
Accelerating Human-in-the-loop Machine Learning:
Challenges and Opportunities

Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, Aditya Parameswaran
University of Illinois, Urbana-Champaign (UIUC)

{dorx0,litianm2,jialin2,smacke,ssong18,adityagp}@illinois.edu

ABSTRACT
Development of machine learning (ML) workflows is a tedious
process of iterative experimentation: developers repeatedly make
changes to workflows until the desired accuracy is attained. We
describe our vision for a “human-in-the-loop” ML system that accel-
erates this process: by intelligently tracking changes and intermedi-
ate results over time, such a system can enable rapid iteration, quick
responsive feedback, introspection and debugging, and background
execution and automation. We finally describe Helix, our prelimi-
nary attempt at such a system that has already led to speedups of
upto 10× on typical iterative workflows against competing systems.

1 INTRODUCTION
Due to the unpredictable nature of machine learning (ML) model
performance, developing ML applications relies on numerous itera-
tions of trial-and-error—a step-by-step process of experimentation1.
The development process often begins with an initial workflow
containing simple data pre-processing and modeling steps. Then,
based on analysis of the resulting model, the developer modifies the
workflow to improve performance. Examples of such modifications
include adding/removing features, introducing new data sources,
switching from logistic regression to deep neural nets, adding regu-
larization to the model, and changing the evaluation metrics. Many
such iterations take place between the conception and the deploy-
ment of the MLmodel, with the developer as an integral component.
We model this process in Figure 1, with the dotted box representing
one instance of the ML workflow, with the developer “in-the-loop”
using the end results as cues for modifications.

Data
Preprocessing ML Results

Data
Preprocessing Learning Models

Inference

Experiments

Results

Figure 1: Development Cycle.
Unfortunately, most work on ML systems has focused on specifi-

cation and acceleration of the one instance of a given ML workflow
(i.e., the dotted box in Figure 1), without reasoning about the itera-
tive “human-in-the-loop” aspect. By doing so, such systems have a
number of deficiencies:

• Iterative reuse: Developers wait for minutes to hours even on
small changes to the workflow. On iterative changes (e.g., chang-
ing a feature or regularization), developers rerun workflows
from scratch, since it is too cumbersome to identify and reuse
intermediate results.

• Introspection between iterations: Developers are not able to
explain, debug, or understand performance. Developers do not

1www.nytimes.com/2014/08/18/technology/ for-big-data-scientists-hurdle-to-insights-
is-janitor-work.html

understand the impact of changes they made to accuracy, and
are not able to debug performance across the ML workflow.

• Leveraging think-time between iterations: ML systems do
not utilize think-time for background processing. Traditional ML
systems do not take advantage of coding or thinking time for
background processing, such as trying out workflow alterna-
tives (e.g., changing regularization, training, or doing automated
feature selection).

• Reducing iterative feedback latency: ML systems do not op-
timize for quick feedback to developers. Traditional ML systems
do not provide rapid, approximate feedback that allows devel-
opers to make decisions before the computation is carried to
full completion.

• Automated cues for iterative changes: ML systems do not
provide novice developers cues for subsequent changes. Traditional
ML systems do not provide suggestions for next steps in the
iterative evolution of the workflow.

In this paper, we describe our vision for an accelerated human-
in-the-loop machine learning (HILML) system that is targeted at
eliminating the deficiencies identified above. The ultimate goal of
a HILML system is to shorten the time to obtain deployable models
from scratch. In addition, since we are focusing on the humans-
in-the-loop, we also aim to support declarative specification of
ML workflows, targeting novice users of ML, while also providing
benefits to expert users.

We also present Helix, our first attempt at a declarative, general-
purpose HILML system aimed at accelerating iterative ML applica-
tion development. We briefly describe the programming interface
and system architecture, and demonstrate the effectiveness ofHelix
with preliminary results on multiple applications.
RelatedWork. Prior work has recognized the importance of study-
ing many aspects of HILML, such as iterative model building [12],
model management both in general [13] and specifically tailored for
deep learning [7], dataset versioning [11], and model sharing [6].
We complement existing work with a fresh set of new research
challenges. In the general space of ML systems, a number of recent
work focus on using declarative programming to improve usabil-
ity [4, 10, 16]. While some systems aim to support end-to-end ML
in a general setting [4, 5, 8, 10], many focus on a special component
of the process, such as model selection [9], feature selection [17],
and feature engineering [16]. Unlike Helix, these systems are fo-
cused on optimization in the single-execution setting, neglecting
to consider challenges and opportunities associated with iterative
development.

