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Abstract
From Alon and Boppana, and Serre, we know that for any given integer k£ > 3 and
real number A < 2v/k — 1, there are only finitely many k-regular graphs whose second
largest eigenvalue is at most A. In this paper, we investigate the largest number of

vertices of such graphs.

1 Introduction

For a k-regular graph G on n vertices, we denote by A\i(G) =k > X(G) > ... > \(G) =

Amin(G) the eigenvalues of the adjacency matrix of GG. For a general reference on the eigen-
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values of graphs, see [9, 18].

The second eigenvalue of a regular graph is a parameter of interest in the study of graph
connectivity and expanders (see [1, 9, 24] for example). In this paper, we investigate the
maximum order v(k, A) of a connected k-regular graph whose second largest eigenvalue is
at most some given parameter A. As a consequence of work of Alon and Boppana, and of
Serre [1, 12, 16, 24, 25, 28, 31, 35, 36, 42], we know that v(k, \) is finite for A < 2k — 1.
The recent result of Marcus, Spielman and Srivastava [29] showing the existence of infinite
families of Ramanujan graphs of any degree at least 3 implies that v(k, \) is infinite for
A>2vk—1.

For any A\ < 0, the parameter v(k, A) can be determined using the fact that a graph with
only one nonnegative eigenvalue is a complete graph. Indeed, if a graph has only one nonneg-
ative eigenvalue, then it must be connected. If a connected graph G is not a complete graph,
then G contains an induced subgraph isomorphic to Kj s, so Cauchy eigenvalue interlacing
(see 9, Proposition 3.2.1]) implies Ao(G) > Ao(K12) = 0, contradiction. Thus v(k, \) = k+1
for any A < 0 and the unique graph meeting this bound is Kj,;. The parameter v(k,0) can
be determined using the fact that a graph with exactly one positive eigenvalue must be a
complete multipartite graph (see [7, page 89]). The largest k-regular complete multipartite
graph is the complete bipartite graph Ky x, since a k-regular ¢-partite graph has tk/(t — 1)
vertices. Thus v(k,0) = 2k, and K} is the unique graph meeting this bound. The values
of v(k,—1) and v(k, 0) also follow from Theorem 2.3 in Section 2 below.

Results from Bussemaker, Cvetkovi¢ and Seidel [10] and Cameron, Goethals, Seidel, and
Shult [11] give a characterization of the regular graphs with smallest eigenvalue A, > —2.
Since the second eigenvalue of the complement of a regular graph is Ay = —1 — Ay, the
regular graphs with second eigenvalue Ay < 1 are also characterized. This characterization
can be used to find v(k, 1) (see Section 3).

The values remaining to be investigated are v(k, \) for 1 < A < 2y/k — 1. The parameter
v(k, A) has been studied by Teranishi and Yasuno [44] and Hgholdt and Justesen [22] for
the class of bipartite graphs in connection with problems in design theory, finite geometry
and coding theory. Some results involving v(k, ) were obtained by Koledin and Stanic
26, 27, 43] and Richey, Shutty and Stover [47] who implemented Serre’s quantitative version
of the Alon—-Boppana Theorem [42] to obtain upper bounds for v(k, A) for several values of k
and \. For certain values of k and A, Richey, Shutty and Stover [47] made some conjectures
about v(k, \). We will prove some of their conjectures and disprove others in this paper.
Reingold, Vadhan and Wigderson [38] used regular graphs with small second eigenvalue as
the starting point of their iterative construction of infinite families of expander using the
zig-zag product. Guo, Mohar, and Tayfeh-Rezaie [19, 32, 33| studied a similar problem

involving the median eigenvalue. Nozaki [37] investigated a related, but different problem



from the one studied in our paper, namely finding the regular graphs of given valency and
order with smallest second eigenvalue. Amit, Hoory and Linial [2] studied a related problems
of minimizing max(|Az|, |\,|) for regular graphs of given order n, valency k and girth g.

In this paper, we determine v(k, \) explicitly for several values of (k, \), confirming or
disproving several conjectures in [47], and we find the graphs (in many cases unique) which
meet our bounds. In many cases these graphs are distance-regular. For definitions and
notations related to distance-regular graphs, we refer the reader to [9, Chapter 12]. Table
1 contains a summary of the values of v(k, ) that we found for k¥ < 22. Table 2 contains
six infinite families of graphs and seven sporadic graphs meeting the bound v(k, \) for some
values of k, A due to Theorem 2.3. Table 3 illustrates that the graphs in Table 2 that meet
the bound v(k, A) also meet the bound v(k, ') for certain A’ > A due to Proposition 2.9.

2 Linear programming method

In this section, we give a bound for v(k, ) using the linear programming method developed
by Nozaki [37]. Let F; = Fl-(k) be orthogonal polynomials defined by the three-term recurrence
relation:

@) =1, 0=z FB@)=4>-F

and
FP(2) = 2F) (2) — (k — 1) E5)(2)

7 L —

for ¢ > 3. The following is called the linear programming bound for regular graphs.

Theorem 2.1 (Nozaki [37]). Let G be a connected k-reqular graph with v vertices. Let
A =k, Ao, ..., A, be the distinct eigenvalues of G. Suppose there exists a polynomial f(x) =
Y >0 fiFi(k)(x) such that f(k) > 0, f(A\) <0 foranyi > 2, fo >0, and f; > 0 for any
7 2_1. Then we have
v < @
~ Jo

Using Theorem 2.1, Nozaki [37] proved Theorem 2.2 below. Note that the paper [37] deals
only with the problem of minimizing the second eigenvalue of a regular graph of given order
and valency. While related to the problem of estimating v(k, \), the problem considered by

Nozaki in [37] is quite different from the one we study in this paper.

Theorem 2.2 (Nozaki [37]). Let G be a connected k-regular graph of girth g, with v vertices.
Assume the number of distinct eigenvalues of G is d + 1. If g > 2d holds, then G has the

smallest second-largest eigenvalue in all k-reqular graphs with v vertices.



