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Abstract

A connected graph G of even order v is called t-extendable if it contains a perfect
matching, t < v/2 and any matching of t edges is contained in some perfect matching.
The extendability of G is the maximum t such that G is t-extendable. Since its intro-
duction by Plummer in the 1980s, this combinatorial parameter has been studied for
many classes of interesting graphs. In 2005, Brouwer and Haemers proved that every
distance-regular graph of even order is 1-extendable and in 2014, Cioabă and Li showed
that any connected strongly regular graph of even order is 3-extendable except for a
small number of exceptions.
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In this paper, we extend and generalize these results. We prove that all distance-
regular graphs with diameter D ≥ 3 are 2-extendable and we also obtain several better
lower bounds for the extendability of distance-regular graphs of valency k ≥ 3 that
depend on k, λ and µ, where λ is the number of common neighbors of any two adjacent
vertices and µ is the number of common neighbors of any two vertices in distance two. In
many situations, we show that the extendability of a distance-regular graph with valency
k grows linearly in k. We conjecture that the extendability of a distance-regular graph
of even order and valency k is at least ⌈k/2⌉ − 1 and we prove this fact for bipartite
distance-regular graphs.

In course of this investigation, we obtain some new bounds for the max-cut and the
independence number of distance-regular graphs in terms of their size and odd girth and
we prove that our inequalities are incomparable with known eigenvalue bounds for these
combinatorial parameters.

1 Introduction

Our graph theoretic notation is standard (for undefined notions, see [8, 29, 47]). The adjacency
matrix of a graph G = (V,E) has its rows and columns indexed after the vertices of the graph
and its (u, v)-th entry equals 1 if u and v are adjacent and 0 otherwise. If G is a connected
k-regular graph of order v, then k is the largest eigenvalue of the adjacency matrix of G and
its multiplicity is 1. In this case, let k = λ1 > λ2 ≥ · · · ≥ λv denote the eigenvalues of the
adjacency matrix of G. If S and T are vertex disjoint subsets of G, let e(S, T ) denote the
number of edges with one endpoint in S and the other in T . If S is a subset of vertices of G,
let Sc denote its complement. The max-cut of G is defined as mc(G) := maxS⊂V e(S, Sc) and
measures how close isG from being a bipartite graph. Given a graphG, determining mc(G) is a
well-known NP-hard problem (see [25, Problem ND16, page 210] or [32]) and designing efficient
algorithms to approximate mc(G) has attracted a lot of attention [1, 20, 21, 22, 29, 30, 40, 48].

A set of edges M in a graph G is a matching if no two edges of M share a vertex. A
matching M is perfect if every vertex is incident with exactly one edge of M . A connected
graph G of even order v is called t-extendable if it contains at least one perfect matching,
t < v/2 and any matching of size t is contained in some perfect matching. Graphs that are
1-extendable are also called matching-covered (see Lovász and Plummer [37, page 113]). The
extendability of a graph G of even order is defined as the maximum t < v/2 such that G is
t-extendable. This concept was introduced by Plummer [42] in 1980 and was motivated by
work of Lovász [35] on canonical decomposition of graphs containing perfect matchings. Later
on, Yu [50] expanded the definition of extendability to graphs of odd order. Zhang and Zhang
[52] obtained an O(mn) algorithm to compute the extendability of a bipartite graph with n
vertices and m edges, but the complexity of determining the extendability of a general graph
is unknown at present time (see [43, 44, 51] for more details on extendability of graphs).

In this paper, we obtain a simple upper bound for the max-cut of certain regular graphs in
terms of their odd girth (the shortest length of an odd cycle). In Section 2, we prove that if G
is a non-bipartite distance-regular graph with e edges and odd girth g, then mc(G) ≤ e(1− 1

g
).

As a consequence of this result, we show that if G is a non-bipartite distance-regular graph
with v vertices, odd girth g and independence number α(G), then α(G) ≤ v

2
(1− 1

g
). We show
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that these bounds are incomparable with some spectral bounds of Mohar and Poljak [40] for
the max-cut and of Cvetković (see [8, Theorem 3.5.1] or [29, Lemma 9.6.3]) and Hoffman (see
[8, Theorem 3.5.2] or [29, Lemma 9.6.2]) for the independence number.

Holton and Lou [31] showed that strongly regular graphs with certain connectivity prop-
erties are 2-extendable and conjectured that all but a few strongly regular graphs are 2-
extendable. Lou and Zhu [38] proved this conjecture and showed that every connected strongly
regular graph of valency k ≥ 3 is 2-extendable with the exception of the complete 3-partite
graph K2,2,2 and the Petersen graph. Cioabă and Li [15] proved that every connected strongly
regular graph of valency k ≥ 5 is 3-extendable with the exception of the complete 4-partite
graph K2,2,2,2, the complement of the Petersen graph and the Shrikhande graph. Moreover,
Cioabă and Li determined the extendability of many families of strongly regular graphs in-
cluding Latin square graphs, block graphs of Steiner systems, triangular graphs, lattice graphs
and all known triangle-free strongly regular graphs. For any such graph of valency k, Cioabă
and Li proved that the extendability is at least ⌈k/2⌉−1 and conjectured that this fact should
be true for any strongly regular graph.

In this paper, we extend and generalize these results and study the extendability of
distance-regular graphs with diameter D ≥ 3. Brouwer and Haemers [7] proved that distance-
regular graphs are k-edge-connected. Plesńık ([41] or [36, Chapter 7]) showed that if G is a
k-regular (k − 1)-edge-connected graph with an even number of vertices, then the graph ob-
tained by removing any k− 1 edges of G contains a perfect matching. These facts imply that
every distance-regular graph of even order is 1-extendable. In Section 3, we improve this result
and we show that all distance-regular graphs with diameter D ≥ 3 are 2-extendable. We prove

that any distance-regular graph of valency k ≥ 3 with λ ≥ 1 is ⌊k+1− k
λ+1

2
⌋-extendable (when

µ = 1), ⌊1
2
⌈k+2

2
⌉⌋-extendable (when µ = 2) and ⌊k

3
⌋-extendable (when µ ≥ 3 and k ≥ 6). We

also show that any bipartite distance-regular graph of valency k is ⌊k+1
2
⌋-extendable. We also

remark that our results for graphs of even order can be extended to graphs of odd order in
similar fashion to what was done in [15], but for the sake of brevity and clarity, we will not
include the details here.

