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Abstract

models

Background: Several methods to handle data generated from bottom-up proteomics via liquid chromatography-mass
spectrometry, particularly for peptide-centric quantification dealing with post-translational modification (PTM) analysis
like reversible cysteine oxidation are evaluated. The paper proposes a pipeline based on the R programming language
to analyze PTMs from peptide-centric label-free quantitative proteomics data.

Results: Our methodology includes variance stabilization, normalization, and missing data imputation to account for
the large dynamic range of PTM measurements. It also corrects biases from an enrichment protocol and reduces the
random and systematic errors associated with label-free quantification. The performance of the methodology is tested
by performing proteome-wide differential PTM quantitation using linear models analysis (limmay). We objectively
compare two imputation methods along with significance testing when using multiple-imputation for missing data.

Conclusion: dentifying PTMs in large-scale datasets is a problem with distinct characteristics that require new methods
for handling missing data imputation and differential proteome analysis. Linear models in combination with multiple-
imputation could significantly outperform a t-test-based decision method.
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Background

Covalent post-translational modifications (PTMs) have a
significant impact on protein function and activity, while
greatly increasing proteome complexity of an organism.
Enzyme-catalyzed PTMs, such as acetylation, phosphoryl-
ation, or ubiquitination, can occur at one or multiple amino
acid residues in a nascent protein following translation and
folding, or on mature proteins as part of signal transduction
pathways or regulatory/control processes [1]. PT'Ms modify
the activation state of enzymes, change the subcellular
localization, or modify the stability of proteins. The
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frequency with which PTMs occur, stoichiometry, timing,
and location within a protein and the cell are crucial as-
pects for understanding the function of proteins and linking
the dynamics of the whole proteome with physiological and
pathological phenotypes of an organism [2].

Advances in mass spectrometry (MS) have acceler-
ated the identification of PTM sites with high reso-
lution in proteomes, where thousands of modifications
are now routinely discovered following enrichment and
quantitative methods [3]. Technological progress has
also prompted the development of new protocols for
the quantitative analysis of P'TMs. Most published work
has focused on detecting and quantifying well-known,
classical PTMs such as phosphorylation, glycosylation,
ubiquitination, and acetylation [4-9]. However, re-
search on new types of PT'Ms is emerging; specifically,
the study of redox-mediated PTMs is currently the
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focus of numerous recent studies as a basis to un-
derstand the roles that thiol oxidation play in cellular
signaling [10-12]. Reactive oxygen species (ROS)
produced intracellularly under physiological conditions
as metabolic byproducts or in response to various en-
vironmental stress factors can directly affect proteins.
The sulfur atom in cysteine and methionine residues of
proteins are primarily susceptible to oxidation by ROS
[13]. Oxidized intermediates of cysteine and methio-
nine have important catalytic roles in the active site of
some enzymes, or can affect the functions of
ROS-sensitive proteins [14].

Developing approaches to analyze mass spectrometry
data both accurately and comprehensively is a challenge
in proteomics and a considerable bottleneck in determin-
ing biological significance. In particular, quantitative
analysis of protein PTMs via bottom-up proteomics in
various organisms or experimental systems remains a
challenge. The main issues in PTM quantification and
analysis are twofold. Biological factors including a low
abundance of modified proteins and the transitory nature
of PTMs [15] decrease experimental reproducibility and
hamper their comprehensive spatial and temporal analysis.
Also, technical factors, such as the intrinsic variability of
PTM enrichment protocols and sensitivity in PTM detec-
tion where modified peptides may be more difficult to
identify from their fragmentation spectra than unmodified
counterparts [16], further influence the reproducibility of
PTM identification and quantification. These challenges
result in measurements with a large proportion of missing
data, technical errors, batch biases, and data sets difficult
to normalize and variance-stabilize. Additional constraints
are identified in redox proteomics, including technical
problems like sample handling and preparatory issues that
can artificially shift the oxidation status of proteins [17]
and difficulties in the post-MS quantitative analysis, where
precise stoichiometric information is required to
characterize dynamic and transient redox proteomes [18].

