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Abstract: In this paper we propose a hybrid control strategy to solve the problem of rendezvous,
proximity operations, and docking of an autonomous spacecraft in 3D. Due to the different
constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem
in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) docking phase;
and 4) docked phase; with range and angle measurements. In this approach, we implement a
supervisor that robustly coordinates the individual controllers to accomplish the whole mission.
We also present the designs of these individual controllers that solve the appropriate control
problems for the individual phases. Numerical results for both the nominal and perturbed case
validate the hybrid control strategy for the spacecraft close-proximity mission.

Keywords: Hybrid systems, Spacecraft close-proximity missions, Supervisory control,

Robustness

1. INTRODUCTION

In recent years there has been an increasing necessity to
control the dynamics of relative satellite motion for close-
proximity missions. Often the motion between two or more
satellites is modeled assuming a circular chief orbit and
a deputy orbit linearized about the chief’s motion. This
results in the Clohessy-Wiltshire-Hill (CWH) equations
Clohessy and Wiltshire (1960); Hill (1878), which is a
linear time-invariant model. Such missions include both
formation flying missions and rendezvous in 3-dimensional
space, where guidance, closed-loop control, and naviga-
tion algorithms must be designed taking into account
mission requirements and the natural orbital dynamics of
the system. Feedback control solutions for such missions
may involve LQR control Kluever (1999), time-varying
gain control Nazari and Butcher (2016), output tracking
schemes that successfully reject disturbances Lee et al.
(2014), model predictive control strategies Vazquez et al.
(2011); Di Cairano et al. (2012); Weiss et al. (2015) and
hybrid control strategies Malladi et al. (2016).

In this paper, we extend the hybrid control strategy
for rendezvous, proximity operations, and docking of an
autonomous spacecraft in Malladi et al. (2016) to a 3-
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dimensional spacecraft modeled using the CWH equations.
Similar to the strategy presented in Malladi et al. (2016),
this problem consists of the following four main phases: 1)
rendezvous with large relative distance; 2) rendezvous with
smaller relative distance; 3) docking phase; and 4) docked
phase. We consider that the range and angle measurements
are available in each phase while the state constraints and
the tasks to perform are different access phases. Precisely,
we contribute to the problem by

e Characterizing the family of individual controllers in
the 3D case and the required properties they should
induce to the closed-loop system to solve the problem
within each phase of operation.

e Designing a supervisor that robustly coordinates the
individual controllers so as to provide a solution to
the problem.

e Providing specific controller designs that appropri-
ately solve the control problems for individual phases
and validate them numerically.

The remainder of the paper is organized as follows. The
notation used throughout the paper and the needed back-
ground material on hybrid controllers is presented in Sec-
tion 2. The problem of interest is formalized in Section 3
and a general hybrid feedback control solution is presented
in Section 4. Section 5 presents specific designs for each
controller and numerical simulations for both the nominal
case as well as the more general case in which we consider



the presence of noise in measurements. Due to space limi-
tations, additional details and the proof of the main result
will be published elsewhere.

2. PRELIMINARIES
2.1 Notation

The following notation and definitions are used throughout
the paper. R™ denotes n-dimensional Euclidean space. R
denotes the real numbers. Z denotes the integers. R>q
denotes the nonnegative real numbers, i.e., R>g = [0, 00).
N denotes the natural numbers including 0, i.e., N =
{0,1,...}. B denotes the open unit ball in a Euclidean
space. Given a set S, S denotes its closure. Given a vector
x € R™, |z| denotes the Euclidean vector norm. Given a
closed set S C R™ and a point z € R", |z|g := infycg |z —
y|. Given subsets Si,S3,S53 subsets of R™, S; + So +
S3 = {1’1 +xo+x3 : 11 € S1,20 € S9, 23 € 53 } The
equivalent notation [z7 yT 27]7, and (z,v, 2) is used for
vectors. S(4 denotes the set of positive definitive matrices.
0 denotes a 3 x 3 matrix with zeros and I denotes a 3 x 3
identity matrix.

