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Abstract

We discuss how to apply the Hessian method (i) to predict the impact of a new data set (or sets)
on the parton distribution functions (PDFs) and their errors, by producing an updated best-fit
PDF and error PDF sets, such as the CTEQ-TEA PDFs; (ii) to predict directly the effect of a new
data set on the PDF errors of any other set of observables, without the need to recalculate using
the new error PDF's; and (iii) to transform the original set into a reduced set of error PDFs which
is optimized for a specific set of observables to reproduce the PDF-induced uncertainties to any
specified precision. We present a software package, ePump (error PDF Updating Method Package),
that can be used to update or optimize a set of PDFs, including the best-fit PDF set and Hessian
eigenvector pairs of PDF sets (i.e., error PDFs), and to update any other set of observables. We
demonstrate the potential of the program by presenting selected phenomenological applications
relevant to the Large Hadron Collider. Special care is given to discuss the assumptions made and
the limitations of this theoretical framework compared to a treatment by the full global-analysis

program.
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I. INTRODUCTION

Predictions for high-energy cross sections at the Large Hadron Collider (LHC) and other
colliders require the use of Parton Distribution Functions (PDFs), which supply the long-
distance hadronic contribution. The PDFs cannot be calculated from first principles to
sufficient accuracy; therefore they are generally extracted from a global analysis of high-
energy scattering data, including both data from Deep Inelastic Scattering (DIS) at lepton-
hadron colliders and data from hadron-hadron colliders [1-6]. In addition to a best-fit set
of PDF's, modern PDF global-analysis groups also provide a number of additional sets that
can be used to estimate the uncertainty in the predictions due to the uncertainties in the
PDFs themselves.

The two most commonly-used methods for obtaining the PDF uncertainties are the Monte
Carlo method [7, 8] and the Hessian method [9]. In the Monte Carlo method, a statistical
ensemble of PDF' sets is provided, which is assumed to approximate the probability distri-
bution of possible PDF's, as constrained from the global analysis of the data. The advantage
of this method is that it can, in principle, reproduce the probability distribution without
approximations. A disadvantage is that it may require a sizable number of sets (around
1000) in the ensemble to get an accurate estimate of the uncertainty. In the Hessian method
a smaller number of “error sets” (about 50) is used to obtain an estimate of the error. These
error sets correspond to the plus and minus eigenvector directions in the space of PDF pa-
rameters, which are used to approximate the y?-function near its global minimum. The
Hessian method relies on a quadratic approximation for the parameter dependence of the
x? minimization function and a linear approximation for the parameter dependence of the
observable in question. In practice the Hessian method works quite well for most observables.

An understanding of uncertainties due to PDF's is crucial to precision studies of the
standard model, as well as to searches for new physics beyond the standard model. In turn,
new measurements of standard model processes can be used to constrain the uncertainties
on the PDFs. The most complete method for obtaining constraints from the new data on
the PDFs would be to add the new data into the global-analysis package and to do a full
re-analysis on the PDFs. However, this is impractical for most users of PDFs for several
reasons. First, it requires the complete knowledge of both the experimental measurements
and the theoretical predictions as a function of the PDFs, for all of the data sets in the
global analysis. Second, given the complexity of the theoretical predictions at Next-to-Next-
to-Leading Order (NNLO) and the fact that the observables must be calculated numerous
times in order to probe the terrain of the y2-function, the minimization and error analysis
of the PDF's is very computationally intensive.