To overcome known challenges in P'I'M quantification in
large-scale datasets, we sought to develop data processing
tools that would enable a more rigorous analysis of P'T'Ms.
Improved analysis of P'I'M datasets can significantly impact
the biological insights of a study as well as provide new
ways to improve proteomics. A performance evaluation of
existing label-free MS quantification methods and software
packages using a proteomic standard composed of an
equimolar mixture of 48 human proteins (UPS1) spiked at
different concentrations into a background of yeast cell
lysate was presented in [19]. In this study, we describe a
statistical methodology to address challenges related to
peptide-centric identification and analysis. We developed a
data analysis pipeline (Fig. 1) built on output from Proge-
nesis QI for proteomics that is extendable to any label-free
quantitation software using area-under-the-curve measure
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ments. The pipeline consists of 1) a quantitation script, 2)
an imputation method using sampling from a normal dis-
tribution with parameters robustly estimated from analyzed
data, 3) a robust regression decision method based on
limma, and 4) multiple imputation analysis. We provide a
comparative analysis of linear modeling versus a Student's
t-test to detect relative abundance changes in two bench-
mark datasets: (1) Universal Proteomics Standard Set 1
(UPS1) and (2) enrichment of protein cysteines from the
yeast proteome, both spiked into a complex protein lysate
from the model green alga Chlamydomonas reinhardtii
(Chlamydomonas) at different concentrations. We compare
our imputation method using an empirical distribution
sampling for missing data, multiple imputation and bino-
mial testing against Random Forest (RF), a bootstrapping-
based machine learning approach previously reported as a
top performer in MS data imputation [20]. We found that
robust estimation of the missing data distribution parame-
ters combined with linear modeling and binomial testing
performs better than all other combination of methods for
the analysis of peptide-centric datasets.

Materials

Protein extraction for background lysate

Steps taken to culture wild-type Chlamydomonas rein-
hardtii CC-2895 and extract proteins were identical to
our previous study [21]. For samples used to enrich
reversible oxidation, iodoacetamide (IAM) was added to
the lysis buffer to alkylate reduced cysteines. Final lysates
in the global proteomics and reversible oxidation studies
were suspended in 50 mM Tris, pH 8.0 with 0.5% SDS
and 8 M urea at 1 mg/mL concentration.

Spiking standard proteins/proteomes into background
lysate

The Universal Proteomics Standard Set 1 (UPS1) was
purchased from Sigma-Aldrich (St. Louis, MO, USA).
For the global proteomics study, a vial of UPSI contain-
ing 5 pmol each of 48 human proteins was resuspended
in 50 pL of lysate to make an initial stock concentration
of 100 fmol UPS1 per 1 pg lysate. Serial dilutions were
performed twice to prepare both 50 and 25 fmol/pg
UPS1. Each sample had a final volume of 25 pL and cor-
responded to roughly 25 pg total protein in subsequent
processing. There were four technical replicates for each
UPSI1 concentration.

Intact Mass Spec-Compatible Yeast Protein Extract
was from Promega (Madison, W1, USA). For the rever-
sible oxidation study, a vial containing 1mg of yeast
proteome was resuspended in 1 mL of lysate to make an
initial stock concentration of 1000 ng yeast per 1 pg lys-
ate. A ten-fold dilution was performed by adding 100 pL
stock to 900 pL lysate to make 100 ng/pg yeast. This
sample was then two-fold diluted in 500 pL of lysate for
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Fig. 1 Schematic representation of the computational pipeline

W

a 50ng/pg yeast. Each sample had a final volume of
500 pL and corresponded to roughly 500 pg total protein
in subsequent processing. There were three technical
replicates for each yeast proteome concentration.

Preparation of samples for bottom-up proteomics

Steps taken for protein-level reversibly oxidized cysteine
enrichment and subsequent LC-MS/MS analysis have
been described previously [21]. For global proteomics,

each sample was held at 30 °C and reduced using 10 mM
dithiothreitol (DTT) for 1 h, alkylated with 30 mM IAM
for 1h, and then diluted four-fold with 75 pL of 50 mM
Tris, pH 8. Proteins were digested with 1 pg of Trypsin
Gold (Promega) for 16 h at 25 °C before quenching with
5uL of 5% TFA. Following solid-phase extraction and
vacuum centrifugation, samples were resuspended in
125 pL. of water with 0.1% TFA before LC-MS/MS ana-
lysis identical to the reversible oxidation study.
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Methods

