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ABSTRACT

Machine learning workflow development is a process of trial-and-
error: developers iterate on workflows by testing out small modifi-
cations until the desired accuracy is achieved. Unfortunately, exist-
ing machine learning systems focus narrowly on model training—a
small fraction of the overall development time—and neglect to ad-
dress iterative development. We propose HELIX, a machine learn-
ing system that optimizes the execution across iterations—intell-
igently caching and reusing, or recomputing intermediates as ap-
propriate. HELIX captures a wide variety of application needs within
its Scala DSL, with succinct syntax defining unified processes for
data preprocessing, model specification, and learning. We demon-
strate that the reuse problem can be cast as a MAX-FLOW prob-
lem, while the caching problem is NP-HARD. We develop ef-
fective lightweight heuristics for the latter. Empirical evaluation
shows that HELIX is not only able to handle a wide variety of use
cases in one unified workflow but also much faster, providing run
time reductions of up to 19x over state-of-the-art systems, such
as DeepDive or KeystoneML, on four real-world applications in
natural language processing, computer vision, social and natural
sciences.
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1. INTRODUCTION

From emergent applications like precision medicine, voice-cont-
rolled devices, and driverless cars, to well-established ones like
product recommendations and credit card fraud detection, machine
learning continues to be the key driver of innovations that are trans-
forming our everyday lives. At the same time, developing machine
learning applications is time-consuming and cumbersome. To this
end, a number of efforts attempt to make machine learning more
declarative and to speed up the model training process [11].

However, the majority of the development time is in fact spent
iterating on the machine learning workflow by incrementally mod-
ifying steps within, including (i) preprocessing: altering data clean-
ing or extraction, or engineering features; (ii) model training: tweak-
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ing hyperparameters, or changing the objective or learning algo-
rithm; and (iii) postprocessing: evaluating with new data, or gen-
erating additional statistics or visualizations. These iterations are
necessitated by the difficulties in predicting the performance of a
workflow a priori, due to both the variability of data and the com-
plexity and unpredictability of machine learning. Thus, developers
must resort to iterative modifications of the workflow via “trial-
and-error” to improve performance. A recent survey reports that
less than 15% of development time is actually spent on model train-
ing [41], with the bulk of the time spent iterating on the machine
learning workflow.

Example 1 (Gene Function Prediction). Consider the following
example from our bioinformatics collaborators who form part of a
genomics center at the University of lllinois [53]. Their goal is to
discover novel relationships between genes and diseases by min-
ing scientific literature. To do so, they process published papers to
extract entity—gene and disease—mentions, compute embeddings
using an approach like word2vec [40], and finally cluster the em-
beddings to find related entities. They repeatedly iterate on this
workflow to improve the quality of the relationships discovered as
assessed by collaborating clinicians. For example, they may (i) ex-
pand or shrink the literature corpus, (ii) add in external sources
such as gene databases to refine how entities are identified, and
(iii) try different NLP libraries for tokenization and entity recogni-
tion. They may also (iv) change the algorithm used for computing
word embedding vectors, e.g., from word2vec to LINE [60], or (v)
tweak the number of clusters to control the granularity of the clus-
tering. Every single change that they make necessitates waiting for
the entire workflow to rerun from scratch—often multiple hours on
a large server for each single change, even though the change may
be quite small.

As this example illustrates, the key bottleneck in applying machine
learning is iteration—every change to the workflow requires hours
of recomputation from scratch, even though the change may only
impact a small portion of the workflow. For instance, normalizing
a feature, or changing the regularization would not impact the por-
tions of the workflow that do not depend on it—and yet the current
approach is to simply rerun from scratch.

One approach to address the expensive recomputation issue is
for developers to explicitly materialize all intermediates that do
not change across iterations, but this requires writing code to han-
dle materialization and to reuse materialized results by identifying
changes between iterations. Even if this were a viable option, ma-
terialization of all intermediates is extremely wasteful, and figuring
out the optimal reuse of materialized results is not straightforward.
Due to the cumbersome and inefficient nature of this approach, de-
velopers often opt to rerun the entire workflow from scratch.



Unfortunately, existing machine learning systems do not opti-
mize for rapid iteration. For example, KeystoneML [56], which
allows developers to specify workflows at a high-level abstraction,
only optimizes the one-shot execution of workflows by applying
techniques such as common subexpression elimination and inter-
mediate result caching. On the other extreme, DeepDive [75], tar-
geted at knowledge-base construction, materializes the results of all
of the feature extraction and engineering steps, while also applying
approximate inference to speed up model training. Although this
naive materialization approach does lead to reuse in iterative exe-
cutions, it is wasteful and time-consuming.

We present HELIX, a declarative, general-purpose machine learn-
ing system that optimizes across iterations. HELIX is able to match
or exceed the performance of KeystoneML and DeepDive on one-
shot execution, while providing gains of up to 19 x on iterative ex-
ecution across four real-world applications. By optimizing across
iterations, HELIX allows data scientists to avoid wasting time run-
ning the workflow from scratch every time they make a change
and instead run their workflows in time proportional to the com-
plexity of the change made. HELIX is able to thereby substantially
increase developer productivity while simultaneously lowering re-
source consumption.

Developing HELIX involves two types of challenges—challenges
in iterative execution optimization and challenges in specification
and generalization.

Challenges in Iterative Execution Optimization. A machine learn-
ing workflow can be represented as a directed acyclic graph, where
each node corresponds to a collection of data—the original data
items, such as documents or images, the transformed data items,
such as sentences or words, the extracted features, or the final out-
comes. This graph, for practical workflows, can be quite large
and complex. One simple approach to enable iterative execution
optimization (adopted by DeepDive) is to materialize every single
node, such that the next time the workflow is run, we can simply
check if the result can be reused from the previous iteration, and
if so, reuse it. Unfortunately, this approach is not only wasteful in
storage but also potentially very time-consuming due to material-
ization overhead. Moreover, in a subsequent iteration, it may be
cheaper to recompute an intermediate result, as opposed to reading
it from disk.

A better approach is to determine whether a node is worth mate-
rializing by considering both the time taken for computing a node
and the time taken for computing its ancestors. Then, during subse-
quent iterations, we can determine whether to read the result for a
node from persistent storage (if materialized), which could lead to
large portions of the graph being pruned, or to compute it from
scratch. In this paper, we prove that the reuse plan problem is
in PTIME via a non-trivial reduction to MAX-FLOW using the
PROJECT SELECTION PROBLEM [28], while the materialization
problem is, in fact, NP-HARD.

Challenges in Specification and Generalization. To enable iter-
ative execution optimization, we need to support the specification
of the end-to-end machine learning workflow in a high-level lan-
guage. This is challenging because data preprocessing can vary
greatly across applications, often requiring ad hoc code involving
complex composition of declarative statements and UDFs [7], mak-
ing it hard to automatically analyze the workflow to apply holistic
iterative execution optimization.

We adopt a hybrid approach within HELIX: developers spec-
ify their workflow in an intuitive, high-level domain-specific lan-
guage (DSL) in Scala (similar to systems like KeystoneML), using
imperative code as needed for UDFs, say for feature engineering.
This interoperability allows developers to seamlessly integrate ex-
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Figure 1: HELIX System architecture.

isting JVM machine learning libraries [61, 50]. Moreover, HELIX
is built on top of Spark, allowing data scientists to leverage Spark’s
parallel processing capabilities. We have developed a GUI on top
of the HELIX DSL to further facilitate development [68].

HELIX’s DSL not only enables automatic identification of data

dependencies and data flow, but also encapsulates all typical ma-
chine learning workflow designs. All of the functions in Scikit-
learn’s (a popular ML toolkit) can be mapped to functions in the
DSL [70], allowing HELIX to easily capture applications ranging
from natural language processing, to knowledge extraction, to com-
puter vision. Moreover, by studying the variation in the dataflow
graph across iterations, HELIX is able to identify reuse opportuni-
ties across iterations. Our work is a first step in a broader agenda to
improve human-in-the-loop ML [67].
Contributions and Outline. The rest of the paper is organized as
follows: Section 2 presents an architectural overview of the sys-
tem, and a concrete workflow to illustrate concepts discussed in
the subsequent sections; Section 3 describes the programming in-
terface; Section 4 discusses HELIX system internals, including the
workflow DAG generation and change tracking between iterations;
Section 5 formally presents the two major optimization problems in
accelerating iterative ML and HELIX’s solution to both problems.
We evaluate our framework on four workflows from different ap-
plications domains and against two state-of-the-art systems in Sec-
tion 6. We discuss related work in Section 7.