Table 1: Summary of our Results for £ < 22

(k, ) v(k, \) (k,A) | v(k,\) (k, \) v(k, \)
(2,—1) 3 (7,1) 18 (14,v13) | 366
(2,0) 4 (7,2) 50 (14,v/26) | 4760
(2,3 (VB5-1)) 5 (8,-1) 9 (14,v/39) | 804468
(2,1) 6 (8,0) 16 (15, —1) 16
(2,v2) 8 (8,1) 21 (15,0) 30
(2,4 (V5+1)) | 10 (8,V7) 114 (15,1) 32
(2,V3) 12 (8,V14) | 800 (16,—-1) 17
(3,-1) (8,v21) | 39216 (16,0) 32
(3,0) 6 9,-1) 10 (16, 1) 34
(3,1) 10 (9,0) 18 (16,2) 7
(3,v2) 14 (9,1) 24 (17,—1) 18
(3,V3) 18 (9,2v2) 146 (17,0) 34
(3,2) 30 (9,4) 1170 (17,1) 36
(3,V6) 126 (9,2V6) | 74898 (18,—1) 19
(4,-1) 5 (10, —1) 11 (18,0) 36
(4,0) 8 (10,0) 20 (18,1) 38
(4,1) 9 (10,1) 27 (18,v17) | 614
(4,v/5-1) 10 (10,2) 56 (18,v/34) | 10440
(4,V3) 26 (10,3) 182 (18,/51) | 3017196
(4,2) 35 (10,3v2) | 1640 (19, —1) 20
(4,V6) 80 (10,3v/3) | 132860 (19,0) 38
(4,3) 728 (11, -1) 12 (19, 1) 40
(5,—1) 6 (11,0) 22 (20, —1) 21
(5,0) 10 (11,1) 24 (20,0) 40
(5,1) 16 (12,-1) 13 (20,1) 42
(5,2) 42 (12,0) 24 (20,v/19) 762
(5,2v2) 170 (12,1) 26 (20,/38) | 14480
(5,2v/3) 2730 (12,v11) | 266 (20,V/57) | 5227320
(6,—1) 7 (12,v22) | 2928 (21,-1) 22
(6,0) 12 (12,v/33) | 354312 (21,0) 42
(6,1) 15 (13,—1) 14 (21,1) 44
(6,/5) 62 (13,0) 26 (22,-1) 23
(6,/10) 312 (13,1) 28 (22,0) 44
(6,v/15) 7812 (14, 1) 15 (22,1) 46
(7,-1) 8 (14,0) 28 (22,2) 100
(7,0) 14 (14,1) 30




Note also that while Table 2 is similar to [37, Table 2], the problems and tools in our
paper are significantly different from the ones in [37].

Let T'(k,t,c) be the t x t tridiagonal matrix with lower diagonal (1,1,...,1,¢), upper
diagonal (k,k—1,... k—1), and with constant row sum k, where c is a positive real number.
Theorem 2.3 is the main theorem in this section and gives a new comprehension of the
linear programming method and a general upper bound for v(k, ) without any assumption

regarding the existence of some particular graphs.

Theorem 2.3. If Ay is the second largest eigenvalue of T'(k,t,c), then

t—3
v(k, Ao) < M(ktc) =1+ k(k—1)' +

1=0

k(k — 1)
—

(1)

Let G be a k-reqular connected graph with second largest eigenvalue at most Ao, valency k,
and v(k, Xo) wvertices. Then v(k, o) = M(k,t,c) if and only if G is distance-reqular with

quotient matriz T'(k,t, c) with respect to the distance-partition.

Proof. We first show that the eigenvalues of T" that are not equal to k, coincide with the
zeros of Y2 Fy(x) + Fi_1(x)/c (see also [7, Section 4.1 BJ). Indeed,

[F(], Fl, ey Ft_g, Ft_l/C]T = [ZL’F(), .CL’Fl, e ,ZL’E_Q, (]f — 1)F;g_2 + (]f — C)F;g_l/C],
and

[Fo,Fl,...,E_Q,E_l/C](T—ZL’[) = [0,0,...,0,(]{7— 1)Ft_2 + (—SIZ—'—]{? —C>E_1/C]

—[0,0,...,0, (k — x)(iﬂ + F_/e)]
= 10,0,...,0, (k- 2)((c — D)Gyg + Gr1) /]

by the three-term recurrence relation, where G;(x) = Z;ZOFJ(:C) This equation implies
that the zeros of (k — z)((¢ — 1)Gi—2 + Gi—1) are eigenvalues of 7. The monic polyno-
mials G; form a sequence of orthogonal polynomials with respect to some positive weight
on the interval [—2v/k — 1,2v/k — 1] [37]. Since the zeros of G;_5 and G;_; interlace on
[—2vk —1,2v/k — 1], the zeros of (k — z)((c — 1)Gy_2 + G;_;) are simple. Therefore all
eigenvalues of T' coincide with the zeros of (k — z)((¢ — 1)Gy_2 + G4_1), and are simple.

Let Ay =k > Xy > ... > )\ be the eigenvalues of T'. We prove that the polynomial

f@) == [[ =20 = Y RE @)



satisfies f; > 0fori =0,1,...,2t—3. Note that it trivially holds that f(k) > 0, and f(\) <0
for any A < Ay. The polynomial f(x) can be expressed as

o) = (c=1)Gio+ Gy ) <in + Ft—l/c) . (3)

l’—)\g

By [13, Proposition 3.2], g(z) = ((¢ — 1)Gi—2 + Gi—1)/(x — A) has positive coefficients
in terms of Go,Gq,...,Gi_2. This implies that g(x) has positive coefficients in terms of
Fy, Fi, ..., Fi_5. Therefore f; >0 fori=0,1,...,2t — 3 by [37, Theorem 3|.

