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Abstract— We model a three-link fully actuated biped as a
hybrid system and propose a prediction-based control algorithm
for global tracking of reference trajectories. The proposed
control strategy consists of a reference system that generates the
desired periodic gait, a virtual system that generates a suitable
reference trajectory using prediction, and a tracking control
law that steers the biped to the virtual trajectory. The proposed
algorithms achieves, in finite time, tracking in two steps. We
present mathematical properties that define the main elements
in the hybrid predictive controller for achieving convergence to
the reference within the first two steps. The results are validated
through numerical simulations.

I. INTRODUCTION

Mechanical systems with impacts have trajectories with
intervals of continuous flow and instants where discrete
changes occurs. These systems are classified by their in-
tertwined continuous and discrete dynamics, which can be
difficult to model using classical methods due to this com-
plex behavior. Controller design for such systems is also
challenging due to discrete jumps at unknown times, for
which conventional control approaches are not applicable.
Modeling systems with impacts as hybrid systems provides
a way to describe the non-smooth behavior, and allows for
the implementation of hybrid controllers. Hybrid controllers
have the advantage of being able to perform discrete tasks
while supplying a continuous input.

A biped is typically modeled as a mechanical system
with impacts that occur at the end of each walking step.
During each step, one leg is planted while the other is
swinging forward towards the next impact. Both feet are
briefly in contact with the surface during the transition into
the next step. There are numerous biped models available in
literature [2],[3],[12],[14],[16], and control strategies based
on trajectory tracking methods [10],[16]. These trajectory
tracking control strategies rely on either pre-computed tra-
jectories [12] or trajectories computed on the fly [11], [15].
In this paper, we pursue a novel approach to trajectory
tracking control for fully actuated bipeds that uses an ad-
ditional “virtual trajectory” generated using prediction of
the dynamics to steer the biped state to a given reference.
The reference is generated based on the desired periodic

B. E. Short and R. G. Sanfelice are with the Department of Com-
puter Engineering, University of California, Santa Cruz, CA 95064, USA.
Email:beshort@ucsc.edu, ricardo@ucsc.edu. This research has been par-
tially supported by the National Science Foundation under CAREER Grant
no. ECS-1450484, Grant no. ECS-1710621, and Grant no. CNS-1544396,
by the Air Force Office of Scientific Research under Grant no. FA9550-16-
1-0015, by the Air Force Research Laboratory under Grant no. FA9453-16-
1-0053, the Center for Research in Open Source Software (CROSS), and
by CITRIS and the Banatao Institute at the University of California.

gait defining a hybrid limit cycle. The virtual trajectory is
generated by a hybrid algorithm with state variables that are
reset to values that, according to the prediction of the future
hybrid trajectories of the biped, guarantee tracking of the
given reference trajectory, in finite time. The prediction of
the hybrid trajectories of the biped relies on properties of
solutions established analytically. With the proposed control
strategy, the controller is able to steer the biped to track
reference trajectories by relying only on the measurements
of the limb angles and velocities. We show that convergence
is achieved after the first two steps have occurred, regardless
of the initial conditions of the system of the biped. The
modeling and control design techniques we introduce in this
paper can be extended to other complex systems, such as
bipeds with more joints and variable walking characteristics.

The remainder of this paper is organized as follows.
In Section II we introduce a model of a three-link biped
using the hybrid inclusions framework presented in [1]. In
Section III we propose methods to generate trajectories for
a given periodic gate, and a hybrid control algorithm to
track the generated trajectories in finite time. Simulations
are provided in Section IV to support our claims. Due to
space constraints, some details and proofs are not included,
but will be published elsewhere.

II. HYBRID SYSTEM MODEL OF A BIPED

The three-link biped in Figure 1 is modeled as a hybrid
system to describe the continuous and discrete dynamics
of the system. The movement of the legs and torso during
each step is described by the continuous dynamics of the
model, while the discrete dynamics describe the instanta-
neous change that occurs upon the impact at the end of each
step. At all times, one of the legs is the planted leg while
the other is the swing leg, and they switch roles upon each
step.

