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1. Introduction

Evolutionary game theory concerns the dynamics of aggregate behavior of populations of strategically inter-
acting agents. To define these dynamics, one specifies the population size N, the game being played, and the
revision protocol agents follow when choosing new actions. Together, these objects define a Markov chain X"
over the set of population states—that is, of distributions of agents across actions.

From this common origin, analyses of evolutionary game dynamics generally proceed in one of two direc-
tions. One possibility is to consider deterministic dynamics, which describe the evolution of aggregate behav-
ior using an ordinary differential equation. More precisely, a deterministic evolutionary dynamic is a map that
assigns population games to dynamical systems on the set of population states. The replicator dynamic (Taylor
and Jonker [43]), the best-response dynamic (Gilboa and Matsui [21]), and the logit dynamic (Fudenberg and
Levine [20]) are prominent examples.

To derive deterministic dynamics from the Markovian model of individual choice posited above, one can
consider the limiting behavior of the Markov chains as the population size N approaches infinity. Kurtz [28],
Benaim [4], Benaim and Weibull [5, 6], and Roth and Sandholm [33] show that if this limit is taken, then
over any finite time span, it becomes arbitrarily likely that the Markov chain is very closely approximated by
solutions to a differential equation—the mean dynamic—defined by the Markov chain’s expected increments.
Different revision protocols generate different deterministic dynamics: for instance, the replicator dynamic can
be obtained from a variety of protocols based on imitation, whereas the best response and logit dynamics are
obtained from protocols based on exact and perturbed optimization, respectively.! These deterministic dynamics
describe typical behavior in a large population, specifying how the population settles upon a stable equilibrium,
a stable cycle, or a more complex stable set. They thus provide theories of how equilibrium behavior is attained
or of how it may fail to be attained.

At the same time, if the process X" is ergodic—for instance, if there is always a small chance of a revising
player choosing any available action—then any stable state or other stable set of the mean dynamic is only
temporarily so: the equilibrium must break down, and new equilibria must emerge. Behavior over very long time
spans is summarized by the stationary distribution of the process. This distribution is typically concentrated
near a single stable set, the identity of which is determined by the relative probabilities of transitions between
stable sets.
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This last question is the subject of the large literature on stochastic stability under evolutionary game dynam-
ics.? The most commonly employed framework in this literature is that of Kandori et al. [27] and Kandori
and Rob [25, 26]. These authors consider a population of fixed size, and they suppose that agents employ the
best response with mutations rule: with high probability, a revising agent plays an optimal action, and with the
complementary probability, the agent chooses an action uniformly at random. They then study the long-run
behavior of the stochastic game dynamic as the probability of mutation approaches zero. The assumption that
all mistakes are equally likely makes the question of equilibrium breakdown simple to answer, as the unlike-
lihood of a given sample path depends only on the number of suboptimal choices it entails. This eases the
determination of the stationary distribution, which is accomplished by means of the well-known Markov chain
tree theorem.’

To connect these two branches of the literature, one can consider the questions of equilibrium breakdown
and stochastic stability in the large population limit, describing the behavior of the processes XV when this
behavior differs substantially from that of the mean dynamic. Taking a key first step in this direction, this paper
establishes a sample path large deviation principle: for any prespecified set of sample paths ® of a fixed duration,
we characterize the rate of decay of the probability that the sample path of X" lies in ® as N grows large. This
large deviation principle is the basic preliminary to obtaining characterizations of the expected waiting times
before transitions between equilibria and of stationary distribution asymptotics.

As we noted earlier, most work in stochastic evolutionary game theory has focused on evolution under the best
response with mutations rule and on properties of the small noise limit. In some contexts, it seems more realistic
to follow the approach taken here, in which the probabilities of mistakes depend on their costs.* Concerning the
choice of limits, Binmore and Samuelson [8] argue that the large population limit is more appropriate than the
small noise limit for most economic modeling. However, the technical demands of this approach have restricted
previous analyses to the two-action case.” This paper provides a necessary first step toward obtaining tractable
analyses of large population limits in many-action environments.

To move from the large deviation principle to statements about the long-run behavior of the stochastic process,
one can adapt the analyses of Freidlin and Wentzell [19] of diffusions with vanishing noise parameters to our
setting of sequences of Markov chains running on increasingly fine grids in the simplex. In Section 4, we explain
how the large deviation principle can be used to estimate the waiting times to reach sets of states away from
an attractor and to describe the asymptotic behavior of the stationary distribution in cases where the mean
dynamic admits a globally attracting state. We prove that when agents playing a potential game make decisions
using the logit choice rule, the control problems in the statement of the large deviation principle can be solved
explicitly. We illustrate the implications of these results by using them to characterize long-run behavior in a
model of traffic congestion.

Our work here is closely connected to developments in two branches of the stochastic processes literature.
Large deviation principles for environments quite close to those considered here have been established by
Azencott and Ruget [1], Dupuis [16], and Dupuis and Ellis [17]. In these works, the sequences of processes under
consideration are defined on open sets in R”, and have transition laws that allow for motion in all directions
from every state. These results do not apply directly to the evolutionary processes considered here, which
necessarily run on a compact set. Thus relative to these works, our contribution lies in addressing behavior at
and near boundary states.

There are also close links to work on interacting particle systems with long-range interactions. In game-
theoretic terms, the processes studied in this literature describe the individual choices of each of N agents as they
evolve in continuous time, with the stochastic changes in each agent’s action being influenced by the aggre-
gate behavior of all agents. Two large deviation principles for such systems are proved by Léonard [29]. The
first describes large deviations of the sequence of probability distributions on the set of empirical distributions,
where the latter distributions anonymously describe the N agents’ sample paths through the finite set of actions
A={1,...n}.° The second describes large deviations of the sequence of probability distributions over paths on
discrete grids X" in the n-simplex, paths that represent the evolution of aggregate behavior in the N agent parti-
cle system.” The Freidlin-Wentzell theory for particle systems with long-range interactions has been developed
by Borkar and Sundaresan [13], who provide many further references to this literature.

The large deviation principle we prove here is a discrete-time analogue of the second result of Léonard [29]
noted above. Unlike Léonard [29], we allow individuals’ transition probabilities to depend in a vanishing way
on the population size, as is natural in our game-theoretic context (see Examples 1-4). Also, our discrete-time
framework obviates the need to address large deviations in the arrival of revision opportunities.” But the central
advantage of our approach is its simplicity. Describing the evolution of the choices of each of N individual
agents requires a complicated stochastic processes. Understanding the proofs (and even the statements) of large
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deviation principles for these processes requires substantial background knowledge. Here, our interest is in
aggregate behavior. By making the aggregate behavior process our primitive, we are able to state our large
deviation principle with a minimum of preliminaries. Likewise, our proof of this principle, which follows the
weak convergence approach of Dupuis and Ellis [17], is relatively direct, and in Section 5 we explain its main
ideas in a straightforward manner. These factors may make the work to follow accessible to researchers in
economics, biology, engineering, and other fields.

This paper is part of a larger project on large deviations and stochastic stability under evolutionary game
dynamics with payoff-dependent mistake probabilities and arbitrary numbers of actions. In Sandholm and
Staudigl [39], we considered the case of the small noise double limit, in which the noise level in agents’ decisions
is first taken to zero and then the population size to infinity. The initial analysis of the small noise limit concerns
a sequence of Markov chains on a fixed finite state space; the relevant characterizations of large deviations
properties in terms of discrete minimization problems are simple and well known. Taking the second limit as
the population size grows large turns these discrete minimization problems into continuous optimal control
problems. We show that the latter problems possess a linear structure that allows them to be solved analytically.

The present paper begins the analysis of large deviations and stochastic stability when the population size is
taken to infinity for a fixed noise level. This analysis concerns a sequence of Markov chains on ever finer grids
in the simplex, making the basic large deviations result—our main result here—considerably more difficult than
its small-noise counterpart. Future work will provide a full development of the Freidlin-Wentzell theory for
the large population limit, allowing for mean dynamics with multiple stable states. It will then introduce the
second limit as the noise level vanishes and determine the extent to which the agreement of the two double
limits agree. Further discussion of this research agenda is offered in Section 4.3.

2. The Model

We consider a model in which all agents are members of a single population. The extension to multipopulation
settings requires only more elaborate notation.

2.1. Finite-Population Games
We consider games in which the members of a population of N agents choose actions from the common finite
action set A={1,...,n}. We describe the population’s aggregate behavior by a population state x, an element of
the simplex X = {x € R": Y7, x; =1}, or more specifically, the grid X~ = XN (1/N)Z" = {x € X: Nx € Z"}. The
standard basis vector ¢; € X C R" represents the pure population state at which all agents play action i.

We identify a finite-population game with its payoff function F¥: X — R", where FN(x) € R is the payoff to
action i when the population state is x € X™V.

Example 1 (Matching in Normal Form Games). Assume that agents are matched in pairs to play a symmetric two-
player normal-form game A € R"™", where A;; is the payoff obtained by an i player who is matched with
a j player. If each agent is matched with all other agents (but not with himself), then average payoffs in the
resulting population game are given by FN(x) = (1/(N —1))(A(Nx —¢;)); = (Ax); + (1/(N = 1))((Ax), - A;;). O

Example 2 (Congestion Games). To define a congestion game (Beckmann et al. [2], Rosenthal [32]), one specifies
a collection of facilities A (e.g., links in a highway network) and associates with each facility A € A a function
1¥:{0,1/N,...,1} — R describing the cost (or benefit, if I}’ <0) of using the facility as a function of the fraction
of the population that uses it. Each action i € A (a path through the network) requires the facilities in a given
set A; C A (the links on the path), and the payoff to action i is the negative of the sum of the costs accruing
from these facilities. Payoffs in the resulting population game are given by F)(x) = — X ¢, I} (u,(x)), where
u,(x) = X pen, X; denotes the total utilization of facility A at state x. O

Because the population size is finite, the payoff vector an agent considers when revising may depend on his
current action. To allow for this possibility, we let F¥ : X — R" denote the payoff vector considered at state x
by an action i player.

Example 3 (Simple Payoff Evaluation). Under simple payoff evaluation, all agents” decisions are based on the current
vector of payoffs: Ffij(x) = Ff\](x) foralli,jeA. O

Example 4 (Clever Payoff Evaluation). Under clever payoff evaluation, an action i player accounts for the fact that
by switching to action j at state x, he changes the state to the adjacent state y = x +(1/N)(e; —¢;). To do so, he

evaluates payoffs according to the clever payoff vector FN (x)=F ]N (x+(1/N)(e; - e)).’ O

i—j

As the assumptions in Section 2.4 will make clear, our results are the same whether simple or clever payoff
evaluation is assumed.
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2.2. Revision Protocols

In our model of evolution, each agent occasionally receives opportunities to switch actions. At such moments, an
agent decides which action to play next by employing a protocol pN: R" x XN — X", with the choice probabilities
of a current action i player being described by pN: R” x X — X. Specifically, if a revising action i player faces
payoff vector 7 € R" at population state x € X", then the probability that he proceeds by playing action j is
pg (7, x). We will assume shortly that this probability is bounded away from zero, so that there is always a

nonnegligible probability of the revising agent playing each of the actions in .4; see condition (6).

Example 5 (The Logit Protocol). A fundamental example of a revision protocol with positive choice probabilities
is the logit protocol, defined by

exp(n”'m;) O
Zreaexp(n7'my)
for some noise level > 0. When 7 is small, an agent using this protocol is very likely to choose an optimal action
but places positive probability on every action, with lower probabilities being placed on worse-performing
actions. 0O

Py (1, x) =

Example 6 (Perturbed Best-Response Protocols). One can generalize (1) by assuming that agents choice probabil-
ities maximize the difference between their expected base payoff and a convex penalty:

pN(m, x) = argmax(z Xy — h(x)),

xeint(X) \keA

where h: int(X) — R is strictly convex and steep, in the sense that [Vh(x)| approaches infinity whenever x
approaches the boundary of X. The logit protocol (1) is recovered when h is the negated entropy function
N7 ZgeaXelogx,. O
Example 7 (The Pairwise Logit Protocol). Under the pairwise logit protocol, a revising agent chooses a candidate
action at random and then applies the logit rule (1) only to his current action and the candidate action:
~ exp(n~'mn;))

exp(n'm;) + exp(n'7;)

pN(r,x)

Example 8 (Imitation with “Mutations”). Suppose that with probability 1 — ¢, a revising agent picks an opponent
at random and switches to her action with probability proportional to the opponent’s payoff, and that with
probability € > 0 the agent chooses an action at random. If payoffs are normalized to take values between 0
and 1, the resulting protocol takes the form

N 3 e
(1—€)mxjﬂj+;, lf]¢l,
N
pij (10, %) = Nz, -1 N ¢
(1-¢) — + E xe(l-m)|+—, if j=i.
N < N-1 n

The positive mutation rate ensures that all actions are chosen with positive probability. O

For many further examples of revision protocols, see Sandholm [37].

