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Abstract

We report a first effort to model the solution of meaningful four-term
visual analogies, by combining a machine-vision model (ResNet50-
A) that can classify pixel-level images into object categories, with a
cognitive model (BART) that takes semantic representations of words
as input and identifies semantic relations instantiated by a word pair.
Each model achieves above-chance performance in selecting the best
analogical option from a set of four. However, combining the visual
and the semantic models increases analogical performance above the
level achieved by either model alone. The contribution of vision to
reasoning thus may extend beyond simply generating verbal
representations from images. These findings provide a proof of
concept that a comprehensive model can solve semantically-rich
analogies from pixel-level inputs.

Keywords: analogy; relations; learning; machine vision; word
embeddings

Introduction

In everyday life, humans continually perceive the world and
interpret it in terms of meaningful objects and events. The
representations extracted by perception are elaborated into
semantic representations that can be communicated by
language and further transformed by reasoning processes. The
“holy grail” of cognitive science is to develop integrated
theories that link perception to language and higher cognition.
A natural testbed for developing such integrated theories is the
task of reasoning by analogy from meaningful visual inputs.
Here we report a first effort to develop a comprehensive model
of the solution of visual analogies, by combining a model that
can translate pixel-level inputs into verbal captions with a
model that can translate semantic vectors for words into
coherent patterns of semantic relations.

Figure 1 depicts an example of the analogies on which we
focus. This problem is one of a set of 18 developed by
Krawzceyk et al. (2008), some of which were adapted from an
earlier set created by Goranson (2002), hence dubbed the
Goranson Analogy Test (GAT). The upper row presents a
pictorial problem in the form A:B :: C:?. The task is to select
the best analogical completion from among a set of four

options shown in the bottom row. For this example, the
analogical solution based on matching relations is to choose
the pie (wine is made from grapes, as pie is made from
pumpkin). The three distractors include one that is
semantically related to the C term but fails to match the 4:B
relation (witch), one that is visually similar but also fails to
match A:B (basketball), and one that is simply unrelated
(books). Critically, the analogical solution cannot in any
obvious way be derived from visual information alone,
because the core relation is semantic/functional rather than
visual. For example, the fact that wine is made from grapes is
not depicted in the visual input; rather, it must be retrieved
from semantic memory. Thus, vision is necessary but not
sufficient to reliably solve such semantically-rich picture
analogies.

The GAT was originally developed as a tool to evaluate the
impact of neuropsychological disorders. Krawczyk et al.
(2008) found that frontal and temporal patients were impaired
to varying degrees, notably showing an elevated tendency to
choose the semantic or perceptual distractors. Age-matched
controls (approximately age 60) achieved about 98% accuracy
even in the presence of similar distractors.
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Figure 1. Example of a 4-term pictorial analogy with four
alternatives (from Krawzcyk et al., 2008).




Here we focus on the most fundamental question: how can
such pictorial analogy problems be solved at all? On the face
of it, the process begins with the human visual system
operating on pixel-level inputs of the images in the problem to
extract a verbal description and/or semantic categorization of
the objects. Reasoning processes must use these object
descriptions to determine the relation(s) linking paired objects.
Based on these relational representations, the reasoner must
then assess the degree of relational match between A:B and the
alternative completions for C, finally choosing the option that
provides the best match.