A. State Variables, Inputs, and Parameters

To define a mathematical model of the fully actuated biped
system, we introduce the state z, the input u, and parameters
v as follows. The state component vector x is comprised of
the angle vector 6, which contains the planted leg angle 6,
the swing leg angle 6, and torso angle 6,; the velocity vector
w, which contains the planted leg angular velocity w,, the
swing leg angular velocity ws, and the torso angular velocity
wy. The input w is the input torque, where u,, is the torque
applied on the planted leg from the ankle, u, is the torque
applied on the swing leg from the hip, and w; is the torque
applied on the torso from the hip. The vector of parameters
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Fig. 1. Diagram of the state, input, and parameters of the biped model.
The step angle and torso angle are measured from the same locations as 6,
and 6¢, respectfully.

~ contains the constants that describe the characteristics of
the system, namely, the leg length /,, the torso length ¢;,
the leg mass my, the hip mass my, the torso mass m;, the
gravity constant p, the step angle ¢, the torso angle ¢;, and
the walking speed v.

B. Hybrid Model of a Biped

A complete hybrid system model of a biped, denoted H p
is defined as

o= [u ] =P

o= 1] o

(z,u) € Cp x R?
Hp
zteDp (D)

where x is the state and w is the input. The continuous
dynamics of = (6,w) come from the Lagrangian method
[2]. It follows that

f=w )

Dy(0)ir + C (0, w)w + G4(6) = Bu 3)

where Dy, Cy, are the Inertial and Coriolis matrices and B
is the actuator relationship matrix. Solving this expression
for w yields the angular accelerations of each limb, given by

a(z,u) = Dy(0) (=Cp(0,w)w — Gp(0) + Bu)  (4)

Equations (2) and (3) are used to define the flow map Fp
in (1). Impacts or jumps occur when the planted leg has
reached the step angle such that both feet are in contact with
the ground. To determine if the biped has reached the end
of a step, we define the function A as

h(z) := ¢s — 0,

When h(x) = 0, the angle of the planted leg has reached the
step angle. A step will occur if the change of h is such that

Vo € X. (5)

6, is approaching ¢5, and h is equal zero. Thus, the jump
set Dp of Hp in (1) is defined as

h(z) = 0,(Vh(z), Fp(z,u)) <0}

Dp:={ze X :
h(z) =0,w, >0 }. ©

={zeX :

Where Fp(z,u) is the flow mapping defined later in (8). It
follows from (Vh(z), Fp(z,u)) = —w, that the condition
(Vh(z), Fp(z,u)) < 0 holds when the planted leg ap-
proaches the step angle with a nonnegative angular velocity
wp.The flow set, Cp in (1) is a subset of the state space
containing all of the states where the biped is evolving
continuously. It is given by

Cp:={zreX : h(z)>0}. @)
Points = such that h(z) = 0 are included to close the flow
set, which, in particular, makes H p well-posed (see [1]).

v ] ®)

az,u)

Fp(x,u) = {

The changes of x at jumps are defined by the jump map
Gp in (1). Following [2], when a step occurs, Gp swaps
the leg angles and velocities so that the swing leg becomes
the planted leg, and the planted leg becomes the swing leg.
A transformation matrix 7" is defined to swap angle and
velocity variables accordingly. Thus the angles after a step
are mapped according to

ot = T(0) ©)

After a step, the angular velocities are determined by a
contact model that requires the full five degrees of the robot
(instead of three degrees during the swing phase), which
is achieved by including the Cartesian coordinates of the
planted leg [2]. This model produces expressions for the
angular velocities after an impact at x occurs, which are

(10)
Qu(z)

where ,,Q, and € are the angular velocities of the
planted leg, swing leg, and torso, respectively. Equations (9)
and (10) lead to the jump map in (1).

III. HYBRID FEEDBACK CONTROL FOR FINITE TIME
TRACKING

In this section, we propose a hybrid control strategy that
achieves convergence of the state of the biped Hp to a
reference trajectory of the desired periodic gait in two steps.
The proposed controller consists of three components: a
reference system H,, a virtual system #,, and the physical
system H p, which is the biped itself given in Section 1. Our
hybrid predictive control strategy guarantees that the virtual
system H. tracks the reference trajectory generated by H,.,
and that the plant H p tracks the virtual trajectory generated
by H., in finite time.



A. Basic Properties of Solutions to Hp

The reference system H, generates periodic solutions for
Hp to converge to. Using prediction, the virtual system
computes the trajectory that will cause the second step (or
impact) to occur simultaneously with that of the reference.
To design these reference trajectories, we determine solutions
that describe the evolution of the system over the course of
a single step. We refer to these solutions as ‘“‘single-step”
solutions. The input torques that produce an acceleration
a for a specified state x are determined by a function
(according to (4)) u, defined as

w(z,a) = B~ (Dp(0)a+ Cp(0,w)w + G4(0))  (11)

The following lemma demonstrates the process in which
a “single-step” solution is defined for a given set of initial
and final conditions within the state space, and a nonzero
step time.