2 OPTIMIZING HUMAN-IN-THE-LOOP ML
In this section, we first describe a concrete, unifying model to
ground our discussion and describe prerequisites that any HILML

ar
X

iv
:1

80
4.

05
89

2v
1

 [c
s.D

B
]

16
 A

pr
 2

01
8

system must obey. Then, in the next subsection, we describe con-
crete research directions that are enabled by this unifying model.

2.1 Prerequisites: Usability and Model
Usability: Declarativity and Generalization. A basic require-
ment for HILML systems is that it can generalize across use-cases
(spanning applications in the social and natural sciences, for exam-
ple), workflow design decisions (from supervised to unsupervised
learning, and from linear regression to deep neural nets, for exam-
ple), and expertise levels (from novice to expert). The latter concern
is especially important given the demand for ML and AI in a host
of new emerging data-driven disciplines. To do so, such a system
must accept a declarative or semi-declarative specification (such
as recent tools [3, 10, 16]), while also be able to embed arbitrary
imperative code.
Workflow DAGModel. Given this declarative specification (with
black-box UDFs), a HILML system must be able to capture and
abstract a specific instance of a workflow as a DAG of intermediate
data items, where the nodes in the DAG correspond to the output of
specific operators, and the edges indicate input-output relationships
between operators. Via the declarative specification, the HILML
system can identify the logical operator corresponding to each node
in the workflow (e.g., data preparation or model training), giving
the system a comprehensive understanding of the workflow.

Between two iterations of the workflow, a specific intermediate
data item is deemed to be identical in both iterations if the source
code for the corresponding operator has not changed, and recur-
sively the parents of that data item are identical. A source data item
is deemed to be identical if the underlying data has not changed
between iterations.

To be able to tell what has changed or what has not changed
between iterations is not straightforward, however we can detect
file-level changes to the source data items, and we can detect code-
level changes to the declarative specification; changes to external
libraries may be harder to detect, but are likely to not be so frequent.

Our workflow model provides us a valuable starting point for
a HILML system—by detecting what is same and what is different
across iterations allows a HILML system to understand how the
workflow has evolved over iterations.

2.2 HILML Research Challenges
We now describe a number of research challenges that are enabled
by our workflow model.
Intermediate Results Reuse. To enable effective reuse of inter-
mediate data items across iterations, we must be able to answer
two questions:
1) What intermediates should be materialized in the current exe-

cution to speed up future iterations through reuse?
2) What intermediates should be reused to minimize run time

given materialized intermediates?
The answers to both questions can be represented as a subset of
nodes in a specific instance of the workflow DAG. For 1, notice
first that materializing all intermediates may not be beneficial due
to high cost that may outweigh any potential benefits. In fact, the
answer to 1 is contingent on a number of prediction problems. Since
not all intermediates will be reusable given the dynamic nature of

the workflow, modeling future savings incurred by reuse requires
predicting iterations, both in terms of the number of iterations and
the specific modifications. For example, materializing an interme-
diate data item below a workflow portion that the developer is
actively modifying is not likely to be useful, since it may be ren-
dered redundant by the changes to the workflow. Predicting which
portion of the workflow a developer may modify next (e.g., maybe
the developer is done with feature engineering and have moved
onto model tuning) can also help with this decision.

Comparatively, the answer to 2 is more self-contained due to the
lack of uncertainty. The complexity for 2 lies within the fact that
it needs to take place during compile time, so the system needs to
estimate the run time and output size of the operators.
Introspection: analyzing the impact of changes. Knowing sta-
tistics such as how certain changes to the workflow have impacted
prediction accuracy and overall run time helps developers max-
imize the utility of future iterations. This goes beyond tracking
metrics and data associated with each model version and delves
into exploring the causal relationship between performance and
specific changes. Recognizing such relationships requires semantic
understanding of the workflow, which enables logical comparison
of the different workflow versions (e.g., version 2 adds a feature and
regularization to version 1). The workflow representation provides
a means for visualizing the logical difference between two versions
of the workflow.