2.2 Hybrid controllers

In this paper, we consider stabilization problems for non-
linear control systems of the form

P ﬁ:fP(U,U)a yZhP(ﬂ) (nvu)GCquP (1)
where Up C R™P is a set defining the available input
values, Cp C R™" is a set where the plant state n €
R™P is allowed to evolve, fp Cp xUp — R"P is
a function defining the continuous dynamics, and hp :
Cp — R™F is the output function. A hybrid controller
He. = (C., fey D¢, G, he) takes the form (see Goebel et al.
(2012))

Ye = hc(uca'rc)
HC : -'I'f‘c = fc(ucvxc)
rr € Gelue, zc)

C

(te,zc) € Ce (2)
(e, ) € D,

where u. € R™¢ denotes the input to the controller,
Yo € V. C R" denotes the controller output, z. € R™
is the controller state, the sets C. and D, define regions
where the controller state can flow and jump, respectively,
he : C. — Y. defines the output of the controller and
fe : C. — R™ the flows, while G, : D, = R" is a
map that defines how the controller state x. is updated
at jumps. When ). = Up and system (1) is controlled by
‘H. via the interconnection conditions u. = y, and u = y,,
the resulting hybrid closed-loop system H,; is given by

i = o hohp()ze) | .
&0 = Fulhp(n), 22) } = ()

) (n,zc) € C,
H: N 3)
no=n _.
vt € Gelhpln),ae) § = )
(nvxC) €D
where, C := {(n,z.) : @), he(hp(n),z.)) € Cp X Up,

(hp(n),zc) € Cc}, D :={(n,c) : (hp(n),zc) € De}

If H. is such that C. and D. are closed, f. and h.

are continuous, G, is outer semicontinuous and locally

bounded, and G.(z.,u.) is a nonempty subset of R"™e
for all (zc,u.) € D, then H,. is said to be well-posed.
Note that this interconnection is well-posed when its data
satisfies the hybrid basic conditions. For more details on
the definitions of hybrid time domain, hybrid arc, hybrid
basic conditions, asymptotic stability and well-posedness
of a hybrid system, see Goebel et al. (2012).

3. PROBLEM DESCRIPTION

We consider a model of the chaser spacecraft given by
Clohessy-Wiltshire equations, namely,

& —2ngy — 3n’x = =
mc

y+2nm:ﬁ (4)
3anly=22
me

where (z,y,z) and (&,9, 2) are the position and velocity
of the chaser spacecraft with respect to the target space-
craft resolved into the target LVLH (local-vertical - local-
horizontal) frame, respectively; F,, F, and F, are the

control forces in the z, y and z directions, respectively,
m, the mass of the chaser, and n := , /-%5, where p is the

gravitational parameter of the Earth and r, is the orbit
radius of the target spacecraft. The target spacecraft is
located at (z,y, z) = (0,0,0) and has mass m;.

The state space representation of (4) is given by:

7 = An+ Bu (5)
where n == [ryz 2y ,é']T € R® is the state vector,
u:=[F; F, FZ]—r € R3 is the input vector, and

000 1 00O

00 0 0 10

00 0 0 01 1 [o
A=1320 0 0 2n0| B'—mCH

00 0 —2n 00

0 0-n*> 0 00

are the state and input matrices, respectively. The relative
position between the chaser and the target is represented
by p(x,y,2) = /22 + y2 + 22. In addition, let N™(0, 0?)
be the set of measurable functions in an m-dimensional
Euclidean space with Gaussian distribution having zero
mean and variance o2.

With these details, the problem to solve is the following.
Problem 1: Given positive constants m., mq, ft, 7o, Umax,
Pmax > Pr > Pd, V7 Vma)u g1, 02, 03, 04, tf > te7

0 € [0,%), and (2p,yp.2p) € R?, design a feedback
controller that measures angle and range

y=nh(n) +v

arctan (Q )
T

arcsin (p(y)) (6)
p(z,y,2)

where arctan : R — [—m, 7], arcsin : R — [0,2n]
are four-quadrant inverse tangent and inverse sine, re-

ie.,

h(n) =



spectively, v € N(0,02), n € {1,2,3,4}; and as-
signs u such that for every initial condition 79 €
My = {77 €RE: P(x, y,Z) € [Ovpmax]ap(ivya Z) € [07 V]}
of the chaser with dynamics as in (5) under the constraints

e The control signal ¢ — wu(t) satisfies the “maximum
thrust” constraint
sup max{| F ()], |Fy (1)), [F= (1)[} < timax