For these reasons a technique for estimating the impact of new data on the PDFs, without
performing a full global analysis, is extremely useful. In the context of the Monte Carlo
PDFs, the PDF reweighting method has become commonplace. This involves applying a
weight factor, which is dependent on the new data and the theory predictions, to each of the



PDFs in the ensemble [7, 10, 11] when performing ensemble averages. Because the weight
factor for some of of the PDF's in the ensemble may be small, the effective number of PDF's
in the ensemble is reduced. Therefore, the number of initial PDF's in the ensemble must be
increased to get sufficient statistics in the reweighted averages. The CT14MC PDF set is
such an example, in which a large number of Monte Carlo replicas have been generated from
the Hessian PDF's in order to use this reweighting procedure [12]

It is also possible to estimate the impact of new data directly using Hessian PDF's, as has
been shown by Paukkunen and Zurita [13], who expanded on ideas presented in Ref. [14]. A
version of this method has also been included in the xFitter package [15], where it is called
Hessian profiling. The advantage of this Hessian updating method over the Monte Carlo
reweighting method is that it directly works with the (small set of) Hessian PDFs and it is
a simpler and much faster way to estimate the effects of the new data. This method directly
calculates the minimum of the y? function within the Hessian approximation, and was shown
by Paukkunen and Zurita to be equivalent to the Monte Carlo reweighting method, if the
Giele-Keller weights [7] (appropriately scaled to include the tolerance criterion) are used
in that method. In this paper, we extend the method proposed in Ref. [13] and develop a
software package called ePump (error PDF Updating Method Package) to be used to updated
any Hessian PDF sets obtained from an earlier global analysis. We will use the CTEQ-TEA
(CT) PDFs as an example. Namely, we shall demonstrate how to use ePump to update
CT14 PDFs when new experimental data are included in the global fit. We emphasize,
however, that ePump may be used to update any PDF set containing Hessian error PDF's in
LHAPDF format [16], such as those supplied by CT, MMHT, and others, and it is flexible
enough to accommodate different non-global tolerance criterions.

Another useful and related, but distinct operation on the Hessian error PDF sets is to
obtain a reduced set of error PDFs optimized for a particular experimental analysis. In
a detailed experimental analysis, it is quite common to investigate uncertainties on the
kinematic acceptance and the systematic errors induced by the uncertainties in PDFs. The
large number of Monte Carlo PDFs, and even the smaller number of Hessian PDF's can
make this type of analysis very difficult due to the large computational time needed for the
theoretical calculation to simulate the experimental data with different cuts and bins. For
this purpose a smaller reduced set of Hessian error PDFs that cover the majority of the
PDF dependence of the relevant observables is necessary to make this detailed experimental
analysis possible. In Refs. [17-19] several methods were developed to obtain a reduced set
of Hessian PDFs from a Monte Carlo or Hessian PDF' set. In this paper, we adopt a very
different method which is based on ideas similar to that used in the data set diagonalization
method developed by Pumplin [20]. The advantage of our method is that it takes a set of
Hessian error PDF's and constructs an equivalent set of error PDF's that exactly reproduces
the Hessian symmetric PDF uncertainties, but in addition each new eigenvector pair has
an eigenvalue that quantitatively describes its contribution to the PDF uncertainty of the
data set. The new optimized error PDF pairs are ordered by their eigenvalues, and so it is



easy to choose a reduced set that covers the PDF uncertainty for the data set to any desired
accuracy.

The remainder of this paper is organized in the following manner. In Sec. II, we discuss the
method of updating Hessian PDFs (including the central and error PDFs) and predictions
on any physical observables (including its PDF' uncertainties) from new experimental data.
Careful attention is given to how to include non-global tolerances in the updating of both
the central and error PDF's. In this section we also discuss limitations of the method and
present some realistic applications. In Sec. III, we discuss the method of optimizing the
Hessian error PDFs for a given experimental data and give some sample applications of the
PDF optimization procedure. A brief description of the ePump code is given in Sec. IV.
Sec. V contains our conclusion.

II. UPDATING HESSIAN ERROR PDFS AND OBSERVABLE PREDICTIONS
FROM NEW EXPERIMENTAL DATA

A. Review of the Hessian Method

In order to set notation and present the necessary background, we first give the results of
the Hessian Method for obtaining the contribution of the PDF uncertainty to the theoretical
uncertainty of a general observable. The PDFs! f(x,Qo;z), defined at the initial scale Qy,
are parametrized by N parameters {z;; i = 1, N}, which we write as a vector z. The
determination of the PDF's is obtained using a y2-function, which quantifies the discrepancy
between the theoretical predictions and the experimental measurements of a global set of
experiments, including the experimental errors. The best-fit PDFs are then obtained by
minimizing x? as a function of the parameters.

