¢ < 1 and |u| < co¥, and

sup [[R;]] < 9, (6.2.4)
0<j=<t
then
[Re+11 < 9. (6.2.5)
Moreover, there is . < 1 such that
[Re+1 — Rell < AM[Re — Re—11l- (6.2.6)

Therefore Ry converges [[ - ]|-strongly to R € 2 which solves (6.1.22), (6.1.23).

Proof. By Theorem 1.5, we need to show that, when g = S%Fu(kg, Rg)+L,Sl)Rg +£%Au

andr =7 +e 2 PERy, if e < 1, Ju| < 1, then .2 (g,r) < 0.
We need to bound all the term in the right hand side of (1.44). To estimate the norms
of 'y (f, h) we state the following

Proposition 6.8. We have the following estimates: let X € Z . Then

2 v AT (X, X) s S IXT 6.2.7)
2 v 2wl (X, X)lloo < & 2[XTP, 6.2.8)
e2 VIR, Xy < e IXT. (6.2.9)

Proof. We make use of the following inequality (see [9]):
W 2T S 12 £l lhl. (6.2.10)
In particular, for ¢ = 3, p = 3 we get
Iv7ITECL DI < V2 fllAl, (6.2.11)

andforg =3, p =6,
_1 1
W= ZTECA W2 < v £lisllklle. (6.2.12)
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We will also use 1
I=ZTEC D2 Sl lAllso, (6.2.13)

and

1) ITEE oo < 1 f ool oo (6.2.14)
By (6.1.11),

Ty (X, X)] < T (X1, XD < T (X1, 1XD).
We split | X| < |[(I — Py)X]| + [Py, X]|. We have
CEIX] 1XD) < TEIA = P)X], [A = POX)) + TE(PLX], [Py X])
+2I (1A = P X, [PL X)),

where TE(f, g) = ATE(f. &) +TE(g, f)I.
Using (6.2.12) we get

1 1 1
e v 2T (Pu X, [PuX D2 S (2 [PuXID3[PuXlle < [XT7.  (6.2.15)
Using (6.2.13) we get
1 1 1
e2[vT AT (IX = P)X|, [A=P)X]2 < e(e? [A—Py)X[Doole™ [T =P)X],)
< &[[X1%. (6.2.16)
Similarly,

1 1 ~ 1
e2 v ITE((M — P)X|, [PuR, D2 < (2 [PuXDoo(e ™ X = P)X|,) < e[ XT1
(6.2.17)
Therefore (6.2.7) follows. Moreover, by (6.2.14), (6.2.8) follows.
Since

1 1
e2||ITE(@ - PY)X], | — Pu)XD“% <ez|d-PXI3,
1 1
and, by interpolation, (I —P)X |3 S X —P)X |y [T —Py)X||¢, then
1 3
e2|[TE(1AX - P)X], |d - Pu)X|)”% <e2(e A -POXILIDIA-PYX]6.
Since

1 1 1 1 2
IX—P)Xle Seille ' A-POXIIFe 3 e2X—POX % < [[X],  (6.2.18)

we have

1 3
eZ|TE(A —PYX], | — POXDIs = e2 (X (6.2.19)
Moreover,
Lo~ 1
e2|T*(| X = PyX], PuXDlls = (e2[[PuXI3) [T —Pu) X3
1 1 1 1
S @2 P XA =POX[ZIIA—POX[E < e2[[X]* (6.2.20)
Finally

1 1
2 ITH (1P X, PuXDlls = (e2[[PuXl3)IPuXl3

<222 |PuX|3)% < e 2[XT% (6.2.21)
and (6.2.9) follows. 0O
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Now we are ready to bound the several terms entering in ./ .