>0

namely, for each ¢t > 0,
u(t) € Up = {u eR3: max{|F.|, |F,|, |F:|} < umax} ;

e Foreachne My :={neR’ : p(x,y,z2) € [p,,0)
angle and range measurements are available as in (
and v € N(0,0%);

e Foreachn e My :={neR" : p(z,y,2) € [pa,pr) }
angle and range measurements are available as in (6)
and v € N?(0, 03);

[0, pa) },
6

6

e For each n € M§ := {neR®: p(z,y,z2) €
angle and range measurements are available as in (
and v € N?(0,03); While, in addition, if n € M$ N
MG, where M5(0) :=

b < 8 e
nER:G02) 0 cos(6/2) M< 0
sin(6/2) 0 —cos(8/2)] ¥ |0

namely, the position state is in a 3-dimensional cone
with aperture 6 centered about the x axis, then the
following constraint on closing/approaching velocity
is satisfied:

neMg={neR®: p(d,y,2)

Va2 + g2 + 22,

When the chaser docks to the target (docked-phase), the
chaser-target dynamics are given as in (5) with m. + m,
in place of m, under the constraint (7) and with available
position measurements relative to a partner at location
(ps Yp, 2p)- The constrained dynamics of the chaser-target
are

S Vmax }
where p(&,9, 2) :=

17 = An+ Bru
Y = hr(n) := hs(n) } (n,u) € Cr xUp  (8)
where )
e — O pp—
Br = pe——— {I} , Cr: =M,
arctan (m(x))
Ty (y)
(o) = s

arcsin () ’
p(re, Ty, 72)

P(re, Ty, 72)

rs(x) = z—1)p, ry(y) = y—yp7 r,(2) = z2—2p,v € ./\/2(0,02)
\/Tw +Ty (y)? +72(2)2.

The following holds for the n-component ¢ — n(t) of each
solution to the closed-loop system: for some tof < t35 <
t4y such that t3p <., t4y <y, we have

(1) nltar) € M3 MG and pa(tay),yltas), 2(t21)) = pai
namely, the chaser reaches the cone first;

(2) ntsy) € M§ = {neR® : n=0 }; namely, the
chaser docks on the target next, no later than tsy
time units;

and p(ran Ty, rz

(3) n(tay) € My, where
M4:: {77 ERG : (ZZJ, y7Z> = (Ip? yp’ Zp)?(i:7 yv Z) = (07070)}7
namely, the docked chaser (or chaser-target) reach the
partner location no later than t4f time units. A

Remark 3.1. The values of the constants m., my, p, o,
Umax, and (Zp,Yp, zp) are imposed by the vehicles and
their environment. The constants pmax, Pr, Pds Vs Vinax,
0, ty, and t. are imposed by the mission and the desired
performance.

4. GENERAL HYBRID FEEDBACK CONTROL
STRATEGY

Following Malladi et al. (2016), we extend the algorithm
that supervises multiple hybrid controllers that are de-
signed to cope with the individual constraints and to
satisfy the desired temporal properties to 3-dimensional
chaser proximity mission. Similar to Malladi et al. (2016),
the supervising algorithm is modeled as a hybrid system,
which we denote Hg, and is in charge of supervising the
following individual hybrid controllers:

e Hybrid controller for rendezvous from distances far
from target (Phase I): this controller is denoted H. 1
and its goal is to steer the chaser to a point in
the interior of M, in particular, from points in the
compact set M1 N My.

e Hybrid controller for rendezvous in close-proximity to
target (Phase II): this controller is denoted . 2 and
its goal is to steer the chaser to a point in the interior
of Xjps C MaUM$E, in particular, from points in M.

e Hybrid controller for docking to target (Phase III):
this controller is denoted H. 3 and its goal is to steer
the chaser to nearby 7 = 0 from points in Mo U M§$.