Database searching and label-free quantification
Acquired spectral files (*.wiff) were imported into Progen-
esis QI for proteomics (Nonlinear Dynamics, version 2.0).
A reference spectrum was automatically assigned, and total
ion chromatograms were then aligned to minimize
run-to-run differences in peak retention time. Each sample
received a unique factor to normalize all peak abundance
values resulting from systematic experimental variation.
Alignment was validated (>80% score) and a combined
peak list (*.mgf) for all runs was exported for peptide se-
quence determination and protein inference by Mascot
(Matrix Science, version 2.5.1). Database searching was per-
formed against a combined database (19,603 entries total)
containing C. reinhardtii ]Gl v5.5 proteins (https://phytozo-
me.jgi.doe.gov/pz/portaLhtml; downloaded June 2016) and
entries from the NCBI chloroplast (BK000554.2) and mito-
chondrial (NC_001638.1) databases. Sequences for either
the 48 UPSL proteins (www.sigmaaldrich.com/content/
dam/sigma-aldrich/life-science/proteomics-and-protein/
upsl-ups2-sequences.fasta; downloaded May 2016) or 6721
yeast proteins from UniProtKB (UP000002311; downloaded
April 2016) were appended to the database. Searches of
MS/MS data used a trypsin protease specificity with the
possibility of two missed cleavages, peptide/fragment mass
tolerances of 15 ppm/0.1 Da, and variable modifications of
acetylation at the protein N-terminus and oxidation at me-
thionine. Carbamidomethylation at cysteine was a fixed
modification for global proteomics and variable for the re-
versible oxidation study. Significant peptide identifications
above the identity or homology threshold were adjusted to
less than 1% peptide FDR using the embedded Percolator
algorithm [22] and uploaded to Progenesis for peak match-
ing. Identifications with a score less than 13 were removed
from consideration in Progenesis before exporting ‘peptide
measurements’ and ‘protein measurements’ from the Re-
view Proteins’ stage. The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium
(http://proteomecentral. proteomexchange.org/cgi/GetDataset)
via the PRIDE partner repository [23].

Data pre-processing

Upon analyzing raw spectral files in Progenesis, we then
prepared data from the global proteomics experiment
(UPS1) for statistical analysis following the steps described
below (implemented in Additional file 1). Our dataset
initially consisted of 15,234 peptides matched to MS1 fea-
tures in the peptide measurements export. After filtering
for Mascot score above 13 and removing hits to the
contaminant database, 13,452 peptides remained. Some
tfeatures were matched with peptides having identical se-
quence, modifications, and Mascot score, but alternate
protein accessions. These groups were reduced to satisfy
the principle of parsimony [24] and represented by the
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protein accession with the highest number of unique pep-
tides, else the protein with the largest confidence score
assigned by Progenesis. Additionally, certain features were
duplicated with differing peptide identifications and were
reduced to a single peptide with the highest Mascot score.
These steps reduced the dataset to 12,792 peptides. ldenti-
fiers were formed by concatenating protein accession to
the peptide sequence, and duplicate identifiers were
binned together. The final dataset consisted of 10,599
identifiers (10,207 from Chlamydomonas and 392 from
UPS1 proteins).

Our dataset from the reversible oxidation study con-
sisted of 4388 peptides initially and underwent similar
processing steps (implemented in Additional file 2).
Filtering for Mascot score and removing contaminants
left 3752 peptides. We then consolidated groups with
duplicate peak features, reducing the dataset to 3547
peptides. For this study, results were limited to only pep-
tides with one or more Cys-sites of reversible oxidation,
defined here as the absence of carbamidomethylation on
at least one cysteine residue in the peptide sequence.
This filter left 3162 peptides with previous sites of re-
versible cysteine oxidation. An identifier was then made
by joining the protein accession of each feature with the
particular site of Cys-oxidation in the protein sequence.
Data was then reduced to unique identifiers by summing
the abundance of all contributing features (i.e., peptide
charge states, missed cleavages, and combinations of
additional variable modifications). Each group was repre-
sented by the peptide with the highest Mascot score,
leaving 2235 identifiers for statistical evaluation (1786
from Chlamydomonas and 449 from yeast).

