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 Here we focus on the most fundamental question: how can 

such pictorial analogy problems be solved at all? On the face 

of it, the process begins with the human visual system 

operating on pixel-level inputs of the images in the problem to 

extract a verbal description and/or semantic categorization of 
the objects. Reasoning processes must use these object 

descriptions to determine the relation(s) linking paired objects. 

Based on these relational representations, the reasoner must 

then assess the degree of relational match between A:B and the 

alternative completions for C, finally choosing the option that 

provides the best match.  

 Despite decades of progress in developing computational 

models of visual perception, language processing, and 

analogical reasoning, no model has tackled the full range of 

processing required to solve meaningful visual analogies such 

as the GAT problems. Recent advances in machine vision have 

led to very significant progress in the recognition of objects 
from pixel-level representations (Krizhevsky, Sutskever & 

Hinton, 2012; Semonvan & Zisserman, 2015), including the 

automatic generation of verbal captions (Farhadi et. al., 2010; 

Mao et. al., 2016; Krishna et. al., 2016). However, artificial-

intelligence (AI) models have been less successful in 

transforming visual inputs into semantic representations of 

relations between objects. AI models of visual analogy have 

generally focused on problems that can be solved on the basis 

of simple visual features, such as color and shape (Reed et. al., 

2015; Sadeghi, Zitnick & Farhadi, 2015). In cognitive science, 

most analogy models have simply assumed high-level 
representations of complex propositions (usually hand-coded), 

without dealing with the problem of how these representations 

could be generated by perceptual processes. Lovett and Forbus 

(2017) describe a model that applies analogical reasoning to 

solve Ravens Progressive Matrices problems, which are a form 

of visual analogies based on transformations of geometrical 

shapes. However, the inputs provided to the model are high-

level perceptual descriptions, rather than a matrix of pixels; 

and the Ravens test is entirely formal, devoid of any links to 

semantic knowledge. With important exceptions (e.g., 

Doumas, Hummel, & Sandhofer, 2008), analogy models have 

generally set aside the basic problem of how semantic relations 
could be learned from non-relational inputs. 

 Here we describe two computational models that together 

provide an approximate account of the entire process that may 

underlie solution of GAT problems. One model, ResNet50-A, 

aims to solve the picture analogies using purely visual 

information, while also generating verbal captions. The other, 

BART, aims to solve the same analogies based solely on 

verbal descriptions of the images. We further show that the 

analogy assessment derived by ResNet50-A using just visual 

information not only provides potential verbal inputs to 

BART, but also adds independent visual information that 
increases solution accuracy. We will first describe the 

operation of each of the two models, and then the results 

obtained by using them both separately and jointly. 

 

 

 

 
 

Figure 2. Example of a 4-term pictorial analogy with four 
alternatives, and corresponding descriptions verbally 

presented to patients (from Krawzcyk et al., 2008).  

GAT Dataset 

The GAT dataset includes 18 picture analogies, each consisted 

of 7 images: the three images in the question, A, B, and C, and 

the four images for alternative D terms. All images are line 

drawings or clip art images. Each image was captured in the 

size of 140x140 pixels. The GAT dataset included a total of 

126 images that fall into 118 distinct object categories. A 
verbal caption describing each image was used by Krawczyk 

et al. (2008) in their neuropsychological study; these captions 

were adopted as canonical verbal descriptions of each image 

for the semantic model, BART. Figure 2 shows a second 

example, along with approximations of the corresponding 

verbal descriptions used by Krawczyk et al. (2008). Note that 

in the neuropsychological study, the accompanying labels 

were presented orally by the experimenter, rather than in 

written form. 

ResNet: From Pixels to Object Classification 

Background 
Deep convolutional neural networks (Krizhevsky, Sutskever, 

& Hinton, 2012; Simonyan & Zisserman, 2015) have led to a 

series of breakthroughs for a broad range of computer vision 

tasks. The network depth is of crucial importance. Recent 

work with deeper networks has exposed a degradation 

problem: as network depth increases, accuracy reaches a 

plateau, and then degrades rapidly as network depth increases 
further. ResNet (He, Zhang, Ren, & Sun, 2016) addresses the 

degradation problem by introducing a framework termed deep 

residual learning. ResNet fits a residual mapping, realized by 

a feedforward neural network with identity shortcut 

connections. Using this method, ResNet can be efficiently 

trained with as many as 1000 layers. Because of its compelling 

performance levels, ResNet has quickly emerged as one of the 

leading architectures for a wide range of tasks in computer 

vision. Here we adopt ResNet50 (the basic architecture with 

50 layers) as a state-of-the-art approach to identifying and 

captioning the objects in GAT analogies. We then augment the 
model to create ResNet50-A (where the “A” stands for 