Despite decades of progress in developing computational
models of visual perception, language processing, and
analogical reasoning, no model has tackled the full range of
processing required to solve meaningful visual analogies such
as the GAT problems. Recent advances in machine vision have
led to very significant progress in the recognition of objects
from pixel-level representations (Krizhevsky, Sutskever &
Hinton, 2012; Semonvan & Zisserman, 2015), including the
automatic generation of verbal captions (Farhadi et. al., 2010;
Mao et. al., 2016; Krishna et. al., 2016). However, artificial-
intelligence (AI) models have been less successful in
transforming visual inputs into semantic representations of
relations between objects. Al models of visual analogy have
generally focused on problems that can be solved on the basis
of simple visual features, such as color and shape (Reed et. al.,
2015; Sadeghi, Zitnick & Farhadi, 2015). In cognitive science,
most analogy models have simply assumed high-level
representations of complex propositions (usually hand-coded),
without dealing with the problem of how these representations
could be generated by perceptual processes. Lovett and Forbus
(2017) describe a model that applies analogical reasoning to
solve Ravens Progressive Matrices problems, which are a form
of visual analogies based on transformations of geometrical
shapes. However, the inputs provided to the model are high-
level perceptual descriptions, rather than a matrix of pixels;
and the Ravens test is entirely formal, devoid of any links to
semantic knowledge. With important exceptions (e.g.,
Doumas, Hummel, & Sandhofer, 2008), analogy models have
generally set aside the basic problem of how semantic relations
could be learned from non-relational inputs.

Here we describe two computational models that together
provide an approximate account of the entire process that may
underlie solution of GAT problems. One model, ResNet50-A,
aims to solve the picture analogies using purely visual
information, while also generating verbal captions. The other,
BART, aims to solve the same analogies based solely on
verbal descriptions of the images. We further show that the
analogy assessment derived by ResNet50-A using just visual
information not only provides potential verbal inputs to
BART, but also adds independent visual information that
increases solution accuracy. We will first describe the
operation of each of the two models, and then the results
obtained by using them both separately and jointly.
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Figure 2. Example of a 4-term pictorial analogy with four
alternatives, and corresponding descriptions verbally
presented to patients (from Krawzcyk et al., 2008).

GAT Dataset

The GAT dataset includes 18 picture analogies, each consisted
of 7 images: the three images in the question, 4, B, and C, and
the four images for alternative D terms. All images are line
drawings or clip art images. Each image was captured in the
size of 140x140 pixels. The GAT dataset included a total of
126 images that fall into 118 distinct object categories. A
verbal caption describing each image was used by Krawczyk
et al. (2008) in their neuropsychological study; these captions
were adopted as canonical verbal descriptions of each image
for the semantic model, BART. Figure 2 shows a second
example, along with approximations of the corresponding
verbal descriptions used by Krawczyk et al. (2008). Note that
in the neuropsychological study, the accompanying labels
were presented orally by the experimenter, rather than in
written form.

ResNet: From Pixels to Object Classification

Background

Deep convolutional neural networks (Krizhevsky, Sutskever,
& Hinton, 2012; Simonyan & Zisserman, 2015) have led to a
series of breakthroughs for a broad range of computer vision
tasks. The network depth is of crucial importance. Recent
work with deeper networks has exposed a degradation
problem: as network depth increases, accuracy reaches a
plateau, and then degrades rapidly as network depth increases
further. ResNet (He, Zhang, Ren, & Sun, 2016) addresses the
degradation problem by introducing a framework termed deep
residual learning. ResNet fits a residual mapping, realized by
a feedforward neural network with identity shortcut
connections. Using this method, ResNet can be efficiently
trained with as many as 1000 layers. Because of its compelling
performance levels, ResNet has quickly emerged as one of the
leading architectures for a wide range of tasks in computer
vision. Here we adopt ResNet50 (the basic architecture with
50 layers) as a state-of-the-art approach to identifying and
captioning the objects in GAT analogies. We then augment the
model to create ResNet50-A (where the “A” stands for
“Analogy”) by adding a decision procedure to generate



potential analogical solutions based solely on visual
information in the images.