e Hybrid controller for relocation of target (Phase IV):
this controller is denoted H. 4 and its goal is to steer
the chaser-target from nearby M$ to a neighborhood
of the partner position (z, yp, zp)-

The operations described above are subject to the con-
straints stated in Problem 1. Similar to the 2-dimensional
chaser close-proximity mission presented in Malladi et al.
(2016), each of the hybrid controllers operates in specific
regions of the state space. The tasks performed by the
controllers H. 3 and H.4 are practical, in the sense that
the trajectories 7 are steered from and to neighborhoods
of the desired sets respectively. With this problem formu-
lation, the goals of the individual hybrid controllers are
formalized next.

Due to space limitations, the formal results about the
specific controllers and the supervisor will be published
elsewhere.

5. SPECIFIC DESIGNS AND SIMULATIONS
5.1 An observer-based 3D LQR design of H. 1

The controller H.; is designed such that the inflated
closed set A; + 1B € M, where §; > 0, is finite-time
attractive for the initial conditions starting from basin
of attraction induced by H.: in 7 space. A controller
with linear continuous-time state feedback ki given by
k1(n) := —K1n, where K; € R%%6_is obtained from a LQR



controller design. A saturation on the controller is im-
plemented to satisfy the maximum thrust constraint and
the resulting closed-loop hybrid system, denoted H; :=
(C1, F1, D1,Gh), has data given by

Fi(n) = An+ Brai(n)  VYne Cy 9)

where C7 := RS, D; := () and arbitrary G; (that is, no
jumps).

5.2 A logic-based line-of-sight controller design of Hc,o

The hybrid controller H. o is designed to render the in-
flated closed set Ay + 02B finite-time attractive for the
solution components 7, 1y starting from Dj,. For this
purpose, using the fact that initial conditions of the
chaser belong to Dio, we exploit the ideas in Kluever
(1999) (in particular, the change of coordinates), where a
proportional-derivative control law that guides the chaser
to dock with the target at a desired docking direction (a*)
and position (p*) is proposed. We introduce a logic variable
to handle the topological obstruction of stabilizing a set on
a manifold. In fact, with a continuous state feedback law,
there will be antipodal points to A2 (nearby o = 0) from
where the chaser can move either left or right to reach the
desired line of sight. While, alternatively, a discontinuous
controller can be designed, such a discontinuous controller
would not be robust to small measurement noise as previ-
ously shown in literature Sanfelice et al. (2006). We design
a logic-based hybrid controller that steers the chaser can
either clockwise or counter-clockwise to take shortest route
and reach a point in Xfo‘i and be robust to small perturba-
tions. With the proposed controller, the resulting closed-
loop hybrid system is denoted Hsg := (Ca, Fa, D2, G3), and
has data given by

Fy(n,h) := [ Y(n,h) € Co

An + l?)m(h??)}
(10)

Galn.) = | | () € s

where h € {—1,1} is the logic state variable of the
controller, o € (0,7) is a controller parameter, Co :=
{(n,h) € R® x {~1,1} : h(a — ) > —o}, Dy = {(n, h) €
ROx {—1,1} : h(a—a*) < —p}. The continuous-time state
feedback ko is given by

)= |

where 1, := (v,y,4,9) € R* and 1, := (2, 2) € R2. For the
PD controller done on the xy system we can express

o= o] =[Sl | o] v
Ap=Up + Np, Qg = Uy T Ng
up=—Fk1pe — k2pe, U = —p(ksde + ksae)
n,=—[3n%z + y(2n + &)] cos(a) + #(2n + &) sin(a)
no=[3n’z + y(2n + &)]sin(a) + #(2n + &) cos(a) + v,
with k1, ko, k3, k4 positive constants, p. = p—p*, ae = a—
ha*t, p=1,, and v, = @ cos(a) + ¥sin(a).

1 Once again to avoid the discontinuities associated with angle
calculations, we embed the angle error on a unit circle, i.e. the error

sin(ae) ) .

cos(ae)

calculation is performed as ae = atanQ(

This construction is obtained by changing to a coordinate
system (in polar coordinates) that is fixed to the target
spacecraft with its origin moving at a constant angular
rate n. The resulting hybrid feedback is such that, from
points in Cy nearby a = 0, with ¢ € (0,7), it steers the
chaser clockwise to —a™* if a < ¢ and counter-clockwise to
a®if a > —p.