2.3. The Stochastic Evolutionary Process

Together, a population game FN and a revision protocol p" define a discrete-time stochastic process X" = {XN} |
which is defined informally as follows: During each period, a single agent is selected at random and given
a revision opportunity. The probabilities with which he chooses each action are obtained by evaluating the
protocol pV at the relevant payoff vector and population state. Each period of the process X" takes 1/N units
of clock time, as this fixes at one the expected number of revision opportunities that each agent receives during
one unit of clock time.

More precisely, the process X" is a Markov chain with initial condition XY € X" and transition law

xipf].’(Pf\L_(x),x), ify=x+ %(e]- —e¢;)and j#1i,

N _ N_.\-1l&
PXa =y Xy =x)= E x; pN(FN, (x),x), if y=x, @)
i=1

0, otherwise.
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When a single agent switches from action i to action j, the population state changes from x to y =x + (1/N)-
(¢; — €;). This requires that the revision opportunity be assigned to a current action i player, which occurs
with probability x;, and that this player choose to play action j, which occurs with probability pfjf (FN, (x), x).
Together, these yield the law (2).

Example 9. Suppose that N agents are matched to play the normal-form game A € R"™", using clever payoff
evaluation and the logit choice rule with noise level i > 0. Then if the state in period k is x € XN, then by
Examples 1, 4, and 5 and Equation (2), the probability that the state in period k +1 is x + (1/N)(e; —¢;) # x is
equal to'’

B (- (1/(N =1))(A(Nx - €));)
Zieaexp(n-(1/(N-1D)ANx —e¢)))

1
P{Xx), =x+ﬁ(ej—ei)

X,f’=x):xi

2.4. A Class of Population Processes

It will be convenient to consider an equivalent class of Markov chains defined using a more parsimonious

notation. All Markov chains to come are defined on a probability space (Q2, F,[P), and we sometimes use the

notation P, to indicate that the Markov chain X" under consideration is run from initial condition x € X".
The Markov chain X" = {X}'};2, runs on the discrete grid X' N'= XN (1/N)Z", with each period taking 1/N

units of clock time, so that each agent expects to receive one revision opportunity per unit of clock time

(see Section 3.1). We define the law of X" by setting an initial condition X} € XN and specifying subsequent

states via the recursion
1
=X+ G ®)

, follows the conditional law v¥(- | X}Y), defined by

XN

k+1

The normalized increment CkN+

x; 05 (x), ifx=e;—e;and j#1,

vN(x|x) = Dixof(x), ifx=0, )
i=1
0, otherwise,

where the function oV: XN — R"™" satisfies Sica af}’(x) =1 for all i € 4 and x € X'N. The switch probability of}’(x) is
the probability that an agent playing action i who receives a revision opportunity proceeds by playing action j.
The model described in the previous sections can be expressed in the present notation as o],’}’ (x)= pﬁ\j’ (FN, (x), x).

We observe that the support of the transition measure vV (- | x) is contained in the set of raw increments Z = {e e
i,j € A}.Since an unused action cannot become less common, the support of v (- | x) is contained in Z(x) = {e e
i,jeA x;>0}.

Our large deviations results concern the behavior of sequences {X" };}’:NO of Markov chains defined by (3)
and (4). To allow for finite population effects, we permit the switch probabilities af}’ (x) to depend on N in a
manner that becomes negligible as N grows large. Specifically, we assume that there is a Lipschitz continuous

function o: XN — R™" that describes the limiting switch probabilities, in the sense that

. N R —
lim gﬁg}gﬁl% (x) = 0;;(x)| =0. ®)
In the game model, this assumption holds when the sequences of population games FN and revision proto-
cols pM have at most vanishing finite population effects, in that they converge to a limiting population game
F: X > R" and a limiting revision protocol p: R" x X — R, both of which are Lipschitz continuous.

In addition, we assume that limiting switch probabilities are bounded away from zero: there is a ¢ > 0
such that

mino.(1)> c.
minmin o, (x)>¢ (6)

This assumption is satisfied in the game model when the choice probabilities pf.\j’ (7, x) are bounded away from
zero."! This is so under all of the revision protocols from Section 2.2. Assumption (6) and the transition law (4)
imply that the Markov chain X" is aperiodic and irreducible for N large enough.
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Assumptions (5) and (6) imply that the transition kernels (4) of the Markov chains X" approach a limiting
kernel v: X — A(Z), defined by

x;04(x), if x=e;—¢; and j #1,

v(z|x) = Z x;0,(x), ifx=0, (7)
ieA
0, otherwise.

Condition (5) implies that the convergence of vN to v is uniform:

. N —
I}}ﬂgﬁﬁr&azxw (x| x)—v(x|x)|=0. (8)

The probability measures v(- | x) depend Lipschitz continuously on x, and by virtue of condition (6), each
measure V(- | x) has support Z(x).

3. Sample Path Large Deviations
3.1. Deterministic Approximation
Before considering the large deviations properties of the processes X", we describe their typical behavior.
By definition, each period of the process XN = {X,IC\’ o, takes 1/N units of clock time and leads to a random
increment of size 1/N. Thus when N is large, each brief interval of clock time contains a large number of periods
during which the transition measures vV(- | XY) vary little. Intuition from the law of large numbers then suggests
that over this interval, and hence over any finite concatenation of such intervals, the Markov chain XY should
follow an almost deterministic trajectory—namely, the path determined by the process’s expected motion.

To make this statement precise, note that the expected increment of the process X" from state x during a
single period is

[E(lec\il_Xllc\llX}i\lzx):%[E(CkNlX;I:I=x):%ZZVN(Z|x). )
%€2Z

Since there are N periods per time unit, the expected increment per time unit is obtained by multiplying (9)
by N. Doing so and taking N to its limit defines the mean dynamic,

=D xv(x|x)=EL,, (10a)

%2€Z

where C, is a random variable with law v(- | x). By construction, EC, lies in the set Z = conv(Z). Substituting
definition (7) into (10a) and simplifying yields the coordinate formula:

J‘Ci:ijoﬁ(x)—xi. (10b)

jeA

Assumption (6) implies that the boundary of the simplex is repelling under (10). Since the right-hand side
of (10) is Lipschitz continuous, it admits a unique forward solution {x,},,, from every initial condition x, = x
in X, and this solution does not leave X.

A version of the deterministic approximation result to follow was first proved by Kurtz [28], with the expo-
nential rate of convergence established by Benaim [4]; see also Benaim and Weibull [5, 6]. To state the result,
we let |- | denote the I! norm on R", and we define X" = {Xf\’ }is0 to be the piecewise affine interpolation of the
process X"

XY =X\ + (NE= INED(X N0 = X e)-

Theorem 1. Suppose that {XN} has initial condition xN € XN, and let limy_,,, xN = x € X. Let {x,},5, be the solution
to (10) with x, = x. For any T < oo there exists a constant ¢ > 0 independent of x such that for all € >0 and N large
enough,

[FDXN( sup |XN —x,|> e) < 2nexp(—ce®N).

tel0, T]
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3.2. The Cramér Transform and Relative Entropy

Stating our large deviations results requires some additional machinery."” Let R} = {z € R": ¥, ,z; =0} denote
the set of vectors tangent to the simplex. The Cramér transform L(x,-): Rj — [0, o] of probability distribution
v(- | x) € A(Z) is defined by

L(x,z)=sup({u,z) —H(x,u)), where H(x,u)= log(z e (x| x)). (11)

uERS %2€2Z

In other words, L(x, -) is the convex conjugate of the log moment generating function of v(-| x). It is well known
that L(x, ) is convex, lower semicontinuous, and nonnegative and that L(x, z) =0 if and only if z =EC,; moreover,
L(x,z) < oo if and only if z € Z(x), where Z(x) = conv(Z(x)) is the convex hull of the support of v(- | x)."?

To help interpret what is to come, we recall Cramér’s theorem: Let {C%}?, be a sequence of independent and
identically distributed (i.i.d.) random variables with law v(- | x), and let C¥ be the sequence’s Nth sample mean.
Then for any set V C Z(x),

lim sup log P(NeV)<- mf L(x z), and (12a)
N—-ooo
hmmf—loglP(CN eV)> - mf L(x z), (12b)

zeint(V

where cl(V) and int(V) denote the relative closure of V and the relative interior of V, respectively. Thus for
“nice” sets V, those for which the right-hand sides of the upper and lower bounds (12a) and (12b) are equal,
this common value is the exponential rate of decay of the probability that C¥ lies in V.

Our analysis relies heavily on a well-known characterization of the Cramér transform as a constrained min-
imum of relative entropy, a characterization that also provides a clear intuition for Cramér’s theorem. Recall
that the relative entropy of probability measure A € A(Z) given probability measure 7 € A(Z) is the extended real

number A)
R(\Im) = 3 A()log 5,
%€Z

with the conventions that 0log0=01log 2 = 0. It is well known that R(||-) is convex, lower semicontinuous, and
nonnegative, that R(A||7r) =0 if and only A =7, and that R(A||7t) < oo if and only if supp(A) C supp(n).

A basic interpretation of relative entropy is provided by Sanov’s theorem,'* which concerns the asymptotics
of the empirical distributions £ of the sequence {Ck}* , defined by &} (x) = (1/N) X", 1(Ck = »). This theorem
says that for every set of distributions A € A(Z),

limsup — N log[P’(é’N eEN)< - 1nf R(/\||v( |x)), and (13a)
N—oo
i 1 N o .

h]\I]ILle N log[P’(é’X eN)> Aeli?th)R(A”V( | x)). (13b)

Thus for “nice” sets A, the probability that the empirical distribution lies in A decays at an exponential rate
given by the minimal value of relative entropy on A. Displays (13a) and (13b) enable us to interpret R(A||v(- | x))
as an asymmetric measure of the “distance” from probability measure v(- | x) to probability measure A.

The intuition behind Sanov’s theorem and relative entropy is straightforward. We can express the probability
that the Nth empirical distribution is the feasible distribution A € A as the product of the probability of obtaining
a particular realization of {Cf}¢?, with empirical distribution A and the number of such realizations:

N _ w | x)NAG) N!
P&, =A)= l:z[v( | x) X M (NG

Then applying Stirling’s approximation n!~n"e™ yields

—logIP’(6N A~ STA)logv(x | x) = 3 A(x)log Ax) = —R(A|[v(: | x)).

2€Z %2€Z

The rate of decay of P(EY € A) is then determined by the “most likely” empirical distribution in A: that is, by
the one whose relative entropy is smallest.”
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The representation of the Cramér transform in terms of relative entropy is obtained by a variation on the
final step above: given Sanov’s theorem, the rate of decay of obtaining a sample mean C¥ in V C R" should be
determined by the smallest relative entropy associated with a probability distribution whose mean lies in V.'®
Combining this idea with (12a) and (12b) suggests the representation'”

L(x,z) =Ar&i(rzl){R(/\||v(- 12): > xA(x) :z}. (14)

%€Z

If z € Z(x), so that L(x, z) < oo, then the minimum in (14) is attained uniquely.

3.3. Path Costs

To state the large deviation principle for the sequence of interpolated processes {XN}EZNU, we must introduce a
function that characterizes the rates of decay of the probabilities of sets of sample paths through the simplex X.
Doing so requires some preliminary definitions. For T € (0, c0), let €[0,T] denote the set of continuous paths
¢: [0, T] = X through X over time interval [0, T], endowed with the supremum norm. Let €,[0, T] denote the
set of such paths with initial condition ¢, = x, and let AC,[0,T] be the set of absolutely continuous paths
in €,[0,T].

We define the path cost function (or rate function) c, +: €[0,T] — [0, c0] by

¢, () = /OL(%qbt)dt, if ¢ € AC,[0,T], )

00, otherwise.

By Cramér’s theorem, L(¢,, ¢,) describes the “difficulty” of proceeding from state ¢, in direction ¢, under the
transition laws of our Markov chains. Thus the path cost c, ;(¢) represents the difficulty of following the entire
path ¢. Since L(x,z) =0 if and only if z = EC,, path ¢ € €,[0,T] satisfies c, +(¢) =0 if and only if it is the
solution to the mean dynamic (10) from state x. In light of definition (15), we sometimes refer to the function
L: XX Ry — [0, c0] as the running cost function.