Data analysis pipeline

The first step in our pipeline is performing a variance-sta-
bilizing transformation by taking the log, of each measure-
ment. We then remove features where all samples are
outliers (defined here as observations outside the Tukey’s
fences [25] with a k value of 1.5). Next, we implement a
missing data imputation method using random sampling
from a normal distribution with parameters robustly esti-
mated from the entire dataset. We perform imputation by
splitting up the features into two sets X and X"*, either
with or without missing values, respectively. In matrix
terms, the observations are described by:

X X
Xf=1 1 : (1)
XN ANm
where xj; = [01,02,...,0,] is vector of observations for
the i-th feature in the j-th condition, r is the number of
the non-missing observations and s indicates the set of
features with missing data (w) or without (wo).
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Furthermore, two models were used for missing data,
corresponding to missing at random or completely at
random (MAR/MCAR) and missing not at random
(MNAR) categories [26]. When there is at least one
non-missing observation of a feature in a condition, a
MAR/MCAR model is used. We performed MAR/
MCAR data imputation by drawing samples from a nor-
mal distribution with a mean (j;) of the non-missing

values for that feature and condition (see eq. 2).

S)

~ w
= =% eR,r
= number of non-missing values (2)

To estimate of the standard deviation (6;) of the normal
distribution, we use the median of standard deviations of fea-
tures without missing data in that condition, X7 (see eq. 3)

Gj = median([a(xﬁ"),a(x;f) , ...,O’(x;;)}) (3)

as a robust measure of the variation of each feature in
the j-th condition. Taken together, our imputation model
for MAR/MCAR data draws samples from a normal
distribution with the mean of the non-missing values in
that given feature and condition and with a standard de-
viation robustly estimated from the features without
missing values in that condition (see eq. 4).
xgiAR;MCAM ~N (ﬁ;}': 8;) (4)
When all observations in a feature and condition are
missing, we use a MNAR model. In this case, the imput-
ation model draws samples from a normal distribution:

xﬁ?NAR ~ N(JE‘MNAR: &f) (5)

with the mean calculated as the lower limit of Tukey
fences [25] with k value of 1.5 for all observations:

Pynar = Qu(V)-1.5(Q5(V)-Q,(V)), Q,(X) =
n : th quantile of V,V = [vec(X"0);

vec(X")|is the vectorized form of the data matrix.
(6)

We used multiple imputations in conjunction with bi-
nomial testing to decide on statistically significant changes
in peptide abundance. Imputation was performed » times
generating » datasets. Relative changes between condi-
tions in peptide abundance were analyzed using limma’
[27] function [mFit with or without the method = “robust”
flag, followed by eBayes using the default settings [28] and
talse-discovery rate correction. The logarithmic fold
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change (LFC) in base two was finnaly calculated for each
feature, comparison, and dataset.

We modeled the outcome of the data imputation using
a binomial distribution, where each trial of an imputed
peptide in a comparative analysis could have two out-
comes: significantly changed (having the p-value below
some set alpha level and the LFC above some cut-off
level), or insignificantly changed. After counting the out-
comes of the n imputations, we performed a right-tailed
binomial test (using R’s core feature binom.test [29]) for
observing an outcome (probability of success) signifi-
cantly higher than 0.5, at a significance level 0.05.

Results and discussion

PTM quantification by MS has largely been peptide-centric
[30], which involves digesting proteins into peptides using
protease(s) before enriching samples for a particular modifi-
cation and detecting with liquid chromatography-tandem
mass spectrometry (LC-MS/MS). Although methods
available for high-throughput analysis of intact proteoforms
are steadily growing [31, 32], a majority of laboratories
currently use bottom-up proteomics and peptide-centric
quantitation for P'I'M studies. To develop a robust data
analysis workflow for such datasets, we analyzed two
distinct experiments featuring: (1) UPSI standards and (2)
enrichment of protein cysteines from the yeast proteome.
Both experiments were spiked into Chlamydomonas pro-
tein extract at different concentrations to determine our
ability to identify changing abundances correctly.