By evaluating the y? function around its minimum, it is possible to choose and scale the
parameters in terms of the Hessian eigenvalue directions, such that the x? function can be
written, up to quadratic order in z, as

N

AxP(z) = T*) 4, (1)

i=1

where T is the tolerance parameter.? The uncertainty in the PDF parameters is then set by

1 Note that we suppress the flavor index of the PDFs. All PDF indices in these sections will correspond to

eigenvector directions.
2 If the data errors are precisely Gaussian and internally consistent, then one should use a value of T =

1 at the 68% CL (corresponding to T' = 1.645 at 90% CL). However, to accommodate experimental
inconsistencies between the data sets, as well as uncertainties arising from the choice of non-perturbative
parametrization, the value of T is often increased. The CTEQ-TEA group has used the value T = 10 at
the 90% CL in their analyses to date.



the requirement Ax? < T? at some prescribed confidence level (CL), yielding

N
Z 22 <1 (2)
i=1

at the same CL. With this choice of parameters, the best-fit PDFs are given by f°(z,Qy) =
f(z,Q0;0), and the 2N error PDFs (2 for each eigenvector direction) are defined by
fH(z,Q0) = f(z,Qo; £€’), where (&/); = &..

The usefulness of the Hessian error PDF's is in determining the PDF uncertainty of a
theoretical calculation of some observable X. The theoretical prediction for X can be written,
via the PDFs; as a function of the PDF parameters, X(z). Expanding this function in a
Taylor expansion around the best fit gives

1
% * § - 62.,;323'
i,j=1 0

N
X(z):X(U)—I—Zg—: 2izj+ . (3)

We can calculate X (0) = X(f°) using the best-fit PDFs, and the first derivatives can be
calculated numerically using the + and — error PDFs in each eigenvector direction j as

~ AXj _ X(f+3);X(f_J) (4)

0

0X

02

The error PDF's are not sufficient to calculate the full set of second derivatives, although the
diagonal ones can be obtained as

0?X

2
azj

~ X(f) + X(F7) —2X(f9). (5)

0

The theoretical uncertainty in X due to the PDFs at the specified CL is determined by the
maximum and minimum values of X, subject to the constraint >~ 22 < 1. In the quadratic

approximation of Eq. (1) and keeping only the linear term in Eq. (3), we obtain the extrema
at

zZi = AX (6)

JE (axi)?

Thus, the upper and lower limits on the observable at the specified CL are given by

X = X(0)+£AX, (7)
where
N
AX = Z(AXJ') . (8)



This is the Symmetric Master Equation for the Hessian PDF uncertainty on the observable
X. The Hessian approximation is contained in the quadratic assumption of Eq. (1) and the
linear limit of Eq. (3), which are then supplemented by the tolerance criterion Ay? < T2
to obtain the symmetric uncertainties for the observable. An Asymmetric Master Equation,
which estimates asymmetric positive and negative uncertainties at the same confidence level
is given in Refs. [21, 22].

B. Updating of Hessian error PDF's

Our first goal is to assess the impact of new data on the PDFs and their uncertainties.
Short of performing a full global analysis that includes the new data, one desires a simpler
and much faster way to estimate the effects of the new data. A method that utilized the
Hessian eigenvector PDF's was suggested by Paukkunen and Zurita [13]. In this section we
discuss the details of this method, which have been implemented in the software package
ePump (error PDF Updating Method Package).