Training Dataset

The GAT images are line drawings (as are most images used
in picture analogy tests that have been developed for
psychological research or cognitive assessments). Machine
vision models are typically trained on photo-realistic images,
and require additional training with line drawings in order to
classify them. In order to provide suitable training for
ResNet50, we created a database of clip art images that were
similar to GAT images, but not identical to them. This dataset,
termed the ClipArt dataset, includes the 118 object categories
used in the GAT visual analogy problems. To create the
ClipArt dataset, we queried Google Image Search using the
“Search by image” function, uploading the corresponding
GAT image and entering a phrase formed by concatenating the
category label and the words “clip art”. (For some categories,
we visually checked the result and decided to replace “clip art”
by “drawing”, “sketch”, or “cartoon”.) We downloaded 200
images for each category and manually removed those that
were duplicates or clearly wrong. Each category in the
resulting ClipArt dataset was represented by 70-166 images.
The images were then processed into gray scale and padded
with zero on short edges to fita 1:1 aspect ratio.

For each category, we randomly selected 50 images for
training, and held the rest images for test, resulting in a total
of 5900 training images and 5501 test images. Figure 3
juxtaposes a GAT image (left) with a ClipArt image (right)
from the same category. To ensure that the model was able to
generalize its visual recognition performance, the GAT dataset
was only used to guide construction of the ClipArt dataset; the
GAT images themselves were not used to train ResNet50.

Training

We implemented ResNet50 using Pytorch on a single TitanX
GPU. The training task was image -classification by
minimizing the cross-entropy loss. The model was pretrained
on the ImageNet dataset, and then fine-tuned on our ClipArt
dataset for 200 epochs. Batch size was set equal to 120 and
learning rate started at 0.01, followed by cosine annealing. For
optimization, SGD optimizer was used with momentum = 0.9,
weight decay = 0.0001. To prevent overfitting, small random
image transformations (e.g., rotation, translation, scaling)
were added to the input images. The model achieved a high
performance level on the ClipArt test set, achieving 0.883 for
top-1 accuracy (i.e., the correct object category label being
identified as the first choice of the model), and 0.973 for top-
5 accuracy (i.e., the correct object category label being
identified as one of the top five choices of the model). When
tested on the GAT images for the visual analogy problems, the
model achieved 0.833 for top-1 accuracy and 0.984 for top-5
accuracy.

Figure 3. Example images. In each row, the first image is from
the GAT dataset, while the remaining images are from the
ClipArt dataset. Top row: images with label “electric mixer”;
bottom row: images with label “book™.

Analogical Inference

We extended ResNet50 to form ResNet50-A by adding a
simple computation to derive analogy predictions from the
model. We input each GAT image into the neural network and
extracted the penultimate feature vector (the vector
immediately prior to the output layer). This vector of length
2048 was used as the representation of the image.
Mathematically, this transformation can be written as: f =
F(I; 0), where I is the input image, F is the function specified
by the neural network and parametrized by 6, and f € R2048
is the resulting feature vector. Thus, for each analogy question,
we transfer images I, I, I, Iy, Ip,, I3, Ip, into feature
vectors f 4, fg, fc. fp1. Fp2. Fp3. fpa, respectively.

A decision for an analogy problem in ResNet50-A is derived
by selecting the best D € {D,,D,,Ds,D,} such that the
relation from 4 to B holds for C'to D. To measure how similar
the projection from f, to f is to the projection from f to
fp, we adopted a generic formulation based on cosine
distances of the difference vectors. The same approach has
been used in the Word2vec model (Zhila et al., 2013). The
preferred answer D is defined as the D image that generates
minimum cosine distance between difference vectors:

D=arg _ min  cos(fs—fafp—fc)

D € {D1,D2,D3,D4}

Note that this procedure for solving a visual analogy is more
sophisticated than simply choosing the D most similar to C,
since the selection focuses on matching the visual relation
between the 4:B and C:D image pairs.

For the GAT problems, this purely visual model achieved
44% accuracy in selecting the correct D term. Its other choices
were distributed across the three distractors (11%, 17% and
28% probabilities of choosing semantic distractors, visual
distractors, and unrelated distractors, respectively). Since
chance accuracy would be 25%, the purely visual analogy
model achieved analogical accuracy well above chance
(although well short of the level achieved by neurotypical
human adults).