The polynomial g(x) can be expressed as g(z) = Zf;g g:F;(x). By [37, Theorem 3], we
get that fo = ZZ ngFz(k‘) = g(k). Using Theorem 2.1 for f(z), we obtain that

t—2
v(k, A2) < Fi(k)+ Fi_1(k)/c
=0

t—3
o k(k—1)t2
=1 k(k—-—1)+ ——~2—
+Z;( )+ -

By [37, Remark 2|, the graph attaining the bound has girth at least 2t — 2, and at most ¢
distinct eigenvalues. Therefore the graph is a distance-regular graph with quotient matrix
T(k,t,c) by [37, Theorem 6] and [14]. Conversely the distance-regular graph with quotient
matrix T'(k,t, ¢) clearly attains the bound M (k,t,c). O

Remark 2.4. The distance-reqular graphs which have T'(k,t,c) as a quotient matriz of the
distance partition are precisely the distance-reqular graphs with intersection array {k,k —
1,...,k—1;1,...,1,¢}.

Corollary 2.5. Let H be a connected k-reqular graph with at least M (k,t,c) vertices. Let
Ao be the second largest eigenvalue of T'(k,t,c). Then Ay < \o(H) holds with equality only if
H meets the bound M (k,t,c).

Proof. By Theorem 2.3, if Ao > A\o(H), then the order of H is at most M (k,t,c). If the order
of H is equal to M (k,t,c), then H has at most ¢t — 1 distinct eigenvalues by [37, Remark 2].
However then the order of H is less than M (k,t—1,1) by the Moore bound, a contradiction.
Therefore if Ay > A\o(H), then the order of H is less than M (k,t,¢). Namely if the order
of H is at least M(k,t,c), then Ay < Ao(H). If Ay = Ao(H) holds, then the order of H is
bounded above by M (k,t,c) in Theorem 2.3, and attains the bound. O

We will discuss a possible second eigenvalue Ay of T'(k,t,c). Indeed for any —1 < \ <
2v/k — 1 there exist ¢, ¢ such that ) is the second eigenvalue of T'(k,t,c). Let A®, u® be the
largest zero of Gy, F}, respectively. The zero A® can be expressed by A®) = 2y/k — 1 cos 6,
where 7/(t 4+ 1) < 6 < w/t [3, Section II1.3].



Proposition 2.6. The following hold:
(1) A® < u® for any k, t.
(2) p*D < XD fork >5 and anyt, k=4 andt <5, or k=3 andt < 3.
(3) p*V >\ fork =4 andt>6, ork =23 andt > 4.

Proof. Since F,(\") = G;(AY) — G;_1(A\D) = -G,_1(AD) < 0, we have \®) < p® for
any k, t. Note that F; has a unique zero greater than \¥). By the equality (k — 1)F,_; =
(k—1—2)G_1 + G4, we obtain that

(k= DE1(AY) = (k = 1= 2N)G (W) + G, (A1)
= (k—1-XNG,_,(\Y)
= (k—1—-2VEk —1cos0)Gy_ (A\Y)
> (k—1—=2Vk —1cos 77)G1(AW) > 0 for (k,t) in (2),
< (k—=1-=2Vk—T1cosT)G;_1(AY) < 0 for (k,t) in (3).

This finishes the proof of the proposition. O

Remark 2.7. The second largest eigenvalue Ao(c) of T'(k,t,c) is the largest zero of (¢ —
1)Gy_o+Gy_1. Since the zeros of Gi_o and Gy_1 interlace, \y(c) is a monotonically decreasing

function in c. In particular, lim._,. Ao(c) = A2 Xy(1) = XY and lim._g Ao (c) = pY.

Note that both F; and G; form a sequence of orthogonal polynomials with respect to some

positive weight on the interval [—2v/k — 1,2v/k — 1]. By Remark 2.7, the second eigenvalue
Xo(t, ¢) of T'(k, t, c) may equal all possible values between \y(2,1) = —1 and lim;_,, Ao (¢, ¢) =
2v/k — 1. The following proposition shows that we may assume ¢ > 1 in Theorem 2.3 to
obtain better bounds.

Proposition 2.8. For any A such that A=Y < X\ < p=Y | there exist 0 < ¢; < 1, ¢3 > 0
such that both the second-largest eigenvalues of T'(k,t,cq) and T'(k,t+1,co) are A. Then we
have M(k,t,ci) > M(k,t+ 1,c2).

Proof. Because (¢1—1)G;_o(A)+G_1(\) = 0, we get ¢; = —%ﬁzm =—F1(N)/Gi_a(N).

Similarly ¢ = —Fi(A)/Gi—1(N). Note that F,_1(\) = —c1Gi—a(A) < 0 and Fy(\) =



—c9Gy_1(N) < 0. Therefore

M(kv ta Cl) -

Mk, t+1,¢5) = k(k —

t— 2Gt ()\)(

—1) 1
Ft 1A F(A)
-1

kNGO

Fya(MNEF(N)

1)1t—2(c—11 -1- é(k —1))
(= iy o - 0y
imay  Gio 1(>\) Gi1(\)
T e RN

~ B + (k= DF (V)

O

Table 2 shows the known examples attaining the bound M (k,t, ¢). The incidence graphs
of PG(2,q), GQ(q,q), and GH(q,q) are known to be unique for ¢ < 8, ¢ < 4, and ¢ < 2,

respectively (see, for example, [7, Table 6.5 and the following comments]).

The incidence

graphs of PG(2,2), GQ(2,2), and GH(2,2) are the Heawood graph, the Tutte-Coxeter graph
(or Tutte 8-cage), and the Tutte 12-cage, respectively.