As illustrated by Cramér’s theorem, the rates of decay described by large deviation principles are defined in
terms of the smallest value of a function over the set of outcomes in question. This makes it important for such
functions to satisfy lower semicontinuity properties. The following result, which follows Dupuis and Ellis [17,
proposition 6.2.4], provides such a property.

Proposition 1. The function c, ; is a (good) rate function: its lower-level sets {¢ € C: ¢, +(¢) < M} are compact.

3.4. A Sample Path Large Deviation Principle N
Our main result, Theorem 2, shows that the sample paths of the interpolated processes X satisfy a large devi-
ation principle with rate function (15). To state this result, we use the notation )A(f\éj] as shorthand for {Xf\’ Frefo, 1)

Theorem 2. Suppose that the processes {)A(N}I’i,"zl\,0 have initial conditions xN € XN satisfying limy_, ., xN = x € X. Let
@ C €[0, T] be a Borel set. Then

) 1 N .
1111\111 jl:p N logP v (Xjg, ) €P) < — (pg}(f@) ¢, r(¢), and (16a)

| oN .
h}\}rlg}f N logP v (X, 1) € P) > — ¢€1i£1£®) c, (). (16b)

We refer to inequality (16a) as the large deviation principle upper bound and to (16b) as the large deviation principle
lower bound.

While Cramér’s theorem concerns the probability that the sample mean of N i.i.d. random variables lies in a
given subset of R" as N grows large, Theorem 2 concerns the probability that the sample path of the process
)A(g,ﬂ lies in a given subset of C[0,T] as N grows large. If ® C €[0,T] is a set of paths for which the infima
in (16a) and (16b) are equal and attained at some path ¢, then Theorem 2 shows that the probability that the

oN L .
sample path of X, 7| lies in @ is of order exp(—Nc, r(¢")).
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3.5. Uniform Results

Applications to the Freidlin—-Wentzell [19] theory (see Section 4.3) require uniform versions of the previous two
results, allowing for initial conditions xN € ' that take values in compact subsets of X. We therefore note the
following extensions of Proposition 1 and Theorem 2.

Proposition 2. For any compact set K C X and any M < oo, the sets \U,x{¢ € C[0, T]: ¢, +(¢) < M} are compact.
Theorem 3. Let ® C [0, T'] be a Borel set. For every compact set K € X,

, 1 oN e
111;1 j::p N log(xwigthf P (Xjo, 1) €P)| < - }crellgq)g}(f@ c, (), and (17a)
| : oN .
hlgrlgf N log(xwel?rfo P (Xjo, 1) €P) | 2 - silelIE) ¢€1i£1£¢) ., 1(P). (17b)

The proof of Proposition 2 is an easy extension of that of Dupuis and Ellis [17, proposition 6.2.4]; compare
Dupuis and Ellis [17, p. 165], where the property being established is called compact level sets uniformly on
compacts. Theorem 3, the uniform large deviation principle, follows from Theorem 2 and an elementary compactness
argument; compare Dembo and Zeitouni [15, proof of corollary 5.6.15].

4. Applications

To be used in most applications, the results above must be combined with ideas from Freidlin-Wentzell theory.
In this section, we use the large deviation principle to study the frequency of excursions from a globally
attracting rest point and the asymptotics of the stationary distribution, with a full analysis of the case of logit
choice in potential games. We then remark on future applications to games with multiple stable equilibria and
the wider scope for analytical solutions that may arise by introducing a second limit.

4.1. Excursions from a Globally Attracting State and Stationary Distributions

In this section, we describe results on excursions from globally attracting rest points that can be obtained by
combining the results above with the work of Freidlin and Wentzell [19] and refinements attributable to Dembo
and Zeitouni [15], who consider this question in the context of diffusion processes with a vanishingly small
noise parameter. To prove the results in our setting, one must adapt arguments for diffusions to sequences of
processes running on increasingly fine finite state spaces. As an illustration of the difficulties involved, observe
that although a diffusion process is a Markov process with continuous sample paths, our original process X" is
Markov but with discrete sample paths, whereas our interpolated process X" has continuous sample paths but
is not Markov.'® Since neither process possesses both desirable properties, a complete analysis of the problem
is quite laborious. We therefore only sketch the main arguments here and will present a detailed analysis in
future work.

Consider a sequence of processes X" satisfying the assumptions above and whose mean dynamic (10) has a
globally attracting rest point x*, meaning that solutions to (10) from every initial condition in X converge to x.
We would like to estimate the time until the process exits a given open set O C X containing x*. By the large
deviations logic described in Section 3.2, we expect that this time should be determined by the cost of the least
cost path that starts at x* and leaves O. With this in mind, let dO denote the boundary of O relative to X, and
define

C,= }r;g ¢€€X*[0,1%f STy ce (), foryeX, (18)
Cho = yle%g C,. (19)

Thus C, is the lowest cost of a path from x* to y, and the exit cost C;, is the lowest cost of a path that leaves O.

Now define 7)) = inf{t > 0: XN € dO} to be the random time at which the interpolated process X" hits 90
of O. If this boundary satisfies a mild regularity condition,"” we can show that for all ¢ >0 and all sequences
of xN € XN converging to some x € O, we have

1
lim P,n Cao—£<ﬁlog%go<Cao+s =1 and (20)

N—>oco

1 .
Jlim N logE~TD, = Cyo. (21)



Sandholm and Staudigl: Sample Path Large Deviations
Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1348-1377, ©2018 INFORMS 1357

That is, the time until exit from O is of approximate order exp(NC,,) with probability near 1, and the expected
time until exit from O is of this order as well. Since stationary distribution weights are inversely proportional
to expected return times, Equation (21) can be used to show that the rates of decay of stationary distribution
weights are also determined by minimal costs of paths. If we let Bs(y) = {x € X: |y — x| < 6}, then for all y € X
and ¢ >0, there is a 0 sufficiently small that

1
-C,—¢< Nlog‘uN(Bé(y))S—Cy+e (22)

for all large enough N.

The main ideas of the proofs of (20) and (21) are as follows. To prove the upper bounds, we use the large
deviation principle (LDP) lower bound to show that there is a finite duration T such that the probability of
reaching dO in T time units starting from any state in O is at least g = exp(-=N(C;0 + ¢€)). It then follows from
the strong Markov property that the probability of failing to reach dO within kT time units is at most (1 — g} ).
Put differently, if we define the random variable RY to equal k if JO is reached between times (k—1)T and kT,
then the distribution of RY is stochastically dominated by the geometric distribution with parameter gY. It
follows that the expected time until JO is reached is at most T-ERY < T/gl =Texp(N(C,, + ¢)), yielding the
upper bound in (21). The upper bound in (20) then follows from Chebyshev’s inequality.

To prove the lower bounds in (20) and (21), we again view the process X as making a series of attempts to
reach JO. Each attempt requires at least 6 > 0 units of clock time, and the LDP upper bound implies that for
N large enough, an attempt succeeds with probability less than exp(—N(C;o — €/2)). Thus to reach JO within
k6 time units, one of the first k attempts must succeed, and this has probability less than kexp(—N(Cyo — €/2)).
Choosing k ~ 6! exp(N(C, — €)), we conclude that the probability of exiting O in exp(N(C;p — €)) time units is
less than k6 ~ 6" exp(~N¢/2). This quantity vanishes as N grows large, yielding the lower bound in (20); then
Chebyshev’s inequality gives the lower bound in (21).

4.2. Logit Evolution in Potential Games

We now apply the results above in a context for which the exit costs C, can be computed explicitly: that
of evolution in potential games under the logit choice rule. Consider a sequence of stochastic evolutionary
processes {X" }N-n, derived from population games FN and revision protocols pV that converge uniformly to
Lipschitz continuous limits F and p (see Section 2.4), where p is the logit protocol with noise level 1 > 0
(Example 5). Theorem 1 implies that when N is large, the process X is well approximated over fixed time
spans by solutions to the mean dynamic (10), which in the present case is the logit dynamic

exp(n~'n;)
Sreaexp(ning)’

Now suppose in addition that the limiting population game F is a potential game (Sandholm [34]), meaning
that there is a function f: R” — R such that Vf(x)=F(x) for all x € X.? In this case, Hofbauer and Sandholm [24]
establish the following global convergence result.

% =M"(F(x))—x, where M]V(n) = (23)

Proposition 3. If F is a potential game, then the logit potential function
i) =0 ) —h(x),  h(x)= 2 xlogx; (24)

ieA
is a strict global Lyapunov function for the logit dynamic (23). Thus solutions of (23) from every initial condition converge
to connected sets of rest points of (23).

We provide a concise proof of this result in Sectlon 8. Together, Theorem 1 and Proposition 3 imply that for
large N, the typical behavior of the process X" is to follow a solution of the logit dynamic (23), ascending the
function f" and approaching a rest point of (23).

We now use the large deviation principle to describe the excursions of the process X" from stable rest points,
focusing as before on cases where the mean dynamic (23) has a globally attracting rest point x*, which by
Proposition 3 is the unique local maximizer of 7 on X.

According to the results from the previous section, the time required for the process to exit an open set O
containing x* is characterized by the exit cost (19), which is the infimum over paths from x* to some y ¢ O of
the path cost

Cor(d) = / L(py, ¢ dt = / sup (1}h, — H(y, 1)) dt, (25)

n
u Ry
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where the expression of the path cost in terms of the log moment generating functions H(x,-) follows from
definition (11) of the Cramér transform. In the logit/potential model, we are able to use properties H to compute
the minimal costs (18) and (19) exactly.

Proposition 4. In the logit/potential model, when (23) has a globally attracting rest point x, we have ¢, = f"(x") = f(y),
and so C;o =min, ;0 (f1(x*) = f1(y)).

In other words, the minimal cost of a path from x to state y # x* is equal to the decrease in the logit potential.
Combined with Equations (20)-(22), Proposition 4 implies that the waiting times 7, to escape the set O are
described by the smallest decrease in f" required to reach the boundary of O, and that f7 also governs the
rates of decay in the stationary distributions weights u™(B;(v)).

Proof. We prove the proposition using tools from the calculus of variations (cf. Freidlin and Wentzell [19,
section 5.4]) and these two basic facts about the function H in the logit/potential model, which we prove in
Section 8.

Lemma 1. Suppose that x is in the (relative) interior of X. Then in the logit/potential model,

H(x,-Vf(x))=0 and (26)
V., H(x, =V f(x)) = =(M"(F(x)) - x). (27)

Equation (26) is the Hamilton—Jacobi equation associated with path cost minimization problem (18), and it
shows that changes in potential provide a lower bound on the cost of reaching any state y from state x* along
an interior path ¢ € €,.[0, T] with ¢ =y:

T . T .
o () = /0 sup (1], — H(y, 1)) dt > /0 VUG dt = F1) — F1(). 29)

up €RY

In Section 8, we prove a generalization of (26) to boundary states, which lets us extend inequality (28) to paths
with boundary segments—see Equation (90). These inequalities give us the lower bound

¢, > f1(x) - f1(y). (29)

Equation (27) is the first-order condition for the first integrand in (28) for paths that are reverse-time solutions
to the logit dynamic (23). Thus if 1: (—c0,0] — X satisfies ¥, = y and ¢, = —=(M"(F(y,)) — ¢,) for all t <0,
then Proposition 3 and the assumption that x* is globally attracting imply that lim,_,__, 1, = x*, which with (26)
and (27) yields

/ sup (], — H(p,, 1)) dt = / VY d = () F(y). (30)

oo u €R] 00
This equation and a continuity argument imply that lower bound (29) is tight. O

Congestion games are the most prominent example of potential games appearing in applications, and the
logit protocol is a standard model of decision making in this context (Ben-Akiva and Lerman [3]). We now
illustrate how the results above can be used to describe excursions of the process X" from the stationary state of
the logit dynamic and the stationary distribution u" of the process. We consider a network with three parallel
links to simplify the exposition, as our analysis can be conducted just as readily in any congestion game with
increasing delay functions.

Example 10. Consider a network consisting of three parallel links with delay functions I;(u) =1+ 8u, I,(u) =
2+4u, and I;(u) =4. The links are numbered in increasing order of congestion-free travel times (lower-numbered
links are shorter in distance) but in decreasing order of congestion-based delays (higher-numbered links have
greater capacity). The corresponding continuous-population game has payoff functions F;(x) = —I;(x;) and con-
cave potential function

ieA Y0
The unique Nash equilibrium of this game, x* = (%, %, %), is the state at which travel times on each link are equal

(I (x}) = I,(x5) = I3(x3) = 4), and it is the maximizer of f on X.
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Figure 1. Solution trajectories of the logit dynamics and level sets of f in a congestion game. In both panels, lighter
shades represent higher values of f", and increments between level sets are 0.5 units. For any point y on a solution
trajectory, the most likely excursion path from the rest point to a neighborhood of y follows the trajectory backward from
the rest point. The values of f" also describe the rates of decay of mass in the stationary distribution.

