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Abstract—We study the learnability of sums of independent
integer random variables given a bound on the size of the
union of their supports. For A ⊂ Z+, a sum of independent
random variables with collective support A (called an A-sum in
this paper) is a distribution S = X1 + · · · + XN where the
Xi’s are mutually independent (but not necessarily identically
distributed) integer random variables with ∪isupp(Xi) ⊆ A.

We give two main algorithmic results for learning such
distributions:

1) For the case |A| = 3, we give an algorithm for learning
A-sums to accuracy ε that uses poly(1/ε) samples and
runs in time poly(1/ε), independent of N and of the
elements of A.

2) For an arbitrary constant k ≥ 4, if A = {a1, ..., ak}
with 0 ≤ a1 < ... < ak, we give an algorithm that uses
poly(1/ε) · log log ak samples (independent of N ) and
runs in time poly(1/ε, log ak).

We prove an essentially matching lower bound: if |A| = 4,
then any algorithm must use Ω(log log a4) samples even for
learning to constant accuracy. We also give similar-in-spirit
(but quantitatively very different) algorithmic results, and
essentially matching lower bounds, for the case in which A
is not known to the learner.

Our learning algorithms employ new limit theorems which
may be of independent interest. Our lower bounds rely on
equidistribution type results from number theory. Our algo-
rithms and lower bounds together settle the question of how
the sample complexity of learning sums of independent integer
random variables scales with the elements in the union of their
supports, both in the known-support and unknown-support
settings. Finally, all our algorithms easily extend to the “semi-
agnostic” learning model, in which training data is generated
from a distribution that is only cε-close to some A-sum for a
constant c > 0.

Keywords-distribution learning; sums of independent ran-
dom variables; central limit theorems; unsupervised learning;
sample complexity

I. INTRODUCTION

The theory of sums of independent random variables
forms a rich strand of research in probability. Indeed, many
of the best-known and most influential results in probability
theory are about such sums; prominent examples include the
weak and strong law of large numbers, a host of central limit

theorems, and (the starting point of) the theory of large devi-
ations. Within computer science, the well-known “Chernoff-
Hoeffding” bounds — i.e., large deviation bounds for sums
of independent random variables — are a ubiquitous tool
of great utility in many contexts. Not surprisingly, there are
several books [1], [2], [3], [4], [5], [6] devoted to the study
of sums of independent random variables.

Given the central importance of sums of independent
random variables both within probability theory and for a
host of applications, it is surprising that even very basic
questions about learning these distributions were not rig-
orously investigated until very recently. The problem of
learning probability distributions from independent samples
has attracted a great deal of attention in theoretical computer
science for almost two decades (see [7], [8], [9], [10], [11],
[12], [13] and a host of more recent papers), but most of
this work has focused on other types of distributions such as
mixtures of Gaussians, hidden Markov models, etc. While
sums of independent random variables may seem to be a
very simple type of distribution, as we shall see below
the problem of learning such distributions turns out to be
surprisingly tricky.

Before proceeding further, let us recall the standard PAC-
style model for learning distributions that was essentially
introduced in [7] and that we use in this work. In this
model the unknown target distribution X is assumed to
belong to some class C of distributions. A learning algorithm
has access to i.i.d. samples from X, and must produce an
efficiently samplable description of a hypothesis distribution
H such that with probability at least (say) 9/10, the total
variation distance dTV(X,H) between X and H is at most
ε. (In the language of statistics, this task is usually referred
to as density estimation, as opposed to parametric estimation
in which one seeks to approximately identify the parameters
of the unknown distribution X when C is a parametric class
like Gaussians or mixtures of Gaussians.) In fact, all our
positive results hold for the more challenging semi-agnostic
variant of this model, which is as above except that the
assumption that X ∈ C is weakened to the requirement
dTV(X,X∗) ≤ cε for some constant c and some X∗ ∈ C.
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Learning sums of independent random variables: For-
mulating the problem. To motivate our choice of learning
problem it is useful to recall some relevant context. Recent
years have witnessed many research works in theoretical
computer science studying the learnability and testability of
discrete probability distributions (see e.g. [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26]);
our paper belongs to this line of research. A folklore
result in this area is that a simple brute-force algorithm
can learn any distribution over an M -element set using
Θ(M/ε2) samples, and that this is best possible if the
distribution may be arbitrary. Thus it is of particular interest
to learn classes of distributions over M elements for which
a sample complexity dramatically better than this “trivial
bound” (ideally scaling as logM , or even independent of
M altogether) can be achieved.

This perspective on learning, along with a simple result
which we now describe, strongly motivates considering sums
of random variables which have small collective support.
Consider the following very simple learning problem: Let
{Xi}ni=1 be independent random variables where Xi is
promised to be supported on the two-element set {0, i} but
Pr[Xi = i] is unknown: what is the sample complexity of
learning X = X1 + · · ·+ XN? Even though each random
variable Xi is “as simple as a non-trivial random variable
can be” — supported on just two values, one of which is
zero — a straightforward lower bound given in [15] shows
that any algorithm for learning X even to constant accuracy
must use Ω(N) samples, which is not much better than the
trivial brute-force algorithm based on support size.

Given this lower bound, it is natural to restrict the learning
problem by requiring the random variables X1, . . . ,XN to
have small collective support, i.e. the union supp(X1) ∪
· · · ∪ supp(XN ) of their support sets is small. Inspired by
this, Daskalakis et al. [15] studied the simplest non-trivial
version of this learning problem, in which each Xi is a
Bernoulli random variable (so the union of all supports
is simply {0, 1}; note, though, that the Xi’s may have
distinct and arbitrary biases). The main result of [15] is
that this class (known as Poisson Binomial Distributions)
can be learned to error ε with poly(1/ε) samples — so,
perhaps unexpectedly, the complexity of learning this class
is completely independent of N , the number of summands.
The proof in [15] relies on several sophisticated results
from probability theory, including a discrete central limit
theorem from [27] (proved using Stein’s method) and a
“moment matching” result due to Roos [28]. (A subsequent
sharpening of the [15] result in [29], giving improved time
and sample complexities, also employed sophisticated tools,
namely Fourier analysis and algebraic geometry.)

Motivated by this first success, there has been a surge of
recent work which studies the learnability of sums of richer
classes of random variables. In particular, [16] considered a
generalization of [15] in which each Xi is supported on the

set {0, 1, . . . , k − 1}, and [30] considered a vector-valued
generalization in which each Xi is supported on the set
{e1, . . . , ek}, the standard basis unit vectors in Rk. We will
elaborate on these results shortly, but here we first highlight a
crucial feature shared by all these results; in all of [15], [16],
[30] the collective support of the individual summands forms
a “nice and simple” set (either {0, 1}, {0, 1, . . . , k − 1}, or
{e1, . . . , ek}). Indeed, the technical workhorses of all these
results are various central limit theorems which crucially
exploit the simple structure of these collective support sets.
(These central limit theorems have since found applications
in other settings, such as the design of algorithms for
approximating equilibrium [26], [30], [25], [31] as well as
stochastic optimization [32].)