An additional LQR controller is implemented for the z
component, with the state feedback given by x§(n,) and
a saturation on both controllers is implemented to satisfy
the maximum thrust constraint.

5.8 A uniting local and “global” design of H. 3

The hybrid controller H.3 steers the n components of
the solutions from Ay + 62B to A}, in finite time. This
controller is designed to induce forward invariance and
to satisfy the closing speed constraints for the chaser.
We do this in two stages. First, a controller with output
k3, thrusts the chaser towards the reference way-point
M= [, 00000] € X, (in the y axis) within Tj,
seconds while guaranteeing forward invariance of X} U
Xﬁfs. Second, a controller with output 3 implements a
damping control law that guides the chaser from X} to
the inflated set A3+ 03B within T3, along the vertical axis
and slowing down the vehicle so as to satisfy the closing
speed constraint. The data of the resulting hybrid closed-
loop system, which is denoted Hs := (Cs, F3, D3, G3), is
given by

F3(77ap) = |:A77 * gKg(n)] V(nap) € C13
(12)
G3(7MD) = |:3 ﬁp:| V(n,p) S D3

where p € {1,2} is a logic variable the denotes the
subcontroller (k3 or k3) being used, C3 := Upeq1,23Ch X
{p}, D3 := U123 D% x {p}. The set Cj is taken to be a
compact neighborhood of the reference way-point 7, that
is contained in the basin of attraction of 3. The set D3 is
taken as a compact neighborhood of 7, such that solutions
using 3 that start in D3 do not reach the boundary of C1.
Then, we define C53 = R6\ D2 and D3 = RS\ Ci.

All the controllers are tuned in a way to satisfy the
maximum thrust constraint.

5.4 A 3D LQR design of Hca

In Phase IV, the controller H.4 has to steer the docked
chaser-target from points in Dz4 to My + 4B, 64 > 0, in
finite time.

A controller with linear continuous-time state feedback
kg given by rk4(n) = —Ku(n — np) is designed using
the LQR method. The gain K, is designed to satisfy
the maximum thrust constraint and with this controller,
the resulting closed-loop hybrid system, denoted H, :=
(Cy4, Fy, D4, Gy), has data given by

Fy(n) = An+ Brra(n) Vne Cy (13)

where Cy := RS, D, := ) and arbitrary G4 (that is, no
jumps).



5.5 Simulation results for the nominal case

We use n = /-2, p = 3.986 x 107 7, = 71000007,

7930

me = 500Kg and m; = 2000K g in the simulations. In
the problem definition provided in the previous paper
Malladi et al. (2016), which we also use here for this invited
session, the chaser starts at a distance of no more than
Pmax = 10Km away from the target. Once docked, the
chaser-target has to reach a relocation position with range
p(x,y,z) = 20K'm, which is 10Km away from the partner
spacecraft in worst-case time of £y = 12hr. In Phase I-IV
both range p and angle o« measurements are available and
hence we consider that the states n € RS can be easily
reconstructed.

With these mission parameters, simulations for the entire
closed-loop system are performed for the chaser starting
from n € My N My, which corresponds to various ini-
tial conditions in the 10Km radius with a initial velocity
p(2(0,0),3(0,0),2(0,0)) € [0,0.707m/sec|. At this step we
are assuming to have all measurements known and two
LQR-based controllers are implemented for the zy and z
system, respectively, with the following choice of weight
matrices: Q14 = 0.015 x I Ry, = 20 x 10* 0

. a . 4x4, la 0 11 x 104 )
Q1p = 1.5x 1072 x Inyo, and Ry, = 99 x 103. The trajecto-
ries of the chaser during Phase I are shown in Figure 1, and
the chaser completes the desired maneuver in this phase
in Ty ~ 1,7hr. Due to the interesting chaser motion,