Furthermore, we can help developers identify the set of work-
flow versions that are the most pertinent to a specific performance
gap. This can be framed as a path finding problem in the space
of workflow versions, with distance between versions reflecting
the amount of logical changes. Specific challenges include distance
metric design and characterization of the desired paths.
Automated background search during think time. Based on
past usage and semantic understanding of the workflow, the system
should be able to automatically identify modifications to the current
workflow that lead to potential improvements on the metrics of
interest. These changes can be tested in the background while the
system is idle (e.g., the developer is writing code or thinking). Note
that this ranges beyond grid search for model hyperparameters [4]
to include modifications to the data pre-processing components
of the workflow as well. The goal is not to cut the human out of
the loop, but rather to remove tedious, mechanical iterations from
active development time. The developer should spend their time
on applying domain knowledge to improve the application instead
of exhaustively testing out known tricks.
Quick feedback: end-to-end optimization. Compared to intra-
operator optimization (e.g., speeding upmodel training), end-to-end
workflow optimization has a much greater potential for hastening
iterations since it is able to capture the higher order, inter-operator
inefficiencies missed by intra-operator optimization. Optimizing
workflows end-to-end is challenging due to the difficulty of analyz-
ing relationships between operators. Sometimes operators within a
workflow can be written in different languages or using different
libraries. To enable general end-to-end optimization, we need a
common, framework-independent abstraction of operators capable
of modeling how data logically flows between operators. Here is
a concrete example of end-to-end ML workflow optimization: if
a model is sparse (many zero weights), being able to identify the

operators corresponding to zero-weight features allows us to prune
a large portion of the workflow without compromising accuracy.
Quick feedback: approximate workflow execution. A devel-
oper’s decision to keep changes made in an iteration depends on
the relative performance to the previous iteration’s. Thus, the re-
sults obtained in each iteration do no need to be precise, as long as
they accurately indicate the performance trend. The system should
provide mechanisms to allow developers to trade redundant preci-
sion for speed, especially when the data size is large. Approximate
computing techniques such as sampling and using low precision
floats can be applied to achieved the desired tradeoff between preci-
sion loss and speedup. This allows developers to test out the same
number of changes in a fraction of the time, with little compromise
to their ability to accurately judge the effect of each change.
Automated cues for novice: change recommendations.While
expert ML developers may have good intuition how to improve
the workflow, inexperienced users can greatly benefit from sugges-
tions on what to try next. Concretely, the system should suggest
to the developer what operators to add/delete/modify and the ex-
pected outcome. The iteration prediction model discussed above
can be adapted for this purpose. Developing such a model requires
gathering data on how developers iterate on workflows in various
domains, which can be a difficult task since publications tend to
focus on results instead of the process. Ideally, the model should
consider workflow and data characteristics as well as user skills
and system settings. Furthermore, it should learn from the results
of previous iterations. Note that we need to be careful not to trap
the developer in a local optimum from this feedback loop.

3 HELIX FOR HUMAN-IN-THE-LOOP ML
Helix is our first attempt at a HILML system, satisfying the pre-
requisites outlined in Section 2.1, and partially addressing the first
research challenge in Section 2.2. Helix has a declarative program-
ming interface that is concise yet expressive; it uses the workflow
DAG model to enable both end-to-end and cross-iteration optimiza-
tions. In this section we provide a brief overview of the system
architecture, followed by preliminary results on performance com-
pared to related state-of-the-art systems.

3.1 System Architecture

Intermediate
Code Gen.

DAG
Optimizer

Materialization
Optimizer

Figure 2: Lifecycle of a Workflow in Helix.
Helix consists of a programming interface, a compiler for the

client application code, and an execution engine. The overarching
optimization objective is to minimize end-to-end execution time
across iterations through intermediate result reuse and redundant

operator pruning. As shown in Figure 2, the materialization opti-
mizer decides what intermediate results to persist to disk at run
time to accelerate subsequent iterations, while the DAG optimizer
decides what set of intermediates to reload from disk and what
operators to prune at compile time to speed up the current itera-
tion. We describe the programming interface and the optimization
problems below.