“Analogy”) by adding a decision procedure to generate 
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BART: From Verbal Semantics to Relations 

The BART model (Bayesian Analogy with Relational 

Transformations) takes as inputs semantic vectors 

representing word meanings and uses supervised learning to 

acquire representations of semantic relations. The model was 

originally applied to learning comparatives (e.g., larger, 
smarter; Lu, Chen & Holyoak, 2012), but has recently been 

generalized to acquire an extremely wide range of semantic 

relations (e.g., synonym, antonym, cause-effect; Lu, Wu & 

Holyoak, 2019). For the present project, the inputs to the 

BART model were word embedding for individual words, 

each embedding consisting of 300-dimension vectors with 

continuous-valued features. The word embeddings were 

obtained by training a deep-learning model, Word2vec 

(Mikolov et al., 2013; Le & Mikolov, 2014) on a large text 

corpus (Google News). BART takes as inputs word pairs 

instantiating a relation, where each pair is represented by the 

concatenation of the Word2vec vector for each individual 
word. For example, a vector formed by concatenating the 

individual vectors for love and hate would constitute a positive 

example of the antonymy relation. The same word pair might 

also serve as a negative example of the category:instance 

relation.  

 

Training Dataset 
For the present project, we trained BART by combining two 

datasets of semantic relations. First, the SemEval-2012 Task 2 
dataset (Jurgens et al., 2012) was used to teach BART the 

representations for 79 abstract semantic relations. This dataset 

is based on a taxonomy of semantic relations and includes 10 

general types (e.g., class inclusion, similar, contrast, cause-

purpose). The dataset includes 3215 word pairs, with 35~48 

pairs for each of the 79 relations. The second dataset, 

developed by Popov, Hristova, and Royce (2017), includes 

some specific and concrete relations (e.g., the relation 

constitution with examples brick:house, thread:cloth; the 

relation cover with examples such as house:roof; and the 

relation boundary with examples such as wall:room). This 
dataset includes 58 specific relations drawn from ten general 

categories of relations. Two relations with inadequate numbers 

of examples were removed. The remaining 56 relations 

included 12~25 word pairs as examples for each relation. 

 

Training 
The BART model consists of a three-stage process to learn a 

broad range of semantic relations (Lu, Wu & Holyoak, 2019). 

In its first stage, BART exploits the heuristic that features 
playing similar functional roles will tend to occupy similar 

ranks in an ordering of differences between paired words. 

BART uses the difference ranking operations to generate 

augmented feature by partially align important features. In the 

second stage, BART selects a subset of important features. In 

the third stage, BART adopts Bayesian learning and uses the 

selected features of word pairs 𝐟J in training examples to 

estimate weights distributions 𝐰 for representing a particular 

relation	𝑅	by applying Bayes rule as: 

𝑃(𝐰|𝐟𝒔, 𝑅) ∝ 𝑃(𝑅|𝐟𝒔, 𝐰)𝑃(𝐰).             (1) 

 

Figure 4. Model predictions of human data for relation 

typicality in Popov et al. (2017) dataset: Correlations between 

human generation frequencies and model predictions for 10 

relation types for BART (after training with 10 positive 

examples of each relation) and for the baseline Word2vec 

model. 

 

After learning, BART calculates the probability of a word 

pair instantiating a relation. An important aspect of both the 
Jurgens et al. (2012) and the Popov et al. (2017) norms is that 

in each set, the word pairs instantiating each relation form a 

typicality ordering established by human judgments. As 

reported in Lu et. al. (2019), BART achieved high rank-order 

correlations between human typicality ratings and predicted 

probabilities derived from the model for the abstract relations 

in the Jurgens et al. dataset. Across all 79 individual relations, 

the model’s mean Spearman correlation with the human 

ordering was .81 (range from .65 to .91). The performance of 

BART considerably exceeded the mean correlation of .34 

achieved using Word2vec itself as a baseline. 
For the Popov et al. (2017) dataset, which includes more 

specific/concrete relations, BART was trained with just 10 

word pairs as positive examples of each relation. As shown in 

Figure 4, BART achieved higher correlations with human 

typicality as indexed by generation frequencies (mean r = .59) 

than did the Word2vec model (mean r = .19).   