Performance evaluation

To assess the impact of missing data in the differential
analysis, we provide a comparative analysis of multiple
imputations using our empirical distribution-based miss-
ing data model with Random Forest imputation [20].
We evaluated the performance of the entire data analysis
pipeline using combinations of data processing modules
to identify the optimal processing pipeline. The perform-
ance evaluation used receiver operating characteristics
(ROC) curves to compare our pipeline with a t-test with
and without an LFC cut-off. On the x-axis, we plotted
the false positive rate (FPR), against the true positive rate
(TPR) on the y-axis (see eq. 7).

P
FPR = ———:TPR = ———
FP + TN’ TP + EN
FP — False positives, TN = True negative, (7)

TP = True positives, FN = False negatives.

We compared our analysis with an FDR corrected
t-test using the core R [29] functions (ttest with default
settings and p.adjust with the method = “fdr” flag). We
also included a hybrid decision method where an LFC
cut-off threshold was added to the statistical decision at
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significance level alpha (default 0.05). The alpha and
LFC cut-off were varied ten times for both the pipeline
and the t-test (alpha between 0.05 and 0.001, and LFC
between 0 and 2). The LFC and alpha were changed
separately or both at the same time. For the f-test, a sin-
gle imputed dataset was used.

Comparison with random forest imputation (which
has been shown to display high performance in MS
metabolomics data [21]) was performed using the R
package missForest [33]. Default settings were used ex-
cept for maxiter which was set to allow for 20 iterations.
A single dataset was imputed using random forest and
processed through limma and using the same hybrid de-
cision method (LFC cut-off and alpha).

Performance analysis using Chlamydomonas total
proteome-UPS1 dataset

The Chlamydomonas-UPS1 (hereafter referred to as just
UPS1) dataset is a global proteomics dataset containing
10,952 features (after filtering) and three different con-
centrations of spiked-in UPS1: 25, 50, or 100 fmol per
1 pg Chlamydomonas lysate (referred to as 25, 50, and
100, respectively) with four replicates each. In each con-
dition, there were 403 confident peptides of UPSI1 which
were considered as true positives (TP). Since each repli-
cate in each condition was from the same technical
Chlamydomonas lysate, they were considered as true
negatives (TN).

For the largest difference in concentration (100/25),
there was clear discrimination between TP and TN rela-
tive to comparisons made between 100/50 and 50/25
(Additional file 3: Figure S1). The comparison with an
LFC =2 had better discrimination between TN and TP
and a larger variation of TP (Additional file 3: Figure
S1A). At LEC =1 (100/50 and 50/25), the TP had lower
variation, but it was harder to discriminate from TN
(Additional file 3: Figure S1B and S1C). There were a
total of 1083 (0.82%) missing values in 471 (4.3%) fea-
tures for which imputation was performed.

To evaluate the performance of the pipeline, we plotted
the receiver operating characteristic (ROC) curves by
varying the LFC or alpha cut-off, or both simultaneously.
Alpha was set to 0.05 when changing LFC, while LFC was
set to 0 when changing alpha. We started by examining
the performance of limma when using normal or robust
regression and found that robust regression outperformed
normal regression in all comparisons by achieving a
higher 'TPR when allowing an FPR below 3% (Additional
file 4: Figure S2). Accordingly, robust regression was used
for all comparisons in the UPS1 dataset. We then com-
pared our pipeline to an FDR corrected ¢-test (hereafter
referred to as f-test only) with or without an LFC cut-off.
The lower LFC cut-off was set to infinity as all TP had a
positive LFC. We found that for comparisons in
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conditions with an LFC of 1 (100/50 and 50/25), our pipe-
line performed equally well in either, while the #-test had
reduced performance at the comparison of the lower
concentrations (50/25, Fig. 2a and b). When running the
comparison with an LFC of 2 (100/25), both #-test and our
pipeline detected more TP, but with slightly more FP,
while the #test was more conservative - missing more TP
and fewer FP (Fig. 2c¢). Notably, the LFC criterion was the
most important parameter for both our pipeline and the
t-test, regardless if simultaneously varying both criteria or
only the LFC.

Performance analysis using redox-enriched Chlamydo
monas-yeast dataset.