In this paper we go beyond the setting in which the
collective support of X1, . . . ,XN is a “nice” set, by studying
the learnability of X1 + · · · + XN where the collective
support may be an arbitrary set of non-negative integers.
Two questions immediately suggest themselves:

1) How (if at all) does the sample complexity depend on
the elements in the common support?

2) Does knowing the common support set help the
learning algorithm — how does the complexity vary
depending on whether or not the learning algorithm
knows the common support?

In this paper we give essentially complete answers to
these questions. The answers to these questions emerge from
the interface of probability theory and number theory: our
algorithms rely on new central limit theorems for sums of
independent random variables which we establish, while our
matching lower bounds exploit delicate properties of contin-
ued fractions and sophisticated equidistribution results from
analytic number theory. The authors find it surprising that
these two disparate sets of techniques “meet up” to provide
matching upper and lower bounds on sample complexity.

We now formalize the problem that we consider.

Our learning problem. Let X1, . . . ,XN be independent
(but not necessarily identically distributed) random vari-
ables. Let A = ∪isupp(Xi) be the union of their supports
and assume w.l.o.g. that A = {a1, ..., ak} for a1 < a2 <
· · · < ak ∈ Z≥0. Let S be the sum of these independent
random variables, S = X1 + · · ·+ XN . We refer to such a
random variable S as an A-sum.

We study the problem of learning a unknown A-sum
S, given access to i.i.d. draws from S. A-sums generalize
several classes of distributions which have recently been
intensively studied in unsupervised learning [15], [16], [24],
namely Poisson Binomial Distributions and “k-SIIRVs,” and
are closely related to other such distributions [25], [26] (k-
Poisson Multinomial Distributions). These previously stud-
ied classes of distributions have all been shown to have
learning algorithms with sample complexity poly(1/ε) for
all constant k.
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In contrast, in this paper we show that the picture is more
varied for the sample complexity of learning when A can be
any finite set. Roughly speaking (we will give more details
soon), two of our main results are as follows:
• Any A-sum with |A| = 3 is learnable from poly(1/ε)

samples independent of N and of the elements of A.
This is a significant (and perhaps unexpected) general-
ization of the efficient learnability of Poisson Binomial
Distributions, which corresponds to the case |A| = 2.

• No such guarantee is possible for |A| = 4: if N
is large enough, there are infinitely many sets A =
{a1, a2, a3, a4} with 0 ≤ a1 < ... < a4 such that
Ω(log log a4) examples are needed even to learn to
constant accuracy (for a small absolute constant).

Before presenting our results in more detail, to provide
context we recall relevant previous work on learning related
distributions.

A. Previous work

A Poisson Binomial Distribution of order N , or PBDN , is
a sum of N independent (not necessarily identical) Bernoulli
random variables, i.e. an A-sum for A = {0, 1}. Efficient
algorithms for learning PBDN distributions were given in
[33], [29], which gave learning algorithms using poly(1/ε)
samples and poly(1/ε) runtime, independent of N .

Generalizing a PBDN distribution, a k-SIIRVN (Sum of
Independent Integer Random Variables) is a A-sum for A =
{0, ..., k − 1}. Daskalakis et al. [16] (see also [24]) gave
poly(k, 1/ε)-time and sample algorithms for learning any
k-SIIRVN distribution to accuracy ε, independent of N .

Finally, a different generalization of PBDs is provided by
the class of (N, k)-Poisson Multinomial Distributions, or k-
PMDN distributions. Such a distribution is S = X1 + · · ·+
XN where the Xi’s are independent (not necessarily iden-
tical) k-dimensional vector-valued random variables each
supported on {e1, . . . , ek}, the standard basis unit vectors in
Rk. Daskalakis et al. [30] gave an algorithm that learns any
unknown k-PMDN using poly(k/ε) samples and running in
time min{2O(kO(k))·logO(k)(1/ε), 2poly(k/ε)}; this result was
subsequently sharpened in [25], [26].

Any A-sum with |A| = k has an associated underlying
k-PMDN distribution: if A = {a1, ..., ak}, then writing ā
for the vector (a1, . . . , ak) ∈ Zk, an A-sum S′ is equivalent
to ā · S where S is an k-PMDN , as making a draw from
S′ is equivalent to making a draw from S and outputting
its inner product with the vector ā. However, this does not
mean that the [30] learning result for k-PMDN distributions
implies a corresponding learning result for {a1, ..., ak}-
sums. If an A-sum learning algorithm were given draws
from the underlying k-PMDN , then of course it would be
straightforward to run the [30] algorithm, construct a high-
accuracy hypothesis distribution H over Rk, and output ā·H
as the hypothesis distribution for the unknown A-sum. But
when learning S′, the algorithm does not receive draws from

the underlying k-PMDN S; instead it only receives draws
from ā · S. In fact, as we discuss below, this more limited
access causes a crucial qualitative difference in learnability,
namely an inherent dependence on the ai’s in the necessary
sample complexity once k ≥ 4. (The challenge to the learner
arising from the blending of the contributions to a A-sum is
roughly analogous to the challenge that arises in learning a
DNF formula; if each positive example in a DNF learning
problem were annotated with an identifier for a term that it
satisfies, learning would be trivial.)

B. The questions we consider and our algorithmic results.

As detailed above, previous work has extensively studied
the learnability of PBDs, k-SIIRVs, and k-PMDs; however,
we believe that the current work is the first to study the
learnability of general A-sums. A first simple observation is
that since any A-sum with |A| = 2 is a scaled and translated
PBD, the results on learning PBDs mentioned above easily
imply that the sample complexity of learning any {a1, a2}-
sum is poly(1/ε), independent of the number of summands
N and the values a1, a2. A second simple observation is that
any {a1, ..., ak}-sum with 0 ≤ a1 < ... < ak can be learned
using poly(ak, 1/ε) samples, simply by viewing it as an ak-
SIIRVN . But this bound is in general quite unsatisfying –
indeed, for large ak it could be even larger than the trivial
O(Nk/ε2) upper bound that holds since any A-sum with
|A| = k is supported on a set of size O(Nk).

Once k ≥ 3 there can be non-trivial additive structure
present in the set of values a1, . . . , ak. This raises a natural
question: is k = 2 the only value for which A-sums are
learnable from a number of samples that is independent
of the domain elements a1, . . . , ak? Perhaps surprisingly,
our first main result is an efficient algorithm which gives
a negative answer. We show that for k = 3, the values
of the ai’s don’t matter; we do this by giving an efficient
learning algorithm (even a semi-agnostic one) for learning
{a1, a2, a3}-sums, whose running time and sample complex-
ity are completely independent of a1, a2 and a3:

Theorem 1 (Learning A-sums with |A| = 3, known
support). There is an algorithm and a positive constant
c with the following properties: The algorithm is given
N , an accuracy parameter ε > 0, distinct values a1 <
a2 < a3 ∈ Z≥0, and access to i.i.d. draws from an
unknown distribution S∗ that has total variation distance
at most cε from an {a1, a2, a3}-sum. The algorithm uses
poly(1/ε) draws from S∗, runs in poly(1/ε) time1, and with
probability at least 9/10 outputs a concise representation of
a hypothesis distribution H such that dTV(H,S∗) ≤ ε.

