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ABSTRACT
We revisit the fundamental problem of sorting objects using crowd-
sourced pairwise comparisons. Prior work either treats these com-
parisons as independent tasks—in which case the resulting judg-
ments may end up being inconsistent, or fails to capture the accu-
racies of workers, or di�culties of the pairwise comparisons—in
which case the resulting judgments may end up being consistent
with each other, but ultimately more inaccurate. We adopt a holistic
approach that constructs a graph across the set of objects respecting
consistency constraints. Our key contribution is a novel method
of encoding di�culty of comparisons in the form of constraints
on edges. We couple that with an iterative E-M-style procedure to
uncover information about latent variables and constraints, along
with the graph structure. We show that our approach predicts edge
directions as well as di�culty values more accurately than baselines
on both real and simulated data, across graphs of various sizes.
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1 INTRODUCTION
Crowdsourcing is an e�ective means to collect �ne-grained training
data to build accurate machine learning models. One useful type of
training data often collected is a sort order or a partial sort of a set of
objects, assembled by having crowd workers compare pairs of ob-
jects at a time. Sorting is useful in many settings, including search
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engine result evaluation and sentiment analysis in text process-
ing [2], and evaluating material properties (such as re�ectance and
shading) [17] and constructing depth maps in computer vision [3].

Unfortunately, there are three aspects that make crowd-powered
sorting di�cult:

Inconsistencies. Crowd workers may provide answers that are
inconsistent with each other, and that are internally inconsistent
with their own answers, making it hard to reconcile these answers.
For example, a given worker may say that a > b, b > c , and c > a,
where > indicates a preference for the former object over the latter.

Abilities. Crowd workers have di�erent degrees of ability or accu-
racies —and these may not be known up-front.

Di�culties. Some pairwise comparisons may be easier than others:
for example comparing an object that is close to the “top” with an
object that is close to the “bottom” is an easy comparison, with a
smaller chance of mistakes, while objects that are “close” to each
other in the sort order may be harder to compare with each other.

Prior work in crowdsourcing has failed to address all three aspects.

Expectation-Maximization (EM) style approaches without Resolution
of Inconsistencies. One approach to construct a sort order is to
treat each pairwise comparison as an independent binary question,
and then applying an iterative procedure [10, 13, 14, 16] to learn
the di�culties of questions, and the accuracies of crowd workers.
Unfortunately, while this approach identi�es a consensus answer
for each pairwise comparison, it does not deal with the aspect of
ensuring consistencies across answers, giving rise to a sort order.

Sorting without Inference of Accuracies and Di�culties. There has
been a lot of work on crowd-powered sorting, e.g., [1, 4, 5, 7, 9,
11, 12, 15]. Most papers in this area assume that accuracies are
�xed across crowd workers, and that the di�culties are �xed across
comparisons. Even with restrictive assumptions, sorting ends up
being NP�H���, via feedback arc-set [7].

Our Approach. Instead, we adopt a holistic approach for crowd-
powered sorting that identi�es partial sort orders using pairwise
comparisons, by modeling it as a graph problem with votes on edge
directions—then, our problem involves identifying the “most likely”
directed acyclic graph (DAG) using these votes.

We explicitly model the notion of di�culty of edges, as unknown
edge properties, and use this notion to obtain the most likely partial
sort order that is internally consistent. In particular, if the under-
lying “true” sort order is a ! b ! c , our constraints will indicate
that the di�culty of comparing a and c can be only as hard as com-
paring a and b, or b and c . The eventual DAG that we identify will
prioritize agreement with crowd workers for internal consistency
on easier edges, while possibly disagreeing with crowd workers
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on more di�cult edges. These constraints allow us to encode addi-
tional information about the problem, leading to a more accurate
solution.

We �nd the most likely DAG using a modi�ed version of the EM
algorithm. In the expectation step, we �nd the maximum likelihood
edge direction for each edge in the graph, using edge di�culty
information. We then use a greedy algorithm to �nd the maximum
likelihood DAG from the set of determined edges, ensuring that
the DAG is internally consistent at each iteration. In the maximiza-
tion step, we maximize the likelihood of the edge di�culties using
constrained convex optimization, using the constraints on edge
di�culties imposed by the graph structure. We also demonstrate
how our solution can be extended to model crowd abilities.
Our Contributions.

(1) Wemodel the problem as one of �nding amaximum-likelihood
partial order, corresponding to a maximum-likelihood DAG.