The Chlamydomonas-yeast dataset is from an enrich-
ment method for proteins bearing reversibly oxidized cyst-
eine residues [21]. It contained six technical replicates of
Chlamydomonas lysate, where three were spiked with 50
ng yeast proteome per 1 pg Chlamydomonas lysate while
the other three received 100 ng yeast per 1 pg Chlamydo-
monas lysate. In total, it contained 2229 peptides with pre-
viously oxidized Cys, of which 449 were TP yeast features.
Compared to the UPS1 dataset, discrimination between
TP and TF in this dataset was more difficult due to in-
creased overlap of TP and TF distributions in compared
conditions (see scatterplots in Additional file 3: Figure S1
and Additional file 5: Figure S3). It had a total of 963
(7.2%) missing values in 435 (20%) features for which im-
putation was performed.

Similar to the UPSI analysis, performance was evalu-
ated with ROC curves for the yeast dataset, and started
by comparing whether limma ran best with robust or
normal regression. We found that normal regression
improved performance over robust regression and that
robust regression had, on average, a lower TPR and a
higher FPR (Additional file 6: Figure S4). We decided to
use limma with normal regression for the yeast dataset.
Comparing our pipeline with a #-test, we first varied
either alpha or LFC cut-off, or both at the same time,
using values identical to the UPS1 dataset. We found
that the #-test had a higher TPR and lower FPR at more
stringent settings-independent if the criterions were
changed individually or at the same time - but it again
failed to reach as high TPR as our pipeline (Fig. 3a). At
less stringent settings, our pipeline could almost identify
all TP at the expense of a small increase in FP. We then
performed imputation on the missing values. For the
t-test, we generated one imputed dataset, while for our
pipeline we performed 100 multiple imputations. We
found that both the f-test and our pipeline improved in
TP, but both picked up more FP (Fig. 3b). We found that
the dynamics in the TPR and FPR were similar between
a t-test and our pipeline regardless if the data was fil-
tered or imputed. Importantly, we found that performing
imputation instead of filtering out features with missing
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values lead to a drastic improvement in TP for both
t-test and our pipeline. We also found that the param-
eter with the highest impact was LFC, which was con-
sistent with the results of the UPS1 dataset.

We compared our imputation method with ran-
dom forest imputation (using the missForest package
[33]). We found that our multiple-imputation
method had a slightly better performance versus ran-
dom forest imputation (Fig. 4) regarding the max-
imum TPR achievable and when allowing a large
FPR (larger than 20%) while performing comparable
at lower FPRs. While Random Forest missing data
algorithms perform better for high correlation data,
their performance generally degrades for missing not at
random data [34]. Our multiple imputation method show
increased robustness as a result of binomial testing of the
outcome of linear regression analysis.

Computationally, our method is inexpensive since it
samples normal distributions to impute missing data.
Improved missing data models can be developed from
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Fig. 4 ROC curves comparing the performance of our pipeline with
a method using random forest imputation and linear regression
analysis. A single imputation using a random forest algorithm from
the R package misskorest was compared to our pipeline running
100 imputations. We applied a criterion of either a LFC cut-off, a p-
value, or both at the same time. Both, LFC, and P-val indicates which
parameters were varied (p-value and LFC at the same time, LFC
only, and p-value only, respectively) when creating the ROC curves.
LFC was changed from zero to two and p-value from 005 to 0.001,
simultaneously or separately. When only LFC was changed the p-
value was fixed to 005, and when the p-value was changed LFC
was fixed to zero. "Random Forest” indicates that the misskorest
packages were used for the imputation and “Normal” indicates that
our pipeline was used with limma with normal regression. Y-axis
show TPR and x-axis show FPR expressed as a percentage (IPR*100,
FPR*100, respectively)
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information on the missing-ness mechanisms related to
the PTM quantification protocols. Stochastic sampling
methods [35] can be used for left-censored missing value
imputation for MNAR in combination with bootstrap-
ping and other statistical resampling methods for MAR/
MCAR imputation when the percentage of missing data
is expected to be large.

Conclusion

PTM detection and analysis in comparative assays intro-
duce new challenges in data imputation. Enrichment pro-
tocols may exhibit high wvariation among technical
replicates and structure dependent-bias, leading to an in-
crease in the percentage of missing data. Here we set up a
benchmark dataset to analyze the performance of a pipe-
line developed in the R programming language including
data imputation, limma analysis, and multiple imputation
binomial testing, in comparison to a traditional pipeline
including statistical testing using #-test and FDR correc-
tion for multiple testing. Robust regression methods were
expected to outperform typical statistical tests used in MS
data analysis [36]. Here we conducted a performance
evaluation of the pipelines for total proteome quantitation
and differential analysis of redox proteome. Our results in-
dicate that a significant improvement in performance can
be obtained when using a robust estimation of missing
data distribution parameters combined with linear model-
ing and binomial testing.