We also give an algorithm for k ≥ 4. More precisely, we
show:

1Here and throughout we assume a unit-cost model for arithmetic
operations +, ×, ÷.
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Theorem 2 (Learning A-sums, known support). For any
k ≥ 4, there is an algorithm and a constant c > 0 with the
following properties: it is given N , an accuracy parameter
ε > 0, distinct values a1 < · · · < ak ∈ Z≥0, and access
to i.i.d. draws from an unknown distribution S∗ that has
total variation distance at most cε from some {a1, . . . , ak}-
sum. The algorithm runs in time (1/ε)2O(k2) ·(log ak)poly(k),
uses (1/ε)2O(k2) · log log ak samples, and with probability at
least 9/10 outputs a concise representation of a hypothesis
distribution H such that dTV(H,S∗) ≤ ε.

In contrast with k = 3, our algorithm for general
k ≥ 4 has a sample complexity which depends (albeit
doubly logarithmically) on ak. This is a doubly exponential
improvement over the naive poly(ak) bound which follows
from previous ak-SIIRV learning algorithms [16], [24].

Secondary algorithmic results: Learning with unknown
support. We also give algorithms for a more challenging
unknown-support variant of the learning problem. In this
variant the values a1, . . . , ak are not provided to the learning
algorithm, but instead only an upper bound amax ≥ ak is
given. Interestingly, it turns out that the unknown-support
problem is significantly different from the known-support
problem: as explained below, in the unknown-support variant
the dependence on amax kicks in at a smaller value of k
than in the known-support variant, and this dependence is
exponentially more severe than in the known-support variant.

Using well-known results from hypothesis selection, it
is straightforward to show that upper bounds for the
known-support case yield upper bounds in the unknown-
support case, essentially at the cost of an additional additive
O(k log amax)/ε2 term in the sample complexity. This im-
mediately yields the following:

Theorem 3 (Learning with unknown support of size k).
For any k ≥ 3, there is an algorithm and a posi-
tive constant c with the following properties: The algo-
rithm is given N , the value k, an accuracy parameter
ε > 0, an upper bound amax ∈ Z≥0, and access to
i.i.d. draws from an unknown distribution S∗ that has
total variation distance at most cε from an A-sum for
A = {a1, . . . , ak} ⊂ Z≥0 where maxi ai ≤ amax. The
algorithm uses O(k log amax)/ε2 +(1/ε)2O(k2) ·log log amax

draws from S∗, runs in poly((amax)k)· (1/ε)2O(k2) ·
(log amax)poly(k) time, and with probability at least 9/10
outputs a concise representation of a hypothesis distribution
H such that dTV(H,S∗) ≤ ε.

Recall that a {a1, a2}-sum is simply a rescaled and trans-
lated PBDN distribution. Using known results for learning
PBDs, it is not hard to show that the k = 2 case is easy
even with unknown support:

Theorem 4 (Learning with unknown support of size 2).
There is an algorithm and a positive constant c with the

following properties: The algorithm is given N , an accuracy
parameter ε > 0, an upper bound amax ∈ Z+, and access to
i.i.d. draws from an unknown distribution S∗ that has total
variation distance at most cε from an {a1, a2}-sum where
0 ≤ a1 < a2 ≤ amax. The algorithm uses poly(1/ε) draws
from S∗, runs in poly(1/ε) time, and with probability at
least 9/10 outputs a concise representation of a hypothesis
distribution H such that dTV(H,S∗) ≤ ε.

C. Our lower bounds.

We establish sample complexity lower bounds for learning
A-sums that essentially match the above algorithmic results.

Known support. Our first lower bound deals with the
known support setting. We give an Ω(log log a4)-sample
lower bound for the problem of learning an {a1, ..., a4}-
sum for 0 ≤ a1 < a2 < a3 < a4. This matches the
dependence on ak of our poly(1/ε) · log log ak upper bound.
More precisely, we show:

Theorem 5 (Lower Bound for Learning {a1, ..., a4}-sums,
known support). Let A be any algorithm with the following
properties: algorithm A is given N , an accuracy parameter
ε > 0, distinct values 0 ≤ a1 < a2 < a3 < a4 ∈ Z,
and access to i.i.d. draws from an unknown {a1, ..., a4}-sum
S∗; and with probability at least 9/10 algorithm A outputs
a hypothesis distribution S̃ such that dTV(S̃,S∗) ≤ ε.
Then there are infinitely many quadruples (a1, a2, a3, a4)
such that for sufficiently large N , A must use Ω(log log a4)
samples even when run with ε set to a (suitably small)
positive absolute constant.

This lower bound holds even though the target is exactly
an {a1, ..., a4}-sum (i.e. it holds even in the easier non-
agnostic setting).

Since Theorem 1 gives a poly(1/ε) sample and runtime
algorithm independent of the size of the ai’s for k = 3,
the lower bound of Theorem 5 establishes a phase transition
between k = 3 and k = 4 for the sample complexity of
learning A-sums: when k = 3 the sample complexity is
always independent of the actual set {a1, a2, a3}, but for
k = 4 it can grow as Ω(log log a4) (but no faster).

Unknown support. Our second lower bound deals with the
unknown support setting. We give an Ω(log amax)-sample
lower bound for the problem of learning an {a1, a2, a3}-
sum with unknown support 0 ≤ a1 < a2 < a3 ≤ amax,
matching the dependence on amax of our algorithm from
Theorem 3. More precisely, we prove:

Theorem 6 (Lower Bound for Learning {a1, a2, a3}-sums,
unknown support). Let A be any algorithm with the fol-
lowing properties: algorithm A is given N , an accuracy
parameter ε > 0, a value 0 < amax ∈ Z, and access to
i.i.d. draws from an unknown {a1, a2, a3}-sum S∗ where
0 ≤ a1 < a2 < a3 ≤ amax; and A outputs a hypothesis
distribution S̃ which with probability at least 9/10 satisfies
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dTV(S̃,S∗) ≤ ε. Then for sufficiently large N , A must use
Ω(log amax) samples even when run with ε set to a (suitably
small) positive absolute constant.

Taken together with our algorithm from Theorem 4 for the
case k = 2, Theorem 6 establishes another phase transition,
but now between k = 2 and k = 3, for the sample
complexity of learning A-sums when A is unknown. When
|A| = 2 the sample complexity is always independent of the
actual set, but for |A| = 3 and 0 ≤ a1 < ... < a3 it can
grow as Ω(log a3) (but no faster).

In summary, taken together the algorithms and lower
bounds of this paper essentially settle the question of how the
sample complexity of learning sums of independent integer
random variables with sparse collective support scales with
the elements in the collective support, both in the known-
support and unknown-support settings.