 

Analogical Inference 
To solve 4-term verbal analogy problems, BART forms a 
distributed representation of the specific relation between each 

word pair in a problem. BART uses its pool of learned 

relations to create a more refined representation of the 

relation(s) between two paired words. The posterior 

probabilities calculated for all known relations form a relation 

vector, with each element indicating how likely a word pair 

instantiates a specific relation. Hence, the result of this 

operation is to create a distributed representation of the 

relation(s) between two words, with the original semantic 

features being projected into a transformed space that can be 

used to assess relation probabilities. 
 For analogical reasoning, BART had available 79 relations 

derived by training on the Jurgens et al. (2012) norms, plus 56 

relations derived by training on the Popov et al. (2017) norms.  
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Figure 5. Proportion of responses for GAT problems for which 

the model’s selection was the analogical option (correct), the 
semantic distractor, the visual distractor, and the unrelated 

option. Besides ResNet50-A and BART, we also report results 

obtained using Word2vec, and the integrated model (i.e., 

ResNet50-A combined with BART).  

 

Of the latter, six relations showed weak correlations with 

human typicality ratings, indicating BART had failed to learn 

them adequately from the small number of available examples.  

Further examinations of the training sets for these six relations 

revealed that a substantial number of word pairs either 

included ambiguities or were otherwise questionable as 

instances of the relation. Accordingly, these six relations were 
dropped, leaving 50 relations from the Popov et al. set to be 

included in the relational representations, for a total of 129 

learned relations. 

Because BART creates relations structured by distinct roles, 

the model can generate the converse of any learned relation in 

a rule-based fashion (without additional training). For 

example, having learned the relation category:instance, 

BART can directly generate the converse relation 

instance:category. By applying converse formation to all 

trained relations, BART doubled its pool of relations, so that a 

total set of 258 semantic relations were available to solve GAT 
analogy problems.  

 To apply the BART model to GAT problems, the input was 

the verbal captions for images provided in the study by 

Krawczyk et al. (2008). Considered as a comprehensive 

model, this makes the link between ResNet50 and BART only 

approximate: although ResNet50 achieves high accuracy in 

generating the target captions, its performance is still less than 

perfect. 

 We were also faced with the problem that for many GAT 

images the optimal caption is a multi-word phrase (e.g., gas 

pump, woman sewing). To obtain semantic vectors for phrases 

that were not included in the Word2vec dictionary, we 
sometimes substituted one-word near-synonyms for which a 

vector was available. When that was not feasible, we used a 

simple averaging method, forming a vector for a phrase by 

averaging the vectors for its content words (cf. Kintsch, 2001).  

 For any pair of semantic vectors, BART uses its learned 

weights to calculate the posterior probability that the pair 

instantiates each relation in the repertoire of the model. The 

vector of length 258 formed by these posterior probabilities 

provides a distributed representation of the specific relation 

between the two expressions in the pair. Similarly to the 

procedure we followed to enable ResNet50-A to solve visual 

analogies, BART’s preferred answer 𝐷:  is that which 

minimizes the cosine distance between the A:B relation and 

the relation formed by C paired with each available option. 

For the GAT problems, the BART model achieved 67% 

accuracy in choosing the correct D term; other choice 

probabilities were 11%, 11% and 1% to choose semantic 

distractors, visual distractors, and unrelated distractors, 
respectively (see Figure 5). To provide a baseline semantic 

model, the performance of Word2vec (Mikolov et al., 2013), 

which does not learn specific semantic relations, can be 

compared with the performance of BART. The Word2Vec 

model achieved 50% accuracy in choosing the correct D term; 

other choice probabilities were 11%, 17% and 22% to choose 

semantic distractors, visual distractors, and unrelated 

distractors, respectively. 

Integration of Visual and Semantic Models 

Finally, we examined the performance of an integrated model 

of solving pictorial analogies, formed by combining the 

measure of relational similarity obtained from the vision 

model (ResNet50-A) with the comparable measure obtained 

from the semantic model (BART). Two free parameters were 

introduced to create the integrated model. 

 We first transformed the vectors used by each model to put 

them on a common scale. The relational similarity measure 

from the visual model is based on difference vectors of visual 

features derived from the penultimate layer of ResNet50-A. 