2. BACKGROUND AND OVERVIEW

In this section, we provide a brief overview of machine learning
workflows, describe the HELIX system architecture and present a
sample workflow in HELIX that will serve as a running example.

A machine learning (ML) workflow accomplishes a specific ML
task, ranging from simple ones like classification or clustering, to
complex ones like entity resolution or image captioning. Within
HELIX, we decompose ML workflows into three components: data
preprocessing (DPR), where raw data is transformed into
ML-compatible representations, learning/inference (L/I), where ML
models are trained and used to perform inference on new data, and
postprocessing (PPR), where learned models and inference results
are processed to obtain summary metrics, create dashboards, and
power applications. We discuss specific operations in each of these
components in Section 3. As we will demonstrate, these three com-
ponents are generic and sufficient for describing a wide variety of
supervised, semi-supervised, and unsupervised settings.

2.1 System Architecture

The HELIX system consists of a domain specific language (DSL)
in Scala as the programming interface, a compiler for the DSL, and



an execution engine, as shown in Figure 1. The three components
work collectively to minimize the execution time for both the cur-
rent iteration and subsequent iterations:

1. Programming Interface (Section 3). HELIX provides a sin-
gle Scala interface named Workflow for programming the entire
workflow; the HELIX DSL also enables embedding of imperative
code in declarative statements. Through just a handful of extensi-
ble operator types, the DSL supports a wide range of use cases for
both data preprocessing and machine learning.

2. Compilation (Sections 4, 5.1-5.2). A Workflow is internally
represented as a directed acyclic graph (DAG) of operator outputs.
The DAG is compared to the one in previous iterations to determine
reusability (Section 4). The DAG Optimizer uses this information
to produce an optimal physical execution plan that minimizes the
one-shot runtime of the workflow, by selectively loading previous
results via a MAX-FLOW-based algorithm (Section 5.1-5.2).

3. Execution Engine (Section 5.3). The execution engine carries
out the physical plan produced during the compilation phase, while
communicating with the materialization operator to materialize in-
termediate results, to minimize runtime of future executions. The
execution engine uses Spark [74] for data processing and domain-
specific libraries for custom needs. HELIX defers operator pipelin-
ing and scheduling for asynchronous execution to Spark.

2.2 The Workflow Lifecycle
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Figure 2: Roles of system components in the HELIX workflow lifecycle.

Given the system components described in the previous section,
Figure 2 illustrates how they fit into the lifecycle of ML workflows.
Starting with W), an initial version of the workflow, the lifecycle
includes the following stages:

« DAG Compilation. The Workflow W; is compiled into a
DAG Gw, of operator outputs.

« DAG Optimization. The DAG optimizer creates a physical
plan G%}: T to be executed by pruning and ordering the nodes
in Gw, and deciding whether any computation can be replaced
with loading previous results from disk.

« Materialization Optimization. During execution, the materi-
alization optimizer determines which nodes in G?Vf T should
be persisted to disk for future use.

« User Interaction. Upon execution completion, the user may
modify the workflow from W; to W;41 based on the results.
The updated workflow Wy, fed back to HELIX marks the be-
ginning of a new iteration, and the cycle repeats.

2.3 Example Workflow

We demonstrate the usage of HELIX with a simple example ML
workflow for predicting income using census data from Kohavi [29],
shown in Figure 3a). We overlay the original workflow with an it-
erative update, with additions annotated with + and deletions anno-
tated with —, while the rest of the lines are retained as is. We begin
by describing the original workflow consisting of all the unanno-
tated lines plus the line annotated with — (deletions). Additional
details can be found in our technical report [70].
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Original Workflow. A data collection rows is created from a data
source data containing both training and test CSV files. The user
declares simple features such as age and education correspond-
ing to each column (lines 5-10), as well as discretized features like
ageBucket (line 11), and interaction features for higher-order pat-
terns (line 12). These features are then associated with rows (line
13), and used to create collection of examples income using tar-
get as labels (line 14). For L/I, the user declares an ML model
named incPred (line 15), to be evaluated on all of the data in in-
come (line 16). Subsequently, the user creates a new UDF named
checkResults to check the prediction accuracy (line 17-18). Fi-
nally, the user declares that the output scalar named checked is to
be computed from the test data in income (line 20) and is part of
the output (line 21).

Original Workflow: Optimized DAG. The HELIX compiler trans-
lates the program in Figure 3a) into a DAG in Figure 3b), which is
then transformed by the optimizer by eliminating raceExt since it
does not contribute to the model. DPR steps are in purple, while
others are in orange. Some of the intermediate results are material-
ized to disk (displayed with a drum).

Updated Workflow: Optimized DAG. In the updated version of
the workflow, a new feature named msExt is added (below line 9),
and clExt is removed (line 13); correspondingly, in the updated
DAG, a new node is added for msExt (green edges), while clExt
gets pruned (pink edges). In addition, HELIX chooses to load mate-
rialized results for rows from the previous iteration allowing data
to be pruned, avoiding a costly parsing step. HELIX also loads age-
Bucket instead of recomputing the bucket boundaries requiring a
full scan. HELIX materializes predictions in both iterations since
it has changed. In this instance, HELIX is able to prune the com-
putation of ageBucket and that of rows from data.

3. PROGRAMMING INTERFACE

To program ML workflows with high-level abstractions, HELIX
users program in a language called HML, an embedded DSL in
Scala. An embedded DSL exists as a library in the host language
(Scala in our case), leading to seamless integration. LINQ [38], a
data query framework integrated in .NET languages, is another ex-
ample of an embedded DSL. In HELIX, users can freely incorporate
Scala code for user-defined functions (UDFs) directly into HML.
JVM-based libraries can be imported directly into HML to support
application-specific needs. Development in other languages can be
supported with wrappers in the same style as PySpark [55].

3.1 Operations in ML Workflows

Common operations in ML workflows can be decomposed into
a small set of basis functions F. Here, we simply introduce the
members of F. In our technical report [70], we show through a
rigorous and extensive comparison that F covers all of the func-
tionalities offered by Scikit-learn, thereby demonstrating coverage
of common operations in ML workflows, as Scikit-learn is one of
the most comprehensive ML libraries available.

Functions in F have natural analogs in both Scikit-learn ([70])
and HML (Section 3.2.2), thus serving as a mapping between the
two programming interfaces. They can be grouped by the workflow
components DPR, L/I, and PPR as follows:

DPR. The goal of DPR is to transform raw input data into learn-
able representations. DPR operations can be decomposed into the
following categories:
o Parsing: transforming a record into a set of records, e.g., pars-
ing an article into words via tokenization.



. object Census extends Workflow {
// Declare variable names (for consistent reference) omitted

data refers_to new FileSource(train="dir/train.csv", test="dir/test.csv")

ageExt refers_to FieldExtractor("age")
~9. // Declare other field extractors like ageExt.

+ msExt refers_to FieldExtractor("marital_status™)
10. target refers_to FieldExtractor("target")
11. ageBucket refers_to Bucketizer(ageExt, bins=10)
12. eduXocc refers_to InteractionFeature(Array(eduExt, occExt))
13.- rows has_extractors(eduExt, ageBucket, eduXocc, clExt, target)

+ rows has_extractors(eduExt, ageBucket, eduXocc, msExt, target)

1
2
3
4. datais_read_into rows using CSVScanner(Array(“age", "education”, ...))
5
6

PR

14. income results_from rows with_labels target
_ 15. incPred refers_to new Learner(modelType="LR"", regParam=0.1)
I 16. predictions results_from incPred on income

17. checkResults refers_to new Reducer( (preds: DataCollection) => {
o ‘ 18.  // Scala UDF for checking prediction accuracy omitted. })
&«" 19. checkResults uses extractorName(rows, target)

‘ 20. checked results_from checkResults on testData(predictions)
21. checked is_output()
22.}

a) Census Workflow Program

income income
predictions ——8 predictions ——8
checked —8 checked —O

b) Optimized DAG for original workflow

c) Optimized DAG for modified workflow

Figure 3: Example workflow for predicting income from census data.

« Join: combining multiple records into a single record, where r;
can come from different data sources.
o Feature Extraction: extracting features from a record.
Feature Transformation: deriving a new set of features from the
input features.
o Feature Concatenation: concatenating features extracted in sep-
arate operations to form an FV.
Note that sometimes these functions need to be learned from the
input data. For example, discretizing a continuous feature x; into
four even-sized bins requires the distribution of ;. We address this
use case along with L/I next.

