
HELIX: Accelerating Human-in-the-loop Machine Learning

Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, Aditya Parameswaran
University of Illinois (UIUC)

{dorx0,litianm2,jialin2,smacke,ssong18,adityagp}@illinois.edu

ABSTRACT
Data application developers and data scientists spend an inordinate
amount of time iterating on machine learning (ML) workflows—
by modifying the data pre-processing, model training, and post-
processing steps—via trial-and-error to achieve the desired model
performance. Existing work on accelerating machine learning fo-
cuses on speeding up one-shot execution of workflows, failing to
address the incremental and dynamic nature of typical ML devel-
opment. We propose HELIX, a declarative machine learning sys-
tem that accelerates iterative development by optimizing workflow
execution end-to-end and across iterations. HELIX minimizes the
runtime per iteration via program analysis and intelligent reuse of
previous results, which are selectively materialized—trading off the
cost of materialization for potential future benefits—to speed up fu-
ture iterations. Additionally, HELIX offers a graphical interface to
visualize workflow DAGs and compare versions to facilitate itera-
tive development. Through two ML applications, in classification
and in structured prediction, attendees will experience the succinct-
ness of HELIX’s programming interface and the speed and ease
of iterative development using HELIX. In our evaluations, HELIX
achieved up to an order of magnitude reduction in cumulative run
time compared to state-of-the-art machine learning tools.

PVLDB Reference Format:
Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, Aditya
Parameswaran. Helix: Accelerating Human-in-the-loop Machine Learning.
PVLDB, 11 (12): 1958 - 1961, 2018.
DOI: https://doi.org/10.14778/3229863.3236234

1. INTRODUCTION
Development of real-world machine learning applications typi-

cally begins with a simple workflow, which evolves over time as
application developers iterate on it to improve performance. Using
existing tools, every single small change to the workflow results
in several hours of recomputation from scratch, even though the
change may only affect a small portion of the workflow. For exam-
ple, changing the regularization parameter should only retrain the
model but not rerun data pre-processing. One approach to mitigate
this expensive recomputation is to materialize every single inter-
mediate that does not change across iterations, but this approach
requires programming overhead to keep track of changes across
iterations, as well as to deal with how and when to materialize in-
termediates, and to reuse them in subsequent iterations. Since this

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236234

is so cumbersome, developers often opt to instead rerun the entire
workflow from scratch.

Unfortunately, existing machine learning systems fail to provide
robust support for rapid iteration on machine learning workflows.
For example, KeystoneML [11] aims at optimizing the one-shot
execution of workflows by applying techniques such as common
subexpression elimination and caching. Columbus [15] focuses
on optimizing multiple feature selection steps within one iteration.
DeepDive [14], targeted at knowledge-base construction, materi-
alizes the results of all feature extraction and engineering steps.
While this naïve materialization approach speeds up iterative devel-
opment in certain settings, it can be wasteful and time-consuming.

We demonstrate HELIX, a declarative, general-purpose end-to-
end machine learning system that accelerates iterative machine
learning application development with three key features:
Declarative domain specific language. Data scientists write code
in a simple, intuitive, and modular domain-specific language (DSL)
built on Scala, while also employing UDFs as needed for impera-
tive code, say for feature extraction or transformation. This inter-
operability allows data scientists to leverage existing functions and
libraries on JVM and Spark-specific operators.
Iterative execution optimization. HELIX represents the machine
learning workflow programmed in our DSL as a directed acyclic
graph (DAG) of data collections. For each node (representing an
intermediate result), HELIX decides whether to materialize it by
considering the maximum storage budget, the time to compute the
node and all of its ancestors, and the size of the output—this is the
materialization problem. Then, during subsequent iterations, HE-
LIX determines whether to read the result for a node from persis-
tent storage (if previously materialized), or to compute it from the
input—this is the recomputation problem. We found that recompu-
tation is in PTIME via a non-trivial reduction to MAX-FLOW using
the PROJECT SELECTION PROBLEM [3], while materialization is
NP-HARD via a reduction from the KNAPSACK PROBLEM. We
propose a simple cost model used in an online algorithm to provide
an approximate solution to the materialization problem. Figure 2
(described later) shows that HELIX provides 60% to an order of
magnitude reduction in cumulative run time reduction compared to
state-of-the-art tools like DeepDive and KeystoneML.
Workflow versioning and visualization tool. We build a version-
ing and visualization tool on top of HELIX, enabling the manage-
ment of workflow versions, execution plan visualization, and ver-
sion comparison. Users can easily track the evolution of a work-
flow, including the changes to hyperparameters, feature selection,
and the performance impact of each modification on the workflow.
Our demonstration aims to: a) Highlight HELIX’s succinct yet flex-
ible declarative DSL for programming end-to-end machine learn-
ing workflows. b) Demonstrate how HELIX accelerates iterative
machine learning application development by providing (1) End-
to-end optimization of the entire workflow; (2) Automatic detec-
tion of the operator changes; (3) Intelligent materialization of inter-