2 Max-cut of distance regular graphs

For notation and definitions related to distance-regular graphs, see [6]. We denote the inter-
section array of a distance-regular G of diameter D by {b0, . . . , bD−1; c1, . . . , cD} and we let
k = b0 and ai = k− bi − ci for 0 ≤ i ≤ D as usual. Also, let λ = a1 and µ = c2. The following
result gives a simple upper bound for the max-cut of a graph in terms of its odd girth un-
der certain regularity conditions. Such regularity conditions will be satisfied by walk-regular
graphs and distance-regular graphs. As pointed to us by one of the anonymous referees, the
theorem below holds for any odd natural number g as long as the condition that every edge
is in the same number of cycles of length g, is satisfied.

Theorem 2.1. Let G be a non-bipartite graph with odd girth g. If every edge of G is contained
in the same number of cycles of length g, then

mc(G) ≤ e

(

1− 1

g

)

. (1)

3



Proof. Let γ be the number of cycles of length g containing some fixed edge of G and let C
be the set of cycles of length g. By counting pairs (e0, C) with e0 ∈ E(G), C ∈ C with e0
contained in C, we get that |C| = eγ

g
. Let A be any subset of vertices and T be the set of the

edges with both endpoints in A or in Ac. Every time we delete an edge in T , we destroy at
most γ cycles in C. Therefore |T | ≥ |C|

γ
= e

g
. Since e(A,Ac) = e− |T | ≤ e(1− 1

g
), this implies

the desired conclusion.

Our theorem can be applied to the family of m-walk regular graphs with m ≥ 1. This
family of graphs contains the distance-regular graphs. A connected graph G is m-walk-regular
if the number of walks of length l between any pair of vertices only depends on the distance
between them, provided that this distance does not exceed m. The family of m-walk-regular
graphs was first introduced by Dalfó, Fiol, and Garriga [16, 23].

Note that the upper bound of Theorem 2.1 is tight as shown for example by the blow up
of an odd cycle Cg. Such a graph can be constructed from the odd cycle Cg by replacing each
vertex i of Cg by a coclique Ai of size m for 1 ≤ i ≤ g and adding all the possible edges
between Ai and Aj whenever i and j are adjacent in Cg. The resulting graph which is also
the lexicographic product of the cycle Cg with the empty graph of order m (see [29, Ex 26,
p.17] for a definition), has gm vertices and gm2 edges. The odd girth of this graph is g, each
edge of the graph is contained in the same number of cycles of length g and there is a cut of

size e
(

1− 1
g

)

= (g − 1)m2.

Mohar and Poljak [40] showed that mc(G) ≤ vµmax

4
for any graph G on v vertices whose

largest Laplacian eigenvalue is µmax (see also [1, 18, 20, 21, 22] for related results). Translated
to regular graphs, their result implies the following inequality:

mc(G) ≤ e

2

(

1− λv

k

)

. (2)

Note that the inequalities (1) and (2) are incomparable. This fact can be seen by consid-
ering the complete graphs and the odd cycles, but we give other examples of distance-regular
graphs below. Also, a simple calculation yields that inequality (1) is better for graphs that in
a spectral sense are closer to being bipartite (when λv ≤ −k(1− 2/g) more precisely).

The Hamming graph H(D, q) is the graph whose vertices are all the words of length D
over an alphabet of size q with two words being adjacent if and only their Hamming distance
is 1. The graph H(D, q) is distance-regular of diameter D, has eigenvalues (q − 1)D − qi for
0 ≤ i ≤ D and is bipartite when q = 2 [8, page 174]. When q ≥ 3, inequality (1) always gives
an upper bound 2e

3
. The upper bound from inequality (2) is e

2
(1 + 1

q−1
). When q = 3, (1) is

better. When q ≥ 5, inequality (2) is better. When q = 4, both inequalities give the same
upper bound.

The Johnson graph J(n,m) is the graph whose vertices are the m-subsets of a set of size
n with two m-subsets being adjacent if and only if they have m−1 elements in common. The
graph J(n,m) is distance-regular with diameter D = min(m,n−m), eigenvalues (m− i)(n−
m − i) − i, where 0 ≤ i ≤ D [8, page 175]. Inequality (1) always gives an upper bound 2e

3
.

Inequality (2) is e
2
(1 + D

m(n−m)
). When max(m,n−m) ≥ 4, inequality (2) is better and in the

other cases (m ∈ {2, 3} or n−m ∈ {1, 2, 3}), (1) is better.
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In the following examples, we compare (1) and (2) for other distance-regular graph with
larger odd girth.

1. The Dodecahedron graph [6, page 417] is a 3-regular graph of order 20 and size 30. It
has λv = −

√
5 and g = 5. Inequality (1) gives mc(G) ≤ 24 and inequality (2) gives

mc(G) ≤ 26.

2. The Coxeter graph [6, page 419] is a 3-regular graph of order 28 and size 42. It has
λv = −

√
2− 1 ≈ −2.414 and g = 7. Inequality (1) gives mc(G) ≤ 36 and inequality (2)

gives mc(G) ≤ 37.

3. The Biggs-Smith graph [6, page 414] is a 3-regular graph of order 102 and size 153. It
has λv ≈ −2.532 and g = 9. Inequality (1) gives mc(G) ≤ 136 and inequality (2) gives
mc(G) ≤ 141.

4. The Wells graph [6, page 421] is a 5-regular graph of order 32 and size 80. It has λv = −3
and g = 5. Inequality (1) gives mc(G) ≤ 64 and inequality (2) gives mc(G) ≤ 64.

5. The Hoffman-Singleton graph [6, page 391] is a 7-regular graph of order 50 and size 175.
It has λv = −3 and g = 5. Inequality (1) gives mc(G) ≤ 140 and inequality (2) gives
mc(G) ≤ 125.

6. The Ivanov-Ivanov-Faradjev graph [6, page 414] is a 7-regular graph of order 990 and
size 3465. It has λv = −4 and g = 5. Inequality (1) gives mc(G) ≤ 2772 and inequality
(2) gives mc(G) ≤ 2722.