Suppose that we have measurements for Nx observables with experimental values given
by X, as well as the inverse covariance matrix C;é for the correlated experimental errors
in the measurements. The inclusion of these new data in the global x? function becomes

N Nx
A (2oew = T*Y 27 + ) (Xa(2) = X)) Ca (Xp(2) — XF) - 9)
i=1 a,f=1

Using the generalization of Eqgs. (3) and (4) to expand X,(z) to linear order in z, gives

Nx

AP (2)new = Y (Xal0) — XT) Cj (X5(0) — X7

a,f=1

N N N
+T? sz + Z MYz — QZ z A, (10)
i=1

i=1 ij=1
where
1 X ,
A = o Zl (X& — Xa(0)) Coj AX,
o
MY = = azﬁ; AXLCiAXD . (11)
With the additional data added to the x2? function, the new best-fit parameters are

N
=) (6+M)FA. (12)
j=1
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The normalized eigenvectors Ui('r) and eigenvalues A" of the matrix M;; satisfy

N
> MU = XU,
j=1

N
S UIU = 6. (13)
i=1

Note that the eigenvalues satisfy A > 0, and if Nx < N then there will be at least N — Nx
eigenvectors with zero eigenvalue, corresponding to directions orthogonal to the new data set.

We can now simplify the equation for Ax? by introducing new coordinates ¢ = (¢, ..., cy)
defined by
A |
z = z? + —_—c, U™ , 14
L il (14
to obtain
N
A (2)new = AX*(2)new + T2 ¢, (15)
r=1
where
Nx N
AP (2 )new = D (Xal0) = XF) Co (X5(0) — XF) — T* )~ AY(S + M);;* A (16)
a,B=1 i,j=1

Assuming the same tolerance T as for the original x? function, gives

N
Y o<1 (17)
r=1

at the same CL.
Expanding the PDFS f(z, Qo; z) to linear order in z, we can approximate the new best-fit
PDF's, which include the impact of the new data by

N
@, Qonew = f2(z,Q0) + Y 2 Afi(z, Qo) (18)
where
—Hm o) — - T, o

In a similar manner, we can obtain updated error PDF's, by setting the new coordinates to
c*(" = +e”. We define the new error PDF's by

N

o + \/ﬁ S U” (@0~ @ Q) - (20)

(2, Q0) = f°(z,Qo)
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Note that (f** — f°) = £Af? up to linear order in z, so the definition of the error PDF's
given in Eq. (20) is just one of several equally valid choices at linear order. On the other
hand, due to nonlinearities, (f*— f°) # —(f~* — f°) in general, so that with the choice used
here, the overall sign of the eigenvectors Ui(ﬂ becomes relevant. We therefore supplement this
definition with the choice of sign: Ef’;l Ui(r) > 0. Not that, even in the limit of C';ﬁl — 0, the
updated asymmetric errors will not recover exactly the asymmetric PDF uncertainties of the
original PDF' set, due to the nontrivial rotation of the eigenvector basis. However, we have
found that the definition of the error PDFs given here, supplemented by the sign convention
for the eigenvectors, typically gives better agreement with the original asymmetric PDF
uncertainties than other choices in this limit. In particular, in the combined limit C;ﬁl -0

and U@m — 307 this sign choice recovers exactly the original error PDFs.
On the other hand, the symmetric uncertainties for the PDF's; as given by Eq. (8) will
coincide with the original symmetric uncertainties in the limit C;é — 0. In this limit we

find

afe = L@ 0w Q) | S popp (21)

2

so that

(22)

due to the unitarity of the matrix Ui(ﬂ. For this reason we advocate the use of symmetric
errors when using ePump to assess the impact of new data on the PDFs, since the sym-
metric errors are not affected by the rotation of the eigenvector basis and therefore display
exclusively the impact of the new experimental data and errors.

C. Tier-2 Penalties and Dynamical tolerances

The discussion up to this point assumes that the y? function is a smooth analytic function
of the parameters, and that the confidence levels defined by the Hessian eigenvector PDF's
are specified by a single global tolerance value given by Ay? < T2?. However, in practice
the confidence levels of the error PDFs are often determined by separate constraints from
individual experiments, rather than by a single global tolerance. The CTEQ-TEA group
incorporates these separate constraints by adding a Tier-2 penalty to the x? function when
determining the error PDF's, such that the tolerance requirement becomes modified to

Ax? + Tier-2 < T?. (23)

The specific details of the Tier-2 penalty, which was introduced in Ref. [22] and was discussed
in detail in Ref. [23], are not too important here, other than the fact that it increases rapidly
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as a function of the parameters if the disagreement between any individual experiment and
theory becomes large. Furthermore, we note that only the standard y? function without the
Tier-2 penalty is used in determining the best-fit PDFs.

