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1. Introduction

This paper is about two intimately related problems. One of them is quanti-
tative algebraic topology: using powerful algebraic methods, we frequently know
a lot about the homotopy classes of maps from one space to another, but these
methods are extremely indirect, and it is hard to understand much about what
these maps look like or how the homotopies come to be. The other is the analo-
gous problem in geometric topology. The paradigm of this subject since immersion
theory, cobordism, surgery, etc., has been to take geometric problems and relate
them to problems in homotopy theory and, sometimes, algebraic K-theory and L-
theory, and to solve those algebraic problems by whatever tools are available. As
a result, we can solve many geometric problems without understanding at all what
the solutions look like.
A beautiful example of this paradoxical state of affairs is the result of Nab-

utovsky that, despite the result of Smale (proved inter alia in the proof of the
high-dimensional Poincaré conjecture) that every smooth codimension 1 sphere in
the unit n-disk (n > 4) can be isotoped to the boundary, the minimum complexity
of the embeddings required in the course of such an isotopy (measured by how
soon normal exponentials to the embedding intersect) cannot be bounded by any
recursive function of the original complexity of the embedding. Effectively, an easy
isotopy would give such a sphere a certificate of its own simple connectivity, which
is known to be impossible.
In other situations, such as those governed by an h-principle, a hard logical aspect

of this sort does not arise. In this paper we introduce some tools of quantitative
algebraic topology which we hope can be applied to showing that various geometric
problems have solutions of low complexity.
As a first and, we hope, typical example, we study the problem, emphasized

by Gromov, of trying to understand the work of Thom1 on cobordism. Given a
closed smooth (perhaps oriented) manifold, the cobordism question is whether it
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bounds a compact (oriented) manifold. The answer to this is quite checkable: it is
determined by whether the cycle represented by the manifold in the relevant (i.e.,
Z or Z/2Z) homology of a Grassmannian (where the manifold is mapped in via the
Gauss map classifying the manifold’s stable normal bundle) is trivial.
This raises two questions: First, how is the geometry of a manifold reflected

in the algebraic topological problem? Second, how difficult is it to find the null-
homotopy predicted by the algebraic topology? As a test of this combined problem,
Gromov suggested the following question: Given a manifold, assume away small
scale problems by giving it a Riemannian metric whose injectivity radius is at least
1 and whose sectional curvature is everywhere between −1 and 1. These properties
can be achieved through a rescaling. A manifold possessing these properties will be
said to have bounded local geometry. The geometric complexity of such a manifold
can be measured by its volume.
If M is a smooth compact manifold, without a specified metric, we measure its

(differential-) topological complexity by the infimum of the geometric complexity
over all metrics with bounded local geometry. (If M is not closed, we require
it to look like a collar ∂M × [0, 1] within distance 1 of the boundary.) This is a
reasonable complexity measure: there are only finitely many diffeomorphism classes
of manifolds with a given bound on complexity; see [Che70], [Pet84], [Gro98, §8D].
The central question is as follows. Given a smooth (oriented) manifold Mn

of complexity V which is null-cobordant, what is the least complexity of a null-
cobordism? That is, if W is an (oriented) compact Riemannian (n+1)-manifold of
bounded local geometry, which bounds a manifold diffeomorphic to M , how small
can the volume ofW be? Gromov has observed [Gro96, §5 57 II] that tracing through
the relevant mathematics would give a tower of exponentials of V (of size around
the dimension of the manifold minus 2), but he has suggested [Gro99] that the truth
might be linear.
The linearity problem, if it has an affirmative solution, would require very new

geometric ideas and seemingly a solution to the cobordism problem essentially dif-
ferent from Thom’s. We build on Thom’s work to obtain the following:

Theorem A. If M is an (oriented) closed smooth null-cobordant manifold of com-
plexity V , then it has a null-cobordism of complexity at most

c1(n)V
c2 (n).

The degree of this polynomial, obtained by tracing through our arguments, grows
exponentially with dimension. In the Appendix, we improve this result to give an
only slightly superlinear bound on the size of the null-cobordism. F. Costantino
and D. Thurston have already shown that for 3-manifolds, one does not need worse
than quadratic growth for the complexity of the null-cobordism2 [CT08].
Our proof follows the ideas of Thom quite closely and is based on making those

steps quantitative (if suboptimally) and then getting an a priori estimate on the size
of the most efficient null-homotopy of a Thom map when the homological condition
holds.

2Though they use a PL measure of complexity, the number of simplices in a triangulation.
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QUANTITATIVE NULL-COBORDISM 1167

Thom’s work starts by embedding M into a sphere (or equivalently Euclidean
space). This is already an act of violence: one knows that this will automatically
introduce distortion. This is one source of growth that we do not know how to
avoid.3

For manifolds embedded in the sphere, the Lipschitz constant of the Thom map is
closely related to the complexity of the submanifold4 and the thickness of a tubular
neighborhood. Conversely, if we know something about the Lipschitz constant of a
null-homotopy of the Thommap, we can extract a geometrically bounded transverse
inverse image.
Zooming in, we see three issues that need to be taken care of.

(1) We need to bound the Lipschitz constants of the maps at time t in a null-
homotopy (its “thickness”). Gromov has suggested [Gro99] that these fre-
quently have a linear bound for maps of finite complexes into finite simply
connected complexes.5

(2) Bounding the worst Lipschitz constant arising in a null-homotopy does not
quite suffice. One needs to bound the width6 of the null-homotopy as well.
This is a nontrivial issue: a null-homotopy of thickness L can in general be
replaced by one of width exp(Ld) where d is the dimension of the domain,
but this is the best “automatic” bound.

(3) Even provided such bounds, a transverse inverse image may be very large
compared to the original manifold.

We deal with (1) and (2) simultaneously; this is the homotopy-theoretic result
mentioned earlier. The real loss in our theorem comes from (3). In order to find
a quantitative embedding of our manifold into SN , we are forced to take N to
be very large, and the embedded submanifold has small support in the resulting
sphere. However, the support of a null-homotopy may still be quite large. This
problem of the increase in the support is also one we have made no progress on and
which seems important in a context broader than just cobordism theory.

1.1. Building Lipschitz homotopies. The main technical result of the paper is
the following:

Theorem B. Let X be an n-dimensional finite complex, and let Y be a finite
complex which is rationally equivalent to a product of simply connected Eilenberg–
MacLane spaces through dimension n. If f, g : X → Y are L-Lipschitz homotopic
maps, then there is a homotopy between them which is C(X, Y )L-Lipschitz as a
map from X × [0, 1] to Y .

The simplest settings in which this theorem applies are those in which Y is an
odd-dimensional sphere or in which Y is a 2k-sphere and n ≤ 4k−2. More generally,
Y may be any Lie group or, even more generally, H-space. Given that the targets in
many topological problems are H-spaces, we are optimistic that this partial result

3A proof of the nonoriented cobordism theorem was given by [BH81] without using embedding.
However, at a key moment there is a “squaring trick” in the proof, which also ends up giving, as
a result of an induction, a polynomial estimate with an exp(n2)-degree polynomial.

4Thom produces the null-cobordism from a null-homotopy by taking a transverse inverse image.
5If the domain is a circle and the target is a 2-complex, then for manifolds with an unsolvable

word problem, there can be no computable upper bound for the worst Lipschitz constant in a
null-homotopy. But for many groups with small Dehn function, it is possible to do this with only
a linear increase. In particular, simple connectivity is an extremely natural requirement.

6The Lipschitz constant in the time direction.
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regarding the linearity of homotopies will have more general application. (We give
an example below showing that this theorem cannot be extended to arbitrary simply
connected complexes in place of Y .)
One antecedent to this result is given in [FW13], where maps with target pos-

sessing finite homotopy groups are studied. In that setting, the width of a null-
homotopy is actually bounded universally, independent of X. On the other hand,
that paper shows that for any space with infinite homotopy groups there cannot be
too uniform of an estimate of a linear upper bound on null-homotopies.
The obstruction in [FW13] has to do ultimately with homological filling func-

tions. Isoperimetry, likewise, comes up in our result and is best appreciated by
considering the following very concrete setting:

Lemma. If f : S2 → S2 is a degree 0 map with Lipschitz constant L, then there is
a CL-Lipschitz null-homotopy for some C.

This can be proved following the classical idea of Brouwer of cancelling point
inverses with opposite local degree, but in a careful layered way so as to be able
to control the Lipschitz constants. We will give a careful explanation of this as it
provides the main intuition for the proof of Theorem B0.

1.2. Obstruction theory. Let f : S2 → S2 be a null-homotopic L-Lipschitz
map. We assume this has a very particular structure; later we will see that such
a structure can be obtained with only small penalties on constants. The domain
sphere X is a subdivision of a tetrahedron into grid isometric subsimplices, L to a
side. The map f maps its 1-skeleton to the basepoint; for every 2-simplex either it
also maps it to the basepoint or it maps a ball in the simplex homeomorphically to
S2 minus the basepoint, with degree ± 1.
To construct a null-homotopy of f , we need to connect the positive and negative

preimages with tubes in X× [0, 1]. Care must be taken to route these tubes in such
a way that there are not too many clustered in any given spot, as in Figure 1. To
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Figure 1. Connecting preimages of opposite orientations with
tubes: the global picture. Note that the Lipschitz constant of
a null-homotopy depends only on the thickness of the tubes; there-
fore, inefficiencies in routing only matter insofar as they force many
tubes to bunch up in the same region.

Licensed to Univ of Chicago. Prepared on Tue May  7 19:29:04 EDT 2019 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTITATIVE NULL-COBORDISM 1169

⟨ω, q⟩
0

· · ·

· · ·

!
1

CL ⟨α, p0⟩
"

!
2

CL ⟨α, p0⟩
"
−
!
1

CL ⟨α, p0⟩
"

⟨ω, q⟩ −
#

p∈∂q

!
2

CL ⟨α, p⟩
"

edge p0

(a) Degrees on 2-cells of prisms.

· · ·

· · ·
+

−

+

−

−

+

(b) Connecting homeomorphic preimages of S2 \ ∗ with tubes.

Figure 2. Constructing a null-homotopy: the local picture.

do this, we decide beforehand how many tubes need to go through any particular
part of X × [0, 1] and then connect them up in any available way.
To make this precise, assume that the tubes miss X(0)×[0, 1]. Then we can count

the number of tubes going through p× [0, 1] for each 1-simplex p of X. Every tube
that goes into q× [0, 1], for any 2-simplex q, must either come out through another
edge or come back to 0. In other words, if α ∈ C1(X;Z) is the cochain which
indicates the number of tubes (with sign!) going through p × [0, 1], then ω = δα
gives the degree of f on 2-simplices of X. In the language of obstruction theory, ω
is the obstruction to null-homotoping f , and the existence of α demonstrates that
the obstruction can be resolved.
To ensure that it can be resolved efficiently, we need to pick a relatively small

α. The best we can do is to choose an α which takes values ≤ CL. By considering
a situation with degree O(L2) on one side of X canceling out degree −O(L2) on
the other side, we see that we can do no better. That this is also the worst possi-
ble situation follows from the classical isoperimetric inequality for spheres; this is
discussed in much greater generality in section 3.
In effect, once we have set α, deciding how many tubes must go through a

given point, we can connect them up in an entirely local way. We give X × [0, 1]
a cellulation by prisms of length 1/CL and base the 2-simplices of X. We then
construct the map F by skeleta on this cellulation:

(1) First, map the 1-skeleton to the basepoint.
(2) Next, we can map the 2-cells via maps of degree between −3 and 3 in such

a way that the map on the boundary of each prism has total degree 0, as
in Figure 2(a). (It is here that we “layer” the null-homotopy.)
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(3) Finally, we choose a way to connect pairs of preimages on each prism
via tubes, as in Figure 2(b). Since the number of tubes in each prism
is bounded, we can do this with bounded Lipschitz constant.

For the second step, we need to use our α. If we ensure that for each 1-simplex p of
X, the degree of F on p× [0, 1] is ⟨α, p⟩, then F will have degree 0 on the boundary
of each “long prism” q × [0, 1], where q is a 2-simplex of X.
It remains to make sure that the degree is 0 on the “short prisms”. To do

this, we spread ⟨α, p⟩ as evenly as possible along the unit interval: for every integer
1 ≤ t ≤ CL, the degree of α on p×[0, t/CL] is ⌊ t

CL ⟨α, p⟩⌋. This then also determines
the required degree on q × {t/CL} for every 2-simplex q and time t to make the
total degree on the boundary of each prism 0. It is easy to check that the resulting
degrees on all 2-cells are at most 3.