7. The Odd graph Om+1 [6, page 259-260] is the graph whose vertices are the m-subsets
of a set with 2m + 1 elements, where two m-subsets are adjacent if and only if they
are disjoint. Note that O3 is Petersen graph. The graph Om+1 is a distance-regular
graph of valency m + 1, order v =

(

2m+1
m

)

and size e = m+1
2

(

2m+1
m

)

. It has λv = −m
and g = 2m + 1. Inequality (1) gives mc(G) ≤ e(1 − 1

2m+1
) and inequality (2) gives

mc(G) ≤ e(1− 1
2m+2

).

Theorem 2.1 can be used to obtain an upper bound for the independence number of certain
regular graphs.

Corollary 2.2. Let G be a non-bipartite regular graph with valency k and odd girth g. If
every edge of G is contained in the same number of cycles of length g, then

α(G) ≤ v

2

(

1− 1

g

)

. (3)

Proof. Let S be an independent set of size α(G). Then kα(G) = e(S, Sc) ≤ vk
2
(1 − 1

g
) which

implies the conclusion of the theorem.
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The Cvetković inertia bound (see [8, Theorem 3.5.1] or [29, Lemma 9.6.3]) states that if G
is a graph with n vertices whose adjacency matrix has n+ positive eigenvalues and n− negative
eigenvalues, then

α(G) ≤ min(n− n−, n− n+). (4)

The Hoffman-ratio bound (see [8, Theorem 3.5.2] or [29, Lemma 9.6.2]) states that if G is
a k-regular graph with v vertices, then

α(G) ≤ v

1 + k/(−λv)
. (5)

In the table below, we compare the bounds (3), (4) and (5) for some of the previous
examples. When the bounds obtained are not integers, we round them below. The exact
values of the independence numbers below were computed using Sage.

Graph α (3) (4) (5)
Dodecahedron 8 8 8 11

Coxeter 12 12 13 12
Biggs-Smith 43 45 58 46

Wells 10 12 13 12
Hoffman-Singleton 15 20 21 15

For the Hamming graph H(D, q) with D = 2 and q ≥ 3, (3) is better than (5). For the
Hamming graph H(D, q) with D ≥ 3 and q ≥ 3, (5) is better. For the Odd graph Om+1, the
inequalities (3) and (5) give the same bound that equals the independence number of Om+1.

3 Extendability of matchings in distance-regular graphs

In this section, we will focus on the extendability of distance-regular graphs of even order.
Similar results can be obtained for distance-regular graphs of odd order using the definition
of extendability of Yu [50], but for the sake of simplicity we restrict ourselves to graphs of
even order. A connected graph G of odd order v containing at least one matching of size v−1

2

(a near perfect matching) is called t-near-extendable (or t1/2-extendable in the notation of
Yu [50]) if t < v−1

2
and for every vertex x, any matching of size t that does not cover x, is

contained in some near perfect matching that misses x. Graphs that are 0-near-extendable
are also called factor-critical or hypomatchable (see Lovász and Plummer [37, page 89]).

In Subsection 3.1, we describe the main tools which will be used in our proofs. In Sub-
section 3.2, we give various lower bounds for the extendability of distance-regular graphs. In
Subsection 3.3, we show that all distance-regular graphs with diameterD ≥ 3 are 2-extendable.

3.1 Main tools

Let o(G) denote the number of components of odd order in a graph G. If S is a subset of
vertices of G, then G − S denotes the subgraph of G obtained by deleting the vertices in S.
Let N(T ) denote the set of vertices outside T that are adjacent to at least one vertex of T .
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When T = {x}, let N(x) = N({x}). The distance d(x, y) between two vertices x and y of
a connected graph G is the shortest length of a path between x and y. If x is a vertex of a
distance-regular graph G, let Ni(x) denote the set of vertices at distance i from vertex x and
ki = |Ni(x)|; the i-th subconstituent Γi(x) of x is the subgraph of G induced by Ni(x).

Theorem 3.1 (Brouwer and Haemers [7]). Let G be a distance-regular graph of valency k.
Then G is k-edge-connected. Moreover, if k > 2, then the only disconnecting sets of k edges
are the set of k edges on a single vertex.

Theorem 3.2 (Brouwer and Koolen [10]). Let G be a distance-regular graph of valency k.
Then G is k-connected. Moreover, if k > 2, then the only disconnecting sets of k vertices are
the set of the neighbors of some vertex.

Lemma 3.3. Let G be a distance-regular graph with k ≥ 4. If A ⊂ V with 3 ≤ |A| ≤ k − 1,
then e(A,Ac) ≥ 3k − 6.

Proof. If |A| ≤ k − 2, then every vertex in A has at least k − (|A| − 1) many neighbors in Ac

and consequently e(A,Ac) ≥ |A|(k − |A| + 1) ≥ 3(k − 2). Let A ⊂ V with |A| = k − 1. If
|N1(x)∩A| ≤ k− 3 for every x ∈ A, then e(A,Ac) ≥ 3(k− 1). Otherwise, let x ∈ A such that
|N1(x)∩A| = k−2. DenoteN1(x)∩Ac = {y, z}. If λ = 0, then each vertex inN1(x)∩A has k−1
neighbors outside A and thus, e(A,Ac) ≥ 2+(k−2)(k−1) > 3k−6. If λ ≥ 1, then at least λ−1
of the λ common neighbors of x and y are contained in A. Therefore, y has at least λ neighbors
in A. A similar statement holds for z. Thus, e(A,N1(x) ∩ Ac) ≥ 2λ = 2(k − b1 − 1). Also,
e(N1(x)∩A,N2(x)) ≥ (k−2)b1 so e(A,A

c) ≥ (k−2)b1+2(k−b1−1) = 3k−6+(k−4)(b1−1) ≥
3k − 6.

Theorem 3.4 (Tutte [49]). A graph G has a perfect matching if and only if o(G− S) ≤ |S|
for every S ⊂ V (G).

Yu [50, Theorem 2.2] obtained the following characterization of connected graphs that are
not t-extendable using Tutte’s theorem.

Lemma 3.5 (Yu [50]). Let t ≥ 1 and G be a connected graph containing a perfect matching.
The graph G is not t-extendable if and only if it contains a subset S of vertices such that the
subgraph induced by S contains t independent edges and o(G− S) ≥ |S| − 2t+ 2.