Discussion. As described above, for an arbitrary set
{a1, . . . , ak}, the sample complexity undergoes a significant
phase transition between k = 3 and k = 4 in the known-
support case and between 2 and 3 in the unknown-support
case. In each setting the phase transition is a result of
“number-theoretic phenomena” (we explain this more later)
which can only occur for the larger number and cannot
occur for the smaller number of support elements. We
find it somewhat surprising that the sample complexities of
these learning problems are determined by number-theoretic
properties of the support sets.

Organization. In the next section we give some of the key
ideas that underlie our algorithms. See Section III for an
overview of the ideas behind our lower bounds. Due to space
constraints, this extended abstract just gives an overview of
the proofs; a full paper with detailed proofs may be found
in [34].

II. TECHNIQUES FOR OUR ALGORITHMS

In this section we give an intuitive explanation of some
of the ideas that underlie our algorithms and their analysis.
While our learning results are for the semi-agnostic model,
for simplicity’s sake, we focus on the case in which the
target distribution S is actually an A-sum.

A first question, which must be addressed before studying
the algorithmic (running time) complexity of learning A-
sums, is to understand the sample complexity of learning
them. In fact, in a number of recent works on learning vari-
ous kinds of of “structured” distributions, just understanding
the sample complexity of the learning problem is a major
goal that requires significant work [33], [35], [16], [36], [30].

In many of the above-mentioned papers, an upper bound
on both sample complexity and algorithmic complexity is
obtained via a structural characterization of the distribu-
tions to be learned; our work follows a similar conceptual

paradigm. To give a sense of the kind of structural char-
acterization that can be helpful for learning, we recall the
characterization of SIIRVN distributions that was obtained
in [16] (which is the one most closely related to our work).
The main result of [16] shows that if S is any k-SIIRVN

distribution, then at least one of the following holds:
1) S is ε-close to being supported on poly(k/ε) many

integers;
2) S is ε-close to a distribution c ·Z+Y, where 1 ≤ c ≤

k− 1, Z is a discretized Gaussian, Y is a distribution
supported on {0, . . . , c − 1}, and Y,Z are mutually
independent.

In other words, [16] shows that a k-SIIRVN distribution is
either close to sparse (supported on poly(k/ε) integers), or
close to a c-scaled discretized Gaussian convolved with a
sparse component supported on {0, . . . , c − 1}. This leads
naturally to an efficient learning algorithm that handles Case
(1) above “by brute-force” and handles Case (2) by learning
Y and Z separately (handling Y “by brute force” and
handling Z by estimating its mean and variance).

In a similar spirit, in this work we seek a more general
characterization of A-sums. It turns out, though, that even
when |A| = 3, A-sums can behave in significantly more
complicated ways than the k-SIIRVN distributions discussed
above. To be more concrete, let S be a {a1, a2, a3}-sum with
0 ≤ a1 < a2 < a3. By considering a few simple examples it
is easy to see that there are at least four distinct possibilities
for “what S is like” at a coarse level:
• Example #1: One possibility is that S is essentially

sparse, with almost all of its probability mass concen-
trated on a small number of outcomes (we say that such
an S has “small essential support”).

• Example #2: Another possibility is that S “looks like”
a discretized Gaussian scaled by |ai−aj | for some 1 ≤
i < j ≤ 3 (this would be the case, for example, if S =∑N

i=1 Xi where each Xi is uniform over {a1, a2}).
• Example #3: A third possibility is that S “looks like”

a discretized Gaussian with no scaling (the analysis of
[16] shows that this is what happens if, for example,
N is large and each Xi is uniform over {a1 = 6, a2 =
10, a3 = 15}, since gcd(6, 10, 15) = 1).

• Example #4: Finally, yet another possibility arises if,
say, a3 is very large (say a3 ≈ N2) while a2, a1 are
very small (say O(1)), and X1, . . . ,XN/2 are each
uniform over {a1, a3} while XN/2+1, . . . ,XN are each
supported on {a1, a2} and

∑N
i=N/2+1 Xi has very

small essential support. In this case, for large N , S
would (at a coarse scale) “look like” a discretized
Gaussian scaled by a3 − a1 ≈ N2, but zooming in,
locally each “point” in the support of this discretized
Gaussian would actually be a copy of the distribution∑N

i=N/2+1 Xi which has small essential support.
Given these possibilities for how S might behave, it
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should not be surprising that our actual analysis for the
case |A| = 3 involves four cases (and the above four
examples land in the four distinct cases). The overall learn-
ing algorithm “guesses” which case the target distribution
belongs to and runs a different algorithm for each one; the
guessing step is ultimately eliminated using the standard tool
of hypothesis testing from statistics. We stress that while the
algorithms for the various cases differ in some details, there
are many common elements across their analyses, and the
well known kernel method for density estimation provides
the key underlying core learning routine that is used in all
the different cases.

In the following intuitive explanation we first consider the
case of A-sums for general finite |A|, and later explain how
we sharpen the algorithm and analysis in the case |A| = 3
to obtain our stronger results for that case. Our discussion
below highlights a new structural result (roughly speaking,
a new limit theorem that exploits both “long-range” and
“short-range” shift-invariance) that plays a crucial role in
our algorithms.

A. Learning A-sums with |A| = k

For clarity of exposition in this intuitive overview we
make some simplifying assumptions. First, we make the
assumption that the A-sum S that is to be learned has
0 as one value in its k-element support, i.e. we assume
that S = X1 + . . . + XN where the support of each
Xi is contained in the set {0, a1, . . . , ak−1}. In fact, we
additionally assume that each Xi is 0-moded, meaning that
Pr[Xi = 0] ≥ Pr[Xi = aj ] for all i ∈ [N ] and all
j ∈ [k − 1]. (Getting rid of this assumption in our actual
analysis requires us to work with zero-moded variants of
the Xi distributions that we denote X′i, supported on O(k2)
values that can be positive or negative, but we ignore this for
the sake of our intuitive explanation here.) For j ∈ [k − 1]
we define

γj :=
N∑
i=1

Pr[Xi = aj ],

which can be thought of as the “weight” that X1, . . . ,XN

collectively put on the outcome aj .

A useful tool: hypothesis testing. To explain our approach
it is helpful to recall the notion of hypothesis testing in the
context of distribution learning [37]. Informally, given T
candidate hypothesis distributions, one of which is ε-close
to the target distribution S, a hypothesis testing algorithm
uses O(ε−2 ·log T ) draws from S, runs in poly(T, 1/ε) time,
and with high probability identifies a candidate distribution
which is O(ε)-close to S. We use this tool in a few
different ways. Sometimes we will consider algorithms that
“guess” certain parameters from a “small” (size-T ) space
of possibilities; hypothesis testing allows us to assume that
such algorithms guess the right parameters, at the cost of
increasing the sample complexity and running time by only

small factors. In other settings we will show via a case
analysis that one of several different learning algorithms will
succeed; hypothesis testing yields a combined algorithm that
learns no matter which case the target distribution falls into.
(We remark that this tool has been used in many recent
works on distribution learning, see e.g. [33], [38], [16].)