1.3. Outline of proof of Theorem B. We now describe how the proof of the
above Lemma leads to the proof of Theorem B. The motto is the same: if we can
kill the obstruction to finding a homotopy, then we can do the killing in a bounded
way.
The first step is to reduce to a case where obstruction theory applies. For this,

we simplicially approximate our map in a quantitative way. That is, given a map
X → Y between metric simplicial complexes, the fineness of the subdivision of X
must be inversely proportional to the Lipschitz constant of the map.
From here the general strategy is to build a homotopy by induction on the

skeleta of X × I with a product cell structure. This homotopy will not in general
be simplicial, but it will have the property that restrictions to each cell form a fixed
finite set depending only on X and Y . Every time we run into a null-cohomologous
obstruction cocycle, we use a cochain that it bounds to modify the map on the
previous skeleton. We ensure that these modifications are chosen from a fixed finite
set of maps, leaving us with a fixed finite set of maps on the boundaries of cells one
dimension higher. Then we can fill each such map in a fixed way, preserving the
desired property.
When the obstructions are torsion, the main issue is the well-known one that

killing obstructions “blindly” will sometimes lead to a dead end even when a homo-
topy exists. On the other hand, since there is a finite number of choices of torsion
values for a cochain to take, we may avoid this by following a “road map” given by
a known, but potentially uncontrolled, null-homotopy of f . This is the content of
Lemma 4.1.
On one hand, when we get integral obstructions, our choice of rational homotopy

structure ensures that such issues do not come up. On the other hand, we do need
to worry about isoperimetry. This is covered by Theorem 4.2, which generalizes
the argument above.

2. Preliminaries

In this section, we discuss how to subdivide a metric simplicial complex so that
the edges all have length approximately 1/L for a specified L. We also show that,
for any simplicial map f : X → Y and any L, we can subdivide X as above to form
XL and homotope f through a short homotopy to $f : XL → Y .
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QUANTITATIVE NULL-COBORDISM 1171

2.1. Regular subdivision of simplices.

Definition. Define a simplicial subdivision scheme to be a family, for every n and
L, of metric simplicial complexes ∆n(L) isometric to the standard ∆n with length
1 edges, such that ∆n(L) restricts to ∆n−1(L) on all faces. A subdivision scheme
is regular if for each n there is a constant An such that ∆n(L) has at most An

isometry classes of simplices and a constant rn such that all 1-simplices of ∆n(L)
have length in [r−1n L−1, rnL−1].
Given a regular subdivision scheme, we can define the L-regular subdivision of

any metric simplicial complex, where each simplex is replaced by an appropriately
scaled copy of ∆n(L).

Note that L times barycentric subdivision is not regular. On the other hand,
there are at least two known examples of regular subdivision. One is the edgewise
subdivision of Edelsbrunner and Grayson [EG00], which has the advantages that
the L-regular subdivision of ∆n(M) is ∆n(LM) and that the lengths of edges vary
by a factor of only

√
2. Roughly, the method is to cut the simplex into small

polyhedra by planes parallel to the (n − 1)-dimensional faces, then partition each
such polyhedron into simplices in a standard way. The other is described by Ferry
and Weinberger [FW13]: the trick is to subdivide ∆n into n + 1 identical cubes,
then subdivide these in the obvious way into Ln cubes, and finally subdivide these
in a canonical way into simplices. This method has the advantage of being easy to
describe.
None of the listed advantages is crucial for our continued discussion, so we may

remain agnostic as to how precisely we subdivide our simplices.

2.2. Simplicial approximation.

Proposition 2.1 (Quantitative simplicial approximation theorem). For finite sim-
plicial complexes X and Y with piecewise linear metrics, there are constants C and
C ′ such that any L-Lipschitz map f : X → Y has a CL-Lipschitz simplicial ap-
proximation via a (CL+ C ′)-Lipschitz homotopy.

Proof. We trace constants through the usual proof of the simplicial approximation
theorem, as given in [Hat01].
Denote the open star of a vertex v by st v. Let c be a Lebesgue number for the

open cover {stw | w is a vertex of Y } of Y , that is, a number such that every c-ball
in Y is contained in one of the sets in the cover. Then c/L is a Lebesgue number
for the open cover {f−1(stw)} of X. Take a regular subdivision XL of X so that
for some 0 < d(X) < 1/2 each simplex of XL has diameter between dc/L and c/2L.
Hence f maps the closed star of each vertex v of XL to the open star of some vertex

g(v) of Y . This gives us a map g : X(0)
L → Y (0) which takes adjacent vertices of

XL to adjacent vertices of Y , and hence if ℓ is the maximum edge length of Y , g is
ℓL/dc-Lipschitz.
By a standard argument, this map g extends linearly to a map g : XL → Y

with the same Lipschitz constant. The linear homotopy from f to g has Lipschitz
constant max{ℓL/dc, ℓ}. !

Remark. Suppose that Y and X are n-dimensional and made up of standard
simplices of edge length 1. Then c = 1√

2n(n+1)
is the inradius of a standard
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simplex, and by using the edgewise subdivision, we can make sure that d > 1/2
√
2.

Thus the Lipschitz constant of the map increases by a factor of at most

C ≤ 4
%

n(n+ 1).

Furthermore, if X is two-dimensional, then all of the edge lengths of the subdivision
are equal. Therefore, in this case, C ≤ 4

√
3 and, in fact, it approaches 2

√
3 for

large L, since we can choose a subdivision parameter very close to L and, thus, d
very close to 1.

We will use simplicial approximation mainly as a way of ensuring that our maps
have a uniformly finite number of possible restrictions to simplices. Almost all in-
stances of “simplicial” in this paper can be replaced with “such that the restrictions
to simplices are chosen from a finite set associated with the target space”. This
formulation makes sense even when the target space is not a simplicial complex.
In particular, it is preserved by postcomposition with any map, for example one
collapsing certain simplices.

3. Isoperimetry for integral cochains

The goal of this section is to prove the following (co)isoperimetric inequality.

Lemma 3.1 (ℓ∞ coisoperimetry). Let X be a finite simplicial complex equipped with
the standard metric, and let XL be the cubical or edgewise L-regular subdivision of
X, and let k ≥ 1. Then there is a constant CIP = CIP(X, k) such that for any
simplicial coboundary ω ∈ Ck(XL;Z) there is an α ∈ Ck−1(XL;Z) with dα = ω
such that ∥α∥∞ ≤ CIPL∥ω∥∞.

We will start by proving the much easier version over a field; in the rest of the
section F will denote Q or R. Then we will demonstrate how to find an integral-
filling cochain near a rational or real one.

Lemma 3.2. Let X be a finite simplicial complex equipped with the standard metric,
and let XL be an L-regular subdivision of X. Then for any k, there is a constant
K = K(X, k) such that for any simplicial coboundary ω ∈ Ck(XL;F), there is an
α ∈ Ck−1(XL;F) with dα = ω such that ∥α∥∞ ≤ KL∥ω∥∞.

Proof. We first show a similar isoperimetric inequality and then demonstrate that
it is equivalent to the coisoperimetric version.

Lemma 3.3. There is a K = K(X, k) such that boundaries b ∈ Ck−1(XL;F) of
simplicial volume V bound chains of simplicial volume at most KLV .

Proof. There are two ways we can measure the volume of a simplicial i-chain in
XL. The first, simplicial volume, is given by assigning every simplex volume 1, i.e.,

vol
&'

αipi

(
=
'
|αi|.

Alternatively, we can measure the i-mass of chains: the mass of a simplex p is its
Riemannian i-volume, and in general

mass
&'

αipi

(
=
'
|αi| voli(pi).

Thus there are constantsKi andK ′
i, depending on the choice of subdivision scheme,

such that for every i-chain c,

KiL
imass c ≤ vol c ≤ K ′

iL
i.
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QUANTITATIVE NULL-COBORDISM 1173

Therefore to prove the lemma it suffices to show that a boundary whose (k−1)-mass
in X is V bounds a chain whose k-mass is at most KV .
Our main tool here is the Federer–Fleming deformation theorem, a powerful re-

sult in geometric measure theory which allows very general chains to be deformed
to simplicial ones in a controlled way. One proves this result by shining a light
from the right spot inside each simplex so that the resulting shadow on the bound-
ary of the simplex is not too large. By iterating this procedure on simplices of
each dimension between n and k + 1, we eventually end up with a shadow in the
k-skeleton, which is the desired simplicial chain. Federer and Fleming’s original
version [FF60, Thm. 5.5] was based on deformation to the standard cubical lattice
in Rn. However, everything in their proof, except for the precise constants, trans-
lates to simplicial complexes. (See [EPC+92, Thm. 10.3.3] for a proof of a slightly
narrower analogue in the case of triangulated manifolds, which however also applies
to any simplicial complex.)
Federer and Fleming’s theorem works for normal currents. To avoid this rather

technical concept, we state the result for Lipschitz chains, that is, singular chains
whose simplices are Lipschitz.

Theorem (Federer–Fleming deformation theorem). Let W be an n-dimensional
simplicial complex with the standard metric on each simplex. There is a constant
ρ(k, n) such that the following holds. Let T be a Lipschitz k-chain in W with
coefficients in F. Then we can write T = P +Q+ ∂S, where

(1) mass(P ) ≤ ρ(k, n)(mass(T ) + mass(∂T ));
(2) mass(Q) ≤ ρ(k, n)mass(∂T );
(3) mass(S) ≤ ρ(k, n)mass(T );
(4) P can be expressed as an F-linear combination of k-simplices of W ;
(5) if ∂T can already be expressed as a combination of (k − 1)-simplices of W

(for example, if T is a cycle), then Q = 0 and

mass(P ) ≤ ρ(k, n)(mass(T ).

Now suppose thatW is given a metric dW whose simplices are not standard, but
such that the identity map ι : (W, dstd)→ (W, dW ) satisfies

λ1d(x, y) ≤ d(ι(x), ι(y)) ≤ λ2d(x, y)

for all x, y ∈ W . When mass is measured with respect to dW , the bounds in the
theorem become

(1) mass(P ) ≤ ρ(k, n)

)
λk
2

λk
1

mass(T ) +
λk−1
2

λk
1

mass(∂T )

*
;

(2) mass(Q) ≤ λ
k−1
2

λk
1

ρ(k, n)mass(∂T );

(3) mass(S) ≤ λ
k+1
2

λk
1

ρ(k, n)mass(T ).

We apply the theorem twice. First, we apply it to b as a Lipschitz cycle in X to
show that it is homologous to a (k − 1)-cycle P ∈ Ck−1(X;F) of volume ≤ C(k)V
via a Lipschitz k-chain S of volume ≤ C(k)V . Next, we apply it to S as a k-chain
in XL. Notice that the ratio λ2/λ1 is bounded independent of L for a regular
subdivision; therefore, S deforms rel boundary to a chain in Ck(XL;F) of volume
≤ C(k)C ′(k)V , where C ′ depends on the subdivision scheme. Finally, P bounds a
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1174 G. R. CHAMBERS, D. DOTTERRER, F. MANIN, AND S. WEINBERGER

chain in X of volume ≤ C†C(k)V , where C† depends only on the geometry of X.
Thus we can set K = (C† + C ′)C. !
Lemma 3.4. Let X be a finite simplicial complex. Then the following are equivalent
for any constant C:

(1) any boundary σ ∈ Ck−1(X;F) has a filling τ ∈ Ck(X;F) with

vol τ ≤ C volσ;

(2) any coboundary ω ∈ Ck(X;F) is the coboundary of some α ∈ Ck−1(X;F)
with ∥α∥∞ ≤ C∥ω∥∞.

The authors would like to thank Alexander Nabutovsky and Vitali Kapovitch
for pointing out this simplified proof.

Proof. The cochain complex is dual to the chain complex, and the L∞-norm on
cochains is dual to the volume norm on chains. So consider the general situation of a
linear transformation between two normed vector spaces T : (V, ∥·∥V )→ (W, ∥·∥W ),
and let C(T ) be the operator norm of the transformation

T̄−1 : (imT, ∥·∥W )→ (V/ kerT, ∥·∥V̄ ),

where the norm of an equivalence class v̄ ∈ V/ kerT is given by ∥v̄∥V̄ = minv∈v̄∥v∥V .
When T is the boundary operator on Ck(X;F), C(T ) is exactly the minimal con-
stant C in condition (1). Hence this is also the operator norm of the dual transfor-
mation (T̄−1)∗: imT∗→ W∗/ kerT∗. It remains to investigate the dual norms on
these spaces.
By the Hahn–Banach theorem, any operator on imT extends to an operator

of the same norm on all of W . Hence the dual norm of ∥·∥W |imT is exactly the
norm ∥ϕ∥W∗ = minϕ∈ϕ∥ϕ∥W∗ on W∗/ kerT∗, and similarly the dual norm of ∥·∥V̄

is ∥·∥V ∗ |imT∗ . Therefore, the operator norm of (T̄−1)∗is the minimal constant of
condition (2). !
Combining Lemmas 3.3 and 3.4, we complete the proof of the rational and real

versions of the coisoperimetry lemma. !
Now we introduce the ingredients for proving the integral version.

Definition. A k-spanning tree of a simplicial complex X is a k-dimensional sub-
complex T which contains X(k−1), such that the induced map

Hk−1(T ;Q)→ Hk−1(X;Q)
is an isomorphism and Hk(T ;Q) = 0. A k-wrapping tree of X is a k-dimensional
subcomplex U which contains X(k−1) and such that the induced maps

Hk−1(U ;Q)→ Hk−1(X;Q) and Hk(U ;Q)→ Hk(X;Q)
are both isomorphisms.

Lemma 3.5. Every simplicial complex X has a k-spanning tree and a k-wrapping
tree.