L/I. L/ encompasses learning both ML models and feature trans-
formation functions mentioned above. Note that while applying
feature transformations is part of DPR, learning the functions them-
selves is in L/I. Complex ML tasks can be broken down into simple
learning steps captured by these two operations, e.g., image cap-
tioning can be broken down into object identification via classifica-
tion, followed by sentence generation using a language model [27].
Thus, L/I can be decomposed into:
o Learning: learning a function f from the input dataset.
o Inference: using the ML model f to infer feature values.
PPR. A wide variety of operations can take place in PPR, including
model evaluation and data visualization. At a high-level, they all
share the same function:
o Reduce: applying an operation on the input dataset(s) and non-
dataset object(s). For example, for an input dataset and a spe-
cific feature name as the non-dataset object, we can produce vi-

sualizations of the feature values collected over the input dataset.

3.2 HML

HML is a declarative language for specifying an ML workflow
DAG. The basic building blocks of HML are HELIX objects, which
correspond to the nodes in the DAG. Each HELIX object is either
a data collection (DC) or an operator. Statements in HML either
declare new instances of objects or relationships between declared
objects. Users program the entire workflow in a single Workflow
interface, as shown in Figure 3a). The complete grammar for HML
in Backus-Naur Form as well as the semantics of all of the expres-
sions can be found in the technical report [70]. Here, we describe
high-level concepts including DCs and operators and discuss the
strengths and limitations of HML in Section 3.3.

3.2.1 Data Collections

A data collection (DC) is analogous to a relation in a RDBMS;
each element in a DC is analogous to a tuple. The content of a DC
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either derives from disk, e.g., data in Line 3 in Figure 3a), or from
operations on other DCs, e.g., rows in Line 4 in Figure 3a). An
element in a DC can either be a semantic unit, the data structure for
DPR, or an example, the data structure for L/I.

A DC can only contain a single type of element. DCsyy and DCg
denote a DC of semantic units and a DC of examples, respectively.
The type of elements in a DC is determined by the operator that
produced the DC and not explicitly specified by the user. We elab-
orate on the relationship between operators and element types in
Section 3.2.2, after introducing the operators.

Semantic units. Many DPR operations require going through the
entire dataset to learn the exact transformation or extraction func-
tion. For a workflow with many such operations, processing D to
learn each operator separately can be highly inefficient. We in-
troduce the notion of semantic units (SU) to compartmentalize the
logical and physical representations of features, so that the learning
of DPR functions can be delayed and batched.

Formally, each SU contains an input ¢, which can be a set of
records or FVs, a pointer to a DPR function f, which can be of type
parsing, join, feature extraction, feature transformation, or feature
concatenation, and an output o, which can be a set of records or
FVs and is the output of f on 4. The variables 7 and f together serve
as the semantic, or logical, representation of the features, whereas
o is the lazily evaluated physical representation that can only be
obtained after f is fully instantiated.

Examples. Examples gather all the FVs contained in the output of
various SUs into a single FV for learning. Formally, an example
contains a set of SUs .S, and an optional pointer to one of the SUs
whose output will be used as the label in supervised settings, and
an output FV, which is formed by concatenating the outputs of S.

Sparse vs. Dense Features. The combination of SUs and exam-
ples affords HELIX a great deal of flexibility in the physical rep-
resentation of features. Users can explicitly program their DPR
functions to output dense vectors, in applications such as com-
puter vision. For sparse categorical features, they are kept in the
raw key-value format until the final FV assembly, where they are
transformed into sparse or dense vectors depending on whether the
ML algorithm supports sparse representations. When assembling a
mixture of dense and spare FVs, HELIX currently opts for a dense
representation but can be extended to support optimizations con-
sidering space and time tradeoffs.

Unified learning support. HML provides unified support for train-
ing and test data by treating them as a single DC, as done in Line
4 in Figure 3a). This design ensures that both training and test



data undergo the exact same data preprocessing steps, eliminat-
ing bugs caused by inconsistent data preprocessing procedures han-
dling training and test data separately. HELIX automatically selects
the appropriate data for training and evaluation. However, if de-
sired, users can handle training and test data differently by specify-
ing separate DAGs for training and testing. Common operators can
be shared across the two DAGs without code duplication.

3.2.2  Operators

Operators in HELIX are designed to cover the functions enumer-
ated in Section 3.1, using the data structures introduced above. A
HELIX operator takes one or more DCs and outputs DCs, ML mod-
els, or scalars. Each operator encapsulates a function f, written in
Scala, to be applied to individual elements in the input DCs. We
describe the relationships between operator interfaces in HML and
F enumerated in Section 3.1 below.

Scanner. Scanner is the interface for parsing € F and acts like a
flatMap, i.e., for each input element, it adds zero or more elements
to the output DC. The input and output of Scanner are DCgys.
CSVScanner in Line 4 of Figure 3a) is an example of a Scanner
that parses lines in a CSV file into key-value pairs for columns.

Synthesizer. Synthesizer supports join € F, for elements both
across multiple DCs and within the same DC. Thus, it can also sup-
port aggregation operations such as sliding windows in time series.
Synthesizers also serve the important purpose of specifying the set
of SUs that make up an example . In the simple case where each
SU in a DCsy corresponds to an example, a pass-through synthe-
sizer is implicitly declared by naming the output DCg, such as in
Line 14 of Figure 3a).

Learner. Learner is the interface for learning and inference € F,
in a single operator. A learner operator L contains a learned func-
tion f, which can be an ML model or a feature transformation func-
tion learned from the input dataset. When f is empty, L learns a
model using input data designated for model training; when f is
populated, L performs inference on the input data using f and out-
puts the inference results into a DCg. For example, the learner
incPred in Line 15 of Figure 3a) is a learner trained on the “train”
portion of the DCg income and outputs inference results as the
DCEg predictions.

Extractor. Extractor is the interface for feature extraction and fea-
ture transformation € F. Extractor contains the function f applied
on the input of SUs, thus the input and output to an extractor are
DCgsys. For functions that need to be learned from data, Extractor
contains a pointer to the learner operator for learning f.

Reducer. Reducer is the interface for reduce € F and thus the
main operator interface for PPR. The inputs to a reducer are DCg
and an optional scalar and the output is a scalar, where scalars refer
to non-dataset objects. For example, checkResults in Figure 3a)
Line 17 is a reducer that computes the prediction accuracy of the
inference results in predictions.

3.3 Scope and Limitations

Coverage. We showed in Section 3.2 that HML captures all func-
tions in F, which is shown to cover all major operations in ML
workflows [70]. While HML’s interfaces are general enough to
support all the common use cases, users can additionally manu-
ally plug into our interfaces external implementations, such as from
MLLib [39] and Weka [25], of missing operations. Note that we
provide utility functions that allow functions to work directly with
raw records and FVs instead of HML data structures to enable di-
rect application of external libraries. We demonstrate in Section 6
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that the current set of implemented operations is sufficient for sup-
porting applications across different domains.

Limitations. Since HELIX currently relies on its Scala DSL for
workflow specification, popular non-JVM libraries, such as Tensor-
Flow [4] and Pytorch [46], cannot be imported easily without sig-
nificantly degrading performance compared to their native runtime
environment. That said, our contributions in materialization and
reuse apply across all languages. In the future, we plan on abstract-
ing the DAG representation in HELIX into a language-agnostic sys-
tem that can sit below the language layer for all DAG based sys-
tems, including TensorFlow, Scikit-learn, and Spark.

The other downside of HML is that ML models are treated largely
as black boxes. Thus, work on optimizing learning, e.g., [52, 77],
orthogonal to (and can therefore be combined with) our work, which
operates at a coarser granularity.

4. COMPILATION & REPRESENTATION

In this section, we describe the Workflow DAG, the abstract
model used internally by HELIX to represent a Workflow program.
The Workflow DAG model enables operator-level change tracking
between iterations and end-to-end optimizations.

4.1 The Workflow DAG

At compile time, HELIX’s intermediate code generator constructs
a Workfiow DAG from HML declarations.

Definition 1. For a Workfiow W containing HELIX operators
F = {f;}, the Workflow DAG is a directed acyclic graph Gw =
(N, E), where node n; € N represents the output of f; € F and
(ni,n;) € E if the output of fi is an input to f;.

Figure 3b) shows the Workflow DAG for the program in Figure 3a).
This transformation is straightforward, creating a node for each de-
clared operator and adding edges between nodes based on the link-
ing expressions, e.g., A results_from B creates an edge (B, A).
Additionally, the intermediate code generator introduces edges not
specified in the Workflow between the extractor and the synthe-
sizer nodes, such as the edges marked by dots (e) in Figure 3b).
These edges connect extractors to downstream DCs in order to au-
tomatically aggregate all features for learning. One concern is that
this may lead to redundant computation of unused features; we de-
scribe pruning mechanisms to address this issue in Section 5.4.