BART: From Verbal Semantics to Relations

The BART model (Bayesian Analogy with Relational
Transformations) takes as inputs semantic vectors
representing word meanings and uses supervised learning to
acquire representations of semantic relations. The model was
originally applied to learning comparatives (e.g., larger,
smarter; Lu, Chen & Holyoak, 2012), but has recently been
generalized to acquire an extremely wide range of semantic
relations (e.g., synonym, antonym, cause-effect; Lu, Wu &
Holyoak, 2019). For the present project, the inputs to the
BART model were word embedding for individual words,
each embedding consisting of 300-dimension vectors with
continuous-valued features. The word embeddings were
obtained by training a deep-learning model, Word2vec
(Mikolov et al., 2013; Le & Mikolov, 2014) on a large text
corpus (Google News). BART takes as inputs word pairs
instantiating a relation, where each pair is represented by the
concatenation of the Word2vec vector for each individual
word. For example, a vector formed by concatenating the
individual vectors for love and hate would constitute a positive
example of the antonymy relation. The same word pair might
also serve as a negative example of the category:instance
relation.

Training Dataset

For the present project, we trained BART by combining two
datasets of semantic relations. First, the SemEval-2012 Task 2
dataset (Jurgens et al., 2012) was used to teach BART the
representations for 79 abstract semantic relations. This dataset
is based on a taxonomy of semantic relations and includes 10
general types (e.g., class inclusion, similar, contrast, cause-
purpose). The dataset includes 3215 word pairs, with 35~48
pairs for each of the 79 relations. The second dataset,
developed by Popov, Hristova, and Royce (2017), includes
some specific and concrete relations (e.g., the relation
constitution with examples brick:house, thread:cloth; the
relation cover with examples such as house:roof, and the
relation boundary with examples such as wall:room). This
dataset includes 58 specific relations drawn from ten general
categories of relations. Two relations with inadequate numbers
of examples were removed. The remaining 56 relations
included 12~25 word pairs as examples for each relation.

Training

The BART model consists of a three-stage process to learn a
broad range of semantic relations (Lu, Wu & Holyoak, 2019).
In its first stage, BART exploits the heuristic that features
playing similar functional roles will tend to occupy similar
ranks in an ordering of differences between paired words.
BART uses the difference ranking operations to generate
augmented feature by partially align important features. In the
second stage, BART selects a subset of important features. In
the third stage, BART adopts Bayesian learning and uses the
selected features of word pairs f;in training examples to
estimate weights distributions w for representing a particular
relation R by applying Bayes rule as:

P(wlf,R) < P(R|f,, w)P(w). €))
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Figure 4. Model predictions of human data for relation
typicality in Popov et al. (2017) dataset: Correlations between
human generation frequencies and model predictions for 10
relation types for BART (after training with 10 positive
examples of each relation) and for the baseline Word2vec
model.

After learning, BART calculates the probability of a word
pair instantiating a relation. An important aspect of both the
Jurgens et al. (2012) and the Popov et al. (2017) norms is that
in each set, the word pairs instantiating each relation form a
typicality ordering established by human judgments. As
reported in Lu et. al. (2019), BART achieved high rank-order
correlations between human typicality ratings and predicted
probabilities derived from the model for the abstract relations
in the Jurgens et al. dataset. Across all 79 individual relations,
the model’s mean Spearman correlation with the human
ordering was .81 (range from .65 to .91). The performance of
BART considerably exceeded the mean correlation of .34
achieved using Word2vec itself as a baseline.

For the Popov et al. (2017) dataset, which includes more
specific/concrete relations, BART was trained with just 10
word pairs as positive examples of each relation. As shown in
Figure 4, BART achieved higher correlations with human
typicality as indexed by generation frequencies (mean = .59)
than did the Word2vec model (mean r=.19).

Analogical Inference
To solve 4-term verbal analogy problems, BART forms a
distributed representation of the specific relation between each
word pair in a problem. BART uses its pool of learned
relations to create a more refined representation of the
relation(s) between two paired words. The posterior
probabilities calculated for all known relations form a relation
vector, with each element indicating how likely a word pair
instantiates a specific relation. Hence, the result of this
operation is to create a distributed representation of the
relation(s) between two words, with the original semantic
features being projected into a transformed space that can be
used to assess relation probabilities.