(1) m=0.25 (i) n=0.1
1 1

Suppose that a large but finite population of agents repeatedly plays this game, with agents occasionally
revising their strategies by applying the logit rule M" with noise level 7. Then in the short term, aggregate
behavior evolves according to the logit dynamic (23), ascending the logit potential function f7=n"'f +h until
closely approaching its global maximizer x". Thereafter, (20) and (21) imply that excursions from f" to other
states y occur at rate exp(N(f"(x") — f(y))). The values of N and f"(y) also describe the proportions of time
spent at each state: by virtue of (22), uN(B,(y)) = exp(=N(f"(x") = f(y))).

Figure 1 presents solutions of the logit dynamic (23) and level sets of the logit potential function f7 in the
congestion game above for noise levels 7 =0.25 (panel (i)) and 1 =0.1 (panel (ii)). In both cases, all solutions
of (23) ascend the logit potential function and converge to its unique maximizer, x*» ~ (0.3563,0.4482,0.1956)
in (i) and x*V =(0.3648,0.4732,0.1620) in (ii). The latter rest point is closer to the Nash equilibrium on account
of the smaller amount of noise in agents” decisions.

In each panel, the “major axes” of the level sets of f" correspond to exchanges of agents playing strategy 3
for agents playing strategies 2 and 1 in fixed shares, with a slightly larger share for strategy 2. That deviations
of this sort are the most likely is explained by the lower sensitivity of delays on higher numbered links to
fluctuations in usage. In both panels, the increments between the displayed level sets of f are 0.5 units. Many
more level sets are drawn in panel (ii) than in panel (i):*! when there is less noise in agents’ decisions, excursions
from equilibrium of a given unlikelihood are generally smaller, and excursions of a given size and direction are
less common. O

4.3. Discussion
The analyses above rely on the assumption that the mean dynamic (10) admits a globally attracting state. If,
instead, this dynamic has multiple attractors, then the time 7)), to exit O starting from a stable rest point x* € O
need only satisfy properties (20) and (21) when the set O is contained in the basin of attraction of x*. Beyond
this case, the most likely amount of time required to escape O may disagree with the expected amount of
time to do so, since the latter may be driven by a small probability of becoming stuck near another attractor
in O. Likewise, when the global structure of (10) is nontrivial, the asymptotics of the stationary distribution
are more complicated, being driven by the relative likelihoods of transitions between the different attractors.
To study these questions in our context, one must not only address the complications noted in Section 4.1 but
also employ the graph-theoretic arguments developed by Freidlin and Wentzell [19, chap. 6] to capture the
structure of transitions among the attractors. Because the limiting stationary distribution is the basis for the
approach to equilibrium selection discussed in the introduction, carrying out this analysis is an important task
for future work.

We have shown that the control problems appearing in the statement of the large deviation principle can
be solved explicitly in the case of logit choice in potential games. They can also be solved in the context of
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two-action games, in which the state space X is one dimensional. Beyond these two cases, the control problems
do not appear to admit analytical solutions.

To contend with this, and to facilitate comparisons with other analyses in the literature, one can consider
the large population double limit, studying the behavior of the large population limit as the noise level in agents’
decisions is taken to zero. There are strong reasons to expect this double limit to be analytically tractable. In
Sandholm and Staudigl [39], we study the reverse order of limits, under which the noise level 7 is first taken to
zero and then the population size N to infinity. For this order of limits, we show that large deviations properties
are determined by the solutions to piecewise linear control problems and that these problems can be solved
analytically. Moreover, Sandholm [36] uses birth-death chain methods to show that in the two-action case, large
deviations properties under the two orders of limits are identical. These results and our preliminary analyses
suggest that the large population double limit is tractable and that in typical cases, conclusions for the two
orders of limits will agree. Although we are a number of steps away from reaching these ends, the analysis
here provides the tools required for work on this program to proceed.

5. Analysis

The proof of Theorem 2 follows the weak convergence approach of Dupuis and Ellis [17] (henceforth referred to
as DE). As noted in the introduction, the main novelty we must contend with is the fact that our processes run
on a compact set X. This necessitates a delicate analysis of the behavior of the process on and near the boundary
of X. At the same time, the fact that the conditional laws (4) have finite support considerably simplifies a
number of the steps from DE’s approach. Proofs of auxiliary results that would otherwise interrupt the flow
of the argument are relegated to Sections 6 and 7. At some points where the arguments mirror those from DE,
we present them somewhat informally; the omitted details are provided in the working version of this paper,
Sandholm and Staudigl [40] (henceforth referred to as SS).

Before entering into the details of our analysis, we provide an overview. In Section 5.1, we use the represen-
tation (14) of the Cramér transform to establish joint continuity properties of the running cost function L(:,-).
To start, we provide examples of discontinuities that this function exhibits at the boundary of X. We then show
that excepting these discontinuities, the running cost function is “as continuous as possible” (Proposition 5).

The remaining sections follow the line of argument in DE, with modifications that use Proposition 5 to
contend with boundary issues. Section 5.2 describes how the large deviation principle upper and lower bounds
can be deduced from corresponding Laplace principle upper and lower bounds. The latter bounds concern
the limits of expectations of continuous functions, making them amenable to analysis using weak convergence
arguments. Section 5.3 explains how the expectations appearing in the Laplace principle can be expressed as
solutions to stochastic optimal control problems (47), the running costs of which are relative entropies defined
with respect to the transition laws vN(- | x) of X". Section 5.4 describes the limit properties of the controlled
processes as N grows large. Finally, Sections 5.5 and 5.6 use the foregoing results to prove the Laplace principle
upper and lower bounds; here, the main novelty is in Section 5.6, where we show that the control problem
appearing on the right-hand side of the Laplace principle admits e-optimal solutions that initially obey the
mean dynamic and remain in the interior of the simplex thereafter (Proposition 9).

5.1. Joint Continuity of Running Costs
Representation (14) implies that for each x € X, the Cramér transform L(x, ) is continuous on its domain Z(x)
(see the beginning of the proof of Proposition 5). The remainder of this section uses this representation to
establish joint continuity properties of the running cost function L(:,-).

The difficulty lies in establishing these properties at states on the boundary of X. Fix x € X, and let i € supp(x)
and j #1i. Since e; —¢; is an extreme point of Z(x), the point mass 6, _,, is the only distribution in A(Z) with

mean e; —e¢;. Thus representation (14) implies that

e

L(x/ej —e)= R(ée/-—eillv(' | x)) = —log xiaij(x) > —logx;. (31)

Thus L(x, e; — ;) grows without bound as x approaches the face of X on which x; =0, and L(x, ¢; —¢;) = c0 when
x; = 0. Intuitively, reducing the number of action i players reduces the probability that such a player is selected
to revise; when there are no such players, selecting one becomes impossible.

A more serious difficulty is that running costs are not continuous at the boundary of X even when they are
finite. For example, suppose that n > 3, let x be in the interior of X, and let z, = e; — (ave; + (1 — a)e,). Since the

unique A with mean z, has A(e;—e;) =a and A(e; —e,) =1 —a, Equation (14) implies that
l1-a

L(x,za)zalog m

a
——+(1-a)lo
x1013(x) ( log
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If we set a(x) = —(log(x;055(x)))" and let x approach some x* with x} =0, then L(x,z
1 =log(x,045(x")); however, z,,, approaches e; —e,, and L(x", e5 — e,) = —log(x,043(x")).

These observations leave open the possibility that the running cost function is continuous as a face of X
is approached, provided that one restricts attention to displacement directions z € Z = conv(Z) = conv({e; — ¢;:
i,j € A}) that remain feasible on that face. Proposition 5 shows that this is indeed the case.

For any nonempty I C A, define X(I) ={x € X: I Csupp(x)}, Z(I)={e;—e;: j€ A, i€l}={x€2: ;20 for all
j¢1}, and Z(I) = conv(Z(I)) = {z € Z: z; > 0 for all j ¢ I} (cf. Endnote 13).

Proposition 5. (i) The function L(:,-) is continuous on int(X) X Z.

(ii) For any nonempty I C A, L(-,-) is continuous on X(I) x Z(I).

Proof. For any A € A(Z(I)) and x € X(I), we have supp(A) € Z(I) € supp(v(: | x)). Thus by the definition of relative

entropy, the function £: X(I) X A(Z(I)) — [0, o] defined by £(x,A) = R(A||v(-| x)) is real valued and continuous.
Let

)) approaches

ax

Azy(z) = {A € A(Z): supp(A) € 2(I), Z 2A(x) = z} (32)
%2€Z
be the set of distributions on 2 with support contained in Z(I) and with mean z. Then the correspondence
Ay Z(I) = A(Z(I)) defined by (32) is clearly continuous and compact valued. Thus if we define L;: X(I) X Z(I)
— [0, c0) by
L;(x,z) = min{R(A[[v(- [ x)): A € Ag(2)}, (33)
then the theorem of the maximum (Berge [7]) implies that L; is continuous.

By representation (14),

L(x,z) =min{R(A||v(- | x)): A € Ay(2)}. (34)
Since 2(A) =2, (33) and (34) imply that Lg(x,z) = L(x, z), establishing part (i).

To begin the proof of part (ii), we eliminate redundant cases using an inductive argument on the cardinality
of I. Part (i) establishes the base case in which #I = n. Suppose that the claim in part (ii) is true when #I > k €
{1,...,n—1}; we must show that this claim is true when #I = k.

Suppose that supp(x) =] D I, so that #] > k. Then the inductive hypothesis implies that the restriction of L to
X(J)x Z(]) is continuous at (x,z). Since X(J) € X(I) is open relative to X and since Z(J) D Z(I), the restriction
of L to X(I)x Z(I) is also continuous at (x, z).

It remains to show that the restriction of L to X(I)x Z(I) is continuous at all (x, z) € X(I) X Z(I) with supp(x)=1.
Since 2(I) c Z, (33) and (34) imply that for all (x,z) € X(I) X Z(I),

L(x,z) < L,(x,z). (35)
If, in addition, supp(x) =1, then £(x, A) = co whenever supp(A) € Z(I), so (33) and (34) imply that inequality (35)
binds. Since L; is continuous, our remaining claim follows directly from this uniform approximation.

Lemma 2. For any ¢ >0, there exists a 6 >0 such that for any x € X with maxc 4, X, < 6 and any z € Z(I), we have
L(x,z)=L;(x,z)—¢. (36)
A constructive proof of Lemma 2 is provided in Section 6.

5.2. The Large Deviation Principle and the Laplace Principle

While Theorem 2 is stated for the finite time interval [0, T], we assume without loss of generality that T =1. In
what follows, € denotes the set of continuous functions from [0, 1] to X endowed with the supremum norm,
C, C C denotes the set of paths in € starting at x, and AC C € and AC, C C, are the subsets consisting of
absolutely continuous paths.

Following DE, we deduce Theorem 2 from the Laplace principle. The processes {XN }N-n, are said to satisfy
the Laplace principle if for any bounded continuous function h: € — R we have

.1 N\
lim - 1og Eou[exp(~NH(X)] = = inf(c, (¢) + h(0)) (37)
Equation (37) can be decomposed into two inequalities:
limsup < og Eslexp(-NI(X )] < - inf(e.(¢) + h(¢), and (382)
N—oco €

liminf % log .~ [exp(—Nh(f(N))] > - ;rgg(cx(¢) +h(¢)). (38b)

N—-oo
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Inequality (38a) is called the Laplace principle upper bound, and inequality (38b) is called the Laplace principle lower
bound.

Because c, is a rate function (Proposition 1), the large deviation principle (Theorem 2) and the Laplace
principle (Theorem 4) each imply the other.

Theorem 4. Suppose that the processes {X YN-n, have initial conditions xN e XN satisfying limy_,., xN = x € X. Then
the large deviation principle (16) holds if and only if the Laplace principle (37) holds.