Proof. A k-spanning tree for any X can be constucted greedily starting from
X(k−1). At each step, we find a k-simplex c in X such that ∂c represents a
nonzero class in Hk−1(T ;Q) and add it to T . Once there are no such simplices
left, Hk−1(T ;Q) → Hk−1(X;Q) is an isomorphism. By construction, T has no
rational k-cycles.
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Notice that every k-simplex of X outside T is a cycle in Ck(X, T ;Q). To build
a k-wrapping tree from a k-spanning tree, we may choose a basis for Hk(X, T ;Q)
from among the simplices and add it to the tree. !

Informally speaking, a k-spanning tree should be thought of as the least sub-
complex T so that every k-simplex outside T is a cycle mod T ; a k-wrapping tree
is the least subcomplex U so that every k-simplex outside U is a boundary mod
U . In both cases the minimality means that there is a unique “completion” for a
k-simplex q, i.e., a chain c supported in T (resp., U) so that c+ q is a cycle (resp.,
boundary).
Such spanning trees have been previously studied by Kalai [Kal83] and Duval,

Klivans, and Martin [DKM09] and [DKM11] in the case where k is the dimension
of the complex. In that case the k-simplices not contained in a spanning tree T
form a basis for Hk(X, T ;Q) (and a k-wrapping tree is simply the whole complex).
When X contains simplices in dimension k + 1, however, there may be relations
between the simplices when viewed as cycles in X modulo T . The next definition
attempts to quantify the extent to which such relations constrain the behavior of
cocycles in the pair (X, T ).

Definition. Let T be a k-spanning tree of X. Consider the set A of vectors in
Hk(X, T ;Q) which are images of k-simplices of X. We define the gnarledness

G(T ) = min

+
max
a∈A

∥a∥1 : bases B for Hk(X, T ;Q) such that A ⊂ ZB
,

.

We say that T is G(T )-gnarled ; we say a basis is optimal if maxa∈A∥a∥1 is minimal
in it.

The gnarledness measures the extent to which certain simplices are homologically
“larger” than others. For example, consider a two-dimensional simplicial complex
which is homeomorphic to the mapping telescope of a degree 2 self-map of S1,

X = S1 × [0, 1]/(x, 1) ∼ (−x, 1).

Let us say we take a one-dimensional spanning tree T which includes all but one
of the simplices of both S1 × {0} and S1 × {1}; let e0 and e1, respectively, be the
relevant 1-simplices in X \ T . Then in H1(X, T ;Q) ∼= Q, [e0] = 2 and [e1] = 1. For
any basis for H1(X, T ;Q) in which e1 is a lattice point, ∥e0∥1 ≥ 2, so the tree T
is at least 2-gnarled. Indeed, the same will happen for any spanning tree of this
complex.

Lemma 3.6. The cubical and edgewise L-regular subdivisions of X both admit
k-spanning trees which are at most C(X)-gnarled; the gnarledness is bounded inde-
pendent of L.

We will actually show this for grids in a cube complex. It is routine to modify
this proof to work for the cubical subdivision of a simplicial complex; a similar
construction works for the edgewise subdivision, since it consists of a grid of sub-
spaces parallel to the faces which is then subdivided in a fixed way depending on
dimension.
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Figure 3. An illustration of the subcomplex T for n = 2, k = 1
and n = 3, k = 2.

We first show that the subdivision of a cube has a “k-spanning tree rel boundary”
with good geometric properties. To be precise:

Lemma 3.7. Let K = In be cubulated by a grid of side length 1/r, and let k ≤ n.
We refer to

• cells, i.e., faces of the cubulation;
• faces, i.e., subcomplexes corresponding to faces of the unit cube; and
• boxes, i.e., subcomplexes which are products of subintervals.

Then there is a k-subcomplex T ⊃ K(k−1) of K with the following properties:

(1) T ∩ ∂K = (∂K)(k−1).
(2) T deformation retracts to (∂K)(k−1).
(3) Every k-cell of K \ T is homologous rel T to a chain in ∂K whose inter-

section with each (n− 1)-face is a box.
(4) More generally, every k-dimensional box in K is homologous rel T to a

chain in ∂K whose intersection with each (n− 1)-face is a box.

This subcomplex is illustrated in low dimensions in Figure 3.
Suppose now that we equip every face of K in dimensions k ≤ i ≤ n with

subcomplexes satisfying these properties, and we let T ′ be the union of all these
subcomplexes. Then by induction using property (4), any k-cell of K \T ′ is homol-
ogous rel T ′ to a union of at most 2n−kn!/k! boxes in the k-faces of K. In turn,
by property (2), each of these boxes has at most one cell outside T ′. Therefore any
k-cell is homologous rel T ′ to a sum of at most 2n−kn!/k! cells in the k-faces. This
is the property that we use to prove Lemma 3.6.

Proof. We construct T = Tn,k by induction on n and k. For k = 0, we can set
Tn,0 = ∅. Similarly, for k = n, we can take Tn,n to be K less the interior of any one
cell—for concreteness, let that be the cell that includes the origin.
Now we construct Tn,k for n > k > 0 by induction on n. Write K = K ′ × I;

then for every 0 < i < r, let T |K′×{i/r}= Tn−1,k × {i/r}, and for every 0 ≤ i < r,
let

T |K′×(i/r,i+1/r) = Tn−1,k−1 × (i/r, i+ 1/r).
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Finally, we throw in Kk−1 ∩ K ′ × {0, 1}. It remains to show that the resulting
complex T = Tn,k satisfies the lemma.
It is clear that T contains K(k−1) and that condition (1) holds. Moreover, T de-

formation retracts first to T |∂K∪K′×{i/r:i=1,2,...,r−1}using a retraction of Tn−1,k−1,

and thence to (∂K)(k−1) via a retraction of each layer individually. This demon-
strates (2). It remains to show that (3) and (4) hold.
In order to do this more easily, we present an alternate rule for determining

whether a k-cell c is contained in T . Showing that it is indeed equivalent to the
previous definition is tedious but straightforward. Let c be a k-cell of K \ ∂K and
let I(c) ⊂ {1, . . . , n} be the set of directions in which it has positive width. Write
πi for the projection of K onto its ith interval factor, and write ℓ(c) for the greatest
integer such that {1, . . . , ℓ} ⊂ I(c). Then c is in T if and only if πic ̸= [0, 1/r] for
some i ≤ ℓ. In particular, if ℓ = 0, then c /∈ T .
Now let c be a k-cell of K \T . If c ∈ ∂K, then it already fits the bill, so suppose

it is in K \ (T ∪ ∂K). We will argue that c is bounded rel T ∪ ∂K by a box B with
positive width in directions I(c)∪{ℓ(c)+1}. Specifically, the projections of B onto
each interval factor of K are as follows:

πiB = I, if 1 ≤ i ≤ ℓ(c);
πiB = [x, 1], where πic = {x}, if i = ℓ(c) + 1;

πiB = πic, otherwise.

By the criterion above, ∂B \ ∂K contains only one cell which is not in T , namely
c. Thus ∂B ∩ ∂K is the chain desired for (3).
More generally, given a k-dimensional box in K, one can take the union of the

B’s constructed for each cell in the box. This gives a solution for (4). !

Proof of Lemma 3.6 for cubulations. Let XL be the complex obtained by dividing
X into grids at scale 1/L. We begin by choosing a k-spanning tree T for X, then
use it to build a k-spanning tree TL for XL. We include all cells of XL contained in
T ; for every cell of X not contained in T , we include a complex as in Lemma 3.7.

The resulting subcomplex includes X(k−1)
L and, by induction on n−k, deformation

retracts to T . Therefore it is a k-spanning tree for XL.
Now let B be an optimal basis for Hk(X, T ;Q) ∼= Hk(XL, TL;Q). By the argu-

ment above, any k-cell of XL is homologous rel TL to a sum of at most 2n−kn!/k!
cells in the k-faces, where n is the dimension of X. In turn, any k-cell of XL \ TL

which is contained in a k-face represents the same homology class modulo TL as
that face does modulo T , and therefore can be represented as a sum of at most
G(T ) elements of B. Therefore, G(TL) ≤ G(T ) · 2n−kn!/k!. !

We now have the tools we need to prove Lemma 3.1. We will do this by way
of two auxiliary lemmas. The first states that any cochain with coefficients in F/Z
which can be lifted to F can be lifted to a cochain which is not too big.

Lemma 3.8 (Bounded lifting). Let X be a finite simplicity complex. Fix a cocycle
z ∈ Zk(X;F/Z) and a k-spanning tree T of X. Then if z lifts to a cocycle z̃ ∈
Zk(X;F), we can find such a lift z̃ with ∥z̃∥∞ ≤ k + 1 +G(T ).
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Proof. Fix U , a (k − 1)-wrapping tree of X. Then for every (k − 1)-simplex p of
X \U , there is a unique k-chain F (p) supported in T which fills p mod U . Moreover,

F = {F (p) : p is a (k − 1)-simplex of X \ U}

is a basis for Ck(T ): they are linearly independent since their boundaries are linearly
independent in Ck−1(X), and any k-simplex q in T can be expressed as an integral
linear combination

#
p∈∂q F (p). We can therefore extend F by linearity to an

isomorphism F : Ck−1(X;F)→ Ck(T ;F).
Now let B be an optimal basis for Hk(X, T ;F) which demonstrates that T is

G(T )-gnarled. For every b ∈ B, choose a b̂ ∈ Ck(X, T ;F) representing it, and let

B̃ = {b̂− F (∂b̂) : b ∈ B}.

These are cycles and form a basis for Hk(X;F).
Now for any cocycle w ∈ Ck(T ;F) and any k-simplex q of X, we can write

⟨w, q⟩ =
-

w,
'

p∈∂q

F (p)

.
+

-
w, q −

'

p∈∂q

F (p)

.
.

The chain q −
#

p∈∂q F (p) is a cycle, and hence homologous to the sum of at most

G(T ) elements of B̃ (with signs). Thus w is determined by its values on F ∪ B̃.
Conversely, any function F ∪ B̃ → F extends to a k-cocycle on X: the values on F
determine its values on simplices of T , while the values on B̃ determine its values
on cycles. Since there are no cycles in T , these are independent.
Now let z̃0 be any lift of z to a cocycle in Ck(X;F). If we change z̃0 by changing

the values on F ∪ B̃ by integers, we get a new cocycle; in particular, we can do this
to get a new z̃ such that its values on F ∪ B̃ are in [0, 1). Now, for every k-simplex
q, ⟨z̃, q⟩ =

#
± ⟨z̃, c⟩ where the sum is over k + 1 + G(T ) elements c ∈ F ∪ B̃.

Therefore, z̃ is still a lift of z and has ∥z̃∥∞ ≤ k + 1 +G(T ). !

Now we show that if a chain has a filling with Z coefficients, we can find such a
filling near any filling with F coefficients.

Lemma 3.9. Let X be a finite simplicial complex equipped with the standard metric,
let XL be the cubical or edgewise L-regular subdivision of X, and let k ≥ 0. Then
there is a constant C(X, k) such that for any α ∈ Ck(XL;F), such that δα takes
integer values and is a coboundary over Z, there is an α̃ ∈ Ck(XL;Z) such that
δα = δα̃ and ∥α̃∥∞ ≤ ∥α∥∞ + C.

Proof. By Lemma 3.6, XL admits a spanning tree whose gnarledness is bounded
by a constant C0(X, k). Then by Lemma 3.8, the cocycle α mod Z ∈ Ck(XL;F/Z)
has a lift ∆α ∈ Ck(XL;F) with ∥∆α∥∞ ≤ k+1+C0. Then we can set α̃ = α−∆α
and C = k + 1 + C0. !

Proof of Lemma 3.1. If ω = 0, we can take α = 0, so suppose ω ̸= 0.
By Lemma 3.2, we can find an α ∈ Ck−1(XL;Q) which satisfies dα = ω and

∥α∥∞ ≤ KL∥ω∥∞. Then by Lemma 3.9 we can find an α̃ ∈ Ck−1(XL;Z) such that
dα̃ = ω and

∥α̃∥∞ ≤ KL∥ω∥∞ + k + 1 + C0 ≤ (KL+ k + 1 + C0)∥ω∥∞.

This gives us an estimate for the isoperimetric constant CIP(X, k). !
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4. Building linear homotopies

In this section we prove Theorem B. The proof is based on two lemmas: one
to take care of obstructions posed by finite homotopy groups, and the other for
infinite obstructions.
We start with a fairly general result for finite homotopy groups. It shows that if

a map X → Z can be retracted to a subspace Y ⊂ Z with finite relative homotopy
groups, then one can force this retraction to be geometrically bounded. The special
case in which Y is a point is proven in [FW13, Theorem 1].

Lemma 4.1. Let Y ⊂ Z be a pair of finite simplicial complexes such that πk(Z, Y )
is finite for k ≤ n + 1. Then there is a constant C(n, Y, Z) with the following
property. Let X be an n-dimensional simplicial complex, and let f : X → Z be a
simplicial map which is homotopic to a map g : X → Y . Then there is a short
homotopy of f to a map g′ which is homotopic to g in Y , that is, a homotopy which
is C-Lipschitz under the standard metric on the product cell structure on X× [0, 1].