Lemma 3.1: Given z; € Cp, x5y € Dp, and t1 € Ry,

where
w; wy

there exist constants By, B1 given by
BO BO(I’U Zf, t+):|
= () 7t = =
{BJ B(wi,zp,t4) {Bl(%xﬁu)
;—zf (3(0; — 0f) + wypts + 2wity)
?}i (12 (9,« — 91' — wit+) — 6t+ (wf — wl))

(12)
such that the functions
ool = | N0] 0o w0 = (e 0.a)
(13)

define the state trajectory and control input of a “single step”
solution (¢, u¥) to the flow equation of Hp given by & =
Fp(z,u), (x,u) € Cp x R3: for each t € [0,t], where u
is given in (11), ¢! and p' in (13) are defined by

G(t) =0; +w;t + %Botz - %Blt3 (14)
w(t) = w; + Byt — %Bltz (15)
a(t) = BO — Blt (16)

Given a set of parameters -, the following lemma demon-
strates the methodology for computing the initial and final
states of the hybrid limit cycle.

Lemma 3.2: Given the parameters -y and defining the step
time t, as

2y sin ¢
= . ,

t-l— - tstep('y) : (17)
there exist initial and final angular velocities w;,wy of the
initial and final limit cycle states, x; and xy, respectively,
which are determined by solving the system of equations

obtained from (14) and (15) with t = t and unknown
variables w;,wy, where

_(bs (bs
O;=| ¢s | and 0y = [—0s| ,
N N

assign the initial state components of x; and final state
components xy, respectively. In particular, the unknowns w;
and wy are given by

_ Of
wi =Nzy) =Q (L"'f]) , (18)
where
1
W =w; + ty By — EtiBl (19)
and

By = 50 (GP (If) y L fy t+)
By =B (Gp (zy), 2y, t4),
where ) is defined in (10), By and (1 are defined in (12).

Given the system parameters v and the calculated limb
angular velocities in (18) and (19), we define the initial
and final limit cycle states, denoted z, x?, respectively, and
determine the trajectory constants, denoted B, BT, using
(12), of the single-step solution that defines a limit cycle:

XT; = |: *:| 7xf = |:wf;::| 7B = |:BT:| :ﬁ(xiaxfutstep)

W
(20)
where
— s os Wpi Wpf
6: = ¢s 6} = —d)s w;‘ = |wg; (JJ;: — wsf
on on Wt W f

These expressions for =7 and x% can be verified using (14)
and (15) to confirm that, from z, the resulting limb angles
and velocities at time ¢4, match those of :v;‘c, from where
the jump map Gp leads to 27 = Gp(27}).

B. Problem Statement and Control Strategy

With the above construction, we consider the following
control problem:

Problem x: Given a reference trajectory r design an algo-
rithm guaranteeing that every solution to Hp converges to
the reference trajectory .

To solve it we propose the following hybrid control
algorithm, which uses a reference system H, and a virtual
system H . for prediction:

Algorithm to Solve Problem x:

At each impact of the biped Hp that occurs at the end of
each step:

Step 1) Predict the time to the next impact of the virtual
system, denoted as A, by computing the next two impacts
of the reference system. Denote the two reference impact
times by t] and t5, respectively. If ¢ is less than half of the
total step time tqcp then A, = ¢7, otherwise A, = t5. This
time is called the impact-to-track time, and is computed by



the mapping given in (27).

Step 2) Predict the initial and final limit cycle states. Denoted
as x; and x7%, these state values are the beginning and end
states of the desired walking gait. !

Step 3) Using the state of Hp immediately after the step,
and the final limit cycle state a:;i., compute the trajectory
coefficients B§, B] required to induce a virtual trajectory
that will arrive at the final limit cycle state x at the impact-
to-track time A.

Step 4) Store the coefficients Bj, Bi from Step 3 in the
virtual system to generate a solution that will be tracked by
Hp. In between impacts, control Hp with a feedback law
that tracks the state of the virtual system.

Fig. 2. A diagram illustrating the proposed control strategy. The full closed-
loop hybrid system H.; consists of the biped H p and the virtual system
H -, which performs tracking. The reference is generated externally, and
is independent from H.;. The virtual system tracks the reference system
H, and the biped tracks the virtual system, resulting in the biped indirectly
tracking the reference system.