Table 2: Known graphs meeting the bound M (k,t, ¢)

(k,A) v(k, \) Graph meeting bound Unique? | Ref.
(2,2cos(2m/n)) n n-cycle C, yes
(k,—1) k+1 Complete graph Kjq yes
(k,0) 2k Complete bipartite graph K yes
(¢+1,,/q) 2(¢*+q+1) incidence graph of PG(2,q) ? 7, 41]
(¢ +1,v/2q) 20+ 1)(¢*+1) incidence graph of GQ(q, q) ? 4, 7]
(¢+1,v3q) |2(¢g+1)(¢*+¢*+1) | incidence graph of GH(q,q) ? 4, 7]
(3,1) 10 Petersen graph yes [21]
(4,2) 35 Odd graph O, yes [34]
(7,2) 50 Hoffman-Singleton graph yes [21]
(5,1) 16 Clebsch graph yes [18, 40]
(10,2) 56 Gewirtz graph yes 8, 17]
(16,2) 7 My graph yes 6, 20]
(22,2) 100 Higman—Sims graph yes [17, 20]

PG(2,q): projective plane, GQ(q, q): generalized quadrangle,

GH(q,

q): generalized hexagon, ¢: prime power

The bounds in Table 2 solve several conjectures of Richey, Shutty, and Stover [47]. Richey,
Shutty, and Stover prove that v(3,2) < 105, but they note that the largest 3-regular graph
with Ay < 2 they are aware of is the Tutte-Coxeter graph on 30 vertices. They conjectured

8




that v(3,2) = 30. They show that v(4,2) < 77 and conjecture that the largest 4-regular graph
with Ay < 2 is the so-called rolling cube graph on 24 vertices (that is, the bipartite double of
the cuboctahedral graph which is the line graph of the 3-cube). They also conjectured that
v(4,3) = 27 and the largest 4-regular graph with Ay < 3 is the Doyle graph on 27 vertices
(see [15, 23] for a description of this graph). In Table 2 we confirm that v(3,2) = 30 and the
Tutte-Coxeter graph (the incidence graph of GQ(2,2)) is, in fact, the unique graph which
meets this bound (see [7, Theorem 7.5.1] for uniqueness). However, Table 2 shows that
v(4,2) = 35 (the Odd graph Oy4) and that v(4,3) = 728 (the incidence graph of GH(3,3)),
disproving the latter two conjectures.

Since the order of a graph is an integer, v(k, A) can be bounded above by | M (k,t,c)|.
The graphs meeting the bound M (k,t,c) can be maximal under the assumption of a larger
second eigenvalue.

Proposition 2.9. Let A1, Ay be the second largest eigenvalues of T'(k,t+1,c1) and T'(k,t, c3),
respectively. Suppose there exists a graph which attains the bound M (k,t,c) of Theorem 2.3.
Then

(1) If c =1, then v(k, 1) = v(k,\) for c; > k(k — 1)1, Moreover if M(k,t,c) is even,
and k is odd, then v(k,\;) = v(k,\) for c; > k(k —1)""1/2.

(2) If e > 1, v(k,\y) = v(k,\) for ca > c—c*/(k(k—1)72+¢). Moreover if M(k,t,c) is
even, and k is odd, then v(k, \o) = v(k,\) for ca > ¢ —2¢*/(k(k —1)"2 + 2¢).

Proof. We show only (1) because (2) can be proved similarly. For ¢; > k(k — 1)1, we have
M(k,t,c) =v(k,A) <ok, ) < |[M(k,t,c1)] = M(k,t,c).

Therefore v(k, \) = v(k, \). If k is odd, v(k, A\;) must be even. For ¢; > k(k —1)71/2, we
have
Mk t,¢) = v(k, \) < v(k, \) < [ M(k,t,e1)] = M(k,t,¢) + 1.

Thus if M (k,t,c) is even, then v(k, \) = v(k, A\1). O

The larger second eigenvalues in Proposition 2.9 are calculated in Table 3. The graphs
in Table 3 meet v(k, \) for any Ao < A < X, where X is the largest zero of f(z) in the table.

By Theorem 2.3, we can obtain an alternative proof of the theorem due to Alon and
Boppana, and Serre (see [1, 12, 16, 24, 25, 28, 31, 35, 36, 42| for more details).

Corollary 2.10 (Alon-Boppana, Serre). For given k, A < 2v/k — 1, there exist finitely many

k-regular graphs whose second largest eigenvalue is at most \.



Proof. The second largest eigenvalue \y(t) of T'(k,¢,1) is equal to the largest zero of G;_;.
The zero is expressed by Ao(t) = 2v/k — 1cosf, where 6 is less than 7/(t — 1) [3, Section
I11.3]. This implies that there exists a sufficiently large ¢’ such that Ao(t') > . Therefore we

Table 3: Graphs meeting v(k, ) for Ay <\ < X

Graph t c f(x) N
Kpy1 (k: even) 2| 1 2 — (k— k) x+ k* — 2k
K (k2 odd) |2 1 2 — (k— k) x + K — 3k
Ky.i. (k: even) 3| k - (1-kz—1
Ky x (k: odd) 3| k (k+ 1)a2? + (K* — k) z — 2k
PG(2,q) (g+1: even) | 4| qg+1 (P+1)a*+ (¢ + ¢*) 2?
(¢ —2¢-1)z—q¢*" - ¢
PG(2,q9) (¢g+1:0dd) | 4| qg+1 + (P +2) 2 + (¢ + ¢?) 2?

+ (¢ —4q-2)z—q¢" - ¢
(—¢* +q— 1" — ¢’
+(2¢% — 2¢* + 2q + 1) 2?