Note that the constant C does not depend on X and in particular on the choice
of a subdivision of X. Thus if we consider Lipschitz and not just simplicial maps
from X to Y , the width of the homotopy remains constant, rather than linear, in
the Lipschitz constant as is the case with some of our later results.
We will actually use the following relative version: if f : (X, A)→ (Z, Y ) homo-

topes into Y rel A, then there is a corresponding short homotopy rel A. The proof
below works just as well for this variant; one merely has to check that at every
stage f |A remains invariant.

Proof. Let H : X× [0, 1]→ Z be a homotopy with H0 = f and H1 = g; we have no
control over this homotopy, only over f . Our strategy will be to push both f and
the homotopy into Y via a second-order homotopy. Let ∆2 be the 2-simplex with
edges e0, e1, and e2 opposite vertices 0, 1, and 2. At the end of the construction,
we will obtain a map F : X ×∆2 → Z such that F |e2 = H, F |e0 lands in Y , and
F |e1 : X×[0, 1]→ Z is the short homotopy we are looking for (see also Figure 4(a)).
We will construct this map one skeleton of X at a time. At each step we ensure

that the restrictions F |q×e1 for simplices q of X are chosen from a finite set of
Lipschitz maps depending only on Y and Z. In this way we get a universal bound
on the Lipschitz constant. We start by setting B0 = X × e2 and

F (0) = H : B0 → Z.

In general, for k ≥ 0, let

Bk = (X
(k−1) ×∆2) ∪ (X × e2)

and Ak = Bk ∩X × e0. Then suppose by induction we have a map

F (k) : (Bk, Ak)→ (Z, Y )

such that the restrictions F |q×e1 for (k−1)-simplices q of X are contained in a finite
set Fk(Z, Y ). We would now like to extend this (over cells of the form q ×∆2, for
every k-simplex q of X; see Figure 4(b)) to a map F (k+1) : (Bk+1, Ak+1)→ (Z, Y ).
To avoid doing an extra ad hoc step we will use the convention S−1 = ∅. Let

k ≥ 0. Given a k-simplex q, let

∩q = (q × {0} ∪ ∂q × e1, ∂q × {2}) ⊂ (Bk, Ak).
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Y

f

g

H
bounded
Lipschitz
constant
g′

(a) The second-order homotopy F .

null-homotopy
of ∩q in B1

q
∩q

"q

B1

(b) Extending from F (1) to F (2).

Figure 4. Illustrations for the proof of Lemma 4.1

We think of this as a map (Dk, Sk−1) → (Bk, Ak). It can be homotoped into Ak

rel boundary via a null-homotopy which is constant on the X-coordinate and sends
e1 to e0, keeping the vertex {2} constant. Therefore the map

F (k) ◦ ∩q : (Dk, Sk−1)→ (Z, Y )

homotopes rel boundary into Y . Moreover, the set of homotopy classes of maps
homotoping F (k) ◦ ∩q into Y (more precisely, of maps

(q × e1, q × {2})→ (Z, Y )

which restrict to F (k) ◦ ∩q on ∩q) is in (noncanonical) bijection with πk+1(Z, Y ).
One such bijection uq is obtained by sending a map ϕ : (q × e1, q × {2})→ (Z, Y )
to the map

uq(ϕ) : "q := (q × (e1 ∪ e2) ∪ ∂q ×∆2, q × {1, 2} ∪ ∂q × e0)→ (Z, Y )

which restricts to ϕ on (q × e1, q × {2}) and to F (k) everywhere else.
Now, by our inductive assumption, the number of different possibilities for the

map F (k) ◦ ∩q is bounded above by

|Fk(Z, Y )|k+1 ·#{(k − 1)-simplices of Z}.
Let Fk+1(Z, Y ) contain one Lipschitz map

(∆k × e1,∆
k × {2})→ (Z, Y )

for each possible value of F (k) ◦∩q and each homotopy class of null-homotopy; thus
there are at most

|Fk(Z, Y )|k+1 ·#{(k − 1)-simplices of Z} · |πk+1(Z, Y )|

such maps. We then set F (k+1)|q×e2 to be the element ϕ of Fk+1(Z, Y ) for which
uq([ϕ]) = 0. With this choice, the map can be extended in some way to q × ∆2.
Since this part of the map does not need to be controlled, we can do this in an
arbitrary way.
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At the end of the induction, we have our map F : the Lipschitz constant of
F |X×e1 is at most max{Lipϕ : ϕ ∈ Fn+1(Z, Y )}. !

Now we prove Theorem B in the case where the target space is an Eilenberg–
MacLane space. This will also be incorporated into the proof of the general case.

Theorem 4.2. Let X be a finite n-dimensional simplicial complex, and let Y be
a finite simplicial complex which has an (n+ 1)-connected map Y → K(Z, m), for
some m ≥ 2. Then there are constants C1(n, Y ) and CIP(X, m) such that any two
homotopic L-Lipschitz maps f, g : X → Y are C1CIP(L + 1)-Lipschitz homotopic
through C1(L+ 1)-Lipschitz maps.

This theorem is the main geometric input into the proof of Theorem B and is by
itself enough to prove certain important cases. For example, it shows directly that
any L-Lipschitz map f : S3 → CP2 is CL-null-homotopic, as is any null-homotopic
L-Lipschitz map X → Sn for any n-dimensional X. The general proof strategy is
that described in §1.2.

Proof. Y is homotopy equivalent to the CW complex obtained from it by contract-
ing an m-spanning tree. In order to create maps that we can homotope combina-
torially, we simplicially approximate f and g on an L-regular subdivision of X and
then compose with this contraction. After the homotopy is constructed, we can
compose with the homotopy equivalence going back to get to the original Y . This
increases constants multiplicatively and adds short homotopies to the ends; both
of these can be absorbed into C1.
For the rest of the proof we assume that Y is the contracted complex and that

f and g are compositions of simplicial maps with the contraction.
We construct the homotopy by induction on skeleta of X × I. In particu-

lar f(X(m−1)) = {∗}. Let CIP = CIP(X, m) be the isoperimetric constant from
Lemma 3.1, and let Z be the polyhedral complex given by the product cell struc-
ture on X × I, where I is split into CIPL subintervals [i/CIPL, (i+ 1)/CIPL]. We
define

Fm−1 : X × {0, 1} ∪ Z(m−1) → Y

by letting Fm−1|X×{0}= f |X(m) , Fm−1|X×{1}= g|X(m) , and sending the rest to ∗.
Now define a simplicial cocycle ω ∈ Cm(X;πm(Y )) by setting

⟨ω, q⟩ =
/
f |(q,∂q)

0
−
/
g|(q,∂q)

0
∈ πm(Y )

for m-simplices q of X. Since Y has a finite number of cells, there is a finite number
of possible values of ω on simplices. In particular, ∥ω∥∞ ≤ C for some C = C(Y ).
By assumption, since f ≃ g, ω is a coboundary. By Lemma 3.1, ω = dα for some

cochain α ∈ Cm−1(X;πm(Y )) with ∥αi∥∞ ≤ CIPCL. We will use α to construct a
cochain β ∈ Cm(Z;πm(Y )) which we will use to extend Fm−1 to Z(m).
Define an extension α̂ ∈ Cm−1(Z;πm(Y )) of α by
1
α̂, p×

+
i

CIPL

,2
=

3&
1− i

CIPL

(
⟨α, p⟩

4
for (m− 1)-simplices p of X,

0 ≤ i ≤ CIPL;
1
α̂, s×

5
i

CIPL
,

i+ 1

CIPL

62
= 0

for (m− 2)-simplices s of X,
0 ≤ i < CIPL.
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Clearly, β = dα̂ is a cocycle. Moreover, since
777
#

p∈∂q⟨α, p⟩
777 = |⟨ω, q⟩| ≤ C, one can

see that

∥β∥∞ ≤ C +m+ 1.

In particular the bound depends only on Y .
For each possible value of β on cells, choose representatives

(∆m, ∂∆m)→ (Y, ∗) and (∆m−1 × I, ∂(∆m−1 × I))→ (Y, ∗)

and extend Fm−1 to each m-cell of Z using the appropriate representative to
get F |X×{0,1}∪Z(m) . By construction, for each (m + 1)-cell c of Z, F |∂c is null-
homotopic.
Now suppose we have constructed F |Z(k) for some m ≤ k ≤ n. By induction,

there is a finite number, depending only on k and Y , of possible restrictions F |∂c,
where c is a (k+ 1)-cell of Z. Moreover, if k ≥m+ 1, F |∂c is null-homotopic since
πk(Y ) ∼= 0. Thus for each possible restriction F |∂c, we can choose an extension to
c. Extending F to X × {0, 1} ∪ Z(k+1) in this way gives us a finite set, depending
on k + 1 and Y , of possible restrictions to (k + 2)-cells.
At the conclusion of the induction, we obtain a map F which is the desired

null-homotopy. !

In general, the constant C1 increases by a multiplicative factor in each dimension,
depending on the topology of Y . It is worth attempting to analyze C1 and CIP
in simple cases, for example for maps S2 → S2. Here, simplicial approximation
multiplies the Lipschitz constant by slightly more than 2

√
3. The induction has

one step, and if ω satisfies ∥ω∥∞ = 1, then β satisfies ∥β∥∞ ≤ 4. With a bit of care
in plumbing as we connect preimages of S2 \ ∗ on the surface of our 3-cells, we can
build the null-homotopy by increasing the Lipschitz constant by a factor of 3. This
gives a total multiplicative factor of C1 = 6

√
3 + ε ≈ 10.4 when L is large. The

isoperimetric constant CIP depends on the exact geometric model for the preimage
sphere; in the case of the tetrahedron, it is 1.
Putting together Lemma 4.1 and Theorem 4.2, we can now prove Theorem B.

We recall this result below:

Theorem. Let X be an n-dimensional finite complex. If Y is a finite simply
connected complex which is rationally equivalent through dimension n to a product
of Eilenberg–MacLane spaces, then there are constants C1(n, Y ) and C2(X) such
that homotopic L-Lipschitz maps from X to Y are C1C2(L+1)-Lipschitz homotopic
through C1(L+ C2)-Lipschitz maps.

A corollary for highly connected Y follows from the rational Hurewicz theorem.

Corollary 4.3. Let Y be a rationally (k − 1)-connected finite complex, and let
X be an n-dimensional finite complex. Then if n ≤ 2k − 2, then there are con-
stants C1(n, Y ) and C2(X) such that homotopic L-Lipschitz maps from X to Y are
C1C2(L+ 1)-Lipschitz homotopic through C1(L+ C2)-Lipschitz maps.

Before giving the proofs of the corollary and the theorem, we recall some facts
about maps to Eilenberg–MacLane spaces which derive from properties of the
obstruction-theoretic isomorphism

[(X, A), (K(G, n), ∗)] ∼= Hn(X, A;G)

Licensed to Univ of Chicago. Prepared on Tue May  7 19:29:04 EDT 2019 for download from IP 205.208.116.24.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUANTITATIVE NULL-COBORDISM 1183

induced by cell-wise degrees on cellular maps. See for example [Spa81, Chapter 8]
for details. Let X be any CW complex, let n ≥ 2, and let G be an abelian group,
and consider a CW model of K(G, n) whose (n− 1)-skeleton is a point ∗. Then:

• K(G, n) is an H-space: the element in Hom(G2, G) sending (a, b) 8→ ab
induces a multiplication map mult : K(G, n) ×K(G, n) → K(G, n). This
has identity ∗, i.e., it sends

(K(G, n)× ∗) ∪ (∗ ×K(G, n)) 8→ ∗,

and is associative and commutative up to homotopy. It can also be assumed
cellular.

• Let f : X → K(G, n) be a map. Then the group

π1(Map(X, K(G, n)), f) ∼= [X × [0, 1], K(G, n)]f

of self-homotopies of f is naturally isomorphic to Hn−1(X;G).
• Denote the map that sends X to ∗ ∈ K(G, n) also by ∗. Then

π1(Map(X, K(G, n)), ∗) ∼= [SX, K(G, n)]

acts freely and transitively on π1(Map(X, K(G, n)), f) via the multiplica-
tion map; the above isomorphism takes this to the action of Hn−1(X;G)
on itself via multiplication.

Proof of Corollary 4.3. The rational Hurewicz theorem (see, e.g., [KK04]) states
that if X is a simply connected space such that πi(X) ⊗ Q = 0 for i ≤ k − 1, then
the Hurewicz map

πi(X) ⊗ Q→ Hi(X;Q)
induces an isomorphism for i ≤ 2k − 2. Therefore, for i ≤ 2k − 2,

[X, K(πi(X) ⊗ Q, i)] ∼= Hi(X;πi(X) ⊗ Q) ∼= Hom(πi(X) ⊗ Q, πi(X) ⊗ Q).

In particular, we can find a map ϕi : X → K(πi(X) ⊗ Q, i) which induces the
identity on πi. Then the map

(ϕ2, ϕ3 , . . . , ϕ2k−2) : X →
2k−28

i=1

K(πi(X) ⊗ Q, i)

is rationally (2k − 1)-connected. This allows us to apply Theorem B. !