The forward implication of Theorem 4 is known as Varadhan'’s integral lemma (DE, theorem 1.2.1). For intuition,
express the large deviation principle loosely as P, (X" ~ ¢) ~ exp(=Nc,(¢)) for ¢ € € and argue heuristically that

Elexp(-NHK )] = [ expNBOIP X" = 9)do =~ [ expl-NIho) +c,(9))do ~exp (~Ninf(e. () +h(6D),

where the final approximation uses the Laplace method for integrals (de Bruijn [14]).
Our analysis requires the reverse implication of Theorem 4 (DE, theorem 1.2.3). For a heuristic derivation, let
@ c @, and let the (extended real-valued, discontinuous) function kg, be the indicator function of @ C € in the

sense of convex analysis:
0 if ped,
h =
o(P) {+oo otherwise.

ll.IIl - 1 [FD}, (XN € (D) - I.Ilf C;{( ),
N—oo N Og N B (PEI ¢

which is the large deviation principle. The proof of DE, theorem 1.2.3, proceeds by considering well-chosen
approximations of hg by bounded continuous functions.

The left-hand sides of the inequalities (38a) and (38b) that together form the Laplace principle concern limits
of expectations of continuous functions, raising the possibility that the inequalities can be evaluated by means
of weak convergence arguments. We return to this point at the end of the next section.

5.3. The Stochastic Optimal Control Problem
For a given function h: € — R, we define

VN () = -% logE, [exp(=NA(X"))] (39)

to be the negation of the expression from the left-hand side of the Laplace principle. This section, which follows

DE, sections 3.2 and 4.3, shows how V¥ can be expressed as the solution of a stochastic optimal control problem.

The running costs of this problem are relative entropies, and its terminal costs are determined by the function h.
For each k€ {0,1,2,...,N} and sequence (x,...,x;) € (xN)k“, we define the period k value function

V¥ (xg, .. x0) = _1 log [E[exp(—Nh(f(N)) | Xy =xg,..., XY =x;]. (40)

Note that VN = VN. If we define the map ¢(= ¢V) from sequences x, ..., xy to paths in € by
q}t(xo, ce X)) =X+ (NE=k)(x; —x,) forall te [t e[k/N, (k+ 1)/N], (41)
then (40) implies that A
V[\I}](xO/'-'/xN):h((p(xO/"-/xN))' (42)

Note also that Xﬁ\’(a)) = J)t(Xé\’(a}), ..., XN(w)); this can be expressed concisely as X" = qﬁ(XN).

Proposition 6 shows that the value functions V¥ satisfy a dynamic programming functional equation, with
running costs given by relative entropy functions and with terminal costs given by h(¢(-)). To read Equa-
tion (43), recall that vV is the transition kernel for the Markov chain {X,I:’ IS

Proposition 6. For k€{0,1,...,N =1} and (x,, ...,x;) € (XN)**, we have

V;V(xo,...,xk)=AgAl(f LRI |xk))+ZVk+1(x0,...,xk+%z)/\(z)). 43)

%2€Z
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For k=N, V) is given by the terminal condition (42).
The key idea behind Proposition 6 is the following observation (DE, proposition 1.4.2), which provides a
variational formula for expressions such as (39) and (40).

Observation 1. For any probability measure 7 € A(Z) and function y: Z — R, we have

—logZe Y@ () = mln R(A||n)+2)/(z)/\(z) (44)

%€Z 2€2
The minimum is attained at A*(x) = (x)e7“/3 . 7(y)e7¥). In particular, A" < 7.

Above, the notation A* < means that the measure A is absolutely continuous with respect to the measure 7.

Equation (44) expresses the log expectation on its left-hand side as the minimized sum of two terms: a
relative entropy term that only depends on the probability measure m and an expectation that only depends on
the function y. This additive separability and the Markov property lead to Equation (43). Specifically, observe
that

exp(-NVN(x,, ..., %)) = E[exp(-Nh(X") | XN = x,,..., XN =x,]
= E[E[exp(-Nh(¢X"))) | X, ..., Xp 11 XY =xp,..., X} = x;]
=E[-NV5,(X{', ..., k+])|XN—xO, XN =x,]
= Z:exp(—NVkI\l1 (xo, e X, X+ %x))vN(x | x;),

%2€Z

where the last line uses the Markov property. This equality and Observation 1 yield

1
V¥ (x, - xk)———logZexp( NV,ﬁl(xo,...,xk,xk+Nx))v”(z|xk)

%€Z

=% inf (R()\llv’\’( lx))+ SINVY, (xo,...,xk+%z)A(z)),

2€Z

which is Equation (43).

Since the value functions VY satisfy the dynamic programming functional Equation (43), they also can be rep-
resented by describing the same dynamic program in sequence form. To do so, we define for k€ {0,...,N -1} a
period k control AY: (X Ny — A(2), which for each sequence of states (xy, ..., x;) specifies a probability distribution
AV xg, - xk)—namely, the minimizer of problem (43). Given the sequence of controls {A}}}/;} and an initial
condition éN =xN e XV, we define the controlled process §N = ={& N, by &Y =xNeX N and the recurswe formula

o =& / (45)

where CN is a Z-valued random variable with law /\N (] «50 P ) We also define the piecewise affine inter-
polation EN = (&N ¢ trepo,1 bY EN ¢ (&N), where qb is the 1nterpolat10n function (41). We then have the following.

Proposition 7. For k€{0,1,...,N -1} and (x,,...,x,) € (XN)1, VN (xg, ..., x;) equals

1 N-1 N
nE | STRAYCIEY, o I £ Y
kN1 j=k

E?:xo,...,éf:xk]. (46)

Since Observation 1 implies that the infimum in the functional Equation (43) is always attained, Proposition 7
follows from standard results (cf. DE, theorem 1.5.2), and moreover, the infimum in (46) is always attained.
Since V¥ = VN by construction, Proposition 7 yields the representation

VNN = inf [EXN%Z_]R(Amcsé“,-..,5?>||vN(-|5§“))+h<éN)]. (47)
o - j=0

The running costs in (47) are relative entropies of control distributions with respect to transition distributions
of the Markov chain X" and so reflect how different the control distribution is from the law of the Markov
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chain at the relevant state. Note as well that the terminal payoff #(§N) may depend on the entire path of the
controlled process &".

With this groundwork in place, we can describe our application of Dupuis and Ellis’s weak convergence
approach to large deviations. Equation (47) represents expression VN (x") from the Laplace principle as the
optimal solution to a stochastic control problem. Section 5.4 uses compactness arguments to show that as N
grows large, interpolated versions of the stochastic controls {AY} and controlled processes &" converge in
distribution, where with probability 1, the limiting controlled process depends only on the limiting stochastic
control by way of its means (see Proposition 8, especially (49)). By applying this result to the optimal controls
and using Fatou’s lemma, Section 5.5 establishes the Laplace principle upper bound (50). In retrospect, it is
this calculation that determines the form of the rate function c,(-). Section 5.6 derives the Laplace principle
lower bound (52) by first constructing a path i that approximately minimizes c,(-) + /(-), then introducing
delicately constructed controlled processes that mirror i, and at last applying Proposition 8 and the dominated
convergence theorem to establish the bound. A key argument in this proof, Proposition 9, shows that the path i
can be chosen to have properties that justify our appeal to dominated convergence despite the discontinuity of
the running cost function L(:, ) at the boundary of the state space.

5.4. Convergence of the Controlled Processes

The increments of the controlled process &V are determined in two steps: first, the history of the process
determines the measure A)(-| &Y, ..., &) € A(Z), and then the increment itself is determined by a draw from this
measure. With some abuse of notation, one can write AY(-) =AY(- | &), ..., &) and thus view AY as a random
measure. Then, using compactness arguments, one can show that as N grows large, certain subsequences of
the random measures A} on A(Z) converge in a suitable sense to limiting random measures. Because the
increments of £ become small as N grows large (cf. (45)), intuition from the law of large numbers—specifically,
Theorem 1—suggests that the idiosyncratic part of the randomness in these increments should be averaged
away. Thus in the limit, the evolution of the controlled process should still depend on the realizations of the
random measures, but it should only do so by way of their means.

The increments of the controlled process &V are determined in two steps: first, the history of the process
determines the measure A)(-| &Y, ..., &) € A(Z), and then the increment itself is determined by a draw from this
measure. With some abuse of notation, one can write A/(-)=AN(-| &Y,...,&Y) and thus view A} as a random
measure. Then, using compactness arguments, one can show that as N grows large, certain subsequences of
the random measures A} on A(Z) converge in a suitable sense to limiting random measures. Because the
increments of £" become small as N grows large (cf. (45)), intuition from the law of large numbers—specifically
Theorem 1—suggests that the idiosyncratic part of the randomness in these increments should be averaged
away. Thus in the limit, the evolution of the controlled process should still depend on the realizations of the
random measures, but it should only do so by way of their means.

To make this argument precise, we introduce continuous-time interpolations of the controlled processes &" =
{EN}N | and the sequence of controls {AY}N1. The piecewise affine interpolation &N = {EN}, (o, 1) was introduced
above; it takes values in the space € = €([0,1]: X). The piecewise constant interpolation &V = {Ef’},e[oru is
defined by

oy &N, ifte[k/N,(k+1)/N)and k=0,1,...,N -2,
o if t e [(N-1)/N,1].

N-17

The process &V takes values in the space D = D([0,1]: X) of left-continuous functions with right limits, which
we endow with the Skorokhod topology. Finally, the piecewise constant control process {1} },¢ 1 is defined by

() = ANCIEN, ..., &N, if te[k/N,(k+1)/N)and k=0,1,...,N -2,
T AN CLEN, . EN ), ifte[(N-1)/N,1].

Using these definitions, we can rewrite formulation (47) of VN(x"V) as
1
VN@N)= inf ( / RAN VNG 1 EN) it +h(EY)). 48)
ANa 0

As noted after Proposition 7, the infimum in (48) is always attained by some choice of the control se-
quence {A}}V "
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Let A(Zx[0,1]) denote the space of probability measures on Z X [0,1]. For a collection {1}, ;) of measures
1, € A(Z) that is Lebesgue measurable in ¢, we define the measure n, ® dt € A(Z X [0, 1]) by

(n, ®dt)({z} x B) = / n,(z)dt

for all z € Z and all Borel sets B of [0, 1]. Using this definition, we can represent the piecewise constant control
process {AN},01) as the control measure AN = AN ® dt. Evidently, AV is a random measure taking values in
A(Z %x[0,1]), a space we endow with the topology of weak convergence.

Proposition 8, a direct consequence of DE, theorem 5.3.5 and p. 165, formalizes the intuition expressed in
the first paragraph of this section. It shows that along certain subsequences, the control measures AY and the
interpolated controlled processes ¥ and &N converge in distribution to a random measure A = A, ® dt and
a random process §, and moreover, that the evolution of & is almost surely determined by the means of the
measures A,.

Proposition 8. Suppose that the initial conditions xN € XN converge to x € X and that the control sequence {AN}N71 is
such that supy, . VN(xN) < 0.

(i) Given any subsequence of {(AY, ENEN )};}’:NO, there exists a A(Z X [0, 1])-valued random measure A and C-valued
random process & (both possibly defined on a new probability space) such that some subsubsequence converges in distribu-
tion to (A, &, &) in the topologies specified above.

(ii) There is a collection of A(Z)-valued random measures {A,}c(o 1), measurable with respect to t, such that with
probability one, the random measure A can be decomposed as A=A, ® dt.

(iii) With probability 1, the process & satisfies &, = x + [; (3,5 xA,(x))ds for all t €[0,1], and is absolutely continuous
in t. Thus with probability 1,

&= Z xA (%) (49)

2€Z

almost surely with respect to Lebesgue measure.

5.5. Proof of the Laplace Principle Upper Bound
In this section, we consider the Laplace principle upper bound (38a), which definition (39) allows us to express as

liminf V¥ (xN) > inf(c, () + h(¢)). (50)
N—oo pec

The argument here follows DE, section 6.2. Let {A}}' be the optimal control sequence in representation
(47), and let E" be the corresponding controlled process. Define the triples {(AN, &N, EN )}}’\,":]\,0 of interpolated
processes as in Section 5.4. Proposition 8 shows that for any subsequence of these triples, there is a subsubse-
quence that converges in distribution to some triple (A, ® d¢, &, §) satisfying (49). Then one argues that along
this subsubsequence,

itV ) 2 [ RO nee) 26 (e, e o) ar o)

2€Z

1
- tEx( /0 L(E, &) dt +h<a>) 2 inf(e,(¢) + h(©)).

The key ingredients needed to establish the initial inequality are Equation (47), Skorokhod’s theorem, Equa-
tion (51), the lower semicontinuity of relative entropy, and Fatou’s lemma. Then the second inequality follows
from representation (14) of the Cramér transform, the equality from Equation (49), and the final inequality from
the definition (15) of the cost function c,. Since the subsequence chosen initially was arbitrary, inequality (50)
is proved.