GQ(q,q) (¢+1: even) | 5| g+1

+2¢*r — ¢
GQ(¢,9) (g+1: 0dd) | 5| ¢+1 (—¢* = 2)a" + (=¢" = ¢*) 2°
+(2¢" +6g +2) 2* + (2¢° + 2¢") x
—2¢*> —2q
GH(q,q) (¢+1: even) | 7| q+1 "+ - +q—1)a°

+(4¢° —4¢" +4¢® — 4 + 4q + 1) 2*
+ (—3¢% + 3¢° — 3¢* + 3¢® — 3¢* — 3q) *
P2+ A8 — 3¢Tx + ¢

GH(q,q) (g+1: 0dd) | 7| q+1 (—¢° —2) 2% + (=¢85 — ¢®) 2
+(4¢° +10g + 2) 2" + (4¢7 + 4¢°) 2°
+(=3¢" — 12¢* — 6¢) 2
+(=3¢® = 3¢") v + 2¢® + 2¢*

Petersen 31 1 2? + 1227 + T — 24 1.11207

Odd graph O, 4 2 1923 + 362% — 972 — 108 2.02156
Hoffman—Singleton 3 1 23 + 12622 + 113z — 756 2.02845
Clebsch 30 2 3z + 5x — 10 1.1736
Gewirtz 3 2 2322 + 452 — 185 2.02182

Mo 3 4 6122 + 240z — 736 2.02472
Higman-Sims 3| 6 1322 + 772 — 209 2.0232

X is the largest zero of f(x)
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have

vk, ) < vk, Mo(t) < 1+§k(l€ — 1), O

3 Second largest eigenvalue 1

In this section, we classify the graphs meeting v(k,1). The complement of a regular graph
with second eigenvalue at most 1 has smallest eigenvalue at least —2. The structure of such
graph is obtained from a subset of a root system, and it is characterized as a line graph
except for sporadic examples [7, Theorem 3.12.2]. The following theorem is immediate by
[7, Theorem 3.12.2].

Theorem 3.1. Let G be a connected reqular graph with v vertices, valency k, and second

largest eigenvalue at most 1. Then one of the following holds:

(1) G is the complement of the line graph of a regular or a bipartite semireqular connected
graph.

(2) v=2(k—1) <28, and G is a subgraph of the complement of E;(1), switching-equivalent
to the line graph of a graph A on eight vertices, where all valencies of A have the same
parity (graphs nos. 1-163 in Table 9.1 in [10]).

(3) v=3(k—1) <27, and G is a subgraph of the complement of the Schlafli graph (graphs
nos. 164-184 in Table 9.1 in [10]).

(4) v=4(k—1) < 16, and G is a subgraph of the complement of the Clebsch graph (graphs
nos. 185-187 in Table 9.1 in [10]).

The following theorem shows the classification of graphs meeting v(k, 1). Note that this
result will show that v(k, 1) = 2k + 2 for k large whereas Theorem 2.3 would give a larger
upper bound for v(k, 1).

Theorem 3.2. Let G be a connected k-regular graph with second largest eigenvalue at most
1, with v(k, 1) vertices. Then the following hold:

(1) v(2,1) =6, and G is the hexagon.
(2) v(3,1) =10, and G is the Petersen graph.
(3) v(4,1) =12, and G is the complement of the graph no. 186 in Table 9.1 in [10].

(4) v(5,1) =16, and G is the Clebsch graph.
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(5) v(6,1) = 15, and G is the complement of the line graph of the complete graph with 6
vertices, or the complement of one of the graphs nos. 171-176 in Table 9.1 in [10].

(6) v(7,1) =18, and G is the complement of one of the graphs nos. 177-180 in Table 9.1
in [10].

(7) v(8,1) =21, and G is the complement of one of the graphs nos. 181, 182 in Table 9.1
in [10].

(8) v(9,1) =24, and G is the complement of the graph no. 183 in Table 9.1 in [10].
(9) v(10,1) =27, and G is the complement of the Schlifli graph.
(10) v(k,1) =2k +2 for k > 11, and G is the complement of the line graph of Ko ji1.

Proof. (1): A connected 2-regular graph is an n-cycle, whose eigenvalues are 2 cos(27j/n)
(7=0,1,...,n—1). This implies (1).

(2), (4): By Theorem 2.3 for T'(k, 3, (k—1)/2), we have v(k,1) < 3k+1. The two graphs
are unique graphs attaining this bound (see [18, Theorem 10.6.4] and [21, 37]).

(10): The complement of the line graph of Ky 14 is of degree k and has 2k + 2 vertices
for any k. We will prove that there exists no graph with at least 2k + 2 vertices except for
these graphs for £ > 11. In the case of Theorem 3.1 (3) (4), we have no graph for k£ > 11.
In the case of Theorem 3.1 (2), trivially v = 2(k — 1) < 2k + 2. We consider the case of
Theorem 3.1 (1). Let G be the complement of the line graph of a t-regular graph with u
vertices. Then G is of degree k = (u/2 — 2)t + 1, and has v = ut/2 vertices. Therefore
v=ut/2 =ulk—1)/(u—4) < 2(k—1) < 2k + 2 because u > 8 for k > 11. Let G be
the complement of the line graph of a bipartite semiregular connected graph (V;, Vs, E). Let
|Vi| = u; and the degree of x € V; be t;, where we suppose t; > t3. Then G is of degree
k= (uy —1)t; —ta+ 1> (ug —2)t; + 1, and has v = uyt; vertices. If u; = 1 holds, then G
has no edge. For uy; > 3, it is satisfied that

vg<1+u12_2)(k—1)§2(k:—1)<2k+2 (4)

for any k. For u; = 3, we have t, < u; = 3 and

3 3
for k > 2. For uy = 2, similarly t; < u; =2 and
v=2t =2(k+ty—1) <2k+2 (6)

for any k, with equality only if t; = k+ 1, to = 2, u; = 2 and uy = k + 1. Thus (10) holds.
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(3), (5)-(9): Every candidate of maximal graphs comes from Theorem 3.1 (3) or (4)
except for the case of the complete graph in (5). We prove that there does not exist a larger
graph which comes from Theorem 3.1 (1). By inequalities (4)—(6), the complement of the line
graph of a bipartite semiregular graph is not maximal for £ > 2. We consider the case of the
complements of the line graphs of t-regular graphs with u vertices. Since v =k — 1+ 2t is at
least 12,15, 18, 21,24, 27, we have u—1 >t > 5,5,6,7,8,9for k = 4,6,7,8,9, 10, respectively.
Therefore k = (u/2 —2)t+1 > (t —2)(t —1)/2 > 6,6,10,15,21,28 for k = 4,6,7,8,9, 10,
respectively. The only parameter (v, k,u,t) = (15,6,6,5) satisfies the conditions and it
corresponds to the case of the complete graph in (5). O

4 Other Values of v(k, \)

When no graph meets the bound given by Theorem 2.3, other techniques may be necessary
to find v(k, A). However, the bound is still useful in reducing the size of graphs which must
be checked. In this section we describe several tools which we will use (Lemma 4.3 and
Lemma 4.4), and then find v(k,\) in a few more cases (Proposition 4.5, Proposition 4.6,
Proposition 4.7).