Our analysis. Let t1 = Ok,ε(1) � t2 = Ok,ε(1) � · · · �
tk−1 = Ok,ε(1) be fixed values (the exact values are not
important here). Let us reorder a1, . . . , ak−1 so that the
weights γ1 ≤ · · · ≤ γk−1 are sorted in non-decreasing order.
An easy special case for us is that each γj ≤ tj . If this is
the case, then S has small “essential support”: in a draw
from S = X1 + · · · + XN , with very high probability for
each j ∈ [k − 1] the number of Xi that take value aj is at
most poly(tk−1), so w.v.h.p. a draw from S takes one of at
most poly(tk−1)k values. In such a case it is not difficult
to learn S using poly((tk−1)k, 1/ε) = Ok,ε(1) samples (see
Fact 24). We henceforth may assume that some γj > tj .

For ease of understanding it is helpful to first suppose
that every j ∈ [k − 1] has γj > tj , and to base our
understanding of the general case (that some j ∈ [k − 1]
has γj > tj) off of how this case is handled. (It should be
noted, though, that our actual analysis of the main learning
algorithm does not distinguish this special case.) So let us
suppose that for all j ∈ [k − 1] we have γj > tj . To
analyze the target distribution S in this case, we consider
a multinomial distribution M = Y1 + · · ·+YN defined by
independent vector-valued random variables Yi, supported
on 0, e1, . . . , ek−1 ∈ Zk−1, such that for each i ∈ [N ] and
j ∈ [k − 1] we have Pr[Yi = ej ] = Pr[Xi = aj ]. Note
that for the multinomial distribution M defined in this way
we have (a1, . . . , ak−1) ·M = S.

Using the fact that each γj is “large” (at least tj), recent
results from [26] imply that the multinomial distribution M
is close to a (k−1)-dimensional discretized Gaussian whose
covariance matrix has all eigenvalues large (working with
zero-moded distributions is crucial to obtain this interme-
diate result). In turn, such a discretized multidimensional
Gaussian can be shown to be close to a vector-valued random
variable in which each marginal (coordinate) is a (±1)-
weighted sum of independent large-variance Poisson Bino-
mial Distributions. It follows that S = (a1, . . . , ak−1) ·M
is close to a a weighted sum of k − 1 signed PBDs. 2 A
distribution S̃ is a weighted sum of k − 1 signed PBDs if
S̃ = a1 · S̃1 + · · · + ak−1 · S̃k−1 where S̃1, . . . , S̃k−1 are
independent signed PBDs; in turn, a signed PBD is a sum
of independent random variables each of which is either
supported on {0, 1} or on {0,−1}. The S̃ that S is close
to further has the property that each S̃i has “large” variance
(large compared with 1/ε).

2This is a simplification of what the actual analysis establishes, but it
gets across the key ideas.
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Given the above analysis, to complete the argument in this
case that each γj > tj we need a way to learn a weighted
sum of signed PBDs S̃ = a1 · S̃1 + · · ·+ ak−1 · S̃k−1 where
each S̃j has large variance. This is done with the aid of a
new limit theorem, that we establish for distributions of this
form. For a detailed treatment of this limit theorem, please
see [34]; here, omitting many details, let us explain what
this new limit theorem says in our setting and how it is
useful for learning. Suppose w.l.o.g. that Var[ak−1 · S̃k−1]
contributes at least a 1

k−1 fraction of the total variance of
S̃. Let MIX denote the set of those j ∈ {1, . . . , k− 2} such
that Var[S̃j ] is large compared with ak−1, and let MIX′ =
MIX∪{k−1}. The new limit theorem implies that the sum∑

j∈MIX′ aj · S̃j “mixes,” meaning that it is very close (in
dTV) to a single scaled PBD aMIX′ · S̃MIX′ where aMIX′ =
gcd{aj : j ∈ MIX′}. (We remark that the proof of the
limit theorem involves a generalization of the notion of shift-
invariance from probability theory [39] and a coupling-based
method. )

Given this structural result, it is enough to be able to learn
a distribution of the form

T := a1 · S̃1 + · · ·+ a` · S̃` + aMIX′ · S̃MIX′

for which we now know that aMIX′ ·S̃MIX′ has at least 1
`+1 of

the total variance, and each S̃j for j ∈ [`] has Var[S̃j ] which
is “not too large” compared with ak−1 (but large compared
with 1/ε). We show how to learn such a distribution using
Ok,ε(1) · log log ak−1 samples (this is where the log log de-
pendence in our overall algorithm comes from). This is done,
intuitively, by guessing various parameters that essentially
define T, specifically the variances Var[S̃1], . . . ,Var[S̃`].
Since each of these variances is roughly at most ak−1

(crucially, the limit theorem allowed us to get rid of the S̃j’s
that had larger variance), via multiplicative gridding there
are Oε,k(1) · log ak−1 possible values for each candidate
variance, and via our hypothesis testing procedure this leads
to an Oε,k(1) · log log ak−1 number of samples that are used
to learn.

We now turn to the general case, that some j ∈ [k−1] has
γj > tj . Suppose w.l.o.g. that γ1 ≤ t1, . . . γ`−1 ≤ t`−1 and
γ` > t` (intuitively, think of γ1, . . . , γ`−1 as “small” and
γ`, . . . , γk−1 as “large”). Via an analysis akin to the “Light-
Heavy Experiment” analysis of [16], we show that in this
case the distribution S is close to a distribution S̃ with the
following structure: S̃ is a mixture of at most poly(t`−1)k−1

many distributions each of which is a different shift of
a single distribution, call it Sheavy, that falls into the
special case analyzed above: all of the relevant parameters
γ`, . . . , γk−1 are large (at least t`). Intuitively, having at most
poly(t`−1)k−1 many components in the mixture corresponds
to having γ1, . . . , γ`−1 < t`−1 and ` ≤ k − 1, and having
each component be a shift of the same distribution Sheavy

follows from the fact that there is a “large gap” between
γ`−1 and γ`.

Thus in this general case, the learning task essentially
boils down to learning a distribution that is (close to) a
mixture of translated copies of a distribution of the form
T given above. Learning such a mixture of translates is a
problem that is well suited to the “kernel method” for density
estimation. This method has been well studied in classical
density estimation, especially for continuous probability
densities (see e.g. [37]), but results of the exact type that we
need did not seem to previously be present in the literature.
(We believe that ours is the first work that applies kernel
methods to learn sums of independent random variables.)

We develop tools for multidimensional kernel based learn-
ing that suit our context. At its core, the kernel method
approach that we develop allows us to do the following:
Given a mixture of r translates of T and constant-factor
approximations to γ`, . . . , γk−1, the kernel method allows us
to learn this mixture to error O(ε) using only poly(1/ε`, r)
samples. Further, this algorithm is robust in the sense that the
same guarantee holds even if the target distribution is only
O(ε) close to having this structure (this is crucial for us).
We then combine this tool with the ideas described above
for learning a T-type distribution, and thereby establishing
our general learning result for A-sums with |A| ≥ 4.