The details of this argument can be found in section 9.1 of SS, which largely follows DE, section 6.2. But
while in DE the transition kernels vV(- | x) of the Markov chains are assumed to be independent of N, here
we allow for a vanishing dependence on N (cf. Equation (8)). Thus we require a simple additional argument,
Lemma 9.1, that uses lower bound (6) to establish the uniform convergence of relative entropies: namely, that
if AN: XN — A(Z) are transition kernels satisfying AN (- | x) < vN(-| x) for all x € XV, then

Jim max IRANC 0NN [2)) = RANC [0)[[v(- [ x))] =0. (51
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5.6. Proof of the Laplace Principle Lower Bound
Finally, we consider the Laplace principle lower bound (38b), which definition (39) lets us express as

limsup VN (xV) < 1nf(c (¢) + h()). (52)

N—-ooo

The argument here largely follows DE, sections 6.2 and 6.4. Their argument begins by choosing a path that is
e-optimal in the minimization problem from the right-hand side of (52). To account for our processes running
on a set with a boundary, we show that this path can be chosen to start with a brief segment that follows
the mean dynamic and then stays in the interior of X thereafter (Proposition 9). With this choice of path, the
joint continuity properties of the running costs L(:, -) established in Proposition 5 are sufficient to complete the
dominated convergence argument in display (61), which establishes that inequality (52) is violated by no more
than ¢. Since ¢ was arbitrary, (52) follows.
For a path ¢ € € =€([0,1]: X) and an interval I C [0, 1], write ¢, for {¢,: t € I'}. Define the set of paths

€ ={¢ €e: for some a € (0, 11, ¢jo, 4] solves (10) and ¢y, ;) C int(X)}.

Let @, denote the set of such paths that start at x.
Proposition 9. For all x € X, inf,cc(c,(¢) + h(@)) = infyep(c. () + h(e)).

The proof of Proposition 9 is deferred until Section 7, but it can be summarized as follows. Given a path ¢ € €,
and a small enough @ >0, we construct a new path ¢* € €, that follows the solution to the mean dynamic (10)
from initial condition x until time a and whose increments starting at time @ mimic those of ¢ starting at time 0
but are scaled down by a factor that approaches 1 as a approaches 0. By construction, ¢* converges uniformly
to ¢ as a approaches 0, implying that h(¢*) converges to h(¢). Since ¢y, ,, is a solution to (10), the cost of
this portion of path ¢ is 0. Along the remainder of path ¢“, the components (¢;); are bounded below by a
multiple of a and by a multiple of (¢,_,);, and the derivatives ¢¢ are approximately equal to the derivatives ¢,_,
(Lemma 5). Combining these facts with the definition (15) of path costs in terms of the Cramér transform L, the
boundedness of L(-,z) on compact subsets of int(X), the convexity of L(x,-), and the variational representation
(14) of L(x, z) in terms of relative entropies R(-||v(- | x)), we argue that the cost of path segment gb[ ;) converges
to the cost of path ¢ as a approaches 0.

The next proposition, a version of DE, lemma 6.5.5, allows us to further restrict our attention to paths having
convenient regularity properties. We let €* C € denote the set of paths ¢ € € such that after the time & > 0 such
that ¢y , solves (10), the derivative ¢ is piecewise constant and takes values in Z.

Proposition 10. inf,.z(c,(¢) + h(¢)) = infce-(c.(P) + (D))

The proof of Proposition 10 mimics that of DE, lemma 6.5.5; see SS, section 9.2 for details.
Now fix & > 0. By the previous two propositions, we can choose an a@ >0 and a path ¢ € ¢* such that Vg ,
solves (10) and

e.(9)+ () < Infl(e,(9) + (@) + <. (53)

We now introduce a controlled process xV that follows 1 in expectation as long as it remains in a neighbor-
hood of . Representation (14) implies that for each k € {0,...,N —1} and x € X", there is a transition kernel
7y (- | x) that minimizes relative entropy with respect to v(- | x) subject to the aforementioned constraint on its
expectation:

Ry C10llv(-[x) =L0x,yyn)  and D xm(x %)= P (54)

%2€Z

To ensure that this definition makes sense for all k, we replace the piecewise constant function ¢ with its right
continuous version.

Let Z(x) = conv(Z(x)) ={z € Z: z; 2 0 for all j ¢ supp(x)} be the set of feasible expected increments of the
original process X" from state x (cf. Endnote 13). Since V0,41 SOlves (10), inequality (6) implies that

¢ — (lzbt)i < (lz.bt)i <1 (55)
for all t €[0,a] and i € A. It follows that there is an & € (0, @] such that

Y, € Z(x) whenever t € [0, a]. (56)
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In addition, property (55) implies that for all ¢ € [0, @] and i € supp(x), we have

(¢t)i=(¢0)i+‘/0 (¢s)idszxi+‘/0 (c-())ds=e'x;+(1-e")c>x;Ag,

where the second equality follows from the fact that v, =e™'x; + (1 —e™")c is the solution to ¢ = ¢ — v from initial
condition v, = x;.
Now choose a 6 > 0 satisfying

6 <min({c} U {x;: i e supp(x)} U {1 dist(y,, 9X): t € [a,1]}). (57)

For future reference, note that if y € X satisfies |y — ¢,| <9, then |y; — (¢,);| < /2 for all i € A (by the definition
of the I' norm and the fact that y — ¢, € R}), and so if t € [0, a], we also have
yeX,={feX: %> 1(x;A¢) for all i € supp(x)}. (58)
For each (x, ..., x;) € (X")*1, define the sequence of controls {AN}N ! by

nkN(% | x), if maXogj<k |xj - IPj/N| <9,

AkN(zle,...,xk):{ (59)

V(x| xp), if maxgig |x; =N > 0.

Finally, define the controlled process x™ = {x}'},., by setting x;’ = ¥V and using the recursive formula x;', =
Xy +(1/N)CY, where CY has law AN(- | x{',..., xYY). Under this construction, the process x evolves according
to the transition kernels 7} and so follows 1 in expectation, so long as it stays 6-synchronized with . If this
ever fails to be true, the evolution of x" proceeds according to the kernel vV of the original process X". This
implies that until the stopping time

1
o= min{k e (0,1, N}: [0 = in] > 8} A1, (60)

the relative entropies of transitions are given by (54) and that after 7V these relative entropies are zero.

Define the pair {(AY,&N )}n-n, of interpolated processes as in Section 5.4. Proposition 8 shows that for any
subsequence of these pairs, there is a subsubsequence that converges in distribution to some pair (A, ® df, §)
satisfying (49). By Prokhorov’s theorem, 7V can be assumed to converge in distribution on this subsubsequence
to some [0, 1]-valued random variable 7. Indeed, DE, lemma 6.4.2 and proposition 5.3.8 imply that 7 =1 and
X = 1 with probability 1.

For the subsubsequence specified above, we argue as follows:

[ N-1
limsup V(<) < lim .. % ]Z:O]R(A]N(- e XY ) +h<xN>]
[ 1 NtN-1 )
=I\1]i£rc}o[EXN N jZO L(X?’MP;’/N)"‘h(?A(N)]
. . [ 1 (NTN/\[NAJ)—lL N . 1 NtN-1 L N i I N
—Nlir(}c xN ﬁ ;‘J (X]'/Nll/}j/N)—i_Nj:NTNZALNﬂJ (X/'/erljj/N)—i_ (X ):|

= [ 1w dodes [ L bodeen) =) ehy) < infle @)+ high +e. (6D

The initial inequality follows from representation (47); the second line from the uniform convergence in (51),
along with Equations (54), (59), and (60); the fifth line from the definition of c,; and the sixth line from inequal-
ity (53). The fourth line is a consequence of the continuity of %, the convergence of 7V to 7, the uniform
convergence of N to ¥, the piecewise continuity and right continuity of 1, Skorokhod’s theorem, and the
dominated convergence theorem. For the application of dominated convergence to the first sum, we use the fact
that when j/N < ™V A @, we have )25\;1\1 € X, (see (58)) and gbj/N € Z(x) (see (56)), along with the fact that L(, )
is continuous, and hence uniformly continuous and bounded, on X, X Z(x), as follows from Proposition 5(ii).
For the application of dominated convergence to the second sum, we use the fact when @ < j/N < ¥, we have
dist(;%j.\;N,QX) > 0/2 (see (57)), and the fact that L(-,-) is continuous and bounded on Y X Z when Y is a closed
subset of int(X), as follows from Proposition 5(i).



Sandholm and Staudigl: Sample Path Large Deviations
1368 Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1348-1377, © 2018 INFORMS

Since every subsequence has a subsubsequence that satisfies (61), the sequence as a whole must satisfy (61).
Therefore, since ¢ >0 was arbitrary, (61) and (39) establish inequality (52), and hence the lower bound (38b).

6. Proof of Lemma 2

Lemma 2 follows from Equation (34) and Lemma 4, which in turn requires Lemma 3. Lemma 3 shows that
for any distribution A on 2 ={e; —e;: i,j € A} with mean z € Z(I) = conv(Z(I)), there is a distribution A on
Z(I)={e; —e;: j€ A, i€l} whose mean is also z, with the variational distance between A and A bounded
by a fixed multiple of the mass that A places on components outside of Z(I). The lemma also specifies some
equalities that A and A jointly satisfy. Lemma 4 shows that if x puts little mass on actions outside I, then the
reduction in relative entropy obtained by switching from A to A is small at best, uniformly over the choice of
displacement vector z € Z(I).

Both lemmas require additional notation. Throughout what follows, we write K for A\I. For A € A(Z), we
write A;; for A(e; —e;) when j #i. We write A;;j=X,; A;; for the ith “row sum” of A and Al = 2z Ajj for the
jth “column sum.” (Remember that A has no “diagonal components” but instead has a single null component
Ag=A(0).) For I C A, we write A; = ¥ Ay;) for the sum over all elements of A from rows in I. If A, A eA(Z), we
apply the same notational devices to AA =A—A and to |AA|, the latter of which is defined by |A/\|,-j = |(A/\),-j|.
Finally, if x € R}, we write x; for 3, x;.

Lemma 3. Fix z € Z(I) and A € A,(z). Then there exist a distribution A € Ay1)(z) and a vector x € R satisfying
(i) AA=AAT =—x, forall i€,
(ii) Ao = A+ X,
(iii) Xy < Ak, and
where AA=A - A.

Lemma 4. Fix & > 0. There exists a 6 > 0 such that for any x € X with Xy = maxx X, <6, any z € Z(I), and any
A € Nysupp(v))(2), we have .
R(AJlv(-1x)) = R(Allv(- [ x)) - ¢,

where A € Ay)(z) is the distribution determined for A in Lemma 3.

To see that Lemma 4 implies Lemma 2, fix x € X with &y <6 and z € Z(I), and let A € Ay(z) and Al e Ayr)(2)
be the minimizers in (34) and (33), respectively; then since A € Ay;)(z),

L(x,2)=RA[Iv(- [ %)) = R(A[lv(- [ %)) = e = R(A||v(- | 1) - e = Ly(x,2) - e.

6.1. Proof of Lemma 3
To prove Lemma 3, we introduce an algorithm that incrementally constructs the pair (A, x)e Ay (z) X R! from
the pair (1,0) € A,(z) X R’ . All intermediate states (v, 1) of the algorithm are in A,(z) X R..

The intuition behind the algorithm is as follows. Suppose that distribution A € A,(z) has mean z € Z(I), so
that z, >0 for all k ¢ I. Suppose too that A(e; —e;) > 0 for some e; — ¢, ¢ Z(I) (i.e.,, with k¢ I and i #k), so that
A ¢ Aypy(z). We would like to reduce the mass that distribution A places on outcome e; — ¢, while keeping the
mean of the distribution fixed. To do so, we observe that there must be some j € A such that A(e, — e]-) >0, as
otherwise, z, would be negative. Now let ¢ = min{A(e; —¢;), A(e, —¢;)}. If i # j, we can remove mass ¢ from
Ale; —e,) and from A(e, —e¢;) and add mass ¢ to A(e; —¢;) and to A(0) without affecting the distribution’s mean
(see Case 1). If, instead, i = j, then we can remove mass ¢ from A(e; —¢;) and from A(e, —e;) and add mass 2c
to A(0) (see Cases 2 and 3). Either way, this adjustment reduces the mass placed on some outcome involving
action k to zero, and it does not increase the mass on any outcome involving action k. Thus adjustments of this
sort will eliminate all mass on increments outside of Z(I) in a finite number of steps and so will result in a new
distribution A in Ayr(2).