Let n(k, g) denote the minimum possible number of vertices of a k-regular graph with
girth g. A (k, g)-cage is a graph which attains this minimum. The following lower bound on
n(k, g) due to Tutte [46] will be useful.

Lemma 4.1. Define n)(k, g) by

k(h—1)t” D22 if g is odd

_ k=2
(k. g) = 2(k—1)9/22 o
e if g is even.

Then n(k,g) > ni(k,g).
The following lemma is easily verified.

Lemma 4.2. ’ Each of the graphs in Figure 1 has spectral radius greater than 2.

(a) (b)

Figure 1: Graphs with spectral radius greater than 2.

For a graph G, a vertex v € V(G), and a subset U C V/(G), define the distance
dist(v,U) = miny,ep dist(u,v). For an induced subgraph H of G, let I';(H) and I's;(H)
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be the sets of vertices in G at distance exactly ¢ and at least ¢ from V(H) in G, respectively.
Let p(G) and d(G) denote the spectral radius and average degree of GG, respectively. Note
that d(G) < p(G).

Lemma 4.3. Suppose G is a connected, k-reqular graph with second largest eigenvalue
Xo(G) < XN < k, and H is an induced subgraph of G with d(H) > X\. Then for the sub-
graph K induced by I'so(H) we have d(K) < X, with equality only if d(H) = Xa(G) = .

Proof. Consider the quotient matrix @ of the partition {V(H),I'1(H),I'so(H)} of V(G). We

have
« k—« 0

Q=17 k=(y+te €],
0 k—p 6}
where a« = d(H), f = d(K), and v and € are the average numbers of neighbors in H and
K, respectively, of the vertices in I';(H). The eigenvalues of @ interlace those of G (see [9,
Corollary 2.5.4]), so we must have \y(Q) < Xo(G) < A. It is straightforward to verify that
AM(Q) =k and

2@ =5 (a+ =0+ +VA), (7

where A = (a+ 8 — (v +€))* — 4(aff — By — ae). By hypothesis we have a > \. If also
B > A, then we find that a = § = A\2(Q) = A, as we will prove below.

Indeed, if both a > X and 8 > A, then by Cauchy interlacing [9, Proposition 3.2.1]
Xo(G) > Ao(H + K) > A\, where H + K is the disjoint union of H and K, a contradiction.
Suppose a > XA and f > \. If a = = A, then (7) becomes A\y(Q) = . Otherwise we must
have @ > f=Aor B> a =\ If VA >~ +¢, then clearly A\y(Q) > ), a contradiction. If
VA < 7y +e then A < (y+¢€)?, which implies (o — 3)(a — 8+ 2(e — 7)) < 0. Thus we have
eithera>5ande<7—%(@—5),0r6>aand7<e—%
true. Then 8 = XA and we can write a = 8+ s = A+ s and e =y — § — ¢ for some s, > 0.
Then (7) becomes

(8 — «). Suppose the former is

1
)\Q(Q):Z<4)\—4v+3s+2t+\/§>,

where A’ = 1672 + (5 — 2t)2 — 8y(s + 2t). If VA’ > 4y — 35 — 2t, then clearly \(Q) > A, a
contradiction. If VA’ < 4y — 3s — 2t, then A’ < (4 — 35 — 2t)?, which implies v < S+t
However, this implies € = v — 5 — ¢ < 0, a contradiction. If 8 > o and v < € — %(6 — ),
the same argument holds (simply swap the roles of o and 8 and of v and € in the above

argument). Thus we cannot have & > X and f > A unless a = § = A, so we must have
B<Aora=p=XQ)=A\ O
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Lemma 4.4. Suppose G is a connected, k-regular graph with second largest eigenvalue
X(G) < N < k. If G contains an induced subgraph H on s wvertices with t edges and
either d(H) > X or p(H) > A\, then

2k— X —1

V(G)| < s+ (ks —20). (8)

Proof. Since G is k-regular, there are ks—2t edges from H to I'y(H), which implies |I'; (H)| <
ks—2t. We will show that |I'so(H)| < £=1 |T';(H)|, which completes the proof that (8) holds.

First, note that each vertex in I'y(H) has a neighbor in H, so each such vertex has at
most k& — 1 neighbors in I'so(H). Then there are at most (k — 1) |I';(H)| edges from I'y(H)
to I'so(H). If d(H) > A then by Lemma 4.3 we have d(K) < A, where K is the subgraph
induced by I'so(H). If not, then p(H) > A, so p(K) < A (and so also d(K) < \) by eigenvalue
interlacing. Since G is k-regular, this implies that the average number of neighbors in I'; (H)
of the vertices in I'so(H) is at least k — A, so there are at least (kK — \) [I'so(H)| edges from

I'so(H) to I'y (H). This completes the proof. O

Proposition 4.5. If G is a connected, S-reqular graph with \y(G) > 1, then Xo(G) > /2,
with equality if and only if G is the Heawood graph.

Proof. We have already seen in Table 2 that v(3,4/2) = 14 and the Heawood graph (the
incidence graph of PG(2,2)) is the unique graph meeting this bound. Thus we only need
to show that no 3-regular graph has second eigenvalue between 1 and v/2. Suppose G is a
3-regular graph with 1 < A\(G) < /2. We will show that this yields a contradiction. We
have immediately that |V (G)| < 14. Since G is 3-regular, this implies |V (G)| < 12.

We note that the average degree of any cycle is 2 > v/2 > \o(G). If G has girth 3,
then Lemma 4.4 implies |[V(G)| < £(v/2 4 10) ~ 9.78. Since G is 3-regular, this implies
|[V(G)| < 8. Lemma 4.1 implies that a graph with girth more than 5 has at least 14 vertices,
so GG has girth at most 5.