C. Generating the Reference Trajectory

We generate the reference trajectory by defining a system
whose solution remains in a hybrid limit cycle, which is
denoted O and defines the desired periodic walking gait that
‘Hp will converge to. This is achieved by defining a hybrid
system 7H,, given by a copy of Hp with two additional
states used by the control law to produce the trajectory. The
reference state r is defined as

Tz
r=|r;
B

21

where 7, is the biped state, rp is the trajectory coefficient
vector, and 7 is the time elapsed since the beginning of the
current step.

Then given a desired periodic walking gait specified by
x, x} as the initial and final states, and coefficients B, By,
leading to a hybrid limit cycle O, any initial condition (0, 0)

I'This step does not need to be repeated if the biped characteristics do not
change with time, but for the purpose of robustness, our algorithm performs
this task recurrently.

in it leads to r, in O. Then, H,. is defined as

[ FP(racy KT("“))
Poo= 1 (re, kir(r)) € Cp x R3
0
H, -
GP(Tx)
rt = 0 Ty € Dp
L 6(x37x}7tst€p)

(22)

where r, is the control law that produces the signal necessary
to generate the trajectory that remains in O, and is defined
as

tr (1) = pi(re, (TBy +7B,77)))
D. Generating the Virtual Trajectory

The virtual system is essentially a copy of Hp with two
additional states used by the control law to produce the
virtual trajectory. It also uses the final limit cycle state 7%
to compute trajectories at each impact. The virtual state z is
defined as

(23)

where z, is the virtual biped state, z, is the time elapsed
since the beginning of the current step, and zp is the
trajectory coefficient vector. The flows of H_ are given by

2o = Fp(24,K2(2))

=1 (20, 52(2)) € Cp x R®  (24)
2 =0
where
kz(2) = w2z, (2B, + 2B, 27)) (25)

The impacts of H, occur when the biped state z is in Dp,
and are modeled by the set-valued discrete dynamics

22T = Gp(x)

zzt =0

2pT € kp(Gp(z),1)

€ Dp (26)

where x is the state of the biped modeled by Hp, r is the
state of the reference system H,, and xp is a map that
recomputes the trajectory coefficients using Steps 3 and 4
of the proposed algorithm, and according to the impact-to-
track time in Step 1, A, defined as

. t
tstep — T'r if r, < =52
o— 1 i tst
A7' (T) i {tstep —Tr, 2tstep - ’f‘-,—} if rr = er
. ts
2step — Tr if rp > =52

27)

This map predicts the impact-to-track time, as described in
Step 1 of the proposed control algorithm in Section III-B,
where 17 = tg4ep — rr and t5 = 2t — 7. This is done to
ensure that  p does not attempt to converge too rapidly, and
to ensure that the time to the next impact is nonzero. With
the final limit cycle state 2% from Lemma 3.2, the initial
virtual biped state z,, and the impact-to-track time in (27),



we are able to compute coefficients that define the trajectory
following Lemma 3.1. These coefficients are determined by
(12) from Lemma 3.1. Then, we define kg as

kp(x,r) = Bz, 2}, Ar (1))

— tstep

2

(28)
which is set valued when r,

E. Closed-Loop Hybrid System

The closed-loop system resulting from controlling H p
with the virtual system H, can be written as the following
hybrid system, which we denote by H;:

- Fp(x,k(z, 2))

[lE = FP(ZﬂCvl'%Z(Z)) (.’L‘,H(CL‘,Z)) e Cp
” ) 0
cl ] GP(.I')
$+

L+ | [ G v e Dy

i kp(Gp(x),T)
(29)

where & is the control law for H p, which is designed so that
the trajectories of H p track the trajectories of H . (discussed
in Section IV).

IV. MAIN RESULTS

In this section, we present our main results of the closed-
loop system H.;. We show that the hybrid predictive control
strategy ensures that Hp tracks the reference trajectories.
Moreover, we numerically validate the hybrid model pro-
posed in Section II and the hybrid controller proposed in
Section III through simulations.

A. Nominal Properties

Finite-time O-tracking is defined as when the error between
the biped state and the reference system trajectory is zero.
The following result shows that the virtual system H is able
to guarentee finite-time O-tracking between the reference H,
and the plant Hp.