We can include the effect of these Tier-2 penalties by identifying Ax? = ('_1'?:)2 < T? at
the parameter values that correspond to each of the positive and negative Hessian eigenvalue
PDF's at the given confidence level. These dynamical tolerances, Tii, are determined either
by the separate constraints from individual experiments (MMHT) or through the Ay?+Tier-
2 penalty (CTEQ-TEA), which limits the deviation in the particular eigenvalue direction.
Again, we note that in the CTEQ-TEA analysis, the dynamical tolerances are only used
in determining the uncertainties and are not included in the x? function that is used to
determine the best-fit PDFs. Therefore, all of the results from section II B for obtaining
the new best-fit parameters are unchanged, except for the numerical approximations for the
coefficients in the Taylor expansion, Eq. (3), obtained from the error PDFs.

The relevant effect of the dynamical tolerances is that the Hessian error PDFs are now
evaluated at the parameter values z+7 = :t(fil';.ﬂE /T)e’. Using this, we obtain

o0X| i T7 [ Xa(f*) = Xa(f°)
o], ~ Y ‘i’}*H}-—( T )
T ([ Xa(f°) — Xa(f )
+]}++T}.— ( T;/T ’ (24)
and
x| ot (Xa(f“) — Xa(f%)  Xa(f) —Xa(f‘j)) (25)
0z | I +T; TF/T T /T '

Note that the approximation for the first derivative, Eq. (24), is just the weighted average of

the approximations using the positive and negative eigenvector directions. With this modifi-

cation, all of the results for the updated best-fit predictions still hold, with the replacement
. —j , —~ i

AX] — AX, everywhere. We also make the replacement Af*(z,Qy) — Af (z,Qp) to

obtain the best-fit PDF's

N ,
fo(x;QD)new — fO(LE?QO) +ZZ¢D 5}'3(3:} QO) . (26)

Note that there is actually no dependence on the global tolerance T' in any of these formulae,
since it can be removed simply by re-scaling the parameters z.

The generalization of the best-fit results to include the dynamical tolerances is relatively
straightforward, as we have seen. However, the calculation of the Hessian eigenvector PDF's
requires that we first address some practical aspects of the updating method. In the original
global analysis the dynamical tolerances were obtained by the requirement Ay? = ('_It'?:)2
along each of the positive and negative eigenvalue directions. The new eigenvector PDF's,
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however, will also depend on the dynamical tolerances, T(f), along the updated eigenvector
directions. To obtain these, one would need to calculate the constraints from each of the
individual data sets included in the global analysis on each of the new updated eigenvector
PDFs. This is beyond the applicability of the present method, which assumes that all
information of the global y? function is contained in the original error PDFs, except for the
contribution of the new data set. Even if one assumes that the criterion for constraining the
eigenvector directions is the same for the original and updated error PDFs, it is not possible
to map directly from the Tf to the Taf) without doing a more detailed calculation involving
all of the global analysis data sets, since the original and updated eigenvector directions are
not parallel.

If the new dynamical tolerances were known, one could then calculate the corresponding
eigenvector parameters,