We partition the vertices of G by P, = {V(H),['1(H),I's2(H)}, where H is a subgraph
of G isomorphic to C,,, where m € {3,4,5} is the girth of G. This partition has quotient

matrix () given by
2 1 0

Q=1|v 3—(a+7vy) o |,
0 B 3-0
where v |I';(H)| = m (by counting edges from H to I'y1(H)) and « |I'y(H)| = B |I's2(H)| (by
counting edges from I'1(H) to I'so(H)).
We first suppose G has girth 3. Then 4 < |V(G)| < 8. If |V(G)| =4, then G = K}, and
we have \o(G) = —1. If |V(G)| = 6, it is straightforward to show that G = C50K5, where OJ

denotes the graph Cartesian product, and we have A(G) = 1. Either case is a contradiction.
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If [V(G)| = 8 then I'y(H) has 2 or 3 vertices. If |I')(H)| = 2, then we have |I'so(H)| = 3,
v = 3/2, and depending on whether there is an edge in ['1(H) or not we have o = 1/2
or 3/2, = 1/3 or 1, and A(Q) = £(v/13 + 4) ~ 2.54 or 2, respectively. Either case is
a contradiction. If |I'y(H)| = 3, then |I'so(H)| = 2, v = 1, and depending on whether
there is an edge in I'so(H) or not we have § = 2 or 3, a = 4/3 or 2, and \y(Q) = 5/3 or
L(V17—1) ~ 1.56, respectively. Either case is a contradiction. Thus G cannot have girth 3.

Suppose G has girth 4. Then we have 6 < |V(G)| < 12. If |[V(G)| = 6, then G = K3
and we have A\o(G) = 0. If |V(G)| = 8, then it is straightforward to verify that G must either
be the 3-cube Q3 or the graph in Figure 2. In either case we have Ao(G) = 1, a contradiction.

pul

Figure 2: A 3-regular graph on 8 vertices with girth 4.

If |V(G)| = 10, then I'y(H) has 2, 3, or 4 vertices. If |[I'y(H)| = 2, then |I'so(H)| =4, v =2,
a=1,8=1/2 and A(Q) = }(V41 + 3) ~ 2.35, a contradiction. If |I'i(H)| = 3, then
ITso(H)| = 3,7 =4/3,and o = . Then o <5/3 (since 3 — (aw+ ) > 0) implies 5 < 5/3,
which implies I'so(H) has at least 2 edges. Since G has girth 4, I'so(H) cannot have 3
edges, so I'so(H) has exactly 2 edges, a = 8 = 5/3, and A\(Q) = £(v/241 + 7) ~ 1.88, a
contradiction. If |I'y(H)| = 4, then |I'so(H)| =2, v = 2, and depending on whether there is
an edge in I'so(H) or not we have 8 =2 or 3, « = 1 or 3/2, and \(Q) = 2(v5 + 1) ~ 1.62
or 3/2, respectively. Either case is a contradiction. If |V(G)| = 12, then I';(H) must be a
coclique on 4 vertices (otherwise there are at most 6 edges from I'y (H) to I's2(H), so Lemma
4.3 implies |Tso(H)| < 6/(3 — +/2) ~ 3.78, which implies |V (G)| < 11.78, a contradiction).
Then we have [I'1(H)| = [Tso(H)| =4, v =1, a = 8 = 2, and \»(Q) = v/3. This is a
contradiction, so G' cannot have girth 4.

Suppose G has girth 5. Then 10 < |V(G)| < 12. The Petersen graph with 10 vertices
and Ay = 1 is the unique (3,5)-cage (see [21]), so G must have 12 vertices. Note we must
have |I'y(H)| = 5 and = 1, since vertices in H cannot have common neighbors outside of
H. Since |V(G)| = 12, we have |I's5(H)| = 2, and depending on whether there is an edge
in I's5(H) or not we have 8 =2 or 3, & = 4/5 or 6/5, and A\»(Q) = 2(2v/6 + 3) ~ 1.58 or
1(/241 — 1) ~ 1.45, respectively. Either case is a contradiction.

10
Thus G cannot exist as described, which completes the proof. O

Proposition 4.6. If G is a connected, 4-reqular graph with \o(G) > 1, then A\y(G) > v/5—1,
with equality if and only if G is either the graph in Figure 3 or the circulant graph Ciyo(1,4)
(the Cayley graph of (Zyo,+) with generating set {£1, £4}).
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Figure 3: The 4-regular graph G on 8 vertices with A\y(G) = /5 — 1.

Proof. It is straightforward to verify that the second eigenvalue of T'(4, 3, (4—(v/5—1)2)/v/5)
V5 —1and M(4,3,(4—(v/5—-1)%)/V5) = 54+12v5/(4— (v/5—1)?) ~ 15.85, so by Theorem
2.3 we have v(4,v/5 — 1) < 15. We checked by computer all 4-regular graphs on at most
15 vertices and found that, in each case where A\y(G) > 1, we have A\y(G) > /5 — 1, with
equality if and only if G is either the graph in Figure 3 or the circulant graph Cijo(1,4). O

The previous result and Theorem 3.2 part (iii) imply that v(4,v/5 — 1) = 12. It would
be interesting to find a proof of Proposition 4.6 which does not require a computer search.
For the proof above the computer must check 906,331 graphs.

Richey, Shutty, and Stover [47] conjectured that v(3,1.9) = 18. We confirm this conjec-

ture, and show that there are exactly two graphs meeting this bound.

Proposition 4.7. If G is a connected, 3-reqular graph with second largest eigenvalue \y(G) <
1.9, then |V(G)| < 18, with equality if and only if G is the Pappus graph (see Figure 4(a))

or the graph in Figure 4(b).
N
LK
N
\\4&/

(a) The PaI.)pus graph with (b) A graph with Ay = v ~ 1.8662, the largest
second eigenvalue /3. root of f(z) = 2% + 222 — 4x — 6.