Proof of Theorem B. Suppose that Y is rationally homotopy equivalent through
dimension n to

9r
i=1K(Z, ni). This gives us a map Q : Y →

9r
i=1K(Q, ni)

inducing an isomorphism on H∗(−;Q). For each i, let αi ∈ Hni(Y ;Z) be in the
preimage of the copy of Q corresponding to Hni(K(Q, ni)); this induces a map
ϕi : Y → K(Z, ni). Then

ϕ = (ϕ1, . . . , ϕr) : Y → Z =
r8

i=1

Zi

is again a rational homology isomorphism, and so by the rational Hurewicz theorem,
(Z, Y ) is a pair with πk(Z, Y ) finite for k ≤ n+ 1.
Let f, g : X → Y be homotopic L-Lipschitz maps, and let C2,k = CIP(X, k).

Then by Theorem 4.2, for each i, there is a C1,i(Y ) such that ϕi ◦ f and ϕi ◦ g are
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C1,iC2,niL-Lipschitz null-homotopic through C1,iL-Lipschitz maps via homotopies
Fi : X × [0, 1]→ Zi. Then

F := (F1, . . . , Fr) : X × [0, 1]→ Z

is a
#r

i=1 C1,iC2L-Lipschitz homotopy. Suppose first that we can homotope F to an
uncontrolled homotopy of f and g in Y . Then by the relative version of Lemma 4.1
applied to the pair (X × [0, 1], X ×{0, 1}), there is a C1(n, Y, Z) such that f and g
are C1C2L-Lipschitz homotopic in Y through C1L-Lipschitz maps.
Note that such a homotopy may not exist a priori; we will need to modify F

so that it does. For this we use an algebraic construction. We know that there is
some homotopy G : X × [0, 1] → Y between f and g. So we can concatenate the
homotopies F and ϕ ◦G to give a map H : X × S1 → Z defined by

H(x, t) =

+
F (x, 2t), 0 ≤ t ≤ 1/2,
ϕ ◦G(x, 2(1− t)), 1/2 ≤ t ≤ 1

(where we think of S1 as R/Z) representing an element of π1(Map(X, Z), ϕ ◦ f).
Since each factor Zi is a high-dimensional skeleton of an H-space, there is a multi-
plication map mult : Z(M) × Z(M) → Z for some large enough M . This induces a
free transitive action of [SX, Z] on each π1(Map(X, Z), ϕ ◦ f).
We now analyze the cokernel of the group homomorphism

π1(Map(X, Y ), f)→ π1(Map(X, Z), ϕ ◦ f).

Consider the relative Postnikov tower

Y P1 = P0 = Z

P2

...

Pn

ϕ0 = ϕ

ϕn

ϕn

pn

p3

p2

of the inclusion ϕ : Y /→ Z. Here, Pk is a space such that πi(Pk, Y ) = 0 for i ≤ k
and πi(Z, Pk) = 0 for i > k. The map pk therefore only has one nonzero relative
homotopy group, πk(Z, Y ). In this setting there is an obstruction theory long
exact sequence ([Bau77, §2.5]; cf. also [GM81, Prop. 14.3] and [Sul74, Lemma 2.7])
of groups

· · · → Hk−1(X;πk(Z, Y ))→ π1(Map(X, Pk), ϕk ◦ f)

→ π1(Map(X, Pk−1), ϕk−1 ◦ f)→ Hk(X;πk(Z, Y ))→ · · · .

In particular, an element of |πk(Z, Y )|π1(Map(X, Pk−1), ϕk−1 ◦ f) is the image of
some loop of maps to Pk based at ϕk ◦ f . Hence, independently of ϕ ◦ f ,

Rπ1(Map(X, Z), ϕ ◦ f), where R :=
n8

k=2

|πk(Z, Y )|

always lifts to π1(Map(X, Y ), f). Let H be the (finite!) collection of linear com-
binations with coefficients between 0 and R − 1 of some finite generating set for
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QUANTITATIVE NULL-COBORDISM 1185

[SX, Z]. Then for any f : X → Y , the finite set

{mult(a, idπ1 (Map(X,Z),ϕ◦f)) : a ∈ H}
surjects onto the cokernel we are interested in.
We can then choose a ∈ H so that mult([a], [H]) can be homotoped into Y . Now

define a map H̃ : X × S1 → Z by

H̃(x, t) =

+
mult(F (x, 2t), a(x, 2t)), 0 ≤ t ≤ 1/2,
ϕ ◦G(x, 2(1− t)), 1/2 ≤ t ≤ 1.

Then H̃ is in the same homotopy class as mult([a], [H]). This means that the map
F̃ : X × [0, 1] → Z given by F̃ (x, t) = H̃(x, t/2) is a homotopy between f and g
which homotopes into Y and whose Lipschitz constant is bounded by

Lip(mult) ·
:
LipF +max

a∈H
Lip a

;
.

This is linear in max{Lip f,Lip g}, and except for Lip a, the coefficients depend
only on n, Y , and Z, so F̃ can be plugged into the argument above. !
Remark. Note that in this proof, the dependence of maxa∈H Lip a on X lies only
in the choice of generating set for [SX, Z]. In certain special cases, this constant can
be independent of X. For example, suppose that we know that X is an n-sphere
(or even just an n-dimensional PL homology sphere). Then [SX, Z] = πn+1(Z)
is generated by maps whose degree on simplices is at most 1—regardless of the
geometry of X. This means that for such homology spheres X, L-Lipschitz maps
f, g : X → Y can be homotoped through maps of Lipschitz constant C(Y )L, though
the width of the homotopy required may depend on the geometry. This may have
applications such as finding skinny metric tubes between “comparable” metrics on
the sphere. In contrast, results of Nabutovsky and Weinberger imply that without
this comparability condition, such tubes may have to be extremely (uncomputably)
thick.

5. A counterexample

One may ask whether the linear bound of Theorem B holds for any simply con-
nected target space, not just products of Eilenberg–MacLane spaces. The answer
is emphatically no. Here we give, for each n ≥ 4, a space Y and a sequence of
null-homotopic maps Sn → Y such that volume of any Lipschitz null-homotopy
grows faster than the (n+ 1)-st power of the Lipschitz constant of the maps. This
forces the Lipschitz constant of the null-homotopy to grow superlinearly.
To make this precise: by the volume of a map F : Sn × [0, 1]→ Y , we mean

volF =

<

Sn×[0,1]
|JacF (x)|d vol

(recall that by Rademacher’s theorem the derivative of a Lipschitz map is defined
almost everywhere). By this definition,

volF ≤ vol(Sn × [0, 1]) sup
x∈Sn×[0,1]

|JacF (x)| ≤ vol(Sn × [0, 1])(LipF )n+1.

To construct the space Y , we take S2 ∨S2 and attach (n+1)-cells via attaching
maps which form a basis for πn(S2∨S2) ⊗ Q. Note that by rational homotopy theory,
π∗+1(S2 ∨S2) ⊗ Q is a free graded Lie algebra on two generators of degree 1 whose
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Lie bracket is the Whitehead product (see [GM81, Exercise 44] or [FHT12, §24(f),
Example 1]). In particular, if f and g are the identity maps on the two copies of
S2, the iterated Whitehead product

h1 = [f, [f, . . . [f, g] . . .]] : Sn → S2 ∨ S2,

with f repeated n−2 times, represents a nonzero element of πn(S2∨S2). Moreover,
the map

hL = [L
2f, [L2f, . . . [L2f, L2g] . . .]] : Sn → S2 ∨ S2

is an O(L)-Lipschitz representative of L2n−2[h1]. Thus in Y we can define a null-
homotopy H of hL by first homotoping it inside S2 ∨ S2 to h1 ◦ ϕ2n−2 for some
map ϕ2n−2 : Sn → Sn of degree L2n−2, and then null-homotoping each copy of h1
via a standard null-homotopy.
Since h1 is not null-homotopic in S2 ∨ S2, this standard null-homotopy must

have degree C ̸= 0 on at least one of the (n+ 1)-cells, giving a closed (n+ 1)-form
ω on Y such that

=
Sn×I ω

∗H = L2n−2C. Now, suppose H ′ is some other null-
homotopy of hL. Then gluing H and H ′ along the copies of Sn × {0} gives a map
p : Sn+1 → Y . Note that if any map (Dn+1, Sn)→ (Y, S2∨S2) had nonzero degree
on cells, then the map Sn → S2 ∨ S2 on the boundary would be homotopically
nontrivial. This shows that p must have total degree 0 on cells, in other words,
that

=
Sn×I ω

∗H ′ = L2n−2C. Thus the volume of a null-homotopy of hL grows at

least as L2n−2.
In the sequel to this paper [Cha18], we show that for n = 4, this estimate is

sharp, in the sense that we can always produce a null-homotopy whose Lipschitz
constant is quadratic in the time coordinate and linear in the others.

6. Quantitative cobordism theory

The goal of the rest of the article is to prove Theorem A, which we recall below.

Theorem. If M is an oriented closed smooth null-cobordant manifold which admits
a metric of bounded local geometry and volume V , then it has a null-cobordism which
admits a metric of bounded local geometry and volume

≤ c1(n)V
c2 (n).

Moreover, c2(n) can be chosen to be O(exp(n)).

As described in the introduction, we will prove this theorem by executing the
following steps. We begin by choosing a metric g on M such that (M, g) has
bounded local geometry and such that the volume V of (M, g) is bounded by twice
the complexity of M . We then proceed as follows:

(1) We embed M into Rn+k for an appropriately large k (depending on n)
so that the embedding has bounded curvature, bounded volume, and has
a large tubular neighborhood. We will use this map to embed the mani-
fold into the standard round sphere Sn+k while maintaining bounds on its
geometry.

(2) We show that the Pontryagin–Thom map from this sphere to the Thom
space of the universal bundle of oriented k-planes in Rn+k (relative to the
embedded manifold and its tubular neighborhood) has Lipschitz constant
bounded as a function of n and the volume of M .
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(3) We analyze the rational homotopy type of the Thom space and determine
that, up to dimension n + k + 1, it is rationally equivalent to a product
of Eilenberg–MacLane spaces. Since M is null-cobordant, this map is null-
homotopic and so, as a result, we can apply Theorem B to conclude that
there is a null-homotopy which has Lipschitz constant bounded as a function
of n and the volume of M . This translates to a map from the ball with
boundary Sn+k to the Thom space with the same bound on the Lipschitz
constant.

(4) The proof is completed by simplicially approximating this map from the
ball, then using PL transversality theory to obtain an (n+ 1)-dimensional
manifold, embedded in this ball, which fills M and satisfies the conclusions
of the theorem.

Throughout this section, we use the following notation. We write x # y to
mean that there is a constant c(n) > 0, depending only on n, such that x ≤ c(n)y.
Similarly, we write x # A!y to imply that there are constants c1(n) > 0 and
c2(n) > 0, again depending only on n, such that x ≤ c1(n)Ac2 (n)y. We define
the same expression with $ analogously. Throughout this section we will also use
V to denote the volume of M . Lastly, we will write Gr(n + k, n) to denote the
Grassmannian of oriented n-dimensional planes in Rn+k and Th(n+k, n) to denote
the Thom space of the universal bundle over this Grassmannian. Gr(n + k, n) is
given the standard metric, which induces a metric on Th(n + k, n). Furthermore,
we denote by p∗the basepoint of the Thom space Th(n+ k, n).
We begin by explicitly defining what “bounded local geometry” means in Theo-

rem A.

Definition. Suppose that (M, g) is a closed Riemannian manifold of dimension n.
Following [CG85], we say that M has bounded local geometry geo(M) ≤ β if it has
the following properties:

(B1) M has injectivity radius at least 1/β.
(B2) All elements of the curvature tensor are bounded below by −β2 and above

by β2.

The manifold (M, g) satisfies >geo(M) ≤ β if in addition it satisfies the following
condition:

(B3) The kth covariant derivatives of the curvature tensor are bounded by con-
stants C(n, k)βk+2. (The C(n, k) are defined once and for all, but we will
not specify them.)

Conditions (B1)–(B3) taken together agree with the standard definition used
by Riemannian geometers, except that we require explicit quantitative bounds. A
theorem of Cheeger and Gromov [CG85, Thm. 2.5] states that for any given ε > 0,
a metric g on M with geo(M, g) ≤ 1 can be ε-perturbed to gε with geo(M, gε) # 1
which satisfies (B3). In particular, vol(M, gε) ≤ (1 + ε)n vol(M, g). By rescaling,
we get a metric ĝ with geo(M, ĝ) ≤ 1 and

vol(M, ĝ) # (1 + ε)n vol(M, g).

Therefore, for the rest of the proof we can assume that (B3) holds, with a constant
multiplicative penalty on the volume of our manifold.
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Finally, ifM has boundary, we say, following [Sch01], that it satisfies geo(M) ≤ β
if (B1) holds at distance at least β from the boundary, (B2) holds everywhere, and
in addition the neighborhood of ∂M of width 1 is isometric to a collar ∂M × [0, β].
In particular, this implies that geo(∂M) ≤ β.