B. The case |A| = 3

In this subsection we build on the discussion in the
previous subsection, specializing to k = |A| = 3, and
explain the high-level ideas of how we are able to learn with
sample complexity poly(1/ε) independent of a1, a2, a3.

For technical reasons (related to zero-moded distributions)
there are three relevant parameters t1 � t2 � t3 = Oε(1)
in the k = 3 case. The easy special case that each γj ≤ tj is
handled as discussed earlier (small essential support). As in
the previous subsection, let ` ∈ [3] be the least value such
that γ` > t`.

In all the cases ` = 1, 2, 3 the analysis proceeds by
considering the Light-Heavy-Experiment as discussed in
the preceding subsection, i.e. by approximating the target
distribution S by a mixture S̃ of shifts of the same distri-
bution Sheavy. When ` = 3, the “heavy” component Sheavy

is simply a distribution of the form q3 · S3 where S3 is
a signed PBD. Crucially, while learning the distribution
T in the previous subsection involved guessing certain
variances (which could be as large as ak, leading to log ak
many possible outcomes of guesses and log log ak sample
complexity), in the current setting the extremely simple
structure of Sheavy = q3·S3 obviates the need to make log a3

many guesses. Instead, its variance can be approximated in a
simple direct way by sampling just two points from T and
taking their difference; this easily gives a constant-factor
approximation to the variance of S3 with non-negligible
probability. This success probability can be boosted by
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repeating this experiment several times (but the number
of times does not depend on the ai values.) We thus can
use the kernel-based learning approach in a sample-efficient
way, without any dependence on a1, a2, a3 in the sample
complexity.

For clarity of exposition, in the remaining intuitive discus-
sion (of the ` = 1, 2 cases) we only consider a special case:
we assume that S = a1 · S1 + a2 · S2 where both S1 and
S2 are large-variance PBDs (so each random variable Xi

is either supported on {0, a1} or on {0, a2}, but not on all
three values 0, a1, a2). We further assume, clearly without
loss of generality, that gcd(a1, a2) = 1. (Indeed, our analysis
essentially proceeds by reducing the ` = 1, 2 case to this
significantly simpler scenario, so this is a fairly accurate
rendition of the true case.) Writing S1 = X1 + . . . + XN1

and S2 = Y1 + . . . + YN2 , by zero-modedness we have
that Pr[Xi = 0] ≥ 1

2 and Pr[Yi = 0] ≥ 1
2 for all i, so

Var[Sj ] = Θ(1) · γj for j = 1, 2. We assume w.l.o.g. in
what follows that a2

1 · γ1 ≥ a2
2 · γ2, so Var[S], which we

henceforth denote σ2, is Θ(1) · a2
1 · γ1.

We now branch into three separate possibilities depending
on the relative sizes of γ2 and a2

1. Before detailing these
possibilities we observe that using the fact that γ1 and γ2

are both large, it can be shown that if we sample two points
s(1) and s(2) from S, then with constant probability the value
|s(1)−s(2)|

a1
provides a constant-factor approximation to γ1.

First possibility: γ2 < ε2 · a2
1. The algorithm samples

two more points s(3) and s(4) from the distribution S. The
crucial idea is that with constant probability these two points
can be used to obtain a constant-factor approximation to
γ2; we now explain how this is done. For j ∈ {3, 4}, let
s(j) = a1 · s(j)

1 + a2 · s(j)
2 where s(j)

1 ∼ S1 and s(j)
2 ∼ S2,

and consider the quantity s(3) − s(4). Since γ2 is so small
relative to a1, the “sampling noise” from a1 · s(3)

1 − a1 · s(4)
1

is likely to overwhelm the difference a2 · s(3)
2 − a2 · s(4)

2

at a “macroscopic” level. The key idea to deal with this is
to analyze the outcomes modulo a1. In the modular setting,
because Var[S2] = Θ(1) · γ2 � a2

1, one can show that
with constant probability |(a−1

2 · (s
(3)
2 −s

(4)
2 )) mod a1| is a

constant-factor approximation to γ2. (Note that as a1 and a2

are coprime, the operation a−1
2 is well defined modulo a1.)

A constant-factor approximation to γ2 can be used together
with the constant-factor approximation to γ1 to employ the
aforementioned “kernel method” based algorithm to learn
the target distribution S. The fact that here we can use only
two samples (as opposed to log log a1 samples) to estimate
γ2 is really the crux of why for the k = 3 case, the sample
complexity is independent of a1. (Indeed, we remark that
our analysis of the lower bound given by Theorem 5 takes
place in the modular setting and this “mod a1” perspective
is crucial for constructing the lower bound examples in that
proof.)

Second possibility: a2
1/ε

2 > γ2 > ε2 · a2
1. Here, by

multiplicative gridding we can create a list of O(log(1/ε))
guesses such that at least one of them is a constant-factor
approximation to γ2. Again, we use the kernel method and
the approximations to γ1 and γ2 to learn S.

Third possibility: The last possibility is that γ2 ≥ a2
1/ε

2. In
this case, we show that S is in fact ε-close to the discretized
Gaussian (with no scaling; recall that gcd(a1, a2) = 1) that
has the appropriate mean and variance. Given this structural
fact, it is easy to learn S by just estimating the mean and
the variance and outputting the corresponding discretized
Gaussian. This structural fact follows from our new limit
theorem, mentioned earlier; we conclude this section with a
discussion of this new limit theorem.

C. Limit theorems.

Here is a simplified version of our new limit theorem,
specialized to the case D = 2:

Simplified version of limit theorem. Let S = r1 ·S1+r2 ·S2

where S1,S2 are independent signed PBDs and r1, r2 are
nonzero integers such that gcd(r1, r2) = 1, Var[r1 · S1] ≥
Var[r2 ·S2], and Var[S2] ≥ max{ 1

ε8 ,
r1
ε }. Then S is O(ε)-

close in total variation distance to a signed PBD S′ (and
hence to a signed discretized Gaussian) with Var[S′] =
Var[S].

If a distribution S is close to a discretized Gaussian
in Kolmogorov distance and is 1/σ-shift invariant (i.e.
dTV(S,S + 1) ≤ 1/σ), then S is close to a discretized
Gaussian in total variation distance [40], [41]. Gopalan,
et al. [42] used a coupling based argument to establish a
similar central limit theorem to obtain PRGs for certain
space bounded branching programs. Unfortunately, in the
setting of the lemma stated above, it is not immediately clear
why S should have 1/σ-shift invariance.

To deal with this, we give a novel analysis exploiting shift-
invariance at multiple different scales. Roughly speaking,
because of the r1 · S1 component of S, it can be shown
that dTV(S,S+ r1) = 1/

√
Var[S1], i.e. S has good “shift-

invariance at the scale of r1”; by the triangle inequality S is
also not affected much if we shift by a small integer multiple
of r1. The same is true for a few shifts by r2, and hence also
for a few shifts by both r1 and r2. If S is approximated well
by a discretized Gaussian, though, then it is also not affected
by small shifts, including shifts by 1, and in fact we need
such a guarantee to prove approximation by a discretized
Gaussian through coupling. However, since gcd(r1, r2) = 1,
basic number theory implies that we can achieve any small
integer shift via a small number of shifts by r1 and r2, and
therefore S has the required “fine-grained” shift-invariance
(at scale 1) as well. Intuitively, for this to work we need
samples from r2 ·S2 to “fill in the gaps” between successive
values of r1 · S1 – this is why we need Var[S2]� r1.
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This idea of exploiting both long-range and short-range
shift invariance is new to the best of our knowledge [41]
and seems likely to be of use in proving new central limit
theorems.