The following necessary condition for a bipartite and connected graph not to be t-extendable,
will be used later in our arguments.

Lemma 3.6. Let G be a connected bipartite graph with color classes X and Y , where |X| =
|Y | = m. If G is not t-extendable, then G has an independent set I of size at least m− t+ 1,
such that I 6⊂ X and I 6⊂ Y .

Proof. Assume that G is not t-extendable. By Lemma 3.5, there is a vertex disconnecting set
S such that the subgraph induced by S contains at least t independent edges and o(G−S) ≥
|S| − 2t+2. Let S be such a disconnecting set of maximum size. Our key observation is that
G−S does not have non-singleton odd components. Indeed, note that any non-singleton odd
component of G − S induces a bipartite graph with color classes A and B. Since |A| + |B|
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is odd, we get that |A| 6= |B| and assume that |A| > |B|. If S ′ = S ∪ B, then S ′ is a vertex
disconnecting set with |S ′| > |S| and o(G−S ′) ≥ |S ′|−2t+2, contradicting to the maximality
of |S|. By a similar argument, G− S contains no even components. Let I = V (G) \ S. Then
I is an independent set of size at least m− t + 1 since |I|+ |S| = 2m and |I| ≥ |S| − 2t + 2.
Assume that I ⊂ X . Then S induces a bipartite graph with one partite set of size at most
t − 1. This makes it impossible for the subgraph induced by S to contain t independent
edges.

Note that the study of such independent sets in regular bipartite graphs has been done by
other authors in different contexts (see [19] for example).

Lemma 3.7 (Lemma 6 [15]). If G is a distance-regular graph of diameter D ≥ 3, then for any
x ∈ V (G), the subgraph induced by the vertices at distance 2 or more from x, is connected.

Proof. As G has diameter D ≥ 3, then there are 4 vertices, which induce a P4. It is known that
P4 has spectrum {1+

√
5

2
, −1+

√
5

2
, 1−

√
5

2
, −1−

√
5

2
}. By eigenvalue interlacing [8, Corollary 2.5.2],

λ2 ≥ −1+
√
5

2
> 0. Cioabă and Koolen [12, Theorem 3] proved that if the entry ui−1 of the

standard sequence (u0, u1, . . . , uD) corresponding to λ2, is positive, then for all x ∈ V (G),
Γ≥i(x) is connected, where Γ≥i(x) is the graph induced by the vertex set at distance at least
i to vertex x. As u1 = λ2/k > 0, the conclusion follows.

Lemma 3.8 (Brouwer and Haemers [7]). Let G be a distance-regular graph. Let T be a
disconnecting set of edges of G, and let A be the vertex set of a component of G − T . Fix
a vertex a ∈ A and let ti be the number of edges in T that join Γi−1(a) and Γi(a). Then
|A ∩ Γi(a)| ≥ (1−∑i

j=1
tj

cjkj
)ki and

|A| ≥ v −
∑

i

ti
ciki

(ki + · · ·+ kD).

If T is a disconnecting set of edges none of which is incident with a, then

|A| > v

(

1− |T |
µk2

)

.

Lemma 3.9. Let G be a distance-regular graph with λ ≥ 1. If A is an independent set of G,
then |N(A)| ≥ 2|A|.

Proof. For any x ∈ N(A), N(x)∩A is an independent set in the subgraph Γ1(x). As Γ1(x) is
λ-regular graph with k vertices, its independence number is at most k/2. Thus, |N(x)∩A| ≤
k/2. Therefore, |A|k = e(A,N(A)) =

∑

x∈N(A) |N(x) ∩ A| ≤ |N(A)|k/2 which implies that

|N(A)| ≥ 2|A|.

Lemma 3.10. Let G be a distance-regular graph with valency k ≥ 3, λ ≥ 1 and µ ≤ k/2. If
A is an independent set of G, then |N(A)| ≥ k + |A| − 1.

8



Proof. Let a = |A|. The case a = 1 is trivial. If a ≥ k − 1, Lemma 3.9 implies that
|N(A)| ≥ 2a ≥ a + k − 1. Assume that 2 ≤ a ≤ k − 2. If there are two vertices x, y ∈ A,
such that N(x) ∩ N(y) = ∅, then |N(A)| ≥ |N(x) ∪ N(y)| ≥ 2k ≥ k + a − 1. Assume that
N(x) ∩ N(y) 6= ∅ for any x, y ∈ A. Since A is an independent set, |N(x) ∩ N(y)| = µ for

any x 6= y ∈ A. For z ∈ N(A), let dz = |A ∩ N(z)| and d̄ =
∑

z∈N(A) dz

|N(A)| . Counting the edges

between A and N(A), we have ak = |N(A)|d̄. Counting the 3-subsets of the form {x, y, z}
such that x 6= y ∈ A, z ∈ N(A), x ∼ z, y ∼ z and then using Jensen’s inequality for the

function f(t) =
(

t
2

)

, we get that
(

a
2

)

µ =
∑

z∈N(A)

(

dz
2

)

≥ |N(A)|
(

d̄
2

)

. Combining these facts, we

obtain that (a − 1)µ ≥ k
(

ka
|N(A)| − 1

)

which implies that |N(A)| ≥ k2a
k+aµ−µ

. As µ ≤ k/2, we

have |N(A)| ≥ k2a
k+(a−1)k/2

= 2ka
a+1

= k + a− 1 + (a−1)(k−a−1)
a+1

≥ k + a− 1.

A distance-regular graph with intersection array {k, µ, 1; 1, µ, k} is called a Taylor graph.
The following lemma due to Brouwer and Koolen (see [10, Lemma 3.14] and also [33, Propo-
sition 5] for a generalization) gives a sufficient condition for a distance-regular graph to be a
Taylor graph.

Lemma 3.11 (Brouwer and Koolen [10]). Let G be a non-bipartite distance-regular graph
with D ≥ 3. If k < 2µ, then G is a Taylor graph.

3.2 Lower bounds for the extendability of distance-regular graphs

In this subsection, we give some sufficient conditions, in terms of k, λ and µ, for a distance-
regular graph to be t-extendable, where t ≥ 1.