(2) We propose an EM-based solution that can iteratively iden-
tify this maximum-likelihood DAG over undirected graphs.

(3) We propose a greedy algorithm that ensures that the pre-
dicted DAGs are internally consistent.

(4) We develop a novel method to encode information about
graph structure using constraints on edge di�culties, leading
to increased accuracy.

(5) We demonstrate that our approach results in up to 7.91%
improvement in the accuracy of sorting, as well as up to a
45.37% improvement in the entropy and 4.45% improvement
in the accuracy of predicted di�culty values of comparisons.

The rest of this paper is organized as follows: we describe our prob-
lem statement in Section 2, our modi�ed EM solution in Section 3,
and our experiments comparing against two baselines on simulated
and real data in Section 4.

2 PROBLEM SETUP
Given crowdsourced pairwise comparisons between a set of items,
our goal is to �nd a partial order that is consistent with most crowd
responses. Typically, the more challenging pairwise comparisons
result in more disagreement amongst crowd workers, as well as
lower con�dence in the determined order. Ideally, our solution
should agree with the crowd on easy comparisons, while possibly
disagreeing on di�cult comparisons so as to determine an internally
consistent partial order.

Graph Model. We model this problem as a graph, wherein we map
items to vertices and pairwise comparisons between items to di-
rected edges in the graph. Edges are directed from the ‘less than’
vertex to the ‘greater than’ vertex, and there can be multiple edges
between any given pair of vertices. Inconsistencies in the crowd
often result in cycles in the graph, therefore our new goal is to �nd
a Directed Acyclic Graph (DAG) over the graph, such that the DAG
is maximally consistent with the crowd.

In general, DAGs are desirable because cycles suggest inconsis-
tencies in the ordering. A cycle between vertices �1,�2,�3 means
that �1 < �2, �2 < �3 and �3 < �1, simultaneously, which does not
re�ect properties of real-world applications.

Di�iculty Constraints. Consider any three vertices�1,�2,�3 belong-
ing to the graph, with the true edges e1, e2, e3 between �1 ! �2,

(a) Simple loop (b) Longer loop

Figure 1: Examples of di�culty constraints on loops.

�2 ! �3 and �1 ! �3 (as shown in Figure 1a). Then, the di�culty
of edge e3 will be less than the di�culty of both e1, e2. This is be-
cause intuitively, the di�culty of comparing a pair of items that
are far apart is less than the di�culty of comparing nearby items.
The di�erence in the ranks of �1 and �3 is obviously greater than
that between �1,�2 and �2,�3, making the comparison between
�1,�3 easier than the comparison between �1,�2 and �2,�3. This
relationship allows us to impose constraints on the edge di�culties,
and provides us with extra information that we utilize to reach a
more accurate solution.

We can easily extend this model to add di�culty constraints
for loops with more than 3 vertices. For example, in Figure 1b, we
demonstrate how di�culty constraints are enumerated for a closed
loop with �ve vertices. Here, ei are the actual edges present in the
graph, and �i are introduced as psuedo-edges for the purpose of
creating triangle inequality constraints as shown in Figure 1a. Thus,
the loop below can be decomposed into 3 loops of the form shown
in Figure 1a, namely �1 ��2 ��3,�1 ��3 ��4 and �1 ��4 ��5. We
can now impose constraints on these loops as before.

2.1 Formal Problem Statement
We de�ne our crowd-sorting problem formally as follows: given
(1) a set of items X = {x1, . . . ,xn }, and (2) a set of crowd responses
on pairwise comparison tasks between xi ,x j 2 X , we wish to �nd
the most probable partial ordering on X . This is equivalent to the
problem of �nding a DAG within an undirected graphG , where the
n verticesV ofG represent X , and them edges E ofG represent the
pairwise comparisons in X .

2.1.1 Di�iculty Model. The di�culty dj of an edge in the graph
represents how likely the workers are to be correct about the di-
rection of the edge. The di�culty values dj 2 [0, 1], where dj = 0
implies the task is misleading and dj = 1 implies that the task is
extremely easy. At dj = 0.5, all workers are randomly guessing.

2.1.2 Di�iculty Constraints. Formally, we impose the following
constraints on all of thedi ’s in the graph: For all closed loops inG of
the form in Figure 1a, d3  min(d1,d2). We encode this constraint
because e3 compares two items farther apart, while e1 and e2 is
a comparison between two nearby items. These constraints are
introduced for all closed loops in the graph.