6.1. Embedding M into Rn+k. To begin constructing the embedding described
in the first step, we first choose a suitable atlas of M . A similar set of properties
defines uniformly regular Riemannian manifols, a notion due to H. Amann (see,
for example, [DSS16, p. 4]). However, we require our quantitative bounds on the
geometry of the maps to be much more uniform, depending only on the dimension;
we also require that the charts can be partitioned into a uniform number of subsets
consisting of pairwise disjoint charts.

Lemma 6.1. Suppose that M is a compact orientable n-dimensional manifold with
>geo(M) ≤ 1. There exists a finite atlas U with the following properties, expressed
in terms of constants µ ≤ 3/25, c, and q depending only on n, as well as a natural
number 10 ≤ m ≤ κ exp(κn) for some universal constant κ > 0.

(1) Every map in U is the exponential map from the Euclidean n-ball of radius
µ to M which agrees with the orientation of M . Since the injectivity radius
of M is at least 1 and µ < 1, this is well-defined. We write

U = {φi : Bµ →Mµ}.
Here, Mµ is a geodesic ball of M of radius µ, and Bµ is the Euclidean ball
of radius µ in Rn.

(2) U can be written as the disjoint union of sets U1, . . . , Um of charts such that
any pair of charts from the same Uj have disjoint image.

(3) When we restrict all the maps in U to Bµ/4, they still cover M .
(4) The pullback of the metric with respect to every φ ∈ U is comparable to the

Euclidean metric, that is,

1

q
(ρ · ρ) ≤ φ∗g(x)(ρ, ρ) ≤ q(ρ · ρ)

for every ρ ∈ Rn, for every x ∈ TxM , and where φ∗g(x) is the pullback of
g at x.

(5) The first and second derivatives of all transition maps are bounded by c.

Proof. As mentioned above, this list of properties is closely related to one used in
the definition of a uniformly regular Riemannian manifold. Every compact manifold
is uniformly regular, and it is known that a (potentially noncompact) orientable
manifold M with geo(M) ≤ β for some β is uniformly regular; this is shown in
[Ama15]. This guarantees an atlas with properties similar, though not identical, to
the above. We use a similar set of arguments to those compiled by Amann.
To begin, we coverM by balls of radius µ

12 ≤
1
100 . SinceM is compact, we require

only finitely many balls to cover M . Furthermore, by the Vitali covering lemma,
we can choose a finite subset B1, . . . , Bk of these balls such that 3B1, . . . , 3Bk

also cover M , and such that B1, . . . , Bk are disjoint. We also have that the balls
12B1, . . . , 12Bk cover M , and that these balls have radius µ.
Fix a ball 12Bi for some i. We would like to count how many other balls in

12B1, . . . , 12Bk intersect 12Bi. Call these balls 12Bj1 , . . . , 12Bjm . Then Bi and
Bj1 , . . . , Bjm all lie inside 50Bi, and all are disjoint. Since M has bounded local
geometry, the volume of 50Bi is bounded above in terms of n, and the volumes of
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Bi and Bj1 , . . . , Bjp are bounded below in terms of n. This yields an exponential
bound on m in terms of n. As a result, the balls 12B1, . . . , 12Bk can be partitioned
into m sets of pairwise disjoint balls. We define these sets as B1, . . . ,Bm. This
proof is analogous to a standard proof of the Besicovitch covering lemma in Rn.
For every j with 1 ≤ j ≤ m, Uj is defined as follows. For every ball B ∈ Bi, the

exponential map goes from the Euclidean ball of radius µ to B; furthermore, it can
be chosen so that it agrees with the orientation of M . These are exactly the charts
that comprise Uj . The first three properties that we desire are now satisfied.
Property (4) is part of [HKW77, Lemma 1]. Indeed, all kth derivatives of the

metric tensor are also bounded by a constant depending only on n and k; see
[Eic91], [Sch01]. This allows us to also bound the derivatives of the pullback of
the Euclidean metric along transition functions between the charts. Property (5)
follows immediately from this. !

We will also need the following simple observation.

Lemma 6.2. There is a C∞ function ζ from [0, µ] to [0, 1] such that:

(1) ζ is monotonically increasing with ζ(0) = 0 and ζ(µ) = 1.
(2) ζ(t) = t/µ for all t ∈ [0, µ/2].
(3) ζ(k)(µ) = 0 for all k ∈ Z>0.
(4) For every k ∈ Z≥0, there is some c(k) ∈ R such that

|ζ(k)(t)| ≤ c(k)

for all t ∈ [0, µ].

We will now embed M into Rn+k so that we have control over its geometry. In
particular, we will prove the following proposition.

Proposition 6.3. Suppose that (Mn, g) is a compact orientable n-dimensional
Riemannian manifold with volume V and bounded local geometry. Then there is
some k ≤ κ(n + 1) exp(κn) (in particular k depends only on n) such that M is
diffeomorphic to a submanifold M ′ ⊂ Rn+k with the following properties:

(1) M ′ lies in a ball of radius # 1.
(2) The smooth map F :M ′ → Gr(n+ k, n) sending x ∈M ′ to TxM ′ ⊂ Rn+k,

the oriented tangent space of M ′ at x, has Lipschitz constant # 1.
(3) M ′ has a normal tubular neighborhood of size $ 1/V .

Proof. We will use the chart U constructed in Lemma 6.1 to define an embedding
of (M, g) into RN , with N > 2n+ 3 depending only on n. By property (2), U can
be written as a disjoint union

?m
j=1 Uj of sets of charts with disjoint images. The

number of elements in each Uj is # V since these disjoint images have volume $ 1.
Let R = max1≤j≤m#Uj . We define n-dimensional spheres S1, . . . , SR in Rn+1 by
the following properties:

(1) Si has radius 1 + i/R;
(2) every Si passes through the origin;
(3) the center of every Si lies on the ray from the origin in the direction

(1, 0, . . . , 0).

The radii of the spheres are between 1 and 2, and the difference between any two of
the radii is $ 1/V . An example of such a sequence of spheres is shown in Figure 5.
We will refer to the antipode of the origin on each sphere as its “north pole”.
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Figure 5. A sequence of 1-spheres in R2, with north poles spaced
at distance 1/V .

Define N = m(n + 1) and k = N − n. Fix a point x ∈ M . Our embedding
E : M → M ′ ⊂ (Rn+1)m will map x to (y⃗1, . . . , y⃗m), where each y⃗j ∈ Rn+1, as
follows. For every j with 1 ≤ j ≤ m, if x is not in the image of any chart of Uj , then
we set y⃗j = 0⃗. If not, then x is in the image of exactly one chart φi : Bµ →M in Uj ,
1 ≤ i ≤ R. In this case, we set y⃗j to be the point on Si given by composing φ

−1
i (x)

with a map κi : Bµ → Si which is defined as follows: take the origin to the north
pole of Si, and then map the geodesic sphere of radius r in Bµ homothetically to
the geodesic sphere around the north pole in Si of radius ζ(r)Di. Here ζ is defined
as in Lemma 6.2 and Di is the intrinsic diameter of Si.
Define a map @φi :M → Rn+1 by

@φi =

A
κi ◦ φ−1i (x), x ∈ φi(Bµ),

0⃗, otherwise.

Since ζ is smooth and all its derivatives go to 0 at µ, this is a smooth map whose
derivative has rank n on Bµ. If the original charts in Uj are (φ

j
1, . . . , φ

j
qj
), then we

can write

E(x) =

)
q1'

i=1

Bφ1i (x), . . . ,
qm'

i=1

Bφm
i (x)

*
.

Since U is an atlas, for any x, some Bφj
i (x) is nonzero. On the other hand, at most

one of Bφj
1(x), . . . ,

Bφj
qj (x) is nonzero. This shows that E is an immersion. Moreover,

if E(x1) = E(x2), then for some chart x1 and x2 are in the image of that chart,
and in fact x1 = x2. This shows that E is injective. Since every Si is contained
in a ball of radius 2 around the origin, every point in M is mapped to a point in
Rn+k of norm # 1.
We have a natural set U′ of oriented charts for the embedded manifold M ′ given

by E ◦ φj
i for each φ

j
i ∈ U. Since the first and second derivatives of all of the

transition maps are bounded # 1, since ζ has bounded derivatives, and since the
radii of the balls are all bounded below by 1 and above by 2, the first and second
derivatives of all charts are # 1. Moreover, since every point of M is contained in
φj

i (Bµ/4) for some i and j, and dζ
dt = 1 for t ≤ µ/4, the first derivative of each chart

is $ 1.
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Combined with the property that the pullback of the metric of M using each
chart φj

i is comparable to the Euclidean metric, this shows that the map from M
to M ′ with its intrinsic Riemannian metric is bi-Lipschitz with constant # 1.
Let us now consider the map F as defined in the statement of Proposition 6.3.

Fix a point x′ ∈M ′, choose one of the above charts φ′ which covers x′, and define
x ∈ Bµ to be the unique point with φ′(x) = x′. Choose unit vectors v1, . . . , vn in
Rn such that

Dv1φ
′(x)

|Dv1φ
′(x)| , . . . ,

Dvnφ
′(x)

|Dvnφ
′(x)|

is an orthonormal set of vectors that spans the tangent plane of M ′ at x′. For any
unit vector w ∈ Rn, consider

7777Dw
Dv1φ

′(x)

|Dv1φ
′(x)|

7777 , . . . ,
7777Dw

Dvnφ
′(x)

|Dvnφ
′(x)|

7777 .

Since all first and second derivatives of φ′ are bounded above by # 1, and since
the first derivatives of φ′ are bounded from below by $ 1, all of these values are
bounded by # 1. Since the original vectors are orthonormal, for ϵ sufficiently small
the distance in Gr(N, n) between the tangent plane at φ′(x) and the tangent plane
at φ′(x + ϵw) is # ϵ. Since φ′ is # 1-bi-Lipschitz, this completes the proof that F
is # 1-Lipschitz.
Lastly, we want to show that M ′ has a normal tubular neighborhood of width

$ 1/V . Suppose that x′ and y′ are two points on M ′, and suppose vx′ and vy′ are
normal vectors at x′ and y′, respectively, such that x′ + vx′ = y′ + vy′ . We would
like to show that max(|vx′ |, |vy′ |)| $ 1/V .
Let θ be the angle between vx′ and vy′ . Consider a minimal-length geodesic γ,

parametrized by arclength, between x′ and y′; vx′ and vy′ lie in the orthogonal
(N − 1)-planes to this geodesic at x′ and y′, respectively. The above arguments
imply that the tautological embedding M ′ → RN has second derivatives # 1.
Therefore, the second derivative of γ is # 1.
Proposition. Let ℓ = length(γ). Then ℓ $ θ.
Proof. Let V be the plane spanned by vx′ and vy′ , and let πV and πV ⊥ be orthogonal
projections to V and V ⊥. Then:

• the average over [0, ℓ] of πV ⊥
dγ
dt is 0;

• dγ
dt (0) · vx′ = 0 and

dγ
dt (ℓ) · vy′ = 0.

The bounds on the second derivative then imply that for every t,

πV ⊥
dγ

dt
# ℓ and πV

dγ

dt
# ℓ

sin(θ/2)
# ℓ

θ
.

Therefore,

ℓ =

< ℓ

0

C7777πV
dγ

dt

7777
2

+

7777πV ⊥
dγ

dt

7777
2

dt # ℓ2
%
θ−2 + 1,

and therefore ℓ $ θ√
1+θ2

$ θ. !

Now let φ be a chart in some Uj such that x′ ∈ E ◦ φ(Bµ/4). Suppose first that
y′ ∈ E ◦ φ(Bµ/2). Then the properties of any κi imply that |x′ − y′| $ length(γ);
in particular, |x′ − y′| $ θ and so max(|vx′ |, |vy′ |) $ 1.
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On the other hand, suppose that y′ is not in E ◦ φ(Bµ/2). Suppose first that it
is in E ◦φ(Bµ) but not E ◦φ(Bµ/2). Here again the properties of any κi imply that
x′−y′ $ 1. The same is true if y′ is not in the image of any φ′ ∈ Uj . Finally, if y′ is
in φ′ ∈ Uj for some φ′ ̸= φ, then the properties of the κi imply that x′ − y′ $ 1/V .
In all these cases it must be the case that

max(|vx′ |, |vy′ |)| ≥
x′ − y′

2
$ 1/V.

This completes the proof that M ′ has a large tubular neighborhood. !

Finally, we prove a lemma which allows us to embed M ′ into a round sphere.

Lemma 6.4. Suppose that M ′ is an embedded submanifold of Rn+k satisfying the
conclusions of Proposition 6.3. Then there is an embedding $E : M ′ → DM ⊂ Sn+k

into the round unit sphere such that

(1) DM has a tubular neighborhood of width $ 1/V . Additionally, $E can be
extended to a # 1-Lipschitz diffeomorphism from this tubular neighborhood
to a neighborhood of width $ 1/V of M ′.

(2) The map $F : DM → Gr(n + k, n) given by F ◦ $E−1 has Lipschitz constant
# 1. Here, F is the map from M ′ to Gr(n+ k, n) from Proposition 6.3.