Figure 4: The 3-regular graphs on 18 vertices with Ay < 1.9.

Proof. It is straightforward to verify that the second eigenvalue of T'(3,4,2641/3510) =
19/10 = 1.9 and M(3,4,2641/3510) = 68530/2641 ~ 25.95, so by Theorem 2.3 we have
v(3,1.9) < 25. Since G is 3-regular, this implies v(3,1.9) < 24. We note again that any cycle
has spectral radius 2. Then, by Lemma 4.4, if G has girth 3, 4, 5, or 6, then G has at most

17



11.45, 15.27, 19.09, or 22.91 vertices, respectively. Since G is 3-regular, this implies G has
at most 10, 14, 18, or 22 vertices, respectively. A 3-regular graph of girth 8 has at least 30
vertices by Lemma 4.1 (or note that the Tutte-Coxeter graph is the unique (3,8)-cage, see
[45, 46]). Thus, we have shown that a 3-regular graph G with A\y(G) < 1.9 and more than
18 vertices must have girth 6 or 7.

If G has girth 7, we note that the McGee graph on 24 vertices is the unique (3,7)-cage
(see [7, p.209] or [30, 46]), so G must be the McGee graph. Since the McGee graph has
second eigenvalue 2, we have proved that G does not have girth 7.

Now, if G has more than 18 vertices then G must have girth 6 and at most 22 vertices.
Among 3-regular graphs, we checked by computer the 32 graphs with girth 6 on 20 vertices
and the 385 graphs with girth 6 on 22 vertices and found that each has second eigenvalue
more than 1.9. Thus G has at most 18 vertices. If G has 18 vertices, then G must have
girth 5 or 6. Among 3-regular graphs, we checked by computer the 450 graphs with girth
5 on 18 vertices and found that each has second eigenvalue more than 1.9. We checked
the 5 graphs with girth 6 on 18 vertices and found that all but two of them have second
eigenvalue more than 1.9. The exceptions were the Pappus graph with second eigenvalue v/3
and the graph in Figure 4(b) with second eigenvalue v, where v ~ 1.8662 is the largest root
of f(x) =23+ 22% — 4z — 6. O

Note that this implies v(3,v/3) = 18 and v(3, v ~ 1.8662) = 18 (and, of course, v(3,1.9) =
18). It would be nice to find a proof of Proposition 4.7 that does not require a computer

search.

5 Final Remarks

We conclude the paper with some questions and problems for future research.
Problem 5.1. Determine v(k,Vk) for k > 3.

We have Ay (T(k, 4,k — k) = Vk and M(k, 4,k — k) = 2k> + k3> — k —/k + 1, which
yields
vk, VE) <2k2+ K2 —k —VEk + 1.

The Odd graph O, meets this bound (see Table 2). We do not know what other graphs, if

any, meet this bound. Odd graphs, in general, do not have T'(k,t,c) as a quotient matrix.
Problem 5.2. Determine v(k,~/2) for k > 3.

Recall that for & = 3 we have v(3,v/2) = 14 and the Heawood is the unique graph
meeting this bound. For k > 3 we note that Lemma 4.4 with H = K3 implies that a
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graph G with A\y(G) < v/2 and girth 3 satisfies |V(G)| < 3(k — 1) <1 + kk_—_ji), and Lemma
4.4 with H = K, 3 implies that such a graph with girth more than 3 satisfies |V(G)| <
44 2(2k — 3) (1 + k‘:%) (note that in both cases we have p(H) > A\y(G)). Combining this
with Lemma 4.1 allows one to restrict the search to graphs with certain girth. For £ > 7,

ny(k,g) is larger than these bounds unless the girth is at most 4, and for £k = 4, 5, or 6
ny(k, g) is larger than these bounds unless the girth is at most 5. Thus the graphs sought in
Problem 5.2 must have girth at most 5 for k = 4,5,6 and girth at most 4 for k > 7.

Problem 5.3. Among regular graphs, what is the smallest second eigenvalue larger than 17

Yu [48] found a 3-regular graph G on 16 vertices (see Figure 5) with smallest eigenvalue

Figure 5: The unique 3-regular graph with largest least eigenvalue less than —2.

Amin = 7 & —2.0391, where « is the smallest root of f(z) = 2° — 32° — 72* + 212°% + 1322 —
35x — 4, and moreover proved that there is no connected, 3-regular graph with smallest
eigenvalue in the interval (v, —2) (that is, among all connected, 3-regular graphs G has the
largest least eigenvalue less than —2). Since the second eigenvalue of the complement of a
regular graph is Ay = —1 — Apin, the complement G of G, a 12-regular graph on 16 vertices,
has second eigenvalue \o(G) = —1 — v =~ 1.0391. We do not know if G has smallest second
eigenvalue larger than 1 among regular graphs, but it is not unique. Indeed, the complement
of the disjoint union G + kK, of G and k copies of K is a connected, (12 + 4k)-regular
graph on 16 + 4k vertices with second eigenvalue \y(G + kK,) = —1 — 7, so we have found

an infinite family of regular graphs with second eigenvalue —1 — 7.

Problem 5.4. For any integer k > 2, let A(k) := (=1 + v/4k — 3)/2. Then we find that
v(k, A(k)) < k? + 1 with equality if and only if the associated graph is a Moore graph of
diameter 2. Moore graphs of diameter 2 only exists for k = 2,3,7, and possibly 57. If k is
not 2,3,7,57, then v(k, \(k)) < k?. Determine the exact value of v(k, \(k)) in these cases.

An (n, k, A)-graph is a k-regular graph with n vertices such that |X\;| < A for ¢ > 2. This
notion was introduced by Alon (see [1, 25]) motivated by the study of pseudo-random graphs

and expanders among other things. The following question seems natural and interesting.

Problem 5.5. Given k > 3 and 1 < A\ < 2k — 1, what is the mazimum order n of an
(n, k, X\)-graph ¢
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