2.1.3 Error Model. We begin with a simple error model; we gener-
alize to take into account worker accuracies in Section 3.2.2. Let zj
represent the true edge direction of an edge ej , andwk, j represent
the response of the kth worker on ej . Then, P (w j,k = zj ) = 1 � dj .
Here, zj 2 {left-direction (l ), right-direction (r )}.



3 EXPECTATION MAXIMIZATION SOLUTION
We �rst discuss two simpler methods for solving this problem: (1)
EM. This method adapts the EM methodology commonly used
in crowdsourcing tasks [6], without trying to infer a DAG and
therefore allows the existence of cycles. (2)GraphEM.Thismethod
extends prior sorting work, and uses Expectation-Maximization
(EM) to infer the DAG without using di�culty constraints. More
speci�cally, the E-step of the solution predicts the most probable
DAG by ensuring no cycles exist, and the M-step �nds the di�culty
estimates of each edge.

Comparing against the EM and Graph-EM baselines allows us to
study the importance of the cycle breakingmethod and the di�culty
constraints respectively.

Our Approach.We now present our EM solution as follows. We
call our approach Constrained Graph EM (C-GEM).

(1) Initialize dj 2 [0, 1] 8j such that it is a valid solution.
(2) E-Step: Find the directed acyclic graph overG by �nding the

most probable edge directions for all edges in G, and then
obtaining a DAG using cycle-breaking (described below).

(3) M-Step: Maximize (over dj ) the likelihood of the worker
responses given the DAG.

3.1 E-Step
LetG 0 represent a DAG over the vertices of the undirected graphG .
The naive estimation of the most probable DAG Ĝ

0 overG requires
enumerating all possible DAGs, which is exponential. Therefore, we
determine Ĝ 0 by decomposing the underlying graph G into edges,
and then �nding the most probable direction of each edge (ẑj ). Let
the possible directions of the edges be represented by l , r , then
ẑj = argmaxzj=l,r p (zj |dj ,wk, j ) 8 k , where dj 2 [0, 1].

Given ẑj , we can obtain a directed graph over G. However, in
most cases the directed graph thus obtained will not be acyclic. To
obtain a DAG version of the Ĝ 0, we need to reverse a set of edges
so as to break the cycles present in Ĝ

0, while still maintaining a
high likelihood of Ĝ 0. Therefore, to break a cycle, we reverse edges
in the cycle on the basis of p (ẑj |dj ,w j ), so that after cycle breaking,
the sum of p (ẑj |dj ,w j ) for all of the edges in the cycle is maximum.

This problem can be shown to be NP���������, using the min-
imum feedback arc problem, once the probability of each edge is
set as 1. However, many tractable approximation algorithms exist
for this problem. Below, we discuss our approximation for cycle-
breaking to obtain a DAG over G.

3.1.1 Cycle-Breaking. We use a greedy strategy to perform cycle
breaking. We sort the edges of the graph based on their con�-
dence values (from the E-step), and then incrementally construct
an acyclic graphG from Ĝ

0 by selecting the most con�dent edge in
Ĝ

0, and adding it toG if it doesn’t create a cycle inG , and adding its
reverse in case it forms a cycle. It can be shown that this approach
converges to a DAG.

3.2 M-Step
In this step, we maximize the log-likelihood of the observed dataset
D (i.e. worker responses on edges) given G over E.

LL(D|G,d1, . . . ,dm ) =
mX

j=1
� j log(1 � dj ) + �j log(dj )

where � j and �j are the numbers of workers that give labels agree-
ing and disagreeing with zj respectively.

While maximizing the log-likelihood of the data, we ensure that
the constraints on the di�culties of edges are met. Since LL(D;G,d )
is convex, and each constraint on dj ’s is linear, we can use a convex
solver to �nd the ML estimate of dj ’s. The constraints are imposed
from loops in G, as described below.

3.2.1 Enumerating Di�iculty Constraints. We only enumerate di�-
culty constraints over those loops that are in the cycle basis of G.
The cycle basis of a graph is de�ned as the minimal set of cycles (or
loops) that allows every other cycle in the graph to be expressed as
the disjunctive union of cycles in the basis [8]. It is easy to see that
if a set of di�culty constraints is valid on two cycles in the cycle
basis, then the constraints from the cycle found using the symmet-
ric di�erence of the two cycles can be derived from the previous
set of constraints. Therefore, we only need to �nd constraints on
the loops in the cycle basis ofG . We use the following algorithm to
enumerate di�culty constraints.