4.2 Tracking Changes

As described in Section 2.2, a user starts with an initial work-
flow Wy and iterates on this workflow. Let W; be the version
of the workflow at iteration ¢ > 0 with the corresponding DAG

tv = (N, Et); Wit denotes the workflow obtained in the next
iteration. To describe the changes between W; and W11, we in-
troduce the notion of equivalence.

Definition 2. A node n! € Ny is equivalent fo ni ™ € Nyy1, de-

noted as n; = nf“, if a) the operators corresponding to nt and
nﬁ“ compute identical results on the same inputs and b) n; =

t+1
"
n;

t+1
J
€ Ny is original if it has no equivalent node in Ny.

t+1).

V n} € parents(n}),n € parents(n; We say

. . . . ’ ’
Equivalence is symmetric, i.e., n! = n! < nf =n!, and tran-

’ ’ 1" 1"
sitive, i.e., (n! = nl Anl =nl ) = nl =n! . Newly added
operators in W41 do not have equivalent nodes in W4; neither do
nodes in W, that are removed in W;1;. For a node that persists
across iterations, we need both the operator and the ancestor nodes
to stay the same for equivalence. Using this definition of equiva-
lence, we determine if intermediate results on disk can be safely

reused through the notion of equivalent materialization:



Definition 3. A node n! € N; has an equivalent materialization if
nﬁl is stored on disk, where t' < t and nﬁl =nl

One challenge in determining equivalence is deciding whether
two versions of an operator compute the same results on the same
input. For arbitrary functions, this is undecidable as proven by
Rice’s Theorem [54]. The programming language community has
a large body of work on verifying operational equivalence for spe-
cific classes of programs [66, 49, 23]. HELIX currently employs
a simple representational equivalence verification—an operator re-
mains equivalent across iterations if its declaration in the DSL is
not modified and all of its ancestors are unchanged. Incorporating
more advanced techniques for verifying equivalence is future work.

To guarantee correctness (the proof for which is in our technical
report [70]), i.e., results obtained at iteration ¢ reflect the specifi-
cation for W, and are computed from the appropriate input, we
impose the constraint:

Constraint 1. At iteration t + 1, if an operator n'
must be recomputed.

s original, it

5. OPTIMIZATION

In this section, we describe HELIX’s workflow-level optimiza-
tions, motivated by the observation that workflows often share a
large amount of intermediate computation between iterations; thus,
if certain intermediate results are materialized at iteration ¢, these
can be used at iteration t+1. We identify two distinct sub-problems:
OPT-EXEC-PLAN, which selects the operators to reuse given pre-
vious materializations (Section 5.2), and OPT-MAT-PLAN, which
decides what to materialize to accelerate future iterations (Sec-
tion 5.3). We finally discuss pruning optimizations to eliminate
redundant computations (Section 5.4). We begin by introducing
common notation and definitions.

5.1 Preliminaries

When introducing variables below, we drop the iteration number
t from W; and G%, when we are considering a static workflow.
Operator Metrics. In a Workflow DAG G'w (N, E), each
node n; € N corresponding to the output of the operator f; is as-
sociated with a compute time c;, the time it takes to compute n;
from inputs in memory. Once computed, n; can be materialized on
disk and loaded back in subsequent iterations in time /;, referred
to as its load time. If n; does not have an equivalent materializa-
tion as defined in Definition 3, we set [; = co. Root nodes in the
Workflow DAG, which correspond to data sources, have I; = c;.
Operator State. During the execution of workflow W, each node
n; assumes one of the following states:

e Load, or Sy, if n; is loaded from disk;

o Compute, or S., n; is computed from inputs;

o Prune, or Sy, if n; is skipped (neither loaded nor computed).
Let s(n;) € {Si,Se, Sp} denote the state of each n; € N. To
ensure that nodes in the Compute state have their inputs available,
i.e., not pruned, the states in a Workflow DAG Gw (N,E)
must satisfy the following execution state constraint:

Constraint 2. For anode n; € N, if s(n;) = Se, then s(nj) # Sy
for every n; € parents(n;).

Workflow Run Time. A node n; in state Sc, Si, or Sp, has run time
¢, li, or 0, respectively. The total run time of W w.r.t. s is thus

T(W,s) = Z I{s(n;) = Sc}eci +I{s(n;) = Si}l

n;EN

©)

where I {} is the indicator function.
Clearly, setting all nodes to S, trivially minimizes Equation 1.
However, recall that Constraint 1 requires all original operators to
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Figure 4: Transforming a Workflow DAG to a set of projects and depen-
dencies. Checkmarks (v') in the RHS DAG indicate a feasible solution to

PSP, which maps onto the node states (Sp, Se, S;) in the LHS DAG.
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be rerun. Thus, if an original operator n; is introduced, we must
have s(n;) = S¢, which by Constraint 2 requires that S(n;) #
Sp Vn; € parents(n;). We explore how to determine the states
for each nodes to minimize Equation 1 next.

5.2 Optimal Execution Plan

The Optimal Execution Plan (OEP) problem is the core problem

solved by HELIX’s DAG optimizer, which determines at compile
time the optimal execution plan given results and statistics from
previous iterations.
Problem 1. (OPT-EXEC-PLAN) Givena Workfiow W with DAG
Gw = (N, E), the compute time and the load time c;,l; for each
ni € N, and a set of previously materialized operators M, find a
state assignment s : N — {Sc, Si, Sp} that minimizes T (W, s)
while satisfying Constraint 1 and Constraint 2.

Let 7™ (W) be the minimum execution time achieved by the so-
lution to OEP, i.e.,

T (W) = min T(W, s) )
Since this optimization takes place prior to execution, we must re-
sort to operator statistics from past iterations. This does not com-
promise accuracy because if a node n; has an equivalent material-
ization as defined in Definition 2, we would have run the exact same
operator before and recorded accurate c; and l;. A node n; with-
out an equivalent materialization, such as a model with changed
hyperparameters, needs to be recomputed (Constraint 1).

Deciding to load certain nodes can have cascading effects since
ancestors of a loaded node can potentially be pruned, leading to
large reductions in run time. On the other hand, Constraint 2 disal-
lows the parents of computed nodes to be pruned. Thus, the deci-
sions to load a node n; can be affected by nodes outside of the set
of ancestors to n;. For example, in the DAG on the left in Figure 4,
loading n7 allows n1—g to be potentially pruned. However, the de-
cision to compute ng, possibly arising from the fact that ls > cs,
requires that ns must not be pruned.

Despite such complex dependencies between the decisions for
individual nodes, Problem 1 can be solved optimally in polynomial
time through a linear time reduction to the project-selection prob-
lem (PSP), which is an application of MAX-FLOW [28].

Problem 2. PROJ-SELECTION-PROBLEM (PSP) Let P be a set
of projects. Each project i € P has a real-valued profit p; and a
set of prerequisites Q C P. Select a subset A C P such that all
prerequisites of a project i € A are also in A and the total profit of
the selected projects, ZZ caDis is maximized.

Reduction to the Project Selection Problem. We can reduce an
instance of Problem 1 x to an equivalent instance of PSP y such that
the optimal solution to y maps to an optimal solution of z. Let G =



Algorithm 1: OEP via Reduction to PSP

Input: Gy = (N, E), {l;}, {ci}
1 P+ o
2 forn; € N do
3 P+ PU{a;};
profitla;] + —1l;;
P+ PU{b;};
profit[b;] < l; —ci;
// Add a; as prerequisite for b;.;
prerequisite[b;] < prerequisite[b;] U a;;
8 for (n;, nj) € {edges leaving fromn;} C E do
// Add a; as prerequisite for bj.;
9 prerequisite[b;] < prerequisite[b;] U a;;
// A is the set of projects selected by PSP;
A + PSP(P, profit[], prerequisitel]);
for n; € N do // Map PSP solution to node states
ifa; € Aandb; € A then
s[ni] < Se;
elseifa; € Aandb; ¢ A then
s[ng] « Si:
else
s[n;] < Sp:
return s[] ;

// Create a project a;

// Set profit of a; to —1I;
// Create a project b;

// Set profit of b; to l; — ¢;

RIS

<

// State assignments for nodes in Gy .