Proposition 4.1: For each reference trajectory r gener-
ated from H,, each initial condition of the virtual system
2:(0,0) € Cp, 2:(0,0) = 0, zp(0,0) = B(2:(0,0),2%,1)
for some initial step duration t1 € (0,tsep] of H, in (26),
where tgiep, is given in (17), each solution to ‘H., is bounded,
and its 0 and w components finite-time O-track the 0 and
w components of the reference system r after two impacts;
that is, the difference between the 0 and w components of the
virtual system and reference system are zero after the second
impact occurs, and remain at zero for all future time.

With the property guaranteed by Proposition 4.1, next we
show that the trajectories of the plant {p converge to those
of the virtual system 7. in finite time. To this end, let
e1 =0 — 2z, and ep := w — 2z, where 0,w and z,,, 25,
are the angle and velocity components of the biped with state

x and of the virtual biped with state z,, respectively. Using
(29), the resulting error dynamics are then given by

61 =0 — 24, =W — 24, = €2

w
€o =W — 2y, = a(z,u) — (2B, + 2B, 2r)

where « is the acceleration of the plant Hp from (4), and
zB, + 2B, %+ is the acceleration of the virtual system #,.
The input u is assigned to the feedback law k, which is to
be designed. A particular choice of x to accomplish tracking
between = and z is given by

k1(0 — zzp) — ko(w — 22,,))

where k1, ko € RT. Then, with the control input v = k(z, 2),
it follows that

k(x,2) = p(z, 2z, + 2B, 27 —

6.1 = €9 6'2 = —k161 — k2€2

Theorem 4.2: There exist ki, ks € R" such that for each
initial condition x(0,0), z,(0,0) € Cp, 2,(0,0) = 0,
zp(0,0) = B(24(0,0),2%,t1) for some initial step duration
t1 € (O,tstep] of He in (29), and each reference system
trajectory r generated from H,, the 0 and w components
of the plant x of H finite-time O-tracks the 0 and w
components of the virtual system z after one impact; that
is, the 0 and w components of the plant converge to those of
the virtual system after the first impact occurs, and remain
identical for all future time.

B. Simulations

We developed a software package to validate the results
presented in Section IV-A for numerous different initial
conditions and parameters. The package’ also computes
the solutions presented in Section III as both numeric or
symbolic expressions. To evaluate the performance of the
complete hybrid system, we ran simulations with randomized
initial conditions and parameters. Figures 3 and 4 depict a
few of the simulation results. The solid blue line corresponds
to the trajectory of the physical system, the green dashed
line to the virtual system, and the dotted red line to the
reference system. The simulation shown in Figure 3 depicts
the behavior of the system during the first two steps, where
the physical, virtual, and reference systems are initialized
to different initial conditions. This simulation shows the
physical system converging to the virtual system after the
first step, and the physical and virtual system converging to
the reference system during the second step, demonstrating
the closed-loop systems ability to converge with the reference
by the time the second step occurs. The simulatios shown in
Figure 4 has randomized step angle perturbations that emu-
late an uneven walking surface to demonstrate the robustness
guaranteed by our hybrid predictive controller. Perturbations
that cause the step angle to be less than its nominal value
can be related to the biped walking up an incline as the
swing leg would impact earlier than expected, and vice
versa, when the step angle is greater than its nominal value.

2https://github.com/HybridSystemsLab/
HybridThreeLinkBiped
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Fig. 3. Simulation results showing limb angles (rad) and velocities (rad/sec)
with parameters: ¢y = 1,4y = 1,my = 1,my, = 1,my = 1,¢s =
0.7,v = 0.6,¢: = 0.5,k1 = 2000, k2 = 100. The red dashed line
indicates the reference system, the green dashed line indicates the virtual
system, and the solid blue line indicates the physical system.

The step angle deviations caused by the perturbation angles
result in unknown variations to the anticipated impact times,
which requires the virtual system to adjust the trajectory of
the following step to compensate. The simulations shown
in Figure 4 shows the leg angles and velocities of the
closed-loop system with randomized perturbations applied
to the step angle, showing how the virtual system adjusts
its trajectory to track the reference system when unknown
disturbances are present.

V. CONCLUSION

This paper presents a hybrid predictive control algorithm
to drive a biped to tracking in finite time. The main results are
validated in simulations. The results indicate that the control
algorithm is capable of tracking even under perturbations.
The modeling and proposed hybrid control strategy with
prediction can be applied to other complex systems. Our po-
tential next steps are to include additional joints, implement
obstacle avoidance, accommodate gait variation, and extend
the control strategy to the underactuated case.
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