Local verical - x axis

W 10
500 40 30 o ~ 0 y

20 10 0 10 20 10 ane - 2 27

5
Local horizontal - y axis Out of P

Fig. 1. Trajectories of the chaser during Phase I

we also perform multiple simulations when H. o is used,
for initial position (x(0,0),4(0,0),2(0,0)) € Dia, where
D1 :={n e R*: p(x,y,2) € [0,p,]}, pr = 700m, and ini-
tial velocity p(#(0,0),%(0,0),2(0,0)) € [0,0.64m/s]. With
p* = 100m, a* = 179deg, and p = 10deg, the motion of
the chaser with both h = 1 and h = —1 are shown in
Figure 2, which highlights the capabilities conferred by
the logic variable in the hybrid controller. For the PD
controller ko, the gains are chosen as: k; = 40, ko = 0.1,
ks = 25, and kg4 = 0.047; instead, for the LQR controller,

138 100 and R = 30 x 106.

The trajectories of the chaser during Phase II, shown in
Figure 2, are completed in this phase in T, ~ 1hr. We
also show the chaser evolution during the approach/closing
stage (Phase IIT) and highlight the specific motion pro-
vided by our controller H. 3. Multiple simulations from
(2(0,0),(0,0),2(0,0)) € Az + 6B, where Ay = {n €
RS : p = 150m,a = h179deg} and J; = 10m, are
presented in the Figure 3. The reference way-point, where

the weight matrices are: Q =

0.5+

Local verical - x axis
B
1

0.5 axis

0
0 5 0.5 7
. 0.5 - . e -

Local horizonta] - y axis o outof pha

Fig. 2. Trajectories of the chaser during Phase II

the hybrid controller switches between subcontrollers is

given by 7, = [-25m 0m 0m 0m/sec Om/sec Om/sec]—r
The chaser reaches d3B with d3 € [2e¢m, 8cm] for several
initial conditions as presented in Figure 3.

Before that switching, the controller k3 has weight matri-
ces given by Q, = 38.4 X Iyx4, Ry = 9.7 x 103 x Iyya,

Qy = {138 100} R, = 30 x 10 and after the switch-

ing the controller x3 has gains given by k; = 0.0007,
ke = 0.15, k3 = 0.006, k4 = 0.22, for the zy system and
Qp = [188 100], R, = 30 x 10% as weight matrices for the
z-axis LQR control. The trajectories of the chaser during
Phase III are shown in Figure 3 and the chaser completes
the desired maneuver in this phase in T3 ~ 0.8hr.

Local verical - x axis

Out of plane - z axis

Fig. 3. Trajectories of the chaser during Phase III

In the last phase (Phase IV), the specific motion is
provided by the controller H. 4 and the goal is to reach
a desired partner position for the two system given by

np = [0km 20km 0km Okm/sec Okm/sec Okm/sec]—r. For
that phase the 3D LQR controller has weight matrices:

Qa =6x10"" XIyxq, Ry =11 % 10 X I2x2, Qb = |:138 100:|

and R, = 30 x 10%. The motion of the chaser with mass
me + my is presented in Figure 4 and this maneuver is
completed by the chaser in Ty ~ 1.7hr.

Local verical - x axis

08 06 04 02 ¢ o
02 04 06 g 0 s i

; axis

al - y &%

Out of plane - 7 axis Local orizont?

Fig. 4. Trajectories of the chaser during Phase IV



The total time constraint is satisfied: 77 + T + T3 +
Ty = 5.2hr < ty. An overview of the nominal motion of
the chaser is given in Figure 5.

Local horizontal ¥

c¢) Phase III (d) Phase IV

Fig. 5. Overview of the nominal motion

5.6 Simulation results with noise

A more complete overview of the simulations can be
done by considering noise added into the system. A small
zero-mean Gaussian residual noise (considering the best
performance of a chosen filter) is added to the position
and velocity components in every phase. The measurement
noises added to each phase are shown in Table 1.

Table 1. Variance of residual error, Phase I-IV

Phase xy system Residual error z system Residual error
(0res)? (0res)?

T (0pos)? = (0.5m) (0pos)? = (0.5 x 10~3m)
(0vet)? = (5 x 1075m/sec)? | (oper)? = (5 x 10~8m/sec)?