Proof. M ′ is contained in a ball of radius # 1, and without loss of generality we
may assume that this ball is centered at the origin. If we restrict the stereographic
projection to M ′, we obtain an embedded manifold of Sn+k which satisfies all of
the above properties. !

6.2. Proof of Theorem A. To complete the proof of Theorem A, we use the
embedding of M in Sn+k produced by combining Proposition 6.3 with Lemma 6.4.
We begin by describing the Pontryagin–Thom map and by computing its Lipschitz
constant.
We map Sn+k into Y = Th(n + k, n), the Thom space of the universal bundle

of oriented n-dimensional planes in Rn+k, via a map G : Sn+k → Y defined as
follows. Let z ∈ Sn+k. If z is outside of the tubular neighborhood of DM of width
c1(n)/V (here the constant depending on n is the same as that in Lemma 6.4), then
it is mapped to p∗(the basepoint of Th(n+ k, n)). If not, then applying $E−1 to z
produces a point in the tubular neighborhood ofM ′ of width c2(n)/V (this constant
depending on n is the same as that in Proposition 6.3). Hence, $E−1(z) = x + y,
where x ∈ M ′ and y is a point in the oriented normal plane N of M ′ at x, and y
has length < c2(n)/V . Both x and y are unique. We then take

G(z) =

:
N ,

V

c2(n)
y

;
∈ Th(n+ k, n).

Since the map $F from Lemma 6.4 is Lipschitz with Lipschitz constant # 1, the
map from x ∈ DM to the oriented normal plane ofM ′ at $E−1(x) is also Lipschitz with
Lipschitz constant # 1. If we assume that c2(n)/V is at most half the critical radius
of the tubular neighborhood, then the projection z 8→ x has Lipschitz constant ≤ 2.
Furthermore, the tubular neighborhood of M ′ is dilated by a factor of # V when
it is mapped to Th(n+ k, n) and the map $E−1 has Lipschitz constant # 1 on the
tubular neighborhood of width c1(n)V of DM . Hence, the Lipschitz constant of G is
# V .
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By [MS74, Theorem of Thom, p. 215], the mapG is null-homotopic, sinceM (and

soM ′ and DM with the orientation induced by the charts φ′ as in the proof of Propo-
sition 6.3 and the stereographic projection from Lemma 6.4) is null-cobordant.
Th(n+k, n) is (k−1)-connected by [MS74, Lemma 18.1]. We can assume, perhaps
by adding extra “empty” dimensions, that k > n+ 3 and so 2(k − 1) > n+ k + 1.
By Corollary 4.3, since Th(n + k, k) is a metric CW complex, there is a null-

homotopy of G with Lipschitz constant # CSn+k,Th(n+k,n)V . This constant depends
only on n, and so there is a null-homotopy H of G of Lipschitz constant # V . This
extends to a map from a ball B of radius 1 in Rn+k+1 to Th(n+k, n) with Lipschitz
constant # V .
We now observe that we can consider both B and Y = Th(n + k, n) as finite

simplicial complexes in the following sense. Since the result follows from standard
arguments, we omit the proof.

Lemma 6.5. There is a finite simplicial complex $Y and a scale L1(n) such that if
we give each simplex the metric of the standard simplex of side length L1(n), then
there is a 2-bi-Lipschitz function fY from Y to $Y . Moreover, the image of the 0
section of Y under this map is a subcomplex (and a simplicial submanifold) of $Y .

Similarly, there is a finite simplicial complex $B and a scale L2(n) such that if
every simplex is given the metric of the standard simplex of side length L2(n), then
there is a 2-bi-Lipschitz function fB from B to $B. We can also choose fB so that
fB : ∂B → $B is a homeomorphism from ∂B to ∂ $B.

Both L1(n) and L2(n) depend only on n.

We can now consider the map $H : $B → $Y given by fY ◦G◦f−1B . Since the maps

are 2-bi-Lipschitz, $H is still # V bi-Lipschitz. With a slight abuse of notation,
we will refer to $Y by Y , $H by H, and $B by B. By using Proposition 2.1, we
can subdivide the simplices of B to form B′ such that H can be homotoped to a
simplicial map from B′ to Y with Lipschitz constant # V . We also know that the
side lengths of the simplices in B′ are $ 1/V . We will define Z to be the simplicial
submanifold formed by applying fY on the 0-bundle of Th(n+ k, n).
Clearly, H−1(Z) ∩ ∂B is a PL manifold which is homeomorphic to M . This is

because the map fB was assumed to be a homeomorphism from the boundary of
the ball to the boundary of the simplicial approximation of the ball. We will begin
by perturbing Z to Z ′, a PL manifold embedded in Y . We want Z ′ to have the
following properties:

(1) Z ′ is an n-dimensional PL manifold.
(2) G−1(Z ′) ∩ ∂B is homeomorphic to M .
(3) For every open k-simplex c of Y , Z ′ is transverse to c.
(4) Z ′ depends only on n.

We can find such a PL manifold by perturbing Z using PL transversality theory.
There are several standard references for this; see for example [RS72, Theorem 5.3].
This theorem does not yield this result directly but can be adapted to do so.
We will use the transverse inverse image of Z ′ to construct our filling. We know

that H−1(Z ′) ∩ ∂B is homeomorphic to M from property (2). Furthermore, the
fact that the map is simplicial combined with properties (1) and (3) implies that
H−1(Z ′) is an (n+1)-dimensional PL manifold with boundary, and its boundary is
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H−1(Z ′) ∩ ∂B. Furthermore, since the sphere, the ball, the simplicial approxima-
tions to them, and the embedded manifold DM are all orientable, from the discussion
in [MS74, p. 210] we see that we also have that this manifold is orientable, and agrees
with the orientation of its boundary (which is homeomorphic to M).
We now estimate the volume ofH−1(Z ′). Since B only depends on n, the number

of simplices of B′ is # V n+k+1. Since H is a simplicial map, the intersection of
H−1(Z ′) with a given simplex belongs to a finite set of subsets which depends only
on n; since the simplices are at scale ∼ 1/V , the (n+1)-dimensional volume of this
intersection is # V −(n+1). Therefore, the volume of H−1(Z ′) is # V k, where k is
O(exp(n)).
To build our manifold, we smooth outW = H−1(Z ′)∩c and ∂W . We can do this

so that the volumes do not increase very much and so that ∂W , after smoothing, is
diffeomorphic to M . As above, since Z ′ and Y depend only on n, since Y is a finite
complex, and since the side lengths of the simplices in B are $ 1/V , this smoothing
can be done so that the result has geo # V (including on the boundary). After
dilating the smoothed version of W by a factor which is # V , we have a compact

oriented manifold DW with geo(DW ) ≤ 1 whose boundary is (orientation preserving)
diffeomorphic to M . The dilation increases the volume of the resulting manifold
by a factor of # V n+1, and so the result still has volume bounded by # V k.
In particular, after the dilation has been performed, we obtain a manifold with

bounded local geometry with volume bounded by # V k, and which bounds a man-
ifold diffeomorphic to M with locally bounded geometry. Thus the complexity of
the null-cobordism of M is # V k. Since V is within a factor of 2 of the complexity
of M , this completes the proof of the theorem.

Appendix A. The Gromov–Guth–Whitney embedding theorem

1. Summary

By using a different method of embedding manifolds in Euclidean space, the
bound of Theorem A can be improved to achieve one tantalizingly close to Gromov’s
linearity conjecture:

Theorem A′. Every closed smooth null-cobordant manifold of complexity V has a
filling of complexity at most ϕ(V ), where ϕ(V ) = o(V 1+ε) for every ε > 0.

As with the original Theorem A, this holds for both unoriented and oriented
cobordisms.
Recall that the polynomial bound on the complexity of a null-cobordism follows

from a quantitative examination of the method of Thom:

(1) One embeds the manifold M in SN , with some control over the shape of a
tubular neighborhood.

(2) This induces a geometrically controlled map from SN to the Thom space
of a Grassmannian; one constructs a controlled extension of this map to
DN+1.

(3) Finally, from a simplicial approximation of this null-homotopy, one can
extract a submanifold of DN+1 which fillsM and whose volume is bounded
by the number of simplices in the approximation.
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Part (2) is the result of the quantitative algebraic topology done to control Lipschitz
constants of null-homotopies. Abstracting away the method of embedding, we
extract the following:

Theorem. Let Mn be an oriented closed smooth null-cobordant manifold which
embeds with thickness 1 in a ball in RN of radius R; that is, there is an embedding
whose exponential map on the unit ball normal bundle is also an embedding. Then
M has a filling of complexity at most C(n, N)RN+1. (For unoriented cobordism,
C(n, N)RN is sufficient.)

This is optimal in the sense that the asymptotics of the estimates in steps (2) and
(3) cannot be improved. Then to prove Theorem A′, we simply need the following
estimate, which may also be of independent interest.

Theorem B′. Let M be a closed Riemannian n-manifold of complexity V . Then
for every N ≥ 2n+ 1, M has a smooth 1-thick embedding g : M → RN into a ball
of radius

R = C(n, N)V
1

N− n (log V )2n+2.

This then implies that for every N , M has a filling of complexity at most

C(n, N)V 1+ n+1
N− n (log V )(N+1)(2n+2),

proving Theorem A′.
The embedding estimate is in turn derived from a similar estimate of Gromov

and Guth [GG12] for piecewise linear embeddings of simplicial complexes. The
combinatorial notion of thickness used in that paper does not immediately translate
into a bound on the thickness of a smoothing. Rather, in order to prove our
estimate, we first prove a version of Gromov and Guth’s theorem, largely using
their methods, with a stronger notion of thickness which controls what happens near
every simplex. We then translate this into the smooth world using the following
result.

Theorem C′ (Corollary of [BDG17, Thm. 3]). Every Riemannian n-manifold of
bounded geometry and volume V is C(n)-bi-Lipschitz to a simplicial complex with
C(n)V vertices with each vertex lying in at most L(n) simplices. In particular,
every smooth n-manifold of complexity V has a triangulation with C(n)V vertices
and each vertex lying in at most L(n) simplices.

The PL picture. In dimensions < 8, all PL manifolds are smoothable. Therefore
Theorems A′ and C′ together imply that for n ≤ 6, every PL null-cobordant mani-
fold with V vertices and at most L simplices meeting at a vertex admits a PL filling
with C(n, L)ϕ(V ) vertices and at most L simplices meeting at a vertex, where the
function ϕ satisfies ϕ(V ) = o(V 1+ε) for every ε > 0. For n = 3, this complements
the result of Costantino and D. Thurston [CT08] which gives bounded geometry
fillings of quadratic volume with no restrictions on the local geometry of M .
On the other hand, in high dimensions the PL cobordism problem is still open,

and poses interesting issues since, unlike in the smooth category, BPL is not an
explicit compact classifying space for PL structures. We hope to return to this in
a future paper.
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So, is it linear? Gromov’s linearity conjecture appears even more interesting now
that we know that it is so close to being true. On the other hand, at least in
the oriented case, linearity cannot be achieved by Thom’s method. Suppose that
one could always produce “optimally space-filling” embeddings M /→ SN , that is,
1-thick embeddings in a ball of radius V 1/N . Even in this case, an oriented filling
would have volume C(n, N)V 1+1/N .
Moreover, recent results of Evra and Kaufman [EK16] on high-dimensional ex-

panders imply that, at least for simplicial complexes, the Gromov–Guth embedding
bound is near optimal and space-filling embeddings of this type cannot be found.
While n-manifolds are quite far from being n-dimensional expanders, it is possi-
ble that a similar or weaker but still nontrivial lower bound can be found. This
would show that Thom’s method is not sufficient for constructing linear-volume
unoriented fillings, either.
On the other hand, at the moment we cannot reject the possibility that it is

possible to find linear fillings for manifolds by some method radically different from
Thom’s. In particular, it is completely unclear how to go about looking for a
counterexample to Gromov’s conjecture, although we believe that ideas related to
expanders may play an important role.

2. PL embeddings with thick links

In [GG12] Gromov and Guth describe “thick” embeddings of k-dimensional sim-
plicial complexes in unit n-balls, for n ≥ 2k + 1. They define the thickness T of
an embedding to be the maximum value such that disjoint simplices are mapped
to sets at least distance T from each other. [GG12, Thm. 2.1] gives a nearly sharp
upper bound on the optimal thickness of such an embedding in terms of the volume
and bounds on the geometry.
This condition is insufficient to produce smooth embeddings of bounded geom-

etry, because as thickness decreases, adjacent 1-simplices of length ∼ 1 may make
sharper and sharper angles. In this section we show that Gromov and Guth’s con-
struction can be improved to obtain embeddings that also have large angles. Recall
that the link lkσ of a i-simplex σ inside a simplicial complex X is the simplicial
complex obtained by taking the locus of points at any sufficiently small distance
ε > 0 from any point of σ in all directions normal to σ. This complex contains an
(r− i)-simplex for every r-simplex of X incident to p. If X is linearly embedded in
Rn, there is an obvious induced embedding lkσ → Sn−i−1. We show the following:

Theorem 2.1. Suppose that X is a k-dimensional simplicical complex with V
vertices and each vertex lying in at most L simplices. Suppose that n ≥ 2k + 1.
Then there are C(n, L) and α(n, L) > 0 and a subdivision X ′ of X which embeds
linearly into the n-dimensional Euclidean ball of radius

R ≤ C(n, L)V
1

n− k (log V )2k+2

with Gromov–Guth thickness 1 and such that for any i-simplex σ of X ′, the induced
embedding lk σ → Sn−i−1 is α(n, L)-thick.