3.1.1 Programming Interface. Helix’s programming interface
is a DSL embedded in Scala, where the statements are declarative
and designed to mimic natural language with infix expressions.
A single Scala interface named Workflow is used to program the
entire workflow Helix provides a handful of composable and ex-
tensible operator types to handle variability and complexity in
both data pre-processing and the learning task, ranging from fine-
grained to whole-dataset feature engineering, supervised learning
to information extraction. Imperative Scala code can be directly
embedded into the DSL for user-defined functions (UDFs), similar
to inline SQL UDF registration in SparkSQL [2]. Helix uses two
distinct data structures to handle data pre-processing and ML, so
that data is kept in human-readable formats for easy feature engi-
neering and automatically transformed into ML compatible formats
for learning. We have used the DSL to successfully implement work-
flows in social sciences, information extraction, computer vision, and
natural sciences, spanning a wide array of data pre-processing and
ML use cases. Figure 3 shows a code snippet of the DSL used to
program an income prediction task.

3.1.2 Compilation. Helix compiles eachWorkflow into a DAG
of operators. Using both the compiled DAG and relevant data from
disk, the DAG optimizer performs three tasks:
Detect changes. Helix automatically detects the set of operators
that have changed since the last iteration and marks them for
mandatory recomputation. All operators are named, and the DAG
optimizer performs light program analysis to compare operators
with the same names across iterations for change detection.
Prune redundant operators. Helix prunes extraneous operators
by applying dataflow analysis to identify operators that do not
contribute to the final output. This feature alleviates the burden
of manually removing dead code to avoid redundant computation
when data dependencies change.

 object Census extends Workflow {
 data refers_to new FileSource(train="path/to/trainData", test="path/to/testData")
 data is_read_into rows using CSVScanner(Array("age", "education", ...))

 age refers_to FieldExtractor("age")
 ...
 eduXocc refers_to InteractionFeature(Array(edu, occ))

 rows has_extractors(eduExt, ageBucket, eduXocc, clExt, target)
 income results_from rows with_labels target
 incPred refers_to new Learner(modelType, regParam=0.1)
 predictions results_from incPred on income
 checkResults refers_to new Reducer((preds: DataCollection) => {
 // Scala UDF for checking prediction accuracy omitted. })
 checkResults uses extractorName(rows, target)
 checked results_from checkResults on testData(predictions)
 checked is_output()
 }

Figure 3: Sample code in Helix DSL
Compute the optimal reuse policies. Loading all reusable inter-
mediates from disk is not always the optimal decision for minimiz-
ing overall run time. For example, if an operator has a large output
but a short compute time, then it is more time-efficient to load

its input and recompute. Loading the results of an operator does,
however, allow us to prune its inputs, which could have a cascading
effect leading to large savings. We can formally model this problem
as assigning states to the nodes in the workflow DAG. Each node
can be assigned one of three states {compute, load, prune}, and
the assignments must satisfy the pruning constraint that a node
in the compute state must not have parents in the prune state. The
objective is to find a legal state assignment s∗ =

argmin
s

∑
ni ∈N

I{s(ni) = compute}ci + I{s(ni) = load}li (1)

where s(ni) is the state of node ni , and ci and li are the compute
and load time, respectively. This problem cannot be solved using a
single pass algorithm because of the pruning constraint. We devise
an efficient PTIME algorithm to solve Eq (1) optimally by proving
that it is polynomial time reducible to Max-Flow [14].

3.1.3 Execution Engine. Helix carries out the optimal phys-
ical plan produced by the DAG optimizer using Spark [15] for
distributed data processing. Note that the core algorithms and op-
timization techniques in Helix are independent of the data pro-
cessing platform. Lightweight wrappers can be written to support
other data processing frameworks such as Tensorflow [1].

During execution, the materialization optimizer, shown in Fig-
ure 2, handles the optimization problem of choosing the intermedi-
ates to materialize for reuse in future iterations, under a maximum
storage constraint. As discussed in Section 2, the benefit of material-
izing an intermediate result is dependent on its likelihood of being
reused in future iterations. Even with the simplifying assumptions
that 1) there will be only one more iteration and 2) all intermedi-
ate results are reusable in the next iteration, the problem is still
NP-Hard, as we show through a reduction from Knapsack [14].

Another complicating factor is that wemust make the decision to
materialize online, i.e., immediately after an operator has completed
execution, since deferred decisions are prohibitive as they require
caching multiple intermediate results. We propose a simple cost
model to achieve an approximate solution while respecting the
online constraint. Given the load cost li and compute cost ci for
each operator ni , the cost ri of materializing ni is defined as

(ci +
∑

nj ∈A(ni)
c j) − 2li (2)

We materialize ni if ri is negative and li is less than the remaining
storage. The model naively assumes that loading ni prunes all of its
ancestors from the DAG. While this is untrue as discussed above,
we cannot hope to do better given the online constraint. This model
has been effective in experimental studies, to be discussed next.