(N, E) be the Workflow DAG in z, and P be the set of projects
in y. We can visualize the prerequisite requirements in y as a DAG
with the projects as the nodes and an edge (j,4) indicating that
project ¢ is a prerequisite of project j. The reduction, ¢, depicted
in Figure 4 for an example instance of x, is shown in Algorithm 1.
For each node n; € N, we create two projects in PSP: a; with
profit —I; and b; with profit [; — c;. We set a; as the prerequisite for
b;. For an edge (n;,nj) € E, we set the project a; corresponding
to node n; as the prerequisite for the project b; corresponding to
node n;. Selecting both projects a; and b; corresponding to n; is
equivalent to computing n, i.e., s(n;) = S., while selecting only
a; is equivalent to loading n;, i.e., s(n;) = S;. Nodes with neither
projects selected are pruned. An example solution mapping from
PSP to OEP is shown in Figure 4. Projects a4, as, as, bs, a7, br, as
are selected, which cause nodes n4, ns, ng to be loaded, ng and n~
to be computed, and n1,n2, n3 to be pruned.

Overall, the optimization objective in PSP models the “savings”
in OEP incurred by loading nodes instead of computing them from
inputs. We create an equivalence between cost minimization in
OEP and profit maximization in PSP by mapping the costs in OEP
to negative profits in PSP. For a node n;, picking only project a;
(equivalent to loading n;) has a profit of —[;, whereas picking both
a; and b; (equivalent to computing n;) has a profit of —; + (I; —
ci) —c;. The prerequisites established in Line 7 that require a;
to also be picked if b; is picked are to ensure correct cost to profit
mapping. The prerequisites established in Line 9 corresponds to
Constraint 2. For a project b; to be picked, we must pick every a;
corresponding to each parent n; of n;. If it is impossible (I; = o)
or costly to load n;, we can offset the load cost by picking b; for
computing n;. However, computing n; also requires its parents to
be loaded or computed, as modeled by the outgoing edges from b;.
The fact that a; projects have no outgoing edges corresponds to the
fact loading a node removes its dependency on all ancestor nodes.

Theorem 1. Given an instance of OPT-EXEC-PLAN z, the reduc-
tion in Algorithm 1 produces a feasible and optimal solution to x.

See the technical report [70] for a proof.

5.3 Optimal Materialization Plan

The OPT-MAT-PLAN (OMP) problem is tackled by HELIX s ma-
terialization optimizer: while running workflow W; at iteration ¢,
intermediate results are selectively materialized for the purpose of
accelerating execution in iterations > ¢. We now formally intro-
duce OMP and show that it is NP-HARD even under strong assump-
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tions. We propose an online heuristic for OMP that runs in linear
time and achieves good reuse rate in practice (as we will show in
Section 6), in addition to minimizing memory footprint by avoiding
unnecessary caching of intermediate results.

Materialization cost. We let s; denote the storage cost for ma-
terializing n;, representing the size of n; on disk. When loading
n; back from disk to memory, we have the following relationship
between load time and storage cost: I; = s;/(disk read speed). For
simplicity, we also assume the time to write n; to disk is the same
as the time for loading it from disk, i.e., [;. We can easily generalize
to the setting where load and write latencies are different.

To quantify the benefit of materializing intermediate results at it-
eration ¢ on subsequent iterations, we formulate the materialization
run time Thr (W) to capture the tradeoff between the additional
time to materialize intermediate results and the run time reduction
in iteration ¢ 4+ 1. Although materialized results can be reused in
multiple future iterations, we only consider the (¢ + 1)th iteration
since the total number of future iterationsis unknown.

Definition 4. Given a workflow W4, operator metrics c;,l;, s; for
every n; € N, and a subset of nodes M C Ny, the materialization
run time is defined as

M(Wt) = Z lz+T*(Wt+1)

n;EM

3

where Znie o Li 1s the time to materialize all nodes selected for
materialization, and T (Wt) is the optimal workflow run time ob-
tained using the algorithm in Section 5.2, with M materialized.
Equation 3 defines the optimization objective for OMP.

Problem 3. (OPT-MAT-PLAN) Given a Workfiow Wy with DAG
Gt, = (N, E¢) at iteration t and a storage budget S, find a subset
of nodes M C Ny to materialize at t in order to minimize Trhg(W4),
while satisfying the storage constraint ZniGM si < S.

As discussed in [69], there are many possibilities for W11, and
they vary by application domain. User modeling and predictive
analysis of W, itself is a substantial research topic that we will
address in future work. This user model can be incorporated into
OMP by using the predicted changes to better estimate the likeli-
hood of reuse for each operator. However, even under very restric-
tive assumptions about Wy 1, we can show that OPT-MAT-PLAN is
NP-HARD, via a simple reduction from the KNAPSACK problem.

Theorem 2. OPT-MAT-PLAN is NP-hard.
See the technical report [70] for a proof.

Streaming constraint. Even when W, is known, solving OPT-
MAT-PLAN optimally requires knowing the run time statistics for
all operators, which can be fully obtained only at the end of the
workflow. Deferring materialization decisions until the end re-
quires all intermediate results to be cached or recomputed, which
imposes undue pressure on memory and cripples performance. Un-
fortunately, reusing statistics from past iterations as in Section 5.2
is not viable here because of the cold-start problem—materialization
decisions need to be made for new operators based on realistic
statistics. Thus, to avoid slowing down execution with high mem-
ory usage, we impose the following constraint.

Definition 5. Given a Workflow DAG G, = (N, E), n; € N is
out-of-scope at runtime if all children of n; have been computed or
reloaded from disk, thus removing all dependencies on n;.
Constraint 3. Once n; becomes out-of-scope, it is either material-
ized immediately or removed from cache.

OMP Heuristics. We now describe the heuristic employed by HE-
LIX to approximate OMP while satisfying Constraint 3.



Algorithm 2: Streaming OMP

Data: G, = (N, E),{l;},{c:i}, {si}, storage budget S

1 M <+ @,

2 while Workflow is running do

O < FindOutOfScope(N);

for n; € O do

if C(n;) > 21, and S — s; > 0 then

Materialize n;;
M «— MU {n;};
S+ S —s;

® N s Ww

Definition 6. Given Workfiow DAG G, = (N, E), the cumula-
tive run time for a node n; is defined as

C(m) = t(nz) + Z

nj€ancestors(n;)

where t(n;) = 1{s(n;) = Sc}c; + I1{s(n;) = Si} L.
Algorithm 2 shows the heuristics employed by HELIX’s material-
ization optimizer to decide what intermediate results to materialize.
In essence, Algorithm 2 decides to materialize if twice the load cost
is less than the cumulative run time for a node. The intuition behind
this algorithm is that assuming loading a node allows all of its an-
cestors to be pruned, the materialization time in iteration ¢ and the
load time in iteration ¢ + 1 combined should be less than the total
pruned compute time, for the materialization to be cost effective.
Due to the streaming Constraint 3, complex dependencies be-
tween descendants of ancestors such as the one between ns and ng
in Figure 4 previously described in Section 5.2, are ignored by Al-
gorithm 2—we cannot retroactively update our decision for ns after
ng has been run. We show in Section 6 that this simple algorithm
is effective in multiple application domains.

5.4 Workflow DAG Pruning

In addition to optimizations involving intermediate result reuse,
HELIX further reduces overall workflow execution time by pruning
extraneous operators from the Workflow DAG. In a nutshell, HE-
LIX traverses the DAG backwards from the output nodes and prunes
away any nodes not visited in this traversal—a simple form of pro-
gram slicing [65]. HELIX provides two additional mechanisms for
pruning operators other than using the lack of output dependency:
1) user can explicitly specify nodes to be excluded in HML for
manual feature selection; and 2) if the user desires it, HELIX can
inspect relevant data to determine low-impact operators that can be
removed without compromising the model performance. We plan
on investigating the latter extensively in future work.

t(n;) 4

6. EMPIRICAL EVALUATION

The goal of our evaluation is to test if HELIX 1) supports ML
workflows in a variety of application domains; 2) accelerates itera-
tive execution through intermediate result reuse, compared to other
ML systems that don’t optimize iteration; 3) is efficient, enabling
optimal reuse without incurring a large storage overhead.