We proceed with the formal definition and analysis of the algorithm. Suppose, without loss of generality, that
K={1,...,k}. The algorithm first reduces all elements of the first row of A to 0, then all elements of the second
row, and eventually all elements of the kth row.

Suppose that at some stage of the algorithm, the state is (v, 1) € A,(z) X R!, rows 1 through k — 1 have been
zeroed, and row k has not been zeroed:

v =0, forallh<k, and (62)
Vi > 0. (63)
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Since v € A,(z) and z € Z(I),

vy => %v(x) =z, foralliel, and (64)
%€Z

v =y = > %v(x) =220, forallleK. (65)
%€Z

Equations (63) and (65) together imply that vl > 0. Thus there exist j # k and i # k such that
Vi Avig=c>0. (66)

Using (66), we now construct the algorithm’s next state (¥, 7t) from the current state (v, ) using one of three
mutually exclusive and exhaustive cases, as described next; only the components of v and 7 whose values
change are noted explicitly.

Case 1 (i#j): Case2 (i=jeK): Case3 (i=jel):
Uy = Vi =€, Vij =V — ¢, Vkj =V =€,
Ve =Vyg—C, Vig=Vi—C, Vig=Vj—C,
Vi =vite,
Po=vy+c. Py =vy+2c. Py =vy+2c,
T, =Tm; +cC.

In what follows, we confirm that following the algorithm to completion leads to a final state (1, x) with the
desired properties.

Write Av=7—-v and An =7t — rr, and define |Av| componentwise as described above. The following statements
are immediate:

Case 1 (i#j): Case2 (i=j€K): Case3 (i=jel):
Avyy = ARl = ¢, Avyy = AV = —¢, Avpy = AV = —¢, (67a)
Avjj= Al =—c, Avjj =Ml =—c, (67b)
Avyy=MI"=0,1#k, Avyy=M1"=0,1¢{k,j}, Avyy=M"=0,1¢{k,j}, (67¢)
Avy=c, Avy=2c, Avy=2c, (67d)
Amypy =0, Amyp =0, Am=c, (67e)
Avy =—c, Avyg =-2c, Avig =—c, (671)
|Av]4 =3c. |Av][4 = 2c. |Av]s; = 2c. (67g)

The initial equalities in (67a)—(67c) imply that if v is in A,(z), then so is 7. Equations (67a)—(67c) also imply
that no step of the algorithm increases the mass in any row of v. Moreover, (66) and the definition of the
algorithm imply that during each step, no elements of the kth row or the kth column of v are increased and that
at least one such element is zeroed. It follows that the first row is zeroed in at most 27 — 3 steps, followed by the
second row, and ultimately followed by row k. Thus a terminal state with /_\[K] =0, and hence with A € AZ(I)(Z),
is reached in a finite number of steps. For future reference, we note that

Ak = Ay = Mg = =g (68)

We now verify conditions (i)-(iv) from the statement of the lemma. First, for any i € I, (67b), (67c), and (67¢)
imply that in all three cases of the algorithm, Av;; = Avll = —An;;; the common value is 0 in Cases 1 and 2 and —¢
in Case 3. Thus aggregating over all steps of the algorithm yields AAy; = AA = —y;, which is condition (i).

Second, (67d)—(67f) imply that in all three cases, Av, = —Av + Am,. Aggregating over all steps of the algo-
rithm yields AAy = —AA g + x(;;- Then substituting (68) yields AAy = A g + x5, which is condition (ii).

Third, (67e) and (67f) imply that in all three cases, Amj;; < —Avy. Aggregating and using (68) yields x| <
—AA g = A, establishing (iii).

Fourth, (67f) and (67g) imply that in all three cases, |Av| , < —3Av|. Aggregating and using (68) yields
|AA 4 < =8AA g =3A g, establishing (iv).

This completes the proof of Lemma 3.
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6.2. Proof of Lemma 4
To prove Lemma 4, it is natural to introduce the notation d = A — A = —AA to represent the increment generated
by a move from distribution A € Ay)(z) to distribution A € A,(z). We will show that when %, = max;y x; is
small, such a move can only result in a slight reduction in relative entropy.

To start, observe that

dpy = =dil=y, foralliel, (69)
dix) =4 =Ay, forallkek, (70)
do=—Aig— Xy = —2A g, and (71)
g < 3A k- (72)

Display (69) follows from part (i) of Lemma 3, display (71) from parts (ii) and (iii), and display (72) from
part (iv). For display (70), note first that since A and A are both in A,(z), we have

/\[k] - /\[k] = Z ’A’/kA(%) =z, = Z /’(/k/_\(%) = /i[k] - i[k]/

2€Z 2€Z

and hence
d[k] — /\[k] — /-\[k] = A - A d k]/

then (70) follows from the fact that )_\[k] =0, which is true since A € Ay (2).
By definition,

iea j#i
where 0 =0,(x) and £ =3 4 x;0;;. Thus, writing I(p) = plogp for p € (0,1] and [(0) =0, we have
RNV [x) = RANv(-[x) = D5 D) = 1(A;) + (1(Ag) = 1(Ay)) (73)
icA j#i
icA j#i

We first use (69)—(71), Lemma 3(iii), and the facts that y > 0 and X > ¢ to obtain a lower bound on the final
term of (73):

- Z Z dijlogx;o;; +d, logZ)

€A j#i

= _ZXi log x; — Z/\lkl log x; —ZZd”—logail- + (Z Xi +ZAU<J) logZ

il keK icA j#i il kek
> Z)(Z log2+2/\ ]log— +ZZ |d;;|log o
i€l keK i€A j#i

> xplogc+ Ay loga +|d|4logc

Ailogc + A log Xi +3Ax logc
K
5
¢
> A lo -
(x] 10§ Ty

To bound the initial terms on the right-hand side of (73), observe that the function I: [0,1] — R is convex,
nonpositive, and minimized at e™!, where I(e”') = —e™". Define the convex function [: [0,1] — R by I(p) = I(p) if
p<e! and I(p) = —e! otherwise. We now argue that for any p,q € [0,1], we have

=1l(p) - 1)l = I(Ip - qI). (74)

Since [ is nonpositive with minimum —e™!, —|I(p) —1(q)| > —e™! always holds. If |p —g| < e”!, then —|I(p) - 1(9)| >
min{/(lp —q1),1(1 = |p —q)} =1(lp — q|); the inequality follows from the convexity of /, and the equality obtains
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because I(r)—1(1—-7) <0 for r € [0, %], which is true because r +— I(r) — (1 —r) is convex on [0, %] and equals 0
at the end points. Together, these claims yield (74).
Together, inequality (74), Jensen’s inequality, and inequality (72) imply that
2250 = 1)) == D7 DA = 1A = 37 D 1A = Agl)
icA j#i ied j#i icA j#i
f 2ica 2j A=Al A 3
Z(nz—n)l( ;_nl ! )Z(nz—n)l(m/\m).

Finally, display (71) implies that dy=A,— A, € [-2A k), 0]. Since I: [0,1] — R is convex with [(1)=0and I'(1)=1,
it follows that

I(Ag) = 1(Ag) = I(1+dy) = 1(1) = dy = —2A .
Substituting three of the last four displays into (73), we obtain
5

R(A|v(- | x)) = R(A||v(- | x)) = (n* = n) i(%A[KJ) + A (log ;_—K - 2).

To complete the proof of the lemma, it is enough to show that if ¥; < ¢’e™?, then

CS

_ 1/3
S o)l s—mrom| XX

nz—n

(n2—n)i(

We do so by computing the minimum value of the left-hand side of (75) over Ay, > 0. Let a = n> — n and
¢ =logc®/xy —2. The assumption that Xy < ¢’e™? then becomes ¢ > 0. Thus if s > a/(3e), then

~[3 1 1 a 3 a a
all—-s|+cs=—-ae" +cs>—-ae +c-—=all—-—|+c-—.
a 3e

Thus if s < a/(3e) minimizes al((3/a)s) + cs over s > 0, it also minimizes al((3/a)s) + cs, and the minimized
values are the same. To minimize al((3/a)s) + cs, note that it is concave in s; solving the first-order condition
yields the minimizer, s* = (a/3)exp(—c/3 —1). This is less than or equal to a/(3e) when ¢ > 0. Plugging s* into
the objective function yields —a exp(—c/3 — 1), and substituting in the values of a2 and ¢ and simplifying yields
the right-hand side of (75).

This completes the proof of Lemma 4.

7. Proof of Proposition 9 )
It remains to prove Proposition 9. Inequality (6) implies that solutions ¢ to the mean dynamic (10) satisfy

c—di < <1 (76)

for every action 7 € A. Thus if (qgo)i < ¢/2, then for all t € [0, c/4], the upper bound in (76) yields (¢,); < 3¢/4.
Then the lower bound yields (¢,); > ¢ —3¢/4 = c/4, and thus

(¢y); < 1c implies that ()i = (do); = ict, forall t€[0,1c]. (77)
In addition, it follows easily from (76) and (77) that solutions qB of (10) from every initial condition in X satisfy
(¢)); > 1ct forall tel0,ic]. (78)

Fix ¢ € €, with ¢,(¢) < oo, so that ¢ is absolutely continuous, with ¢, € Z at all t € [0,1] where ¢ is differ-
entiable. Let ¢ € €, be the solution to (10) starting from x. Then for «a € (0, c/4], define trajectory ¢* € €, as

follows: i
«_ | Pu if t <a,
- {i’a +(1=Q/)a) g —x), if t>a. 79)

Thus ¢* follows the solution to the mean dynamic from x until time «; then, the increments of ¢“ starting at
time @ mimic those of ¢ starting at time 0 but are slightly scaled down.
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The next lemma describes the key properties of ¢®. In part (ii) and hereafter, |- | denotes the /' norm on R".

Lemma5. If « € (0,c/4] and t € [a, 1], then
(i) ¢f =(1-(2/c)a)P;_y;
(i) |§f —Pial < (2+4/c)a;
(iil) for all i€ A, (¢F), > (¢c/4)a; and
(iv) forallie A, (¢F); > (c/12)(¢s_o);-

Proof. Part (i) is immediate. For part (ii), combine the fact that ¢, and ¢, both move at an I' speed of at most
2 (since both have derivatives in Z) and the identity ¢, , = ¢y + (¢,_, — ¢,) with the definition of ¢} to obtain

_ 2 2 4
|¢;Y _(Pt—al < |¢a —X| + Ea(¢t—a —X) <2a+ Za Z(t —(X) < (2+ E)a

We turn to part (iii). If (¢p,_, — x); = 0, then it is immediate from definition (79) and inequality (78) that
(¢F); = (c/4)a. So suppose instead that (¢,_, — x); <0. Then (79) and the fact that (¢,_,); > 0 imply that

- 2 - 2
()i = (dn)i — (1 - Ea)xi =((Po)i—x) + Eaxi' (80)
If x; <¢/2, then (80) and (77) yield
a 7 2 ¢ _<
(1) = ((Pn); —x) + gaxi 2 1 +0= %
If x; € [¢/2,¢], then (80) and (76) yield
- 2 2 ¢
N =2(dy), —x)+=ax; 20+ =a-= >a.
()2 (B =x)+ = “a
And if x; > ¢, then (80), (76), and the fact that cf),« > —1 yield
- 2 2
(@) = (o) —x;) + Eaxi z-a+ E“ cza.
It remains to establish part (iv). If (¢,_,); =0, then there is nothing to prove. If (¢,_,); € (0,3a], then part (iii)

implies that
(@) (c/¥a _ <
(Pra)i — Ba 12

And if (¢,_,); = 3a, then definition (79) and the fact that (}3,« > -1 and a < ¢/4 imply that

@i (@ —x)i+ (A= (2/)a)(Pro)i +(2/C)ax;  a 2 2

——+1-Za>

(qjt—a)i h ((Pt—a)i B 30‘ ¢ 5

Each trajectory ¢® is absolutely continuous, and Lemma 5(ii) and the fact that (10) is bounded imply that
¢* converges uniformly to ¢ as a approaches 0. This uniform convergence implies that

lim (") = h(¢). (81)

O

N~
N

Since (P[OE),a] is a solution to (10), and thus has cost zero, it follows from Lemma 5(i) and the convexity of
L(x,-) that

(%) = / L(g2, ¢3)dt < / LY, by dt + / 2aL01,0 - 107, 1))t 82)