O N . Ty U™ (27)
i i ..f—l n /\(r) T i

and obtain the updated error PDFs using the linear expansion as before. In their absence
we proceed by noting that we should recover the original error PDFs in the combined limits,
ng — 0 and U — +67. Thus, a reasonable assumption is to replace (Taf) /T) with (T*/T)
in Eq. (27), and approximate the numerical derivatives using the positive or negative eigen-
vector PDF's, correspondingly. Roughly, this assumes that the effect of the new dynamical
tolerances is not substantially different from the effect of the old ones (and in particular, that
the main contribution of the new data to the reduction of PDF errors comes through the
standard y? treatment and not through additional constraints, such as the Tier-2 penalty).
Note that with the above replacement, the factors of (T:¥/T') in Eq. (27) cancel against the
same factors in the numerical derivatives, so that we still use Eq. (20) for the updated error
PDF's in the presence of dynamical tolerances. The only difference is that now the eigenval-
ues A" and rotation matrices Ui(r) depend on the original dynamical tolerances (since the
matrix M depends on the original dynamical tolerances). Again, we advocate the use of
symmetric errors when evaluating the effects of new data, since they are less sensitive to
nonlinear effects arising from the rotation of the eigenvectors directions.

D. Direct Updating of Observable Predictions and Uncertainties

Given the updated central and Hessian error PDF's, obtained as described in the last
section, it is possible now to calculate updated predictions and uncertainties for any other
set of observables Y,, (including the original observables X, that were used for updating the
PDFs). This would require running the code to calculate the observables using the updated
central and each of the updated error PDFs. However, frequently the predictions with the
original central and error PDFs are already known, so it would be more time-efficient to
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use these to calculate the updated predictions and uncertainties directly. It is very easy to
obtain the updated results using the approach presented in the last section.
Suppose we have already calculated Y,(0) = Y,(f°) and Y, (f*’). Then using the linear

expansion, we obtain

N ,
Yalfl) = Ya(f) + 3 20 AV, (28)
i=1
where 2z was given in Eq. (12) and AY « 1s defined in Eq. (24). For the uncertainty, we use
the convention described at the end of the last section and note that
Ya (fﬂ'r)) — Ya (f_(r))

AY =
. 2

N
1 ,
—E:U,(’")AY‘ 29
VIFAD & @ (29)

which is valid in the linear approximation. Thus, we can obtain the updated symmetric
uncertainties for the observable Y, as

N
(AYo)ly = Z(AYOE’"))Q
- 1\ i) 17
B Z::l 1+ A0 ; (AYGU*' ) (AYJ Ui )
N
= ) AY(5+M); AY], (30)
ij=1

where we have used the completeness of the eigenvectors Ui(r) in the last equation, and the
matrix M;; was given in Eq. (11).

Equations (28) and (30) give the results for the updated central prediction and updated
symmetric uncertainty for the observable Y, in terms of calculations that use only the origi-
nal central and Hessian error PDFs. These results can also be generalized to the correlation
cosine between two observables Y, and Yj, which can be experimental observables or PDF
distributions at specific  and () values. The original correlation cosine between the observ-
ables is given by [25]

i, AYIAYS
|AYQ| |AY,5| ‘

It represents the degree of correlation between the two observables as determined by the

(31)

cos(lap) =

PDFs, with cos(fas) = 1 completely correlated, cos(6ag) = —1 completely anticorrelated,
and cos(f,3) = 0 no correlation. Using the same steps as for Eq. (30), we obtain the updated
correlation between the two observables to be

Eif},-:l AYE (6 + M)5! Ayg

32
TNARINA (32)

cos(0ag)new =
new
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E. Limitations on the use of the error PDF updating method

The method used in ePump is very powerful and can very quickly give results on the
impact of new data on the PDFs. However, it cannot be used to replace a full PDF global
analysis of experimental data. In this section we discuss the limitations of this method and
consider ways to assess where it might fail. There are basically four categories of assumptions
that go into the method, and we will discuss each of them below.