Theorem 3.12 (Chen [11]). Let t ≥ 1 and n ≥ 2 be two integers. If G is a (2t + n − 2)-
connected K1,n-free graph of even order, then G is t-extendable.

Corollary 3.13. If G is a distance-regular graph with even order and λ ≥ 1, then G is
⌊1
2
⌈k+2

2
⌉⌋-extendable.

Proof. The graph G is K1,⌊k/2⌋+1-free because λ ≥ 1. Let t = ⌊1
2
⌈k+2

2
⌉⌋ and n = ⌊k/2⌋ + 1.

Then k ≥ 2t+ n− 2. The result follows from Theorem 3.2 and Theorem 3.12.

We improve the previous result when µ = 1.

Theorem 3.14. If G is a distance-regular graph with even order, λ ≥ 1 and µ = 1, then G

is ⌊k+1− k
λ+1

2
⌋-extendable.

Proof. The condition µ = 1 implies that Γ1(x) is a disjoint union of cliques on λ+ 1 vertices,

for any vertex x of G. Hence, λ+ 1 divides k and G is K1, k
λ+1

+1-free. Let t = ⌊k+1− k
λ+1

2
⌋ and

n = k
λ+1

+ 1. Then 2t + n − 2 ≤ k. The conclusion follows from Theorem 3.2 and Theorem
3.12.

The following theorem is an improvement of Corollary 3.13 when 3 ≤ µ ≤ k/2.
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Theorem 3.15. Let G be a distance-regular graph with even order, and D ≥ 3. If λ ≥ 1 and
3 ≤ µ ≤ k/2, then G is t-extendable, where t = ⌈ (k−3)(k−1)

3k−6
⌉.

Proof. Note that 3 ≤ µ ≤ k/2 implies that k ≥ 6. If G is not t-extendable, by Lemma 3.5,
there exists a disconnecting S with s vertices such that o(G−S) ≥ s−2t+2 (and in addition,
the subgraph induced by S contains t independent edges). Let S be a disconnecting set with
minimum cardinality such that o(G − S) ≥ s − 2t + 2. Note that such S may not contain t
independent edges. Let O1, O2, . . . , Or be all the odd components of G−S, with r ≥ s−2t+2.
Let a ≥ 0 denote the number of singleton components among O1, . . . , Or.

We claim that e(A, S) ≥ 3k − 6 for any non-singleton odd component A of G− S.
Let A be a non-singleton odd component of G− S and B = (A ∪N(A))c. If |A| ≤ k − 1,

the claim follows from Lemma 3.3. Assume that |A| ≥ k. Let S ′ := {s ∈ N(A) | N(s) ⊆
A ∪ N(A)}. Then |S ′| ≤ 1. Otherwise, assume that x 6= y ∈ S ′. Define S0 = S \ {x, y} and
A0 = A ∪ {x, y}. Then S0 is a disconnecting set with o(G− S ′) = o(G− S) ≥ |S| − 2t+ 2 >
|S ′| − 2t+ 2, contradicting the minimality of |S|.

If we let A′ := {a ∈ A | d(a, b) = 2 for some b ∈ B}, then e(A, S) ≥ µ|A′|. If |A′| ≥ k− 2,
we get e(A, S) ≥ µ|A′| ≥ 3(k − 2) and we are done. Otherwise, if |A′| < k − 2, then the set
A′ ∪ S ′ is a disconnecting set with less than k − 1 vertices, contradicting Theorem 3.2. This
finish our proof of the claim.

Counting the number of edges between S and O1 ∪ · · · ∪ Or, we obtain the following

ks ≥ e(S,O1 ∪ · · · ∪ Or) ≥ ak + (r − a)(3k − 6) ≥ ak + (s− 2t + 2− a)(3k − 6). (6)

This inequality is equivalent to

t ≥ (k − 3)(s− a) + 3k − 6

3k − 6
(7)

and since s− a ≥ k − 1 (Lemma 3.10), we obtain that

t ≥ (k − 3)(k − 1)

3k − 6
+ 1. (8)

This is a contradiction with t = ⌈ (k−3)(k−1)
3k−6

⌉.

A straightforward calculation shows that ⌈ (k−3)(k−1)
3k−6

⌉ = ⌊k
3
⌋ for k ≥ 4.

Theorem 3.16. Let G be a non-bipartite distance-regular graph with D ≥ 3 and µ > k/2.
Then λ ≥ 1 and G is t-extendable, where t = ⌊k/3⌋.

Proof. Lemma 3.11 implies that G is a Taylor graph with intersection array {k, µ, 1; 1, µ, k}.
If λ = 0, then µ = k − 1 and G is obtained by deleting a perfect matching from K(k+1)×(k+1)

(see [6, Corollary 1.5.4]) which is a bipartite graph, contradiction.
Thus λ ≥ 1. It is known that for any x ∈ V (G), Γ1(x) is a strongly regular graph with

parameters
(

k, λ, 3λ−k−1
2

, λ
2

)

(see [6, Section 1.5]). If 3λ−k−1
2

≥ 1, then Lemma 3.9 implies that
α(Γ1(x)) ≤ k/3. If G is not t-extendable, then there is a vertex disconnecting set S containing
t independent edges, such that G−S has at least s−2t+2 ≥ k−2t+2 ≥ 3 odd components.
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Picking one vertex from each odd component yields an independent set I in G. If two vertices
of this independent set were at distance 3, then the neighborhood of these two vertices will be
formed by the remaining 2k vertices of the graph and therefore, G− S would have only two
odd components, contradiction. Thus, any two vertices of this independent set are at distance
2 to each other. Pick a vertex x in this independent set. Any subset of k − 2t + 1 vertices
of I \ {x} will be an independent set in Γ1(y), where y is the antipodal vertex to x. Thus,
k − 2t + 1 ≤ k/3, contradiction with t = ⌊k/3⌋. If 3λ−k−1

2
= 0, then Γ1(x) has parameters

(3λ−1, λ, 0, λ/2). If λ = 2, Γ1(x) is C5 which implies that k = 5 and µ = 2, contradiction with
k/2 < µ. If λ ≥ 4, then Γ1(x) must have integer eigenvalues implying that x2 + λ

2
x − λ

2
= 0

has integer roots. However, (λ/2)2 + 2λ is not a perfect square, contradiction.

In the end of this subsection, we will show that bipartite distance-regular graphs have high
extendability.