(1) Find the cycle basis of G using the following procedure:
(a) Find a Minimum Spanning TreeM of G.
(b) For each edge e not inM , �nd the cycle c that e forms in

M . Such a cycle must exist, otherwise e would have been
a part ofM .

(c) Add c to the cycle basis of G.
(2) For each cycle c in the cycle basis, perform the following:
(a) Find the source and sink nodes of the cycle, using the edge

directions predicted in the E step of the EM algorithm.
(b) Since inG 0, the edge directions over c do not form a cycle,

there must be 2 paths going from the source node to the
sink node in c . These paths will provide us with the longer
edges and the shorter edges. Use these paths to enumerate
the di�culty constraints as in Figure 1a.

3.2.2 Extension for Worker Accuracies. Let ak represent the accu-
racy of worker k . We can extend our solution to handle varying
worker accuracies by substituting any error model (that is a func-
tion of ak and dj ) in LL(D;G,d ), as long as LL(D;G,d ) remains
convex. As an example, P (w j,k = zj ) = 1� (dj )ak is one such error
model. For this model, ak 2 [0, 1], where ak = 1 and ak = 0 refer
to a highly skilled and unskilled worker respectively.

4 EXPERIMENTS
We compare our algorithmwith the baselines on 4 metrics: (1) Edge
Direction Accuracy (Acc.): the fraction of correctly predicted to
ground truth edge directions (higher is better); (2) Edge Direction
Cross Entropy Loss (X-Entropy Loss) between the con�dence
values of each predicted and ground truth edge (lower is better);
(3) Edge Di�culty Error:MSE between the predicted and ground
truth edge di�culty values (can’t be used for the real dataset, since
no ground truth values exist) (lower is better); and (4) Percentage



(a) Edge Direction Accuracy. (b) Cross Entropy Loss. (c) Edge Di�culty Error. (d) Fraction of Valid DAGs.

Figure 2: Comparison of Our Method with Baselines on Simulated Data.

of Valid Graphs (% Valid): how many predicted graphs are acyclic,
and therefore are acceptable solutions (higher is better).

Simulated Experiments. We test our method on simulated random
graphs of varying sizes. We randomly sample the di�culty of each
edge, such that the ground truth di�culties sampled are consistent
with the di�culty constraints. We ensure that 10% of the edges are
misleading and have dj < 0.5. We randomly sample the responses
of crowd workers on each edge using the error model described
in Section 2.1.3. We collect 11 simulated crowd responses for each
edge. For each graph size, we repeat the experiment 10 times, and
report the average. Our results are shown in Figure 2.

We can see that C-GEM outperforms both baselines. The perfor-
mance gain using our method is more pronounced for larger graphs.
Moreover, the EM baseline frequently generates graphs that are
in fact not DAGs, which is an unacceptable solution for the types
of real world problems we wish to solve. In contrast, our method
always predicts valid DAGs.

Our method is expected to perform well on larger graphs since
larger graphs result in more di�culty constraints, allowing our
method to leverage additional information about the graph struc-
ture. Additionally, there are not enough edges in smaller graphs ( 7
vertices) for there to be too much opportunity for improvement.

Experiments on Real Data. In this experiment, our objective is to
sort neighboring pixels in an image on the basis of their depth. This
task is a signi�cant intermediate step in inferring dense depth maps
for images using pairwise comparisons [3, 17]. In general, depth
estimation for RGB images is an important problem where human
annotations can be valuable.

For each image, we ask a crowd worker to compare 2 pixels on
the image, and sort them on the basis of their relative depth. We
sample 16 such points, and create 52 such comparisons between
them. We repeat this for 18 images selected from the NYU Depth
Dataset. Our results are presented in Table 1. We can see that C-
GEM outperforms both the baselines on edge direction accuracy
as well as cross entropy loss. This implies that not only are our
answers more accurate, we also have higher con�dence in our

Table 1: Experimental results on real data.

Method Acc. X-Ent. Loss % Valid
EM 0.728 1.888 0%
Graph-EM 0.722 1.866 100%
Our Method 0.771 1.571 100%

responses. Moreover, our method always predicts valid solutions
by generating DAGs, unlike the EM baseline.

5 CONCLUSION
We presented a method for determining partial sort orders for a set
of items. Our main contributions are a novel method of performing
EM that uses information from the graph structure, as well as a cycle
breaking algorithm. We showed that our method outperformed
baselines on prior work on all metrics.
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