Proposition 6.9. If [u| < 1 and ¢ K 1 then, with

B¢ = sup [[R;]],
0=j=t

we have

M (3T (R, R) + LR + 67 Ay, 1) S B+ 82 +elu +6%. (6.2.22)
Proof. With g = S%Fu(]ég, Ry) + prlée + S%Au, we have

_1 2 _1 =~ = 2 “Lomp 2 _1 )
V"2 = Py)gl3 < ellv 2Ty (Re, ROIZ + v 2L Re[13 +ellv™2 (1 — Py Ayl3
SR + TR + e ul?, (6.2.23)

by using (6.2.7), (6.1.38), (6.1.36) and (6.1.37).
The next term in (1.44) is

elv 2 (e2Ty(Ry, Re) + LRy +27A)|2
uw(Re, Re)+L,"Re+¢ Au)”%
_11 = = 1 =
<elv Zezru(Rg,Rnngmnv zLEPRznZ%
11 -
+ellv ZezAunz% SR + e|ul[Re D> + e |ul?, (6.2.24)

by using (6.2.9), (6.1.38), (6.1.36) and (6.1.37).
Then we have

_ _ _ _ 2
83H<v>—'w[e%ru(m, Ro)+ LR, +e A, ]

e¢]

1 s |? 3.4 Lo l?
<e¢ H wsZFu(Rg,Rg)H +¢e H( ) ngl)RgH +¢€ ‘87(1))_ wAu]
o o

S 2[R + & |ul[[Re 1 + &2 |ul?, (6.2.25)

by using (6.2.8), (6.1.39), (6.1.36) and (6 1.37).
Since P, g = P, Ay, the term ||Pug||2 +e2u)? ||Pug|| in (1.44) is bounded by £*°

using (6.1.36). Next we bound
lzy O3 S llzy D3+~ ”Zy(PuRE)Hz (6.2.26)
The first term is bounded by £°° using (6.1.21). Moreover, by (6.1.28),

1 ~
1oog) 1242 11y, 1 2
(277 + ul T e e lzy (P RO

_ _ 1
< e ul " e(lul + e2 [lwRell o) * PR, 13

_ 1
<Pl (ul + 2 wRelloo)* PR3
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To bound |R¢|2,+ we use Lemma 2.2 and (6.2.1) with £ replaced by £ — 1 to obtain

Rel2. < PRI + (e~ |(L = Py)R ) ST (Rp_1. R
[Rel3+ S IPuRellg + (67 I( WRellv)” +ellv w(Re—1, Re—1)l2
_1 ~
+Iv 2LP R 113
_1 - — —
+ev 2 Ay )15 SR + Ef + [uPES + efuf?, (6.2.27)
by using (6.2.7), (6.1.38), (6.1.36) and (6.1.37). Hence, since E < ¢ < 1, fore <« 1
we have
(2 Jul72* + [uTe e irplI3
< e+ PPl (Jul + TR PHIR + EF + [u*EF + |uf?}

S EF+ P82 +efuf? + 6>, (6.2.28)

The terms |r|%’_is treated in a similar way. As for ¢|wr| we proceed as before using
(6.1.29), (6.2.8), (6.1.39) and (6.1.36) and (6.1.37).
Collecting the estimates, since ¢ < 1, we conclude that

M (3T (R, R)) + LR+ 67 Ay, 1) S B+ uPE2 4 eful> +6™°  (6.2.29)

O

Since B¢ < ¢, from (1.43) we obtain
[Rer1 11 < 02[02 + c30% + ¢ + X972 < 92, (6.2.30)
provided that
02+ clo? +cf+eX9 2 < 1.

This is verified if # < 1,6 < 1,9 K 1.