Theorem 3.17. If G is a bipartite distance-regular graph with valency k, then G is t-
extendable, where t = ⌊k+1

2
⌋.

Proof. Let X and Y be the color classes of G, where |X| = |Y | = m. Assume that G is not
t-extendable. By Lemma 3.6, G has an independent set I of size at least m− t+1, such that
I 6⊂ X and I 6⊂ Y . Let A = I ∩ X , B = I ∩ Y , C = X \ A, D = Y \ B. If |A| = a, then
|B| ≥ m − a − t + 1, |C| = m − a and |D| ≤ a + t − 1. As there are ak edges between A
and D, and (a + t − 1)k ≥ |D|k = e(D,X) = e(A,D) + e(C,D), there are at most (t − 1)k
edges between C and D. This implies that G has an edge cut of size at most (t− 1)k, which
disconnects G into two vertex sets B ∪C and A∪D. Without loss of generality, assume that
|A ∪D| ≤ m. By the second part of Lemma 3.8, we have

|A ∪D| > v

(

1− e(A ∪D,B ∪ C)

µk2

)

≥ 2m

(

1− (t− 1)k

(k − 1)k

)

≥ 2m(1− 1/2) = m,

contradiction with |A ∪D| ≤ m.

3.3 The 2-extendability of distance-regular graphs of valency k ≥ 3

Lou and Zhu [38] proved that any strongly regular graph of even order is 2-extendable with
the exception of the complete tripartite graph K2,2,2 and the Petersen graph. Cioabă and Li
[15] showed that any strongly regular graph of even order and valency k ≥ 5 is 3-extendable
with the exception of the complete 4-partite graph K2,2,2,2, the complement of the Petersen
graph and the Shrikhande graph (see [7, page 123] for a description of this graph).

In this subsection, we prove that any distance-regular graph of diameter D ≥ 3 is 2-
extendable. By Corollary 3.13, any distance-regular graph with λ ≥ 1 and k ≥ 5 is 2-
extendable. Note also that any distance-regular graph of even order having valency k ≤ 4
and diameter D ≥ 3 must have λ = 0 (see [4, 9]). Theorem 3.17 implies that any bipartite
distance-regular graph of valency k ≥ 3 is 2-extendable. Thus, we only need to settle the case
of non-bipartite distance-regular graphs with λ = 0. We will need the following lemma.

Lemma 3.18. If G is a non-bipartite distance-regular graph with valency k ≥ 5 and λ = 0,
then α(G) < v/2− 1.
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Proof. If g is the odd girth of G, then v > 2g and Corollary 2.2 implies that α(G) ≤ v
2
(1− 1

g
) <

v/2− 1.

Theorem 3.19. If G is a non-bipartite distance-regular graph with even order, D ≥ 3, valency
k ≥ 3 and λ = 0, then G is 2-extendable.

Proof. We prove this result by contradiction and the outline of our proof is the following. We
assume that G is not 2-extendable. Lemma 3.5 implies that there is a vertex disconnecting
set S, such that the graph induced by S contains at least 2 independent edges and o(G−S) ≥
|S| − 2. Without loss of generality, we may assume that S is such a disconnecting set with
the maximum size. We then prove that G−S does not have non-singleton components which
implies that V (G)− S is an independent set of size at least v/2− 1, contradiction to Lemma
3.18.

Assume k ≥ 5 first.
Note that any odd non-singleton component of G− S is not bipartite. Otherwise, assume

there is a bipartite odd component of G− S with color classes X and Y such that |X| > |Y |.
Let S ′ = S ∪ Y . Then |S ′| > |S| and o(G − S ′) ≥ |S ′| − 2, contradiction with |S| being
maximum. Also, G − S has no even components. Otherwise, we can add one vertex of one
such even component to S and creating a larger disconnecting set and an extra odd component,
contradicting again the maximality of |S|. It is easy to see that G − S does not have any
components with 3 vertices, because G is triangle free and any component with 3 vertices
must be a path, hence bipartite.

Assume that A is an odd non-singleton component of G−S. If we can show that e(A, S) ≥
3k − 3, then using o(G− S) ≥ |S| − 2 and e(X,S) ≥ k for any component X of G− S (from
Theorem 3.1), we obtain the following contradiction by counting the edges between S and Sc:

k|S| − 4 ≥ e(S, Sc) ≥ 3k − 3 + k(|S| − 3) = k|S| − 3, (9)

finishing our proof.
We now prove e(A, S) ≥ 3k − 3 whenever A is a non-singleton odd component of G− S.

If 5 ≤ |A| ≤ 2k−3, then as A has no triangle, Turán’s theorem implies that e(A) ≤ |A|2−1
4

,
where e(A) denotes the number of edges with both endpoints in A. Thus, e(A, S) ≥ k|A| −
2e(A) ≥ k|A| − |A|2−1

2
≥ 3k − 4. The last equality is attained when A induces a bipartite

graph Kk−1,k−2. This is impossible as the graph induced by A is not bipartite. Hence,
e(A, S) ≥ 3k − 3.

Let A be an odd component of G− S such that |A| ≥ 2k − 1. If every vertex of A sends
at least one edge to S, then we have two subcases: µ ≥ 2 and µ = 1.

If µ ≥ 2, then we can define S ′ := {s ∈ N(A) | N(s) ⊆ A ∪ N(A)}. If |S ′| ≥ 3, then
e(A, S) + 2e(S) ≥ 3k + 1. This is because e(A, S) + 2e(S) =

∑

x∈S |N(x) ∩ (A ∪ S)|. As the
graph induced by S contains at least 2 independent edges, the previous sum contains at least
4 positive terms, and at least 3 of such terms are equal to k. On the other hand, as in (9),
counting the number of edges between S and Sc, we get that e(A, S)+(|S|−3)k ≤ e(S, Sc) =
|S|k−2e(S). Thus, e(A, S)+2e(S) ≤ 3k, contradiction. If |S ′| ≤ 2, then let B = (A∪N(A))c

and A′ = {a ∈ A | ∃b ∈ B such that d(a, b) = 2}. If A′ = A, then |A′| ≥ 2k − 1 ≥ k − 2. If
A 6= A′, then because A′ ∪S ′ is a disconnecting set, Lemma 3.2 implies that |A′ ∪S ′| ≥ k and
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therefore, |A′| ≥ k − 2. As each vertex in A′ sends at least µ edges to S and µ ≥ 2, we get
that e(A, S) ≥ 2k − 1 + (k − 2)(µ− 1) ≥ 3k − 3.