Proof. The proof proceeds with the same major steps as in [GG12]. We first show
that a random linear embedding which satisfies the condition that all links are thick,
while not having the right thickness, is sparse in a weaker sense: most balls have
few simplices crossing them. Gromov and Guth then show that the simplices can
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be bent locally, at a smaller scale, in order to thicken the embedding; this produces
a linear embedding of a finer complex. We note that if the scale is small enough,
this finer, bent embedding also has thick links.
We write A # B for A ≤ C(n, L)B and A ∼ B to mean B # A # B.

Following Gromov–Guth, we actually embed X in a V
1

n− k -ball with thickness
∼ (log V )−(2k+2); for simplicity, write R = V

1
n− k .

We start by choosing, uniformly at random, an assignment of the vertices of X
to points of ∂BR from those such that for some α0(n, L) > 0, the following hold:

(1) Adjacent vertices are mapped to points at least distance α0R apart.
(2) The linear extension to an embedding of X has α0-thick links.

We call the resulting linear embedding I0(X). We can choose α0 so that this is
possible since the thickness of the link of some vertex v (and of incident higher-
dimensional simplices) only depends on the placement of vertices at most distance
2 away. Moreover, this implies the following:

(∗) The probability distribution of v conditional on some prior distribution on
the other vertices is pointwise # the uniform distribution. This follows
from the fact that this is true even when all vertices within distance 2 from
v are fixed.
This implies that given a d-simplex σ, the probability distribution of

σ (conditional on any distribution on the vertices outside σ) is likewise
pointwise # the uniform distribution where every vertex is mapped inde-
pendently.

(†) If d(v, w) ≤ 2, then v and w are mapped at least c0(n, L)R units apart. In
particular, every embedded edge has length ∼ R.

Lemma 2.2. With high probability, each unit ball B1(p) ⊂ BR meets # log V
simplices of I0(X).

Proof. By an argument of Gromov and Guth, the probability that a random B1(p)
meets a fixed d-simplex σ is # V −1.
Therefore, the expected number of simplices hitting B1(p) is # 1. If each simplex

hitting B1(p) was an independent event, then the probability that S simplices meet
B1(p) would be # e−S ; therefore, with high probability, for every p the number of
simplices hitting B1(p) would be # log V . Indeed, complete independence is not
necessary for this; the condition (∗) is sufficient.
This condition holds when the simplices have no common vertices. Therefore,

we can finish with a coloring trick, as in Gromov–Guth. We color the simplices of
X so that any two simplices that share a vertex are different colors. This can be
done with (k + 1)L colors. With high probability, the number of simplices of each
color meeting B1(p) is # log V . Since the number of colors is # 1, we are done. !

Now we decompose each simplex into finer simplices, using the family of edgewise
subdivisions due to Edelsbrunner and Grayson [EG00]. This is a family of subdivi-
sions of the standard d-simplex with parameter L which has the following relevant
properties:

• All links of interior vertices are isometric, and all links of boundary vertices
are isometric to part of the interior link.

• The subdivided simplices fall into at most d!
2 isometry classes; in particular,

all edges have length ∼ 1/L.
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When we apply the edgewise subdivision with parameter L, with the appropriate
linear distortion, to I0(X), we get an embedding I0(X ′) of a subdivided complex
X ′ such that all edges have length ∼ 1 by (†) and all links have thickness $ α0 and
hence $ 1.
Now we use the following lemma of Gromov and Guth:

Lemma 2.3. For every 0 < τ ≤ 1, there is a way to move the vertices of X ′ by
≤ τ such that the resulting embedding Iτ (X) is $ τ · (log V )−(2k+2)-thick.

If we choose τ (n, L) sufficiently small compared to the edge lengths of I(X ′),
then there is an α(n, L) such that however we move vertices by ≤ τ , the links
will still be α-thick. Since these edge lengths are uniformly bounded below, this
completes the proof. !

3. Thick smooth embeddings

We now use Theorem 2.1 to build thick smooth embeddings of manifolds of
bounded geometry.

Theorem 3.1. Let M be a closed Riemannian m-manifold with geo(M) ≤ 1 and
volume V . Then for every n ≥ 2m + 1, there is a smooth embedding g : M → Rn

such that

• g(M) is contained in a ball of radius R = C(m, n)V
1

n− m (log V )2m+2.
• For every unit vector v ∈ TM ,

K0(m, n)R ≤ |Dg(v)| ≤ K1(m, n)R.

• The reach of g is greater than 1, that is, the extension of g to the exponential
map on the normal bundle of vectors of length ≤ 1 is an embedding.

Proof. We prove this by reducing it to Theorem 2.1. That is, first we build a sim-
plicial complex which is bi-Lipschitz to M , with a bi-Lipschitz constant depending
only on m. We apply Theorem 2.1 to this complex to obtain a PL embedding and
then smooth it out, using the fact that PL embeddings in the Whitney range are
always smoothable. The quantitative bound on the smoothing follows from the
fact that the local behavior of the PL embedding comes from a compact parameter
space, allowing us to choose from a compact parameter space of local smoothings.
Throughout this proof we write A # B to mean A ≤ C(m, n)B. This is different

from the usage in the section 2. The first step is achieved by the following result.

Theorem 3.2. There is a simplicial complex X with at most L = L(m) simplices
meeting at each vertex and a homeomorphism h : X → M which is ℓ-bi-Lipschitz
for some ℓ = ℓ(m) when X is equipped with the standard simplex-wise metric.

Proof. We start by constructing an ε-net x1, . . . , xV of points on M for an appro-
priate ε = ε(m) > 0. We do this greedily: once we have chosen x1, . . . , xt, we
choose xt+1 so that it is outside

Et
i=1Bε(xi). In the end we get a set of points such

that the ε
2 -balls around them are disjoint and the ε-balls cover M .

Now, [BDG17, Theorem 3] in particular gives the following:

Lemma 3.3. If ε(m) is small enough, there is a perturbation of x1, . . . , xV to
x′1, . . . , x

′
V ∈ M and a simplicial complex X with a bi-Lipschitz homeomorphism
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X →M as well as the following properties:

• Its vertices are x′1, . . . , x
′
V .

• It is equipped with the piecewise linear metric determined by edge lengths
d(x′i, x

′
j) which are geodesic distances in M .

• Its simplices have “thickness” ≥ C(m); this is defined to be the ratio of the
least altitude of a vertex above the opposite face to the longest edge length.
In particular, since the edge lengths are ∼ ε, this means that each simplex
is C(m)-bi-Lipschitz to a standard one.

This automatically gives a bi-Lipschitz map to X with the standard simplex-
wise metric. Moreover, since M has sectional curvatures ≤ 1, we immediately get
a uniform bound on the local combinatorics of X. !

After applying this result to get h : X → M , we apply Theorem 2.1, finding
an embedding X ′ → Rn of a subdivision X ′ of X which is 1-thick, lands in an R-
ball for R = C(m)V

1
n− k (log V )2k+2, has α(m)-thick links, and expands all intrinsic

distances by ∼ R. In other words, we get a PL embedding f :M → Rn.
For the sake of uniformity, we expand the metric of M by a factor of R; this

makes the embedding f locally uniformly bi-Lipschitz. That is, for any x, y ∈ M
such that d(x, y) ≤ 1,

d(f(x), f(y)) ∼ d(x, y).

This is the property of f which we actually use to construct a smoothing.
As in the main part of the paper, we assume that M additionally has controlled

kth covariant derivatives of its curvature tensor for every k. This allows us, as in
Lemma 6.1, to fix an atlas U = {φi : Bµ →M} forM , with the following properties:

(1) The φi(Bµ/2) also cover M .
(2) U is the disjoint union of sets U1, . . . , Ur each consisting of pairwise disjoint

charts.
(3) The charts are uniformly bi-Lipschitz, and the kth derivatives of all transi-

tion maps between charts are uniformly bounded depending only on m and
n.

Here µ and r both depend only on m and n. We construct our smoothing first on
U1, then extend to U2, and so on by induction.
At each step of the induction, we use the following form of the weak Whitney

embedding theorem [Hir76, §2.2, Thm. 2.13]: for s ≥ 2r + 1, the set of smooth
embeddings Dr → Rs is C0-dense in the set of continuous maps. Moreover, the set
of smooth maps which restrict to some specific smooth map on a closed codimen-
sion 0 submanifold is likewise dense in the set of such continuous maps [Hir76, §2.2,
Ex. 4].
The strategy is as follows. Note that the space of L-bi-Lipschitz maps Bµ → Rn

up to translation is compact by the Arzelà–Ascoli theorem. At every stage we also
have a C∞-compact space of possible partial local smoothings. Then Whitney will
allow us to choose an extension from a space of possibilities which is also C∞-
compact.
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We now give a detailed account of the inductive step. Suppose that we have
defined a partial smooth embedding g : K → Rn, whereK is a compact codimension
0 submanifold of M with

(1)
F

φ∈Ui
1≤i<j

φ
&
Bµ· 2r− j

2r

(
⊂ K ⊂

F

φ∈Ui
1≤i<j

φ(Bµ).

Moreover, suppose that g is ρj−1-close to f for some sufficiently small ρj−1 depend-
ing on m and n, and that for each φ ∈ Ui, i < j, the partially defined function
g ◦ φ is an element of a C∞-compact moduli space Lj−1 of maps each from one of
a finite set of subdomains of Bµ to Dn.
Fix a fine cubical mesh in Bµ; it should be fine enough that any transition

function sends a distance of µ/2r to at least four times the diagonal of the cubes.
The purpose of this mesh is to provide a uniformly finite set of subsets on which
maps may be defined. Then, again by Arzelà–Ascoli, for any set K which is a union
of cubes in this mesh, the space of potential transition maps K → Bµ satisfying
the bounds on the covariant derivatives in all degrees is C∞-compact.
Fix φ ∈ Uj . By the above, g|K∩φ(Bµ) ◦ φ, again restricted to the union of cubes

on which it is fully defined (call this domain K̂ ⊂ Bµ), is also chosen from a C∞-
compact moduli space Mj , whose elements are patched together from a bounded
number of compositions of elements of Lj−1 with transition maps as above. Of
course,M1 consists of the unique map from the empty set.
Let Nj be the C0-compact set of L-bi-Lipschitz embeddings Bµ(1−1/2r) → Dn.

Notice that the subset ∆ ⊂ Mj×Nj consisting of pairs whose C0 distance is ≤ ρj−1
is compact; this ∆ contains the pair (g|K̂ ◦ φ, f ◦ φ).
Fix a smooth embedding u : Bµ(1−1/2r) → Dn. We say that (ϕ, ψ) ∈ ∆ is ε-good

for u, for some ε > 0, if:

• The C0 distance between u and ψ is < ρj , where ρj > ρj−1 is fixed.
• The map interpolating between φ and u via a bump function, only de-
pending on K̂, whose transition lies within the layer of cubes touching the
boundary of K̂, has reach > ε. (Here, we simply delete all boundary cubes
outside of Bµ·(1−1/2r) from the domain. Thus at this step the domain of g
actually recedes slightly; this is the motivation for the condition (1).)

For any fixed pair (u, ε), these are both open conditions in ∆, so there is an open
set Vu,ε ⊆ ∆ of good pairs (ϕ, ψ). Moreover, since (by Whitney) we can always

choose a u which coincides on K̂ with a given element ofMj , these sets cover ∆.
Therefore, we can take a finite subcover corresponding to a set of pairs (ui, εi).
Taking a cover by compact subsets subordinate to this, we get a compact set of
allowable extensions of elements ofMj to Bµ·(1−1/2r); together with the modified
sets of allowable maps on previous Ui’s (cut back so as to be defined on a domain
of cubes) this makes Lj .
We choose an extension of g from the set of allowable extensions above. Doing

this for every φ ∈ Uj completes the induction step, giving some bound on the local
geometry and reach by the compactness argument. Moreover, if we pick ρj small
enough compared to µ/2r, then the embedding outside φ(Bµ) stays far enough
away from the embedding inside. Nevertheless, all of these bounds become worse
with every stage of the induction.
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At the end of the induction, we have a smooth embedding ofM . Every choice we
made was from a compact set of local smoothings depending ultimately only on m
and n, which in turn controlled various bi-Lipschitz and Ck bounds. Thus the re-
sulting submanifold M̃ = g(M) ⊂ BR has geo(M̃) # 1. For the same reason, g (as
a map from M with its original metric) has all directional derivatives ∼ R. More-
over, since we did not move very far from f , points from disjoint simplices cannot
have gotten too close to each other. This, together with the local conditions, shows
that M̃ has an embedded normal bundle of radius $ 1. By expanding everything
by some additional C(m, n), we achieve the bounds desired in the statement of the
theorem. !
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