For analogical reasoning, BART had available 79 relations
derived by training on the Jurgens et al. (2012) norms, plus 56
relations derived by training on the Popov et al. (2017) norms.
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Figure 5. Proportion of responses for GAT problems for which
the model’s selection was the analogical option (correct), the
semantic distractor, the visual distractor, and the unrelated
option. Besides ResNet50-A and BART, we also report results
obtained using Word2vec, and the integrated model (i.e.,
ResNet50-A combined with BART).

Of the latter, six relations showed weak correlations with
human typicality ratings, indicating BART had failed to learn
them adequately from the small number of available examples.
Further examinations of the training sets for these six relations
revealed that a substantial number of word pairs either
included ambiguities or were otherwise questionable as
instances of the relation. Accordingly, these six relations were
dropped, leaving 50 relations from the Popov et al. set to be
included in the relational representations, for a total of 129
learned relations.

Because BART creates relations structured by distinct roles,
the model can generate the converse of any learned relation in
a rule-based fashion (without additional training). For
example, having learned the relation category:instance,
BART can directly generate the converse relation
instance:category. By applying converse formation to all
trained relations, BART doubled its pool of relations, so that a
total set of 258 semantic relations were available to solve GAT
analogy problems.

To apply the BART model to GAT problems, the input was
the verbal captions for images provided in the study by
Krawczyk et al. (2008). Considered as a comprehensive
model, this makes the link between ResNet50 and BART only
approximate: although ResNet50 achieves high accuracy in
generating the target captions, its performance is still less than
perfect.

We were also faced with the problem that for many GAT
images the optimal caption is a multi-word phrase (e.g., gas
pump, woman sewing). To obtain semantic vectors for phrases
that were not included in the Word2vec dictionary, we
sometimes substituted one-word near-synonyms for which a
vector was available. When that was not feasible, we used a
simple averaging method, forming a vector for a phrase by
averaging the vectors for its content words (cf. Kintsch, 2001).

For any pair of semantic vectors, BART uses its learned
weights to calculate the posterior probability that the pair
instantiates each relation in the repertoire of the model. The
vector of length 258 formed by these posterior probabilities

provides a distributed representation of the specific relation
between the two expressions in the pair. Similarly to the
procedure we followed to enable ResNet50-A to solve visual
analogies, BART’s preferred answer D is that which
minimizes the cosine distance between the 4:B relation and
the relation formed by C paired with each available option.

For the GAT problems, the BART model achieved 67%
accuracy in choosing the correct D term; other choice
probabilities were 11%, 11% and 1% to choose semantic
distractors, visual distractors, and unrelated distractors,
respectively (see Figure 5). To provide a baseline semantic
model, the performance of Word2vec (Mikolov et al., 2013),
which does not learn specific semantic relations, can be
compared with the performance of BART. The Word2Vec
model achieved 50% accuracy in choosing the correct D term;
other choice probabilities were 11%, 17% and 22% to choose
semantic distractors, visual distractors, and unrelated
distractors, respectively.

Integration of Visual and Semantic Models

Finally, we examined the performance of an integrated model
of solving pictorial analogies, formed by combining the
measure of relational similarity obtained from the vision
model (ResNet50-A) with the comparable measure obtained
from the semantic model (BART). Two free parameters were
introduced to create the integrated model.