If µ = 1, then the graph induced by A contains no triangles and four-cycles. If |A| ≥ 3k−3,
then e(A, S) ≥ 3k − 3, as every vertex of A sends at least one edge to S. If |A| ≤ 3k − 4,

then e(A) ≤ |A|
√

|A|−1

2
since the graph induced by A contains no triangles and four-cycles

(see [26, Theorem 2.2] or [47, Theorem 4.2]). Since also 2k − 1 ≤ |A| ≤ 3k − 4, we get that
e(A, S) = k|A| − 2e(A) ≥ |A|(k −

√

|A| − 1) ≥ (2k − 1)(k −
√
3k − 5) ≥ 3k − 3.

The only case remaining is when |A| ≥ 2k−1 and A has a vertex x having no neighbors in
S (such a vertex is called a deep point in [9]). Note that Ac always has a deep point because
every vertex in V (G) \ (A ∪ S) is a deep point of Ac. We have two cases:

1. When k ≥ 6, we will show that e(A, S) ≥ 3k − 3. Otherwise, by Lemma 3.8,

|A| > v

(

1− 3k − 4

µk2

)

= v

(

1− 3k − 4

k(k − 1)

)

≥ v/2. (10)

The last inequality is true since k ≥ 6. As Ac always has a deep point, by Lemma 3.8
again, we get that |Ac| > v/2, contradiction.

2. When k = 5, we do not have inequality (10) so we need a different proof. If µ ≥ 3 > k/2,
by Theorem 3.16, λ ≥ 1, contradiction. So, we must have 1 ≤ µ ≤ 2.

We first show that A is the only non-singleton component of G− S. Assume that there
are at least two non-singleton components in G − S. Let B be another non-singleton
component ofG−S. Then B has a deep point, by previous arguments. If e(A, S) ≥ 2k−1
and e(B, S) ≥ 2k − 1, then k|S| − 4 ≥ e(S, Sc) ≥ 2(2k − 1) + (|S| − 4)k = k|S| − 2,
contradiction. Without loss of generality, assume that e(A, S) ≤ 2k−2. By Lemma 3.8,

|A| > v
(

1− 2k−2
µk2

)

= v
(

1− 2
k

)

= 3v
5
. On the other hand, Lemma 3.8 also implies that

|Ac| > 3v
5
, contradiction.

Thus, A is the only non-singleton component inG−S. Recall that |A| ≥ 2k−1 and A has

a deep point x. If e(A, S) ≤ 3k − 5, by Lemma 3.8, |A| > v
(

1− 3k−5
µk2

)

= v
(

1− 10
20

)

≥
v/2. Lemma 3.8 also implies that |Ac| > v/2, contradiction. If e(A, S) = 3k−4 = 11, by
counting the edges between S and Sc, we know that S contains exactly two independent
edges. Also, o(G − S) = |S| − 2. Let X be the set of singleton components of G − S.
We have |X| = |S| − 3. By Theorem 3.2, |S| ≥ k + 1 = 6 and |X| ≥ 3.

Now, we have two subcases:

(i) Assume that µ = 2. Let W = {a ∈ A | ∃s ∈ S, a ∼ s}. Note that W ⊂ A
and W is a disconnecting set of G. By Theorem 3.2, |W | ≥ 5 and the only
disconnecting sets of 5 vertices are the neighbors of some vertex. If |W | = 5, then
we have W = N(x) for some vertex x. By Lemma 3.7, the subgraph induced by the
vertices at distance 2 or more from x is connected. In other word, W disconnects
G into two components, x and V \ (W ∪ {x}). Since |Ac| > 1, we must have
Ac = V \ (W ∪{x}) and A\W = {x}. Hence, |A| = 6, contradicting to |A| is odd.
So, |W | ≥ 6.
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We claim that for any x ∈ W , there exists t ∈ X such that d(x, t) = 2. Assume
otherwise. Then there is s ∈ S such that N(s) ⊂ A ∪ S. Since the graph induced
by S contains exactly two independent edges, s has at most one neighbor in S
and at least four neighbors in A. If we let A′ = A ∪ {s} and S ′ = S \ {s}, then
e(A′, S ′) ≤ 8. By Lemma 3.8, |A′| > v

(

1− 8
µk2

)

= v
(

1− 8
20

)

= 3v
5
. On the other

hand, Lemma 3.8 also implies that |(A′)c| > 3v
5
, contradiction.

As µ = 2, each vertex in W has at least 2 neighbors in S and e(A, S) ≥ 12, which
is also a contradiction.

(ii) Assume that µ = 1. We will first prove that a2 ≤ 1. If for every s ∈ S, |N(s)∩X| ≤
2, by counting the edges between S and X , we have 5|X| = e(S,X) ≤ 2|S|.
On the other hand, |X| = |S| − 3 ≥ 5

2
|X| − 3, thus |X| ≤ 2, contradicting to

|X| ≥ 3. Hence, there exists s ∈ S such that |N(s) ∩ X| ≥ 3. Let x, y, z ∈
N(s) ∩ X . As µ = 1, N(x) ∩ N(y) = N(y) ∩ N(z) = N(x) ∩ N(z) = {s}. Let
U = (N(x) ∪ N(y) ∪ N(z)) \ {s}. It is easy to check that U ⊂ N2(s), |U | = 12,
|N2(s)| = 20, and Γ2(s) is a2-regular. Since there are at most two edges inside U ,
12a2 − 4 ≤ e(U,N2(s) \ U) ≤ 8a2 and thus a2 ≤ 1.

Note that µ = 1 and a2 ≤ 1 imply that b2 ≥ 3. If there exists r ∈ S, such that

N(r) ⊂ X , then d(r, A) ≥ 3. By Lemma 3.8, |Ac| > v
(

1− 3k−4
k2b2

)

≥ v
(

1− 11
60

)

=

49v
60
. On the other hand, Lemma 3.8 also implies that |A| >

(

1− 3k−4
µk2

)

=

v
(

1− 3k−4
k(k−1)

)

= 9v
20
, contradiction. Thus, for all r ∈ S, we have N(r) 6⊂ X .