6.1 Systems and Baselines for Comparison

We compare the optimized version of HELIX, HELIX OPT, against
two state-of-the-art ML workflow systems: KeystoneML [56], and
DeepDive [75]. In addition, we compare HELIX OPT with two
simpler versions, HELIX AM and HELIX NM. While we compare
against DeepDive, and KeystoneML to verify 1) and 2) above, HE-
LIX AM and HELIX NM are used to verify 3). We describe each
of these variants below:

KeystoneML. KeystoneML [56] is a system, written in Scala and
built on top of Spark, for the construction of large scale, end-to-
end, ML pipelines. KeystoneML specializes in classification tasks
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on structured input data. No intermediate results are materialized
in KeystoneML, as it does not optimize execution across iterations.
DeepDive. DeepDive [75, 17] is a system, written using Bash
scripts and Scala for the main engine, with a database backend,
for the construction of end-to-end information extraction pipelines.
Additionally, DeepDive provides limited support for classification
tasks. All intermediate results are materialized in DeepDive.
HELIX OPT. A version of HELIX that uses Algorithm 1 for the op-
timal reuse strategy and Algorithm 2 to decide what to materialize.
HELIX AM. A version of HELIX that uses the same reuse strategy
as HELIX OPT and always materializes all intermediate results.
HELIX NM. A version of HELIX that uses the same reuse strategy
as HELIX OPT and never materializes any intermediate results.

6.2 Workflows

We conduct our experiments using four real-world ML work-
flows spanning a range of application domains. Table 1 summarizes
the characteristics of the four workflows, described next. We are in-
terested in four properties when characterizing each workflow:

o Number of data sources: whether the input data comes from a
single source (e.g., a CSV file) or multiple sources (e.g., docu-
ments and a knowledge base), necessitating joins.

Input to example mapping: the mapping from each input data
unit (e.g., a line in a file) to each learning example for ML.
One-to-many mappings require more complex data preprocess-
ing than one-to-one mappings.

Feature granularity: fine-grained features involve applying ex-
traction logic on a specific piece of the data (e.g., 2nd column)
and are often application-specific, whereas coarse-grained fea-
tures are obtained by applying an operation, usually a standard
DPR technique such as normalization, on the entire dataset.
Learning task type: while classification and structured predic-
tion tasks both fall under supervised learning for having ob-
served labels, structured prediction workflows involve more com-
plex data preprocessing and models; unsupervised learning tasks
do not have known labels, so they often require more qualitative
and fine-grained analyses of outputs.

Census Workflow. This workflow corresponds to a classification
task with simple features from structured inputs from the DeepDive
Github repository [1]. It uses the Census Income dataset [19], with
14 attributes representing demographic information, with the goal
to predict whether a person’s annual income is >50K, using fine-
grained features derived from input attributes. The complexity of
this workflow is representative of use cases in the social and natu-
ral sciences, where covariate analysis is conducted on well-defined
variables. HELIX code for the initial version of this workflow is
shown in Figure 3a).

Genomics Workflow. This workflow is described in Example 1,
involving two major steps: 1) split the input articles into words
and learn vector representations for entities of interest, identified by

joining with a genomic knowledge base, using word2vec [40]; 2)

cluster the vector representation of genes using K-Means to identify
functional similarity. This workflow has minimal data preprocess-
ing with no specific features but involves multiple learning steps.
Both learning steps are unsupervised, which leads to more qualita-
tive and exploratory evaluations of the model outputs. We include
a workflow with unsupervised learning and multiple learning steps
to verify that the system is able to accommodate variability in the
learning task.

Information Extraction (IE) Workflow. This workflow involves
identifying mentions of spouse pairs from news articles, using a
knowledge-base of known spouse pairs, from DeepDive [17]. The



l

Census (Source: [1])

| Genomics (Source: [53]) |

IE (Source: [17])

l

Table 1: Summary of workflow characteristics and support by the systems compared. Grayed out cells indicate that the system in the row does not support the
workflow in the column. v indicates that the implementation is by the original developers of DeepDive/KeystoneML.

MNIST (Source: [56])

Num. Data Source Single Multiple Multiple Single

Input to Example Mapping One-to-One One-to-Many One-to-Many One-to-One
Feature Granularity Fine Grained N/A Fine Grained Coarse Grained
Learning Task Type | Supervised; Classification Unsupervised Structured Prediction | Supervised; Classification
Application Domain Social Sciences Natural Sciences NLP Computer Vision
Supported by HELIX v v v v

Supported by KeystoneML v v vE

Supported by DeepDive v vE

objective is to extract structured information from unstructured in-
put text, using complex fine-grained features such as part-of-speech
tagging. This workflow exemplifies use cases in information ex-
traction, and tests a system'’s ability to handle joins and complex
data preprocessing.

MNIST Workflow. The MNIST dataset [34] contains images of
handwritten digits to be classified, which is a well-studied task in
the computer vision community, from the KeystoneML [56] eval-
uation. The workflow involves nondeterministic (and hence not
reusable) data preprocessing, with a substantial fraction of the over-
all run time spent on L/I in a typical iteration. We include this
application to ensure that in the extreme case where there is little
reuse across iterations, HELIX does not incur a large overhead.

Each workflow was implemented in HELIX, and if supported, in
DeepDive and KeystoneML, with v'* in Table 1 indicating that we
used an existing implementation by the developers of DeepDive or
KeystoneML, with scripts enumerated in [70]. DeepDive has its
own DSL, while KeystoneML’s programming interface is an em-
bedded DSL in Scala, similar to HML. We explain limitations that
prevent DeepDive and KeystoneML from supporting certain work-
flows (grey cells) in Section 6.5.1.

6.3 Running Experiments

Simulating iterative development. In our experiments, we mod-
ify the workflows to simulate typical iterative development by a
ML application developer or data scientist. Instead of arbitrarily
choosing operators to modify in each iteration, we use the iteration
frequency in Figure 3 from our literature study [69] to determine
the type of modifications to make in each iteration, for the specific
domain of each workflow. We convert the iteration counts into frac-
tions that represent the likelihood of a certain type of change. At
each iteration, we draw an iteration type from {DPR, L/I, PPR}
according to these likelihoods. Then, we randomly choose an oper-
ator of the drawn type and modify its source code. For example, if
an “L/I” iteration were drawn, we might change the regularization
parameter for the ML model. We run 10 iterations per workflow
(except NLP, which has only DPR iterations).

Environment. All single-node experiments are run on a server
with 125 GiB of RAM, 16 cores on 8 CPUs (Intel Xeon @ 2.40GHz),
and 2TB HDD with 170MB/s as both the read and write speeds.
Distributed experiments are run on nodes each with 64GB of RAM,
16 cores on 8 CPUs (Intel Xeon @ 2.40GHz), and 500GB of HDD
with 180MB/s as both the read and write speeds. We set the storage
budget in HELIX to 10GB. That is, 10GB is the maximum accumu-
lated disk storage for HELIX OPT at all times during the experi-
ments. After running the initial version to obtain the run time for
iteration 0, a workflow is modified according to the type of change
determined as above. In all four systems the modified workflow is
recompiled. In DeepDive, we rerun the workflow using the com-
mand deepdive run. In HELIX and KeystoneML, we resubmit
a job to Spark in local mode. Although HELIX and KeystoneML
support distributed execution via Spark, DeepDive needs to run on
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a single server. Thus, we compare against all systems on a single
node and additionally compare against KeystoneML on clusters.

6.4 Metrics

We evaluate each system’s ability to support diverse ML tasks
by qualitative characterization of the workflows and use-cases sup-
ported by each system. Our primary metric for workflow execution
is cumulative run time over multiple iterations. When computing
cumulative run times, we average the per-iteration run times over
five complete runs for stability. Note that the per-iteration time
measures both the time to execute the workflow and any time spent
to materialize intermediate results. We also measure memory usage
(results shown in the technical report) and measure storage size to
compare the run time reduction to storage ratio of time-efficient
approaches. Storage is compared only for variants of HELIX since
other systems do not support automatic reuse.

6.5 Evaluation vs. State-of-the-art Systems

6.5.1 Use Case Support

HELIX supports ML workflows in multiple distinct application
domains, spanning tasks with varying complexity in both super-
vised and unsupervised learning.

Recall that the four workflows used in our experiments are in so-
cial sciences, NLP, computer vision, and natural sciences, respec-
tively. Table 1 lists the characteristics of each workflow and the
three systems’ ability to support it. Both KeystoneML and Deep-
Dive have limitations that prevent them from supporting certain
types of tasks. The pipeline programming model in KeystoneML is
effective for large scale classification and can be adapted to support
unsupervised learning. However, it makes fine-grained features
cumbersome to program and is not conducive to structured predic-
tion tasks due to complex data preprocessing. On the other hand,
DeepDive is highly specialized for information extraction and fo-
cuses on supporting data preprocessing. Unfortunately, its learning
and evaluation components are not configurable by the user, limit-
ing the type of ML tasks supported. DeepDive is therefore unable
to support the MNIST and genomics workflows, both of which re-
quired custom ML models. Additionally, we are only able to show
DeepDive performance for DPR iterations for the supported work-
flows in our experiments.