These difference vectors take values in the range of -8 to 8. In 
contrast, the BART model forms relation vectors using 

posterior probabilities within the range [0 1]. To place the two 

vectors on a similar scale, we introduced a nonlinear 

transformation with an exponential function for the visual 

difference features 𝑣 as exp	(𝛼𝑣) with a scale parameter, set 

at	𝛼 = 2. Cosine distances based on these transformed visual 

difference vectors were used to compute relational distance 

using the visual module: 

𝐷W = cos	(exp	(𝜶(𝒇0 − 𝒇/)), exp	(𝜶(𝒇2 − 𝒇1))). 
The relational similarity measure derived from the semantic 

module, 𝐷J , was calculated by directly using BART as 

described in the preceding section. The final relational 

distance measure was a weighted average of the measures 

from the visual and semantic modules, 𝐷 = 	𝜆𝐷W + (1 −

𝜆)𝐷J, with	the	weight	set	as	𝜆 = 	 .3.  

Figure 5 presents a summary of the results for solving GAT 

analogy problems based on the visual-only model (ResNet50-

A), two semantic models (Word2Vec and BART), and the 

integrated model based relational distance measures from both 
visual (ResNet50-A) and semantic (BART) models. The 

integrated model achieved the highest accuracy (78%) in 

solving GAT analogy problems; other choice probabilities 

were 6%, 11% and 6% to choose semantic distractors, visual 

distractors, and unrelated distractors, respectively. 

We explored the space of parameter values, and found that 

performance of the integrated model was quite robust. In 
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general, the basic results were the same for a broad range of 

parameter values for 𝛼, as long as the value of 𝜆 was less than 

.5, so that the final decision was primarily driven by the 

semantic module, based on BART.  

Discussion 

The present paper provides a proof-of-concept that vision, 

language, and reasoning can be integrated to create a 

comprehensive computational model of how humans or 

machines might solve meaningful visual analogies. Here our 

focus has been on a vision module (ResNet50-A) that can 

generate verbal captions for line drawings, combined with a 

semantic module (BART) that takes word embeddings based 

on verbal captions and generates representations of semantic 
relations. Each model includes a decision procedure for 

assessing the similarity of relations between objects/words and 

selecting the best analogical completion from among a set of 

alternatives. The vision module alone achieves above-chance 

analogical performance on the GAT problems (picture 

analogies in A:B :: C:? format); the semantic module alone is 

more successful; and an integration of the two modules (biased 

to emphasize semantics, but also influenced directly by vision) 

is yet more successful, achieving 78% accuracy. 

 Perhaps the most surprising finding from our computational 

experiments is that the vision module alone was able to 

achieve above-chance accuracy in selecting the analogical 
completion, even though the critical relation is 

semantic/functional. Despite some shortcomings of visual 

deep learning models (Baker, Lu, Erlikhman & Kellman, 

2018), the features in the later layers may capture parallels 

involving visual context (e.g., the fact that airplanes and eagles 

both cooccur with sky in many natural images, analogous to 

the fact that ships and fish both cooccur with water in natural 

images). Apparently, for some GAT problems, the similarity 

of the visual difference between the A:B pair to that between 

the C:D options is at least weakly correlated with the semantic 

relations that define the analogical answer. Moreover, the 
visual module continues to add useful information on top of 

that provided by the semantic module. Thus, vision may play 

two important functions in solving picture analogies: 

generating verbal captions that in turn feed the semantic 

module, and directly providing visual correlates of semantic 

relations. 

The present project is only a first step toward the “holy 

grail” of a unified model connecting perception to thinking. 

The performance of the integrative model falls short of the 

high accuracy level achieved by healthy human adults not 

under time pressure (Krawcyzk et al., 2008). A number of 
incremental improvements are worth pursuing. ResNet50 

might benefit from additional training on line drawings. Its 

accuracy in captioning might also be improved by making use 

of contextual information (e.g., the presence of a pumpkin as 

the C term in Figure 1 might aid in recognizing the pie). If the 

captioning accuracy of the visual module could be improved, 

its output could be directly passed to BART (rather than 

allowing BART direct access to optimal captions). 

Furthermore, future investigations need to explore how to 

combine visual and semantic knowledge to solve generative 

tasks in analogical reasoning (Chen, Lu & Holyoak, 2017).  

Deeper developments would include adopting more 

sophisticated techniques for translating multi-word captions 

into semantic vectors, and eventually dealing with structured 
text descriptions of analogical scenes (Richland, Morrison, & 

Holyoak, 2006). Perhaps most intriguing is the possibility of 

creating hybridized visuosemantic representations that would 

allow perception to meld with meaning. 
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