III. LOWER BOUND TECHNIQUES

In this section we give an overview of the ideas behind
our lower bounds. Both of our lower bounds actually work
by considering restricted A-sums: our lower bounds can be
proved using only distributions S of the form S =

∑k
i=1 ai ·

Si, where S1, . . . ,Sk are independent PBDs; equivalently,
S =

∑N
i=1 Xi where each Xi is supported on one of {0, a1},

. . . , {0, ak}.

A useful reduction. The problem of learning a distribution
modulo an integer plays a key role in both of our lower
bound arguments. More precisely, both lower bounds use a
reduction which we establish that an efficient algorithm for
learning weighted PBDs with weights 0 < a1 < ... < ak
implies an efficient algorithm for learning with weights
a1, ..., ak−1 modulo ak. This problem is specified as follows.
An algorithm which is given access to i.i.d. draws from
the distribution (S mod ak) (note that this distribution is
supported over {0, 1, . . . , ak − 1}) where S is of the form
a1 · S1 + ...+ ak−1 · Sk−1 and S1, ...,Sk−1 are PBDs. The
algorithm should produce a high-accuracy hypothesis distri-
bution for (S mod ak). We stress that the example points
provided to the learning algorithm all lie in {0, . . . , ak− 1}
(so certainly any reasonable hypothesis distribution should
also be supported on {0, . . . , ak − 1}). Such a reduction is
useful for our lower bounds because it enables us to prove
a lower bound for learning

∑k
i=1 ai ·Si by proving a lower

bound for learning
∑k−1

i=1 ai · Si mod ak.
The high level idea of this reduction is fairly simple so

we sketch it here. Let S = a1 · S1 + · · · + ak−1 · Sk−1

be a weighted sum of PBDs such that (S mod ak) is the
target distribution to be learned and let N be the total
number of summands in all of the PBDs. Let Sk be an
independent PBD with mean and variance Ω(N?). The key
insight is that by taking N? sufficiently large relative to
N , the distribution of (S mod ak) + ak · Sk (which can
easily be simulated by the learner given access to draws
from (S mod ak) since it can generate samples from ak ·Sk

by itself) can be shown to be statistically very close to that
of S′ := S + ak · Sk. Here is an intuitive justification: We
can think of the different possible outcomes of ak · Sk as
dividing the support of S′ into bins of width ak. Sampling
from S′ can be performed by picking a bin boundary (a
draw from ak · Sk) and an offset S. While adding S
may take the sample across multiple bin boundaries, if
Var[Sk] is sufficiently large, then adding S typically takes
ak · Sk + S across a small fraction of the bin boundaries.
Thus, the conditional distribution given membership in a
bin is similar between bins that have high probability under

S′, which means that all of these conditional distributions
are similar to the distribution of S′ mod ak (which is
a mixture of them). Finally, S′ mod ak has the same
distribution as S mod ak. Thus, given samples from (S
mod ak), the learner can essentially simulate samples from
S′. However, S′ is is a weighted sum of k PBDs, which
by the assumption of our reduction theorem can be learned
efficiently. Now, assuming the learner has a hypothesis H
such that dTV(H,S′) ≤ ε, it immediately follows that
dTV((H mod ak), (S′ mod ak)) ≤ dTV(H,S′) ≤ ε as
desired.

Proof overview of Theorem 5. At this point we have
the task of proving a lower bound for learning weighted
PBDs over {0, a1, a2} mod a3. We establish such a lower
bound using Fano’s inequality. To get a sample complexity
lower bound of Ω(log log a3) from Fano’s inequality, we
must construct T = logΩ(1) a3 distributions S1, . . . , ST ,
where each Si is a weighted PBD on {0, a1, a2} modulo a3,
meeting the following requirements: dTV(Si,Sj) = Ω(1) if
i 6= j, and DKL(Si||Sj) = O(1) for all i, j ∈ T. In other
words, applying Fano’s inequality requires us to exhibit a
large number of distributions (belonging to the family for
which we are proving the lower bound) such that any two
distinct distributions in the family are far in total variation
distance but close in terms of KL-divergence. The intuitive
reason for these two competing requirements is that if Si and
Sj are 2ε-far in total variation distance, then a successful
algorithm for learning to error at most ε must be able to
distinguish Si and Sj . On the other hand, if Si and Sj are
close in KL divergence, then it is difficult for any learning
algorithm to distinguish between Si and Sj .

Now we present the high-level idea of how we may con-
struct distributions S1,S2, . . . with the properties described
above to establish Theorem 5. The intuitive description of Si

that we give below does not align perfectly with our actual
construction, but this simplified description is hopefully
helpful in getting across the main idea.

For the construction we fix a1 = 1, a2 = p and a3 = q.
(We discuss how p and q are selected later; this is a
crucial aspect of our construction.) The i-th distribution Si

is Si = Ui + pVi mod q; we describe the distribution
Si = Ui + pVi mod q in two stages, first by describing
each Vi, and then by describing the corresponding Ui. In
the actual construction Ui and Vi will be shifted binomial
distributions. Since a binomial distribution is rather flat
within one standard deviation of its mean, and decays
exponentially after that, it is qualitatively somewhat like
the uniform distribution over an interval; for this intuitive
sketch it is helpful to think of Ui and Vi as actually being
uniform distributions over intervals. We take the support
of V1 to be an interval of length q/p, so that adjacent
members of the support of (pV1 mod q) will be at distance
p apart from each other. More generally, taking Vi to be
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uniform over an interval of length 2i−1q/p, the average
gap between adjacent members of supp(pVi mod q) is
of length essentially p/2i−1, and by a careful choice of
p relative to q one might furthermore hope that the gaps
would be “balanced”, so that they are all of length roughly
p/2i−1. (This “careful choice” is the technical heart of our
actual construction presented later.)

How does Ui enter the picture? The idea is to take each
Ui to be uniform over a short interval, of length 3p/2i. This
“fills in each gap” and additionally “fills in the first half of
the following gap;” as a result, the first half of each gap
ends up with twice the probability mass of the second half.
(As a result, every two points have probability mass within
a constant factor of each other under every distribution —
in fact, any point under any one of our distributions has
probability mass within a constant factor of that of any
other point under any other one of our distributions. This
gives the DKL(Si||Sj) ≤ O(1) upper bound mentioned
above.) For example, recalling that the “gaps” in supp(pV1

mod q) are of length p, choosing U1 to be uniform over
{1, . . . , 3p/2} will fill in each gap along with the first half
of the following gap. Intuitively, each Si = Ui + pVi is
a “striped” distribution, with equal-width “light stripes” (of
uniformly distributed smaller mass) and “dark stripes” (of
uniformly distributed larger mass), and each Si+1 has stripes
of width half of the Si-sum’s stripes. Roughly speaking,
two such distributions Si and Sj “overlap enough” (by a
constant fraction) so that they are difficult to distinguish;
however they are also “distinct enough” that a successful
learning algorithm must be able to distinguish which Si its
samples are drawn from in order to generate a high-accuracy
hypothesis.