11 (0pos)? = (0.5m) (0pos)? = (0.5 x 10~ 3m)
(0pe1)? = (5 x 1075m/sec)? | (0pe1)? = (5 x 10~ 3m/sec)?

111 (0pos)? = (0.5 x 10~ 3m)? (0pos)? = (0.5 x 10~ "m)?
(0pe1)? = (5 x 107°m/sec)? | (0pe1)? = (5 x 10~ 9m/sec)?

v (0pos)? = (0.5m)2 (0pos)? = (0.5 x 10~3m)?
(0pe1)? = (5 x 107°m/sec)? | (0ype1)? = (5 x 10~ 3m/sec)?
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(a) Motion of the chaser with the presence of noises
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(b) Input of the chaser in presence of noises

Fig. 6. Full simulation of the chaser with noise

The robustness of the controllers for small level of noise
is shown in the simulations result, Figure 6, where the

chaser reaches the desired neighborhood of the target while
maintaining the input constraint |[ul|. < 0.02m/sec?.
The total worst case time to reach for the chaser ren-
dezvous, docking and chaser-target rendezvous maneuver
is Th + Ty + T3 + Ty ~ 8.88hr < ty, which is within
specifications. 2

6. CONCLUSION

A family of individual controllers is implemented to solve
the problem of rendezvous, proximity operations and dock-
ing of an autonomous spacecraft in the 3D space. The
design controllers proposed in each phase are chosen to
satisfy the given constraints and the approach is validated
with numerical results. Additional results on robustness of
the proposed hybrid supervisory controller in presence the
of measurements noise are also discussed.

REFERENCES

Clohessy, W.H. and Wiltshire, R.S. (1960). Terminal
guidance system for satellite rendezvous. Journal of the
Aerospace Sciences, 27(9), 653-658.

Di Cairano, S., Park, H., and Kolmanovsky, I. (2012).
Model predictive control approach for guidance of space-
craft rendezvous and proximity maneuvering. Interna-
tional Journal of Robust and Nonlinear Control, 22(12),
1398-1427.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2012). Hybrid
Dynamical Systems: Modeling, Stability, and Robust-
ness. Princeton University Press, New Jersey.

Hill, G. (1878). Researches in the lunar theory. American
Journal of Mathematics, 1, 5—26.

Kluever, C.A. (1999). Feedback control for spacecraft
rendezvous and docking. Journal of Guidance, Control,
and Dynamics, 22(4), 609-611.

Lee, D., Bang, H., Butcher, E.A., and Sanyal, A.K. (2014).
Nonlinear output tracking and disturbance rejection
for autonomous close range rendezvous and docking
of spacecraft. Transactions of the Japan Society for
Aeronautical and Space Sciences, 57, 225-237.

Malladi, B.P., Sanfelice, R.G., Butcher, E., and Wang,
J. (2016). Robust hybrid supervisory control for ren-
dezvous and docking of a spacecraft. In Proceedings of
the Conference on Decision and Control, 3325 — 3330.

Nazari, M. and Butcher, E.A. (2016). Fuel efficient
periodic gain control strategies for spacecraft relative
motion in elliptic chief orbits. International Journal of
Dynamics and Control, 4, 104—122.

Sanfelice, R.G., Messina, M.J., Tuna, S.E., and Teel, A.R.
(2006). Robust hybrid controllers for continuous-time
systems with applications to obstacle avoidance and
regulation to disconnected set of points. In Proc. 25th
American Control Conference, 3352—-3357.

Vazquez, R., Gavilan, F., and Camacho, E.F. (2011). Tra-
jectory planning for spacecraft rendezvous with on/off
thrusters. ITFAC Proceedings Volumes, 44(1), 8473-8478.

Weiss, A., Baldwin, M., Erwin, R.S., and Kolmanovsky,
I. (2015). Model predictive control for spacecraft ren-
dezvous and docking: Strategies for handling constraints
and case studies. IEEFE Transactions on Control Sys-
tems Technology, 23(4), 1638-1647.

2 Simulation files available at: https://github.com/

HybridSystemsLab/HybridRendezvousAndDocking3DOF