1958

mediate results for maximizing reuse in subsequent executions. c)
Show how HELIX’s graphical interface can support debugging and
result analysis during workflow development. The attendees will
be able to interact with the HELIX system via a graphical interface
that includes four main modules: code editor, workflow DAG vi-
sualization tool (shown side-by-side with the code), workflow ver-
sions browser, and workflow version comparison tool. The DAG
visualization tool helps users explore optimizations to the execu-
tion plan. The version browser and comparison tool allows users to
gain insights into relationships among features, models, and perfor-
mance metrics, thus providing developers effective guides on how
to fine-tune the model to save exploration time.

Note that the techniques and abstractions involved in building
HELIX are general—wrappers for other ML and data processing
frameworks can be easily implemented while using the same core
optimization engines and programming model.

2. SYSTEM OVERVIEW
The HELIX backend comprises a domain specific language (DSL)

in Scala as the programming interface, a compiler for the DSL, and
an execution engine. Figure 1c) illustrates the backend architecture.
The compiler first translates the program written in the DSL into a
DAG of intermediate results (associated with the corresponding op-
erators that generated them), which is then optimized to minimize
overall execution time, by pruning extraneous operations (or equiv-
alently, intermediate results), reordering operations, and reusing re-
sults from previous iterations when applicable. The execution en-
gine uses an online algorithm that determines at runtime the set of
intermediate results to materialize in order to minimize execution
time for subsequent iterations. We provide a brief overview of each
of these three components below.

2.1 Programming Interface
HELIX’s DSL is akin to KeystoneML’s DSL for constructing ML

pipelines, with the added benefits of user-friendly data structures
for data pre-processing. HELIX users program their entire proce-
dure in a single Scala interface called Workflow. Users can di-
rectly embed Scala expressions as user-defined functions (UDFs)
into declarative statements in the DSL, in the same fashion that
SparkSQL supports inline SQL UDF registration [1]. Figure 1a)
shows an example workflow in the HELIX DSL for the Census ap-
plication that will be described in Section 3. The DSL facilitates
elaborate data pre-processing and complex machine learning (ML)
model development with the following features. With a handful
of operator types, the DSL supports both fine-grained and coarse-
grained feature engineering, as well as both supervised and unsu-
pervised learning. The DSL has been used to implement work-
flows in social sciences, information extraction, computer vision,
and natural sciences, all under 100 lines of code per workflow.
Users can easily extend the default set of operators to adapt to their
custom use cases by providing only the UDF without copying boil-
erplate code. HELIX’s data structure for pre-processing maintains
features in human-readable format for ease of development and au-
tomatically converts it into a compatible format for ML.

2.2 Compiler
During the compilation phase, high-level DSL declarations in a

Workflow are first translated into a DAG of operations (or equiva-
lently, intermediate results) using the intermediate code generator.
Figure 1b) shows an example of the operations DAG compiled from
the program in Figure 1a). The DAG optimizer analyzes the gener-
ated DAG along with relevant data, including the input data and any
materialization of intermediate results from previous executions, to

produce a physical execution plan, with the optimization objective
of minimizing the latency of the current iteration. This involves
several components:
Iterative change tracker. To avoid the inefficiencies of rerunning
invariant operations, HELIX automatically detects changes to an
operator from the last iteration and invalidates all results affected
by the changes via dependency analysis. Unfortunately, the prob-
lem of determining operator equivalence for arbitrary functions is
undecidable as per Rice’s Theorem [9], with extensive bodies of
work in the programming language community dedicated to solv-
ing it for specific classes of programs. Currently, HELIX supports
change detection via source code version control; covering more
general cases is future work. Figure 1a) shows highlighted changes
automatically detected by HELIX between two versions of a work-
flow (+/− indicates statements that are added/deleted).
Program slicing component. HELIX applies program slicing tech-
niques from compilers to prune extraneous operations that do not
contribute to the final results. Feature selection is a prevalent prac-
tice in machine learning, and this component uses fine-grained data
provenance to automatically eliminate computation for features that
do not impact the model, without any code change by the user.
Recomputation component. The DAG optimizer in the compiler
determines the optimal reuse policies that minimize execution time
of the current iteration given results from previous iterations. For-
mally, let G = (N,E) be a DAG of operations. Each ni ∈ N has
a compute cost ci and a load cost li. Additionally, each node is as-
signed a state from S = {load, compute, prune}, with the prune
constraint that stipulates that a node in compute cannot have par-
ents in prune (i.e., the parents of a node must be available for that
node to be computed). Let s : N → S be the state assignments
and I be the indicator function. The objective of the recomputation
problem is finding s:

argmin
s

∑
ni∈N

I{s(ni) = compute}ci + I{s(ni) = load}li (1)