We now elaborate on the careful choice of p and q that
was mentioned above. The critical part of this choice of p
and q is that for i ≥ 1, in order to get “evenly spaced gaps,”
the remainders of p·s modulo q where s ∈ {1, . . . , 2i−1q/p}
should be roughly evenly spaced, or equidistributed, in
the group Zq . Here the notion of “evenly spaced” is with
respect to the “wrap-around” distance (also known as the
Lee metric) on the group Zq (so, for example, the wrap-
around distance between 1 and 2 is 1, whereas the wrap-
around distance between q−1 and 1 is 2). Roughly speaking,
we would like p · s modulo q to be equidistributed in
Zq when s ∈ {1, . . . , 2i−1q/p}, for a range of successive
values of i (the more the better, since this means more
distributions in our hard family and a stronger lower bound).
Thus, qualitatively, we would like the remainders of p
modulo q to be equidistributed at several scales. We note
that equidistribution phenomena are well studied in number
theory and ergodic theory, see e.g. [43].

While this connection to equidistribution phenomena is
useful for providing visual intuition (at least to the au-
thors), in our attempts to implement the construction using
powers of two that was just sketched, it seemed that in

order to control the errors that arise in fact a doubly
exponential growth was required, leading to the construc-
tion of only Θ(log log q) such distributions and hence a
Ω(log log log q) sample complexity lower bound. Thus to
achieve an Ω(log log q) sample complexity lower bound, our
actual choice of p and q comes from the theory of continued
fractions. In particular, we choose p and q so that p/q has
a continued fraction representation with “many” (O(log q),
though for technical reasons we use only logΘ(1) q many)
convergents that grow relatively slowly. These T = logΘ(1) q
convergents translate into T distributions S1, . . . ,ST in our
“hard family” of distributions, and thus into an Ω(log log q)
sample lower bound via Fano’s inequality.

The key property that we use is a well-known fact in the
theory of continued fractions: if gi/hi is the ith convergent
of a continued fraction for p/q, then |gi/hi−p/q| ≤ 1/(hi ·
hi+1). In other words, the ith convergent gi/hi provides a
non-trivially good approximation of p/q (note that getting an
error of 1/hi would have been trivial). From this property,
it is not difficult to see that the remainders of p · {1, . . . , hi}
are roughly equidistributed modulo q.

Thus, a more accurate description of our (still ideal-
ized) construction is that we choose Vi to be uniform on
{1, . . . , hi} and Ui to be uniform on roughly {1, . . . , (3/2)·
(q/hi)}. So as to have as many distributions as possible
in our family, we would like hi ≈ (q/p) · ci for some
fixed c > 1. This can be ensured by choosing p, q such
that all the numbers appearing in the continued fraction
representation of p/q are bounded by an absolute constant;
in fact, in the actual construction, we simply take p/q
to be a convergent of 1/φ where φ is the golden ratio.
With this choice we have that the ith convergent of the
continued fraction representation of 1/φ is gi/hi, where
hi ≈ ((

√
5+1)/2)i. This concludes our informal description

of the choice of p and q.
Again, in our actual construction, we cannot use uniform

distributions over intervals (since we need to use PBDs),
but rather we have shifted binomial distributions. This adds
some technical complication to the formal proofs, but the
core ideas behind the construction are indeed as described
above.

Proof overview of Theorem 6. As mentioned earlier,
Theorem 6 also uses our reduction from the modular
learning problem. Taking a1 = 0 and a3 ≈ amax to be
“known” to the learner, we show that any algorithm for
learning a distribution of the form (a2S2 mod a3), where
0 < a2 < a3 is unknown to the learner and S2 is a PBDN ,
must use Ω(log a3) samples. Like Theorem 5, we prove this
using Fano’s inequality, by constructing a “hard family” of
(a3)Ω(1) many distributions of this type such that any two
distinct distributions in the family have variation distance
Ω(1) but KL-divergence O(1).

We sketch the main ideas of our construction, starting

306



with the upper bound on KL-divergence. The value a3 is
taken to be a prime. The same PBDN distribution S2,
which is simply a shifted binomial distribution and may be
assumed to be “known” to the learner, is used for all of the
distributions in the “hard family”, so different distributions
in this family differ only in the value of a2. The shifted
binomial distribution S2 is taken to have variance Θ((a3)2),
so, very roughly, S2 assigns significant probability on Θ(a3)
distinct values. From this property, it is not difficult to
show (similar to our earlier discussion) that any point in the
domain {0, 1, . . . , a3−1} under any one of our distributions
has probability mass within a constant factor of that of any
other point under any other one of our distributions (where
the constant factor depends on the hidden constant in the
Θ((a3)2)). This gives the required O(1) upper bound on
KL-divergence.

It remains to sketch the Ω(1) lower bound on variation
distance. As in our discussion of the Theorem 5 lower bound,
for intuition it is convenient to think of the shifted binomial
distribution S2 as being uniform over an interval of the
domain {0, 1, . . . , a3−1}; by carefully choosing the variance
and offset of this shifted binomial, we may think of this
interval as being {0, 1, . . . , r−1} for r = κa3 for some small
constant κ > 0 (the constant κ again depends on the hidden
constant in the Θ((a3)2)) value of the variance). So for the
rest of our intuitive discussion we view the distributions in
the hard family as being of the form (a2 · Ur mod a3)
where Ur is uniform over {0, 1, . . . , r − 1}, r = κa3.

Recalling that a3 is prime, it is clear that for any 0 <
a2 < a3, the distribution (a2 · Ur mod a3) is uniform
over an (r = κa3)-element subset of {0, . . . , a3 − 1}. If a2

and a′2 are two independent uniform random elements from
{1, . . . , a3− 1}, then since κ is a small constant, intuitively
the overlap between the supports of (a2 ·Ur mod a3) and
(a′2 · Ur mod a3) should be small, and consequently the
variation distance between these two distributions should
be large. This in turn suggests that by drawing a large
random set of values for a2, it should be possible to
obtain a large family of distributions of the form (a2 ·Ur

mod a3) such that any two of them have large variation
distance. We make this intuition precise using a number-
theoretic equidistribution result of Shparlinski [44] and a
probabilistic argument showing that indeed a random set of
(a3)1/3 choices of a2 is likely to have the desired property.
This gives a “hard family” of size (a3)1/3, leading to an
Ω(log a3) = Ω(log amax) lower bound via Fano’s inequality.
As before some technical work is required to translate these
arguments for the uniform distribution over to the shifted
binomial distributions that we actually have to work with.
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