The same arguments prove (6.2.6), by using (6.1.13) and (6.1.14). The sequence
{R¢} thus converges strongly to R such that [[R]] < ¢. It is standard to check that R
solves (6.1.22). Since convergence in [[ - ]] implies pointwise convergence, by (6.1.14)
it follows that R satisfies (6.1.23). O

Therefore F = iy +£9+¢3 R solves the problem (6.1.1), (6.1.2) and hence it is positive
by construction. Moreover, it is in L°°, even if not uniformly bounded in . We can use
Proposition 6.1 to conclude that it is also solution to the original problem (1.1), with
boundary condition (1.8) and condition at infinity (1.12). The same estimates also prove
uniqueness in the larger space because we can drop the assumption 8 > 0 which was
used before only to deal with terms appearing in the modified problem (6.1.1), (6.1.2).
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Appendix A. Bounds on the Velocity Field

Proposition A.1. If |u]| is sufficiently small, then the solution to the problem

U-VU+Vp=AU, V-U=0, inQf (A1)
Iim U=u, U =0, (A.2)
|x]—00 Q2
is such that
U —ull, Slul, forany p = 3. (A.3)

Proof. We first construct w(x) such that V- w(x) = 0, limy— 0o w(x) = u, and
w(x)]ae = 0, with |w(x) — u| = 0 for x sufficiently large. In fact (see [18]) we can
choose

w = u — curl[x (d(x, 32)) (uzx3, uzxy, upx2)],

where x (z) is smooth with x (z) = 1 forx < % and x (z) = Oforz > 1. By construction
V - w = 0. Moreover, we have
curl[x (d(x, 9R2)) (u2x3, uzxy, u1x2)]
= x'(d(x,3))Vyd (x, 0Q) (upx3, uzxy, ujx2) + x (d(x, 9Q2)u
u x €089,
o dix a0 > 1

Clearly w — u is compactly supported and ||w||ws.r < |u| forany p > 1 and any s > 0.
We then seek for U = w + v, with v such that

w-Vvo—Av+Vp=—(w+v)-Vw+Aw —v- Vv (A.4)
li =0 =0. A5
m v vaq (A3)

We construct the approximating sequence solving

w-Vol — AV +Vpl = —(w+0Y) - Vw+ Aw — v Wt (A.6)
lim v=0 v =0, (A7)

‘I
|x|—00 90=0

for ¢ > 1 and v° = 0.
Step 1: By energy estimate and weak solution theory, we can show there is a solution v
to (A.4), (A.5), unique for |u| < 1, which is the weak limit of {v*} and for any ¢

IVl + vl S ful.
Step 2: We now show that v € L3 and lvll3 < [ul. Using dju =0, V- vt = 0 and
V - w = 0, we write the i-th component of (A.6) as
3 3
Z[uijvf—ajgfoBipe = — Z 0; [—ij,-+(wj—uj)vf+v§ (w; —1;)+w; wi+vf71vf].
j=1 j=1

(A.8)
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In Fourier space, we have (using the Leray Projector I1, and k - 9(k) = 0):

3
- ki ki A _
Bmvf=Z|k|2:’ﬁﬂf{—ajw,'+(wj—uj)vf+vf(w,-—u,')+ij,-+v§ lvie}.
j=1
We have
kik i . 1
) izm—]n ==
k|7 +iu-k |k

independent of u. Hence we can use the Mihlin—-Hormander theorem. Therefore, by
Sobolev embedding in 3D (Wl'% C L) and the compact support of w — u, we obtain

¢ ¢
[v*l[z3 =< sup |8, 0" |3
m 2

14 14 14
“ — ij,‘ +(wj —uj)vl- +vj(w,- —u,-)+ij,- +Uj

IA

]

A

£ —1,.¢ ¢ —1
ul (L4 [v7lle) + o™ Tl 3 S ful + [l s llv™™ s

3
2

Therefore, if we assume the recurrence hypothesis  sup  [|[v"||;3 < C|u], by choosing
0<m<t—1
|u] < 1 we obtain

¢
[v*l[zs < Clul,

and the limit satisfies ||v]|;3 < C|u].
Step 3: By differentiating the equation, from the energy inequality for the derivative we
obtain || Dv|lg < |u| and hence ||v]jso < |u]. By interpolation we conclude (A.3). O
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