0 1 2 3 4 5
Iteration

0
500

1000
1500
2000
2500
3000
3500

C
um

ul
at

iv
e

R
un

tim
e

(S
ec

) (a) IE
DeepDive
Helix

0 1 2 3 4 5 6 7 8 9
Iteration

102

103

Lo
g(

C
um

ul
at

iv
e

R
un

tim
e) (b) Census

DeepDive
KeystoneML
Helix

Figure 4: Logscale cumulative runtime comparison with (a)
DeepDive on an IE task. (b) DeepDive and KeystoneML on a
classification task.

3.2 Performance Gains
We present preliminary results comparing Helix with two similar
ML systems, DeepDive [16] and KeystoneML [10], on an applica-
tion in information extraction (IE) and another on classification.
KeystoneML is not designed to handle IE tasks, hence absent in
Figure 4(a). DeepDive has no data for iteration > 2 in Figure 4(b)
due to inconfigurable ML and evaluation components. The color
under the curve indicates the type of change in each iteration, with
purple for data pre-processing, orange for ML, and green for evalu-
ation. The frequencies of each iteration type is determined using
statistics collected on 105 applied ML papers [14].

In contrast to DeepDive’s materialize-all approach, Helix judi-
ciously materializes only intermediates that help reduce future run
time, resulting in a 60% reduction in cumulative run time, as shown
in Figure 4(a). On the classification task, Helix achieves an order
of magnitude reduction in cumulative run time compared to both
KeystoneML, which materializes no intermediates, and DeepDive,
as shown in Figure 4(b). We see in both workflows that data pre-
processing iterations (purple) have the highest iteration run times,
while evaluation (green) has the lowest, proportional to the amount
of mandatory recomputation for each iteration type.

4 CONCLUSIONS
We presented our vision for an efficient end-to-end ML system
focused on supporting iterative, human-in-the-loop workflow de-
velopment. We identified specific research problems to accelerate
and automate workflow development and introduced Helix—our
first attempt at addressing some of these problems.

REFERENCES
[1] M. Abadi et al. Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.
[2] M. Armbrust et al. Spark sql: Relational data processing in spark. In SIGMOD,

2015.
[3] A. Ghoting et al. Systemml: Declarative machine learning on mapreduce. In

ICDE, 2011.
[4] T. Kraska et al. Mlbase: A distributed machine-learning system. In CIDR, 2013.
[5] X. Meng et al. Mllib: Machine learning in apache spark. JMLR, 2016.
[6] H. Miao et al. On model discovery for hosted data science projects. In DEEM,

2017.
[7] H. Miao et al. Towards unified data and lifecycle management for deep learning.

In ICDE, pages 571–582. IEEE, 2017.
[8] F. Pedregosa et al. Scikit-learn: Machine learning in python. JMLR, 2011.
[9] E. R. Sparks et al. Tupaq: An efficient planner for large-scale predictive analytic

queries. arXiv preprint arXiv:1502.00068, 2015.
[10] E. R. Sparks et al. Keystoneml: Optimizing pipelines for large-scale advanced

analytics. In ICDE, 2017.
[11] T. van der Weide et al. Versioning for end-to-end machine learning pipelines. In

DEEM, 2017.
[12] M. Vartak et al. Supporting fast iteration in model building. In NIPS Workshop

LearningSys, 2015.
[13] M. Vartak et al. Modeldb: a system for machine learning model management. In

HILDA, page 14. ACM, 2016.
[14] D. Xin et al. Helix: Holistic optimization for accelerating iterative machine

learning. Technical Report http://data-people.cs.illinois.edu/helix-tr.pdf, 2018.
[15] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In NSDI, 2012.
[16] C. Zhang. DeepDive: a data management system for automatic knowledge base

construction. PhD thesis, The University of Wisconsin-Madison, 2015.
[17] C. Zhang, A. Kumar, and C. Ré. Materialization optimizations for feature selection

workloads. ACM Trans. Database Syst., 2016.

	Abstract
	1 Introduction
	2 Optimizing Human-in-the-loop ML
	2.1 Prerequisites: Usability and Model
	2.2 HILML Research Challenges

	3 Helix for Human-in-the-loop ML
	3.1 System Architecture
	3.2 Performance Gains

	4 Conclusions
	References