We first transformed the vectors used by each model to put
them on a common scale. The relational similarity measure
from the visual model is based on difference vectors of visual
features derived from the penultimate layer of ResNet50-A.
These difference vectors take values in the range of -8 to 8. In
contrast, the BART model forms relation vectors using
posterior probabilities within the range [0 1]. To place the two
vectors on a similar scale, we introduced a nonlinear
transformation with an exponential function for the visual
difference features v as exp (av) with a scale parameter, set
ata = 2. Cosine distances based on these transformed visual
difference vectors were used to compute relational distance
using the visual module:

D, = cos (exp (a(fp — fa)). exp (@(fp — fc)))-

The relational similarity measure derived from the semantic

module, Dy, was calculated by directly using BART as
described in the preceding section. The final relational
distance measure was a weighted average of the measures
from the visual and semantic modules, D = AD, + (1 —
A)D;, with the weightsetas 1 = .3.
Figure 5 presents a summary of the results for solving GAT
analogy problems based on the visual-only model (ResNet50-
A), two semantic models (Word2Vec and BART), and the
integrated model based relational distance measures from both
visual (ResNet50-A) and semantic (BART) models. The
integrated model achieved the highest accuracy (78%) in
solving GAT analogy problems; other choice probabilities
were 6%, 11% and 6% to choose semantic distractors, visual
distractors, and unrelated distractors, respectively.

We explored the space of parameter values, and found that
performance of the integrated model was quite robust. In



general, the basic results were the same for a broad range of
parameter values for a, as long as the value of 4 was less than
.5, so that the final decision was primarily driven by the
semantic module, based on BART.

Discussion

The present paper provides a proof-of-concept that vision,
language, and reasoning can be integrated to create a
comprehensive computational model of how humans or
machines might solve meaningful visual analogies. Here our
focus has been on a vision module (ResNet50-A) that can
generate verbal captions for line drawings, combined with a
semantic module (BART) that takes word embeddings based
on verbal captions and generates representations of semantic
relations. Each model includes a decision procedure for
assessing the similarity of relations between objects/words and
selecting the best analogical completion from among a set of
alternatives. The vision module alone achieves above-chance
analogical performance on the GAT problems (picture
analogies in 4B :: C:? format); the semantic module alone is
more successful; and an integration of the two modules (biased
to emphasize semantics, but also influenced directly by vision)
is yet more successful, achieving 78% accuracy.

Perhaps the most surprising finding from our computational
experiments is that the vision module alone was able to
achieve above-chance accuracy in selecting the analogical
completion, even though the critical relation is
semantic/functional. Despite some shortcomings of visual
deep learning models (Baker, Lu, Erlikhman & Kellman,
2018), the features in the later layers may capture parallels
involving visual context (e.g., the fact that airplanes and eagles
both cooccur with sky in many natural images, analogous to
the fact that ships and fish both cooccur with water in natural
images). Apparently, for some GAT problems, the similarity
of the visual difference between the A4:B pair to that between
the C:D options is at least weakly correlated with the semantic
relations that define the analogical answer. Moreover, the
visual module continues to add useful information on top of
that provided by the semantic module. Thus, vision may play
two important functions in solving picture analogies:
generating verbal captions that in turn feed the semantic
module, and directly providing visual correlates of semantic
relations.

The present project is only a first step toward the “holy
grail” of a unified model connecting perception to thinking.
The performance of the integrative model falls short of the
high accuracy level achieved by healthy human adults not
under time pressure (Krawcyzk et al., 2008). A number of
incremental improvements are worth pursuing. ResNet50
might benefit from additional training on line drawings. Its
accuracy in captioning might also be improved by making use
of contextual information (e.g., the presence of a pumpkin as
the C term in Figure | might aid in recognizing the pie). If the
captioning accuracy of the visual module could be improved,
its output could be directly passed to BART (rather than
allowing BART direct access to optimal captions).
Furthermore, future investigations need to explore how to

combine visual and semantic knowledge to solve generative
tasks in analogical reasoning (Chen, Lu & Holyoak, 2017).

Deeper developments would include adopting more
sophisticated techniques for translating multi-word captions
into semantic vectors, and eventually dealing with structured
text descriptions of analogical scenes (Richland, Morrison, &
Holyoak, 2006). Perhaps most intriguing is the possibility of
creating hybridized visuosemantic representations that would
allow perception to meld with meaning.
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