6.5.2 Cumulative Run Time

HELIX achieves up to 19X cumulative run time reduction in
ten iterations over state-of-the-art ML systems.

Figure 5 shows the cumulative run time for all four workflows.
The x-axis shows the iteration number, while the y-axis shows the
cumulative run time in log scale at the <th iteration. Each point rep-
resents the cumulative run time of the first ¢ iterations. The color
under the curve indicates the workflow component modified in each
iteration (purple = DPR, orange = L/I, green = PPR). For example,
the DPR component was modified in the first iteration of Census.
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curve indicates the type of change in each iteration: purple for DPR, orange

for L/I, and green for PPR.

300 (a) Census 300 (b) Genomics
== DPR . DPR
250 1 wu 250 =
©® N PPR m PPR
o 200 = Mat 200 = Mat
£ 150 150
0§: 100 100
50 50
0 - - - om 0 . o
0 2 4 6 8 2 4 6
800 (c) NLP 140 (d) MNIST
700 EEN DPR 1pp EEE DPR
B 600 =3 u = u
~ = PPR 100 mum PPR
g igg . Mat. 80 EEE Mat.
= 60
300
5 200 40
o
~AninEn =
0 0 —_— -
0o 1 2 3 4 5 0 2 4 6 8
Iterations Iterations

Figure 6: Run time breakdown by workflow component and materialization
time per iteration for HELIX.

Figure 6 shows the breakdown by workflow components and mate-
rialization for the individual iteration run times in HELIX, with the
same color scheme as in Figure 5 for the workflow components and
gray for materialization time.

Census. As shown in Figure 5(a), the census workflow has the
largest cumulative run time gap between HELIX OPT and the com-
petitor systems—HELIX OPT is 19X faster than KeystoneML as
measured by cumulative run time over 10 iterations. By materializ-
ing and reusing intermediate results HELIX OPT is able to substan-
tially reduce cumulative run-time relative to other systems. Fig-
ure 6(a) shows that 1) on PPR iterations HELIX recomputes only
the PPR; 2) the materialization of L/I outputs, which allows the
pruning of DPR and L/I in PPR iterations, takes considerably less
time than the compute time for DPR and L/I; 3) HELIX OPT reruns
DPR in iteration 5 (L/I) because HELIX OPT avoided materializ-
ing the large DPR output in a previous iteration. For the first three
iterations, which are DPR (the only type of iterations DeepDive
supports), the 2x reduction between HELIX OPT and DeepDive is
due to the fact that DeepDive does data preprocessing with Python
and shell scripts, while HELIX OPT uses Spark. While both Key-
stoneML and HELIX OPT use Spark, KeystoneML takes longer on
DPR and L/I iterations thanHELIX OPT due to a longer L/I time in-
curred by its caching optimizer’s failing to cache the training data
for learning.
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Figure 7: a) Census and Census 10x cumulative run time for HELIX and
KeystoneML on a single node; b) Census 10x cumulative run time for HE-
L1X and KeystoneML on different size clusters.

Genomics. In Figure 5(b), HELIX OPT shows a 3x speedup over
KeystoneML for the genomics workflow. The materialize-nothing
strategy in KeystoneML clearly leads to no run time reduction in
subsequent iterations. HELIX OPT, on the other hand, shows a per-
iteration run time that is proportional to the number of operators
affected by the change in that iteration. Figure 6(b) shows that 1)
in PPR iterations HELIX OPT has near-zero run time, enabled by a
small materialization time in the prior iteration; 2) one of the ML
models takes considerably more time, and HELIX OPT is able to
prune it in iteration 4 since it is not changed.

NLP. Figure 5(c) shows that the cumulative run time for both Deep-
Dive and HELIX OPT increases linearly with iteration for the NLP
workflow, but at a much higher rate for DeepDive than HELIX OPT.
This is due to the lack of automatic reuse in DeepDive. The first op-
erator in this workflow is a time-consuming NLP parsing operator,
whose results are reusable for all subsequent iterations. While both
DeepDive and HELIX OPT materialize this operator in the first it-
eration, DeepDive does not automatically reuse the results. HELIX
OPT, on the other hand, consistently prunes this NLP operation in
all subsequent iterations, as shown in Figure 6(c), leading to large
run time reductions in iterations 1-5 and thus a large cumulative run
time reduction.

MNIST. Figure 5(d) shows the cumulative run times for the MNIST
workflow. As mentioned above, the MNIST workflow has non-
deterministic data preprocessing, which means any changes to the
DPR and L/I components prevents safe reuse of any intermediate
result. However, iterations containing only PPR changes can reuse
intermediates for DPR and L/I had they been materialized previ-
ously. Furthermore, we found that the DPR run time is short but
cumulative size of all DPR intermediates is large. Thus, materi-
alizing all these DPR intermediates would incur a large run time
overhead. KeystoneML, which does not materialize any intermedi-
ate results, shows a linear increase in cumulative run time due to no
reuse. HELIX OPT, on the other hand, only shows slight increase
in runtime over KeystoneML for DPR and L/I iterations because it
is only materializing the L/I results on these iterations, not the non-
reusable, large DPR intermediates. In Figure 6(d), we see 1) DPR
operations take negligible time, and HELIX OPT avoids wasteful
materialization of their outputs; 2) the materialization time taken
in the DPR and L/I iterations pays off for HELIX OPT in PPR iter-
ations, which take negligible run time due to reuse.

6.5.3 Scalability vs. KeystoneML

Dataset Size. We test scalability of HELIX and KeystoneML with
respect to dataset size by running the ten iterations in Figure 5(a)
of the Census Workflow on two different sizes of the input. Census
10x is obtained by replicating Census ten times in order to preserve
the learning objective. Figure 7(a) shows run time performance of
HELIX and KeystoneML on the two datasets on a single node. Both
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Figure 8: Fraction of states in Sy, Sj, S as determined by Algorithm 1 for
the Census and Genomics workflows for HELIX OPT and HELIX AM.

yield 10x speedup over the smaller dataset, scaling linearly with
input data size, but HELIX continues to dominate KeystoneML.

Cluster. We test scalability of HELIX and KeystoneML with re-
spect to cluster size by running the same ten iterations in Figure 5(a)
on Census 10x described above. Using a uniform set of machines,
we create clusters with 2, 4, and 8 workers and run HELIX and Key-
stoneML on each of these clusters to collect cumulative run time.

Figure 7(b) shows that 1) HELIX has lower cumulative run time
than KeystoneML on the same cluster size, consistent with the sin-
gle node results; 2) KeystoneML achieves & 45% run time reduc-
tion when the number of workers is doubled, scaling roughly lin-
early with the number of workers; 3) From 2 to 4 workers, HELIX
achieves up to 75% run time reduction 4) From 4 to 8 workers, HE-
LIX sees a slight increase in run time. Recall from Section 3 that the
semantic unit data structure in HML allows multiple transformer
operations (e.g., indexing, computing discretization boundaries) to
be learned using a single pass over the data via loop fusion. This re-
duces the communication overhead in the cluster setting, hence the
super linear speedup in 3). On the other hand, the communication
overhead for PPR operations outweighs the benefits of distributed
computing, hence the slight increase in 4).

6.6 Evaluation vs. Simpler HELIX Versions

HELIX OPT achieves the lowest cumulative run time on all
workflows compared to simpler versions of HELIX. HELIX AM
often uses more than 30x the storage of HELIX OPT when able
to complete in a reasonable time, while not being able to com-
plete within 50x of the time taken by HELIX OPT elsewhere.
HELIX NM takes up to 4 the time taken by HELIX OPT.

Next, we evaluate the effectiveness of Algorithm 2 at approxi-
mating the solution to the NP-hard OPT-MAT-PLAN problem. We
compare HELIX OPT that runs Algorithm 2 against: HELIX AM
that replaces Algorithm 2 with the policy to always materialize ev-
ery operator, and HELIX NM that never materializes any opera-
tor. The two baseline heuristics present two performance extremes:
HELIX AM maximizes storage usage, time for materialization, and
the likelihood of being able to reuse unchanged results, whereas
HELIX NM minimizes all three quantities. HELIX AM provides
the most flexible choices for reuse. On the other hand, HELIX NM
has no materialization time overhead but also offers no reuse.

Figures 9(a), (b), (e), and (f) show the cumulative run time on
the same four workflows as in Figure 5 for the three variants.