Consider the edges between X and S. We have 5|X| = e(X,S) ≤ 4|S| and there-
fore, |X| = |S|−3 ≥ 5|X|/4−3. Thus, |X| ≤ 12, |S| ≤ 15, 27 ≥ |Ac| > 9v/20 and
v < 60. Note that there is no distance-regular graph with v < 60, k = 5, λ = 0,
µ = 1 and a2 ≤ 1, see the table [4] and [24] (where it was shown that there exists
no distance-regular graph with intersection array {5, 4, 3; 1, 1, 2}).

This finishes the proof of the case k ≥ 5.
When k = 4, all the distance-regular graph with even order are bipartite [9] so we are done

by Theorem 3.17.
When k = 3, there are 3 non-bipartite triangle-free distance-regular graphs with even order

(see [3] or [6, Chapter 7]): the Coxeter graph (intersection array {3, 2, 2, 1; 1, 1, 1, 2}), the
Dodecahedron graph (intersection array {3, 2, 1, 1, 1; 1, 1, 1, 2, 3}) and the Biggs-Smith graph
(intersection array {3, 2, 2, 2, 1, 1, 1, ; 1, 1, 1, 1, 1, 1, 3}). We will show that each one of them is
2-extendable.

Let G be the Coxeter graph. Then G has 28 vertices, girth 7 and independence number
12 (see [2] for example). If G is not 2-extendable, there is a disconnecting set S of maximum
size, such that the graph induced by S contains 2 independent edges and o(G− S) ≥ |S| − 2.
As |S| ≥ 4, we have o(G− S) ≥ 2. Assume that G− S contains a non-singleton component
A. As |Ac| ≥ |S| + 1 ≥ 5, we have that 3 ≤ |A| ≤ v − |Ac| ≤ 23. If 3 ≤ |A| ≤ 5, the graph
induced by A is bipartite as the girth of G is 7. As in the case k ≥ 5, we can construct a
larger disconnecting set contradicting the maximality of S. If |Ac| = 5, then we have that
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|S| = 4 and there is one singleton component {x} in Ac. Since S contains two independent
edges and x has three neighbors in S, we obtain λ 6= 0, contradiction.

Let G be the Dodecahedron graph. Then G has 20 vertices, girth 5 and independence
number 8 (see [29, pp.116] for example). If G is not 2-extendable, there is a disconnecting
set S of maximum size, such that the graph induced by S contains 2 independent edges and
o(G − S) ≥ |S| − 2. As |S| ≥ 4, we have o(G − S) ≥ 2. Assume that G − S contains a
non-singleton component A. As |Ac| ≥ |S| + 1 ≥ 5, we have 3 ≤ |A| ≤ 15. We will prove
that |A| 6= 3, 5, 7, 9 and |Ac| 6= 5, 7, 9. By maximality of |S|, the graph induced by A is not
bipartite. So, |A| 6= 3. If |A| = 7, then the graph induced by A contains at most one cycle.
Thus, e(A) ≤ 7 and e(A,Ac) = 3|A| − 2e(A) ≥ 7. If |A| = 9, then the graph induced by A
contains at most two cycles. Thus, e(A) ≤ 10 and e(A,Ac) = 3|A| − 2e(A) ≥ 7. In either
case, we will obtain a contradiction by inequality (9). Using the same argument, we can show
that |Ac| 6= 7, 9. If |Ac| = 5, then we have that |S| = 4 and there is one singleton component
{x} in Ac. Since S contains two independent edges and x has three neighbors in S, we obtain
λ 6= 0, contradiction.

Let G be the Biggs-Smith graph. Then G has girth 9 and 102 vertices. If G is not 2-
extendable, there is a disconnecting set S of maximum size, such that the graph induced by
S contains 2 independent edges and o(G − S) ≥ |S| − 2. Assume that G − S contains a
non-singleton component A. By similar argument as the previous cases, we can assume that
5 ≤ |A| ≤ 97. When 5 ≤ |A| ≤ 7, e(A) = |A| − 1 and e(A,Ac) = 3|A| − 2e(A) = |A|+ 2 ≥ 7 .
When 9 ≤ |A| ≤ 15, e(A) ≤ |A| and e(A,Ac) = 3|A|−2e(A) ≥ |A| ≥ 9. When 17 ≤ |A| ≤ 51,

e(A,Ac) ≥ (3−2.56155)|A|(102−|A|)
102

≥ 6.21134 > 6 (see [8, Corollary 4.8.4] or [39]). If e(A, S) ≥
3k−3 = 6, we will obtain a contradiction by inequality (9). Using the same argument, we can
obtain a contradiction when 5 ≤ |Ac| ≤ 51. Thus, all the components of G−S are singletons.
Therefore, α(G) ≥ o(G − S) ≥ max{102 − |S|, |S| − 2} ≥ 50, contradiction with α(G) = 43
(see the table on page 6).

4 Final Remarks

Note that some of the bounds in this paper may be improved if one obtains better lower bound
for e(A,Ac) with k ≤ |A| ≤ v − k. We make the following conjecture which is still open for
strongly regular graphs [15].

Conjecture 4.1. If G is a distance-regular graph of valency k, even order v and diameter
D ≥ 3, then the extendability of G is at least ⌈k/2⌉ − 1.

A stronger property than m-extendability is the property E(m,n) introduced by Porteous
and Aldred [45]. A connected graph with at least 2(m+ n+ 1) vertices is said to be E(m,n)
if for every pair of disjoint matchings M,N of G of size m and n, respectively, there exists
a perfect matching in F such that M ⊆ F and F ∩ N = ∅. It would be interesting to
investigate this property for distance-regular graphs and graphs in association schemes. Godsil
[27] conjectured that the edge-connectivity of a connected class of an association scheme equals
its valency and Brouwer [5] made the stronger conjecture that the vertex-connectivity equals
the valency. Brouwer’s conjecture has been proved by Brouwer and Koolen [10] for distance-
regular graphs, but both Godsil and Brouwer’s conjectures are open in the other cases. Godsil’s
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conjecture would imply that any connected class in an association scheme of even order, has
a perfect matching. To our knowledge, this is not known at present time.
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