To handle the second integral in (82), fix t € [@, 1]. Since ¢¢ €int(X), v(- | ¢¢) has support Z, a set with extreme
points ext(Z) = {e; —e;: j # i} = Z\{0}. Therefore, the convexity of L(x,-), the final equality in (31), the lower
bound (6), and Lemma 5(iii) imply that for all z € Z,

2
2% a : a C
L(¢f,z) < rgaxrrng(@ ,e;—e;) < —log (g rirél/zn(d)t )i) < -log T
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Thus since L is nonnegative and since lim,_,,aloga =0, the second integrand in (82) converges uniformly to
zero, and so

1
i [ %a(L(W,O)—L(W/qSt-a) dt =0, (®3)

To bound the first integral in (82), note first that by representation (14), for each t € [0, 1] there is a probability
measure A, € A(Z) with A, < v(-| ¢;) such that

L(¢y, §)=R(AJIv(-| ¢,)) and (84)
L(‘{bﬁmﬁi’t) SRAv(- | 9f,)), forall a€(0,1]. (85)

DE, lemma 6.2.3 ensures that {1}, ;) can be chosen to be a measurable function of . (Here and below, we
ignore the measure zero set on which either ¢, is undefined or L(¢,, ¢,) = .)
Lemma 6 and expressions (84) and (85) imply that

1 1-a 1-a 1
hmsup/ L(¢®, ¢, a)dt—hmsup/ L(¢%,,, d,)dt <11msup(/ R(Av(-] ¢;’+a))dt+/ Odt)

a—0 a—0 1-a

- / RO V(- | ) d = / L(dy, ) dt = (),

where the third line follows from the dominated convergence theorem and Lemma 6. Combining this inequality
with (81), (82), and (83), we see that

Inf (cx(@) —h(§)) < limsup(c,(¢7) — h(§%) < e.(d) = ().

a—0

Since ¢ € € was arbitrary, the result follows.
It remains to prove the following lemma.
Lemma 6. Write RY,, = R(A,[|v(-| ¢%,,)) and R, = R(A,||v(- | ¢,)). Then

(@) for all t €[0,1), lim, ,RY,, =R,; and
(ii) for all a >0 small enough and t € [0,1 - a], RY

t+a —

<R, +log(12/¢c)+1.
Proof. Definition (7) implies that

R, ~R,= > A,(x)log ((%l"“

%€2(¢py) (P;X+a)

> 2 Milejme) 1og((¢t)i +log 102

iesupp(¢;) jeA\{i} Da)i Uij((if’?m)

Ziea(Pr)ioii(Py)
Zieﬂ((;[)f:-a)iaii(cpf:.a) )

+ A,(0)1og (86)

The uniform convergence from Lemma 5(ii) and the continuity of ¢ imply that for each t € [0,1), the denom-
inators of the fractions in (86) converge to their numerators as a vanishes, implying statement (i). The lower
bound (6) then implies that the second and third logarithms in (86) themselves converge uniformly to zero as «
vanishes; in particular, for @ small enough and all ¢t € [0,1 — a], these logarithms are bounded above by 1.
Moreover, Lemma 5(iv) implies that when « is small enough and ¢ € [0,1 — ] is such that i € supp(¢,), the first
logarithm is bounded above by log(12/¢). Together, these claims imply statement (ii). This completes the proof
of the lemma and hence the proof of Proposition 9.

8. Proofs and Auxiliary Results for Section 4

In the analyses in this section, we are often interested in the action of a function’s derivative in directions
z € R} that are tangent to the simplex. With this in mind, we let 1 € R" be the vector of ones, and let P =
I —(1/n)11" be the matrix that orthogonally projects R" onto Rjj. Given a function g: R" — R, we define the
gradient of g with respect to Ry by Vg(x) =PVg(x), so that for z e Rj, we have Vg(x)z=Vg(x)Pz=(PVg(x))z =
Vog(x)'z.
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Proof of Proposition 3. It is immediate from the definition of M" that M"(t) = M"(P) for all w € R", leading us
to introduce the notation M" = M" |Rg~ Recalling that h(x) = X5 x; log x; denotes the negated entropy function,
one can verify by direct substitution that

M": Ry — int(X) and nVoh: int(X) — R} are inverse functions. (87)

Now let x, € int(X) and y, = M"(F(x,)) = M"(PF(x,)). Then display (87) implies that nV,h(y,) = PF(x,). Since
fi(x)=n"f(x)—h(x), Vf(x)=F(x), and %, = M"(F(x,)) — x, € R}, we can compute as follows:

%f”(xf) = Vof"(x)'%, = (7' PF(x;) = Voh(x,)) (M"(F(x,)) = x,) = (Vol(y,) = Voh(x,)) (y, = x,) <0

strictly so whenever M"(F(x,)) # x,, by the strict convexity of /. Since the boundary of X is repelling under (23),
the proof is complete. 0O

We now turn to Lemma 1 and subsequent claims. We start by stating the generalization of the Hamilton—
Jacobi Equation (26). For each R C S with #R > 2, let X; = {x € X: supp(x) € R}, and define flg X —R by

fRx)=n"f(x)- Zx,»logx,.+ Z x|

ieR jeS\R
Evidently,
J(x) = f(x) when supp(x) =R. (88)
Our generalization of Equation (26) is
H(x,-Vf(x)) <0 when supp(x)=R, with equality if and only if R =S. (89)

To use (88) and (89) to establish the upper bound ¢, < —f"(y) for paths ¢ € C.[0,T], ¢(T) =y that include

boundary segments, define S, =supp(¢,). At any time t at which ¢ is differentiable, ¢, is tangent to the face
of X corresponding to S,, and so (88) implies that (d/d¢)f"(¢,) =V fs’i(@)'cpt. We therefore have

@)= [ supluid ~H(,uNdr> [ VG~ HG, -V @) dr
> [ VR b= 1= 1) =), ©0)

establishing the lower bound.
Derivation of Property (89). Let x € X have support RC S, #R > 2. Then since P1=0,

Vofg(x):P(n‘lF(x)—Ze,-(l +logx)— > e]») :P(n‘lF(x)—Zeilogxi ) (91)

i€eR jeS\R ieR
Recalling definition (11) of H, letting C, be a random variable with distribution v(: | x), and using the fact that
P(ej —e;)= e; —e;, we compute as follows:
exp(H(x, =V f{ (x)))
=Eexp(-Vf (x)'C,)
= > > exp(-Vfi(x)(e;—e))P(C, =¢;—e) +P(C, =0)

ies j#i
exp(n™"F;(x)) exp(n7'F;(x))
= - 'F.(x)+ 17 F.(x) +1 —1 ) x; ! . L
24 24 PCTE )+ ) +logx; ~logx) 31 e 2 S G R
_ exp(n~'F;(x)) (1—xl)+Z exp(n'F;(x)) v Sierexp(nFi(x))
R Zikes eXp(171Fi(x)) ' = Skes exp(n1F(x)) " ks exp(n—le(x))'

Since the final expression equals 1 when R =S and is less than 1 when R C S, property (89) follows. O
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Derivation of Equation (27). Let x € int(X), and observe that

_ jsilexplu; —uy)x; exp(n Fi(x)) —exp(u; —u,)x; exp(n'F;(x)))
= Eexp(t/'C,) Zies exp(71Fi(x)) '

Recall from the previous derivation that Eexp(—V f7(x)'C,) = 1. Thus since u; — u;=(e;—e;)u=(Ple;—e;)u, it

follows from (92) that (dH/du;)(x,u) = (dH/Ju;)(x,Pu), so we can use Equation (91) with R =S to compute as
follows:

P P
S =V F1(0) = S, ~Vof )
1
= S op(rE() ;(exp(—q"llfi(x) +17'F;(x) +logx; —log x;) x; exp(n ' F;(x))
—exp(=17F;(x) + n7'F;(x) + log x; —log x;) x; exp(1~'F;(x)))

1 . .
) Dkeaexp(nF(x)) ; (x;exp(n F;(x)) = x;exp(n™ Fi(x)))

D exp(n”'Fi(x)) 1-x) exp(n~'Fi(x))
" Zreaexp(nFi(x)) " Zkeaexp(n ' Fi(x))
= x;(1- M{(F(x))) = (1= x)M](F(x)) = x; - M/ (F(x)). O

%(x, u) 92)

Acknowledgments
The authors thank Michel Benaim for extensive discussions about this paper and related topics, and they thank two anony-
mous referees and an associate editor for helpful comments.

Endnotes

1For imitative dynamics, see Helbing [22], Weibull [44], Bjornerstedt and Weibull [10], Hofbauer [23], and Schlag [41]; for exact
and perturbed best-response dynamics, see Roth and Sandholm [33] and Hofbauer and Sandholm [24], respectively. For surveys, see
Sandholm [37, 38].

2Key early contributions include Foster and Young [18], Kandori et al. [27], and Young [45]; for surveys, see Young [46] and Sandholm [37].
3See Freidlin and Wentzell [19, lemma 6.3.1] or Young [45, theorem 4].

4Important early work featuring this assumption includes the logit model of Blume [11, 12] and the probit model of Myatt and Wallace [31].
For more recent work and references, see Sandholm [35, 36], Staudigl [42], and Sandholm and Staudigl [39].

5See Binmore et al. [9], Binmore and Samuelson [8], Blume [11], and Sandholm [35, 36].

In more detail, each sample path of the N agent particle system specifies the action i € 4 played by each agent as a function of time
t € [0, T]. Each sample path generates an empirical distribution DV over the set of paths 7 = {u: [0,T] — A}, where with probability 1,
DY places mass 1/N on N distinct paths in J. The random draw of a sample path of the particle system then induces a probability
distribution " over empirical distributions DV on the set of paths J. The large deviation principle noted above concerns the behavior of
the probability distributions P as N grows large.

"In parlance of the particle systems literature, the first result concerns the “empirical distributions” (or “empirical measures”) of the system,
whereas the latter concerns the “empirical process.”

8Under a continuous-time process, the number of revision opportunities received by N agents over a short but fixed time interval [t, ¢ +dt]
follows a Poisson distribution with mean N dt. As the population size grows large, the number of arrivals per agent over this interval
becomes almost deterministic. However, a large deviation principle for the evolutionary process must account for exceptional realizations of
the number of arrivals. For a simple example illustrating how random arrivals influence large deviations results, see Dembo and Zeitouni [15,
exercise 2.3.18].

®This adjustment is important in finite population models: see Sandholm [37, section 11.4.2] or Sandholm and Staudigl [39].

10Since the logit protocol is parameterized by a noise level and since clever payoff evaluation is used, this example satisfies the assumptions
of our analysis of the small noise double limit in Sandholm and Staudigl [39].

""More specifically, the bound on choice probabilities must hold uniformly over the payoff vectors 7 that may arise in the population
games FVN.

12For further background on this material, see Dembo and Zeitouni [15] or Dupuis and Ellis [17].

3Here and throughout, 2 = {e;—e:i,je A} and 2(x)={e; —e;: i,j € A, x; >0} are discrete sets of normalized increments of the process XN,
and Z = conv(Z) and Z(x) = conv(Z(x)) are convex sets of feasible expected increments of XV,

14See Dembo and Zeitouni [15], theorem 2.1.10.

15Since number of empirical distributions for sample size N only grows polynomially (it is less than (N +1)/?l), the rate of decay of P(£Y € A)
cannot be driven by a large set of distributions in A with higher relative entropies.

18 This general idea—the preservation of large deviation principles under continuous functions—is known as the contraction principle. See
Dembo and Zeitouni [15].



Sandholm and Staudigl: Sample Path Large Deviations
1376 Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1348-1377, ©2018 INFORMS

17See Dembo and Zeitouni [15], section 2.1.2, or Dupuis and Ellis [17], lemma 6.2.3(f).

8When the interpolated process XV is halfway between adjacent states x and y at time (k +1/2)/N, its position at time k/N determines its
position at time (k +1)/N.

19The condition requires that for all § >0 small enough, there is a nonempty closed set K; C X disjoint from cl(O) such that for all x € JO,
there exists a y € K; satisfying |x — y| = 6.

2 The analysis to follow only requires the limiting game F to be a potential game. In particular, there is no need for the convergent
sequence {FN} of finite-population games to consist of potential games (as defined in Monderer and Shapley [30]) or to assume that any of
the processes X" are reversible (cf. Blume [12]).

2Tn panel (i) the size of the range of f7 is f©02)(x©)— fFO0P)(¢ )~ ~10.73 — (=20) = 9.27, whereas in panel (ii) it is fOV(x®D)— fOD(¢) ~
—28.38 — (—50) =21.62.
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