This cannot be solved via a simple traversal of the DAG due to the
prune constraint. While loading a node ni allows us to prune all of
its ancestors A(ni), the actual run time reduction incurred by load-
ing ni depends on the states of all descendants of each nj ∈ A(ni).
For example, if lk � ck for a node nk that is a child of some
nj ∈ A(ni), the run time is minimized by keeping nj and com-
puting nk from it. We prove that this problem is polynomial-time
reducible to the PROJECT SELECTION PROBLEM [3], a variant of
MAX-FLOW, and devise an efficient PTIME algorithm to compute
the optimal plan via this reduction[12].
Figure 1b) shows an example optimized plan. Each node corre-
sponds to the result of an operator declared in Figure 1a), with
operators for data pre-processing in purple and machine learning
in orange. Nodes with a drum to the left are reloaded from disk,
whereas nodes with a drum to the right are materialized. Operators
in the source code that are pruned during execution are grayed out.
Iterative changes to the code are highlighted in red and green in 1a).

2.3 Execution Engine
The execution engine executes the physical plan produced by the

compiler, using Spark [13] as the main backend for data processing,
supplemented with JVM libraries for application-specific needs.

During execution, the materialization optimizer chooses inter-
mediate results to persist (with a maximum storage constraint) in
order to minimize the latency of future iterations, using runtime
statistics from the current and prior executions for guidance. This
optimization problem is complicated by two practical challenges:
1) the total number of iterations the user will perform is not known

1959

msExtmsclExt

1. object Census extends Workflow {
2. data refers_to new FileSource(train="path/to/trainData", test="path/to/testData")
3. data is_read_into rows using CSVScanner(Array("age", "education", ...))
4.
5. age refers_to FieldExtractor("age")
6. edu refers_to FieldExtractor("education")
7. occ refers_to FieldExtractor("occupation")
8. cl refers_to FieldExtractor("capital_loss")
9. race refers_to FieldExtractor("race")

+ msrefers_to FieldExtractor("marital_status")
10. target refers_to FieldExtractor("target")
11. ageBucket refers_to Bucketizer(age, bins=10)
12. eduXocc refers_to InteractionFeature(Array(edu, occ))
13.
14. - rows has_extractors(eduExt, ageBucket, eduXocc, clExt, target)

+ rows has_extractors(eduExt, ageBucket, eduXocc, msExt, target)
15. income results_from rows with_labels target
16. incPred refers_to new Learner(modelType, regParam=0.1)
17. predictions results_from incPred on income
18. checkResults refers_to new Reducer((preds: DataCollection) => {
19. // Scala UDF for checking prediction accuracy omitted. })
20. checkResults uses extractorName(rows, target)
21. checked results_from checkResults on testData(predictions)
22.
23. predictions is_output()
24. checked is_output()
25. }

a) Census Workflow Program b) Optimized DAG for modified workflow

data

rows

ageBucketeduXocc

income

predictions

checked

ageedu occ target clrace
Program

m
ing

Interface

Scala DSL

Workflow

Intermed. Code Generator

Workflow DAG

Optimized DAG

C
om

pilation
Execution

Execution Engine

SparkApp Libs

DAG Optimizer

Data

Mat.
Optimizer

c) System Architecture

Figure 1: a) Example workflow in HELIX DSL for the Census application, with +/− indicating iterative changes. b) Optimized execution plan for the
modified workflow in a). Operators for data pre-processing are in purple, and machine learning in orange; operators from a) pruned at execution time are
grayed out. Nodes highlighted in red and green correspond to the code changes in a). c) System architecture.

a-priori; 2) changes to the workflow in future iterations are unpre-
dictable, making it difficult to determine the intermediate results
that can be reused in iterations that follow. Even in the simplest
case, with the strong assumption that the user will carry out only
one more iteration, and all results from the current iteration will
be reusable in the next, it can be shown, via a reduction from
the KNAPSACK PROBLEM, that this optimization problem is still
NP-HARD. Additionally, the decision to materialize must take
place immediately upon operation completion, as it is prohibitive to
cache multiple intermediate results for deferred decisions. Thus, an
online algorithm is needed to make decisions quickly in real-time.
We use a simple cost model to determine the set of intermediate re-
sults to materialize as they become available. Recall an operator ni

is associated with a load cost li and a compute cost ci. At iteration
t, the reduction in execution time at iteration t+1, from materializ-
ing ni at t, can be approximated as ri = 2li−(ci+

∑
nj∈A(ni)

cj).
If ri is negative and the data size for ni is less than the remaining
storage budget, then materialize ni. Although this model ignores
the dependencies between other operators and A(ni), it is cheap to
compute and effective in practice, while satisfying the online con-
straint. Our ongoing work investigates predicting reuse probability
based on user studies and workflow features.

2.4 Performance Gains
We show preliminary experiments comparing HELIX with two

similar ML systems, DeepDive [14] and KeystoneML [11], on the
two applications to be described in Section 3. KeystoneML is ab-
sent in Figure 2(a) because it is not equipped to handle information
extraction (IE) tasks, whereas DeepDive has missing data for itera-
tion > 2 in Figure 2(b) because its ML and evaluation components
are not user-configurable. To show the type of modification in each
iteration, we use purple to indicate a data pre-processing change
(e.g., adding a feature), orange for ML (e.g., adding regularization),
and green for evaluation (e.g., changing metrics).

Figure 2(a) shows that for the IE task, HELIX’s cumulative run
time is 60% lower than that of DeepDive, due to judicious mate-

Figure 2: Cumulative runtime comparison with (a) DeepDive on an IE task.
(b) DeepDive and KeystoneML on a classification task.

rialization of only intermediates that help with future iterations, in
contrast to DeepDive’s materialize-all approach. Figure 2(b) shows
all three systems’ performance on a classification task, where HE-
LIX shows nearly an order of magnitude reduction in cumulative
run time. Note that in post processing iterations (green), HELIX
has near zero runtimes due to high reuse rate. ML iterations (or-
ange) has slightly higher runtime but less than data pre-processing
iterations (purple), which have the least amount of reuse. For a
never-materialize system such as KeystoneML, the rerun time is
constantly large regardless of what has been changed.

3. DEMONSTRATION DESCRIPTION
We will demonstrate the ease and speed of iterative machine

learning development using HELIX through two distinct ML ap-
plications. We compare with the unoptimized version of HELIX to
help attendees appreciate the gains of HELIX’s optimizations.
Applications. 1) Census: This application illustrates a simple clas-
sification task with straightforward features from structured input.
The dataset from [5] contains demographic information, such as
age, education, occupation, used to predict whether a person’s an-
nual income is >50K. The complexity of this application is rep-
resentative of applications from the social and natural sciences,
where well-defined variables are being studied for covariate analy-
sis. Code for this workflow is shown in Figure 1a). 2) Information
Extraction: This is a complex structured prediction task that iden-
tifies person mentions from news articles. In contrast to Census,
the input to this workflow is unstructured text, and the objective
is to extract structured information instead of simple classification.
Thus, this workflow requires more data pre-processing steps to en-
able learning, mirroring the typical industry setting where extensive
data ETL is necessary.

3.1 User Interface
Attendees will interact with the HELIX system through a single

web application with an IDE for programming and modules for
examining results and system details.
IDE. The HELIX IDE provides HELIX DSL specific autocomplete
and syntax highlighting to facilitate programming. A “Suggest
Modifications” button lets user request machine-generated edits to
be shown inline using Github-style code change highlighting, as il-
lustrated in Figure 1a), thus allowing users to iterate rapidly on the
workflow without mastering the DSL. Once the workflow is exe-
cuted, the user will be able to inspect the optimized execution plan
in the DAG format, as shown in Figure 1b). Individual runtime and
storage for each operation are displayed by hovering over them.

1960

Figure 3: Metrics aggregation and version comparison. Users can select and compare specific versions, represented as points on the metric trend lines, for
code change and visualized execution plans, in order to better understand the performance impact of specific modifications.

Versions. Users can quickly browse through all past versions of
a workflow in a summarized view with similar aesthetics to code
version control tools such as git. Each version is shown as a commit
log entry, with buttons that allow users to instantly checkout the
code or obtain additional metadata. We also provide shortcuts to
the version with the best evaluation metrics as well as the latest
version at the top of the page.
Metrics. As shown in Figure 3, the Metrics tab aggregates the eval-
uation metrics for the workflow across iterations into plots with the
metric value on the y-axis and the iteration number on the x-axis.
Each point in the plot represents a version of the workflow. Users
can select a single point to load the associated code version or two
points for comparison. In Figure 3, Version 2 and 3 are selected in
the Accuracy plot for comparison. The comparative view visualizes
the DAG and highlights changes in the DAG using git-like visual
comparison cues, in addition to showing the two versions of the
workflow code also with changes highlighted. This feature enables
rapid exploration of the relationships between various metrics and
changes to specific components of the workflow. Understanding
the impact of each past iteration is crucial for making effective fu-
ture improvements, thus reducing the overall number of iterations
to achieve the desired outcome.

3.2 Guided Interaction
Once acquainted with the system and applications, attendees are

invited to select an application and execute its initial version. Upon
completion, we will describe each component of the UI using the
initial results. Attendees are then invited to modify the workflow
in the IDE to optimize for either the prediction accuracy or over-
all runtime to achieve a certain level of accuracy. They can also
use machine-generated suggested edits to the workflow for quick
exploration without learning the DSL. The version browser can be
used to see past changes or roll back to a past version and branch
out in another direction. After the first modified version is exe-
cuted, we will compare the execution plan with the one from the
previous iteration to showcase the workflow change detection fea-
ture, which allows HELIX to automatically reuse results for opera-
tors not affected by the changes.

Attendees can investigate the relationship between past versions
and metric values using the Metrics tab to inform decisions on what
to try next. To emphasize the benefits of HELIX’s optimizations, we
will execute the same version twice, once with and once without
optimizations, and compare the runtimes and execution plans. At
the end of the session, attendees are invited to review a summary of
their interactions via the Versions and Metrics tabs to gain a better
appreciation for the progress they made in a short period of time.

4. RELATED WORK
A great deal of work focuses on development of end-to-end sys-

tems for common ML operations, focusing on expressiveness for
ML tasks at the language level [14, 4] or API level [7, 6] and
provides first-class support for tasks such as model selection [10],
workflow construction [8], feature selection [15], and feature engi-
neering [14]. Such systems typically optimize the runtime of ML
pipelines on a single node [2] or in a distributed setting [11, 1, 4].
Another common theme is the specification of machine learning
tasks through an expressive and easy-to-use declarative program-
ming model [14, 4]. HELIX shares some characteristics with these
systems in that it adopts many of the same goals as secondary con-
siderations, but is unique in that it identifies iterative development
as a primary concern and is the first system to implement novel,
principled solutions for this particular focus.
Acknowledgments. We thank the anonymous reviewers for their valuable
feedback. We acknowledge support from grants IIS-1513407, IIS-1633755,
IIS-1652750, and IIS-1733878 awarded by the National Science Founda-
tion, and funds from Microsoft, 3M, Adobe, Toyota Research Institute,
Google, and the Siebel Energy Institute. Doris Xin and Stephen Macke
were supported by National Science Foundation Graduate Research Fel-
lowship grants NSF DGE-1144245 and NSF DGE-1746047. The content
is solely the responsibility of the authors and does not necessarily represent
the official views of the funding agencies and organizations.

5. REFERENCES
[1] M. Armbrust et al. Spark sql: Relational data processing in spark. In SIGMOD,

2015.
[2] X. Feng et al. Towards a unified architecture for in-rdbms analytics. In

SIGMOD, 2012.
[3] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.
[4] T. Kraska et al. Mlbase: A distributed machine-learning system. In CIDR, 2013.
[5] M. Lichman. UCI machine learning repository, 2013.
[6] C. D. Manning et al. The stanford corenlp natural language processing toolkit.

In ACL (System Demonstrations), 2014.
[7] X. Meng et al. Mllib: Machine learning in apache spark. JMLR, 2016.
[8] F. Pedregosa et al. Scikit-learn: Machine learning in python. JMLR, 2011.
[9] H. G. Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society, 1953.
[10] E. R. Sparks et al. Tupaq: An efficient planner for large-scale predictive

analytic queries. arXiv preprint arXiv:1502.00068, 2015.
[11] E. R. Sparks et al. Keystoneml: Optimizing pipelines for large-scale advanced

analytics. In ICDE, 2017.
[12] D. Xin et al. Helix: Holistic optimization for accelerating iterative machine

learning. Technical Report http://data-people.cs.illinois.edu/helix-tr.pdf, 2018.
[13] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In NSDI, 2012.
[14] C. Zhang. DeepDive: a data management system for automatic knowledge base

construction. PhD thesis, The University of Wisconsin-Madison, 2015.
[15] C. Zhang, A. Kumar, and C. Ré. Materialization optimizations for feature

selection workloads. ACM Trans. Database Syst., 2016.

1961

	Introduction
	System Overview
	Programming Interface
	Compiler
	Execution Engine
	Performance Gains

	Demonstration Description
	User Interface
	Guided Interaction

	Related Work
	References