The first assumption that goes into the Hessian updating method is the quadratic de-
pendence of the chi-square function on the parameters for the original data. Although this
assumption is expected to be good in most of the eigenvalue directions, it is possible that
some directions that are not well-probed by the original data can have noticeable deviations
from quadratic dependence. Unfortunately, this cannot be assessed within ePump, since it
would require a detailed analysis of the original global chi-square function from the original
global analysis. However, a reasonable expectation is that the further the parameters devi-
ate from the original best fit, the more likely that non-quadratic behavior of the chi-square
function becomes important. A measure of the deviation of the parameters from the original
best fit is

N
Ax*(2°)origimat = T* Z (33)2 ) (33)
i=1
which is the change in chi-square for the original data set, evaluated at the updated best-fit
parameters. This was called the “penalty term” in Ref. [13]. A comparable measure in the
presence of dynamical tolerances would be the fractional distance-squared between the new
and old best-fits relative to the confidence-level boundary in the space of parameters, which
can be written

N 2
@ =3 (74) | (31)
i=1 ¢
where we have let T; be the average of Tii. In the calculation of the PDF uncertainties in the
Hessian method, it is assumed that the chi-square function is quadratic in the parameters
for > < 1. In addition, independent of the quadratic approximation, a value (d°)? larger
than one would indicate that either there is tension between the new data and the original
data, or else the uncertainties in the original global analysis were under-estimated. This
latter interpretation might occur if the new data probe a region of x and Q? for the PDFs
for which they are undetermined, so that the original error estimate itself would not be
well-determined.

The second assumption that goes into the Hessian updating method is the linear depen-
dence of the observables X, on the parameters. This can be tested somewhat by comparing
results using the linear approximation for the dependence of the observables on the pa-
rameters, as presented above, with a calculation which also includes the diagonal quadratic

12



contribution to the observables. We present an efficient method for the calculation including
these terms in appendix A. Note that since we can only calculate the diagonal quadratic
terms using the error PDFs, this nonlinear prediction of the updated PDFs is not guaran-
teed to be more correct than the strictly linear approximation. However, if the differences
between the two predictions are small, one may expect that linear approximation for the
observables is probably good.

Related to this second assumption, one might be interested to know if the original best-fit
is outside the uncertainty bounds of the updated fit, even if the updated best fit is within
the original uncertainties. This might occur if the new data strongly constrain the PDFs
in a region of the parameter space that was essentially unconstrained in the original fit. In
analogy to Eq. (34), we can define the fractional distance-squared between the old and new
best-fits relative to the new confidence boundary:

@r =3 (f{;)cﬂ)g , (35)

r=1

where
N
& = -1+ Z sz@(T) (36)
i—1

is the location of the original best-fit written in the updated coordinates. If we use the same
replacement (7{,y/T") — (T;/T) as we did in determining the updated eigenvector PDFs, we
can approximate this by

702 S T 0 T 0
(d)? = > (izi) 6+ M), (?zj) . (37)
i,j=1 J

Note that d° > d°, because A\") > 0 or equivalently M;; is non-negative. This is related to the
fact that in the Hessian approximation the uncertainties cannot increase when new data are
added, although this can be possible if nonlinear effects not included in the approximation
are important. Also note that if this measure is larger than one, it does not mean that the
new data are in tension with the old data, or even that any of the assumptions in the error
PDF updating method have necessarily broken down. However, if P >1>d , it implies
that the grid of points evaluated in the parameter space (defined by the original error PDF's)
is large compared to the scale of the variations in the contribution of the new data to y2. In
this case the modeling of the X,(z) near the new best fit may be more likely to be affected
by nonlinearities, which could produce results that differ from the true global fit.

The third assumption that goes into the Hessian updating method is the linear dependence
of the PDF's, or any other observable whose prediction is to be updated by the impact of the
new data. We note that this assumption is the same as that used in any determination of
uncertainties using the Hessian method. In particular, the predictions of the updated best-
fit PDF's should be good in the regions where they have some constraints from the original
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data, but in regions where they are essentially unconstrained, such as at very large or small
z, one might expect the results of ePump to be less reliable.

Finally, and probably most seriously, the error PDF updating method is tied to all of the
systematic assumptions that went into the original global analysis. This includes the choice
of parametrization and number of parameters in the PDF's; any constraints on PDFs, such
as s = § or constraints on sea-quark distributions; choice of global tolerance and treatment
of dynamical tolerances (i.e., Tier-2 penalty in the case of the CT distributions); and any
other systematic choices (such as the mass of the