We also compared our imputation method with random
forest imputation and found that our method had a slightly
better performance at high FPRs, while performing simi-
larly at lower FPRs. Given that our multiple-imputation
method can use a learning strategy to optimize perfor-
mance over the entire pipeline, further gains can be ob-
tained when compared with a bootstrap imputation that is
sampling only the input data.
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Additional file 1: File containing the implementation of Progenesis LFQ
workflow for UPS1 dataset. (PDF 206 kb)

Additional file 2: File containing the implementation of Progenesis LFQ
workflow for Chlamydomonas-yeast dataset. (PDF 208 kb)

Additional file 3: Figure 51. Scatterplots of the UPS1 dataset showing
the position of the true positives and the true negatives. A shows a
comparison between 100 frnol (y-axis) and 25 frmol (x-axis; fold change of 4)
spiked-in UPS1 protein. B shows a comparison between 100 frol (y-axis)
and 50 fmol (x-axis) and C shows comparisons of between 50 frnol (y-axis)
and 25 fmol (x-axis; both comparisons having a fold change of 2). Each cir-
cle represents the mean of all replicates after running our imputation one
time. True negatives (TN) was marked in red and true positives (TP) was
marked in blue. All TN were Chlamydomonas peptides. (TIFF 166 kb)

Additional file 4: Figure 52. ROC curves comparison of using limma
with or without robust regression in our pipeline with the UPS1 dataset.
The A-B show ROC curves of comparisons with a fold change of 2 (LFC
of 1), A shows comparison between 100 frmol and 50 fmol, and B shows
comparison between 50 frmol and 25 fmol. € shows a comparison with a
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fold change of 4 (LFC of 2) comparing the lowest and highest spike-in
concentrations. Both, LFC, and P-val indicate which parameters were var-
ied (p-value and LFC at the same time, LFC only, and p-value only, re-
spectively) when creating the ROC curves. LFC was changed from zero to
two and p-value from 0.05 to 0001, simultaneously or separately. When
only LFC was changed the p-value was fixed to 0.05, and when the p-
wvalue was changed LFC was fixed to zero. Lower LFC cut-off was set to
infinity as there was no TP with a decreasing fold change. "Robust” indi-
cates limma with robust regression and "Mormal” indicates limma using
normal regression. Y-axis show TPR and x-axis show FPR expressed as a
percentage (TPR*100, FPR*100, respectively). (TIFF 362 kb)

Additional file 5: Figure 53. Scatterplot of the yeast dataset showing
the position of the true positives and the true negatives. Comparison
between 100 ng (y-axis) and 50 ng (x-axis) yeast protein spike-in enriched
for reversibly oxidized cysteines, in a background of Chlamydomonas rein-
hardtii lysate. Each dot represents the mean of all replicates after running
our imputation one time. True negatives (TN) was marked in red and true
positives (TF) was marked in blue. (TIFF 172 kb)

Additional file 6: Figure 54. ROC curves comparison of using limma
with or without robust regression in our pipeline with the yeast dataset.
Both, LFC, and P-val indicates which parameters were varied (p-value and
LFC at the same time, LFC only, and p-value only, respectively) when cre-
ating the ROC curves. LFC was changed from zero to two and p-value
from 0.05 to 0.001, simultaneously or separately. When only LFC was
changed the p-value was fixed to 005, and when the p-value was chan-
ged LFC was fixed to zero. Lower LFC cut-off was set to —infinity as there
was no TP with a decreasing fold change. “Robust” indicates limma with
robust regression and “Normal” indicates fimma using normal regression.
Y-axis show TPR and x-axis show FPR expressed as a percentage
(TPR*100, FPR*100, respectively). (TIFF 39 kb)

Additional file 7: Archive containing the R (version 34.4) implementation
of the computational pipeline. (RAR 15 kb)

Additional file 8: File containing a tutorial on using the computational

pipeline. (PDF 1543 kb)
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