HELIX AM is absent from Figures 9(e) and (f) because it did
not complete within 50X the time it took for other variants. The
fact that HELIX AM failed to complete for the MNIST and NLP
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Figure 9: Cumulative run time and storage use against materialization
heuristics on the same four workflows as in Figure 5.

workflows demonstrate that indiscriminately materializing all in-
termediates can cripple performance. Figures 9(e) and (f) show
that HELIX OPT achieves substantial run time reduction over HE-
LIX NM using very little materialization time overhead (where the
red line is above the yellow line).

For the census and genomics workflows where the materializa-
tion time is not prohibitive, Figures 9(a) and (b) show that in terms
of cumulative run time, HELIX OPT outperforms HELIX AM, which
attains the best reuse as explained above. We also compare the stor-
age usage by HELIX AM and HELIX NM for these two workflows.
Figures 9(c) and (d) show the storage size snapshot at the end of
each iteration. The x-axis is the iteration numbers, and the y-axis
is the amount of storage (in KB) in log scale. The storage use for
HELIX NM is omitted from these plots because it is always zero.

We find that HELIX OPT outperforms HELIX AM while using
less than half the storage used by HELIX AM for the census work-
flow in Figure 9(c) and 5 the storage of HELIX AM for the ge-
nomics workflow in Flgure 9(d). Storage is not monotonic because
HELIX purges any previous materialization of original operators
prior to execution, and these operators may not be chosen for ma-
terialization after execution, thus resulting in a decrease in storage.

Furthermore, to study the optimality of Algorithm 2, we com-
pare the distribution of nodes in the prune, reload, and compute
states Sp, Si, Sc between HELIX OPT and HELIX AM for work-
flows with HELIX AM completed in reasonable times. Since ev-
erything is materialized in HELIX AM, it achieves maximum reuse
in the next iteration. Figure 8 shows that HELIX OPT enables the
exact same reuse as HELIX AM, demonstrating its effectiveness on
real workflows.

Overall, neither HELIX AM nor HELIX NM is the dominant
strategy in all scenarios, and both can be suboptimal in some cases.

7. RELATED WORK



Many systems have been developed in recent years to better sup-
port ML workflows. We begin by describing ML systems and other
general workflow management tools, followed by systems that tar-
get the reuse of intermediate results.

Machine Learning Systems. We describe machine learning sys-

tems that support declarative programming, followed by other general-

purpose systems that optimize across frameworks.

Declarative Systems. Due to the challenges in developing ML work-
flows, there has been recent efforts to make it easier to do so declar-
atively. Boehm et al. categorize declarative ML systems into three
groups based on the usage: declarative ML algorithms, ML li-
braries, and declarative ML tasks [11]. Systems that support declar-
ative ML algorithms, such as TensorFlow [4], SystemML [22], Op-
tiML [58], ScalOps [64], and SciDB [57], allow ML experts to
program new ML algorithms, by declaratively specifying linear al-
gebra and statistical operations at higher levels of abstraction. Al-
though it also builds a computation graph like HELI1X, TensorFlow
has no intermediate reuse. TensorFlow’s lower level linear algebra
operations are not conducive to data preprocessing. HELIX handles
reuse at a higher level than TensorFlow ops. ML libraries, such
as Mahout [44], Weka [25], GraphLab [35], Vowpal Wabbit [33],
MLIib [39] and Scikit-learn [48], provide simple interfaces to op-
timized implementations of popular ML algorithms. TensorFlow
has also recently started providing TFLearn [16], a high level ML
library targeted at deep learning. Systems that support declarative
ML tasks allow application developers with limited ML knowledge
to develop models using higher-level primitives than in declarative
ML algorithms. HELIX falls into this last group of systems, along
with DeepDive [75, 17] and KeystoneML [56].

Declarative ML task systems, like HELIX, can seamlessly make
use of improvements in ML library implementations, such as ML-
lib [39], CoreNLP [37] and DeepLearning4j [61], within UDF calls.
Unlike declarative ML algorithm systems, that are targeted at ML
experts and researchers, these systems focus on end-users of ML.

Systems that Optimize Across Frameworks. These systems tar-
get a broad range of use-cases, including ML. Weld [45] and Tu-
pleware [15] optimize UDFs written in different frameworks by
compiling them down to a common intermediate representation.
Declarative ML task systems like HELIX can take advantage of the
optimized UDF implementations; unlike HELIX, these systems do
not benefit from seamless specification, execution, and end-to-end
optimizations across workflow components that come from a uni-
fied programming model.

Systems for Optimizing Data Preprocessing. The database commu-
nity has identified various opportunities for optimizing DPR. Sev-
eral approaches identify as a key bottleneck in DPR and optimize
it [31, 13, 43, 32]. Another direction aims at reducing the man-
ual effort involved in data cleaning and feature engineering [S1, 76,
30, 5, 6]. All of these optimizations are orthogonal to those used
by HELIX, which targets end-to-end iterative optimizations.

ML and non-ML Workflow Management Tools. Here we dis-
cuss ML workflow systems, production platforms for ML, batch
processing workflow systems, and systems for scientific workflows.

ML Workflow Management. Prior tools for managing ML work-
flows focus primarily on making their pipelines easier to debug.
For example, Gestalt [47] and Mistique [62] both tackle the prob-
lem of model diagnostics by allowing users to inspect intermedi-
ate results. The improved workflow components in these systems
could be easily incorporated within HELIX.

ML Platforms-as-Services. A number of industry frameworks [9,
20, 8, 2, 3, 73], attempt to automate typical steps in deploying ma-
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chine learning by providing a Platform-as-a-Service (PaaS) captur-
ing common use cases. Instead, HELIX is not designed to reduce
manual effort of model deployment, but rather model development.

General Batch Processing Workflow Systems. A number of com-
panies have implemented workflow management systems for batch
processing [10, 59]. These systems are not concerned with run-
time optimizations, and rather provide features useful for managing
large-scale workflow complexity.

Scientific Workflow Systems. Some systems address the signifi-
cant mental and computational overhead associated with scientific
workflows. VisTrails [12] and Kepler [36] add provenance and
other metadata tracking. Other systems attempt to map scientific
workflows to cluster resources [71]. One such system, Pegasus [18],
also identifies reuse opportunities when executing workflows. The
optimization techniques employed by all systems discussed lever-
age reuse in a simpler manner than does HELIX .

Intermediate Results Reuse. The OEP/OMP problems within
HELIX are reminiscent of classical work on view materialization in
database systems [14], but operates at a more coarse-grained level
on black box operators. COLUMBUS [76] focuses on caching fea-
ture columns for feature selection exploration within a single work-
flow. ReStore [21] manages reuse of intermediates across dataflow
programs written in Pig [42], while Nectar [24] does so across
DryadLINQ [72] workflows. Jindal et al. [26] study SQL subex-
pression materialization within a single workflow with many sub-
queries. In the same vein, Mistique [62] and its spiritual predeces-
sor Sherlock [63] use historical usage as part of their cost models
for adaptive materialization. However, the cost models and algo-
rithms proposed in these systems for deciding what to reuse do not
consider the operator/subquery dependencies in the DAG and make
decisions for each operator independently based on availability, op-
erator type, size, and compute time. We have shown in Figure 4 that
decisions can have cascading effects on the rest of the workflow.

8. CONCLUSIONS AND FUTURE WORK

We presented HELIX, a declarative system aimed at accelerat-
ing iterative ML application development. In addition to its user
friendly, flexible, and succinct programming interface, HELIX tack-
les two major optimization problems, namely OPT-EXEC-PLAN
and OPT-MAT-PLAN, that together enable cross-iteration optimiza-
tions resulting in significant run time reduction for future iterations.
We devised a PTIME algorithm to solve OPT-EXEC-PLAN by us-
ing a reduction to MAX-FLOW. We showed that OPT-MAT-PLAN
is NP-HARD and proposed a light-weight, effective heuristic for
this purpose. We evaluated HELIX against DeepDive and Key-
stoneML on workflows from social sciences, NLP, computer vi-
sion, and natural sciences that vary greatly in characteristics to test
the versatility of our system. We found that HELIX supports a va-
riety of diverse machine learning applications with ease and pro-
vides up to a 19x cumulative run time speedup relative to base-
lines. While HELIX is implemented in a specific way, the tech-
niques and abstractions presented in this work are general-purpose;
other systems can enjoy the benefits of HELIX’s optimization mod-
ules through simple wrappers and connectors.

In future work, we aim to further accelerate iterative workflow
development via introspection and querying across workflow ver-
sions over time, automating trimming of redundant workflow nodes,
as well as auto-suggestion of workflow components to aid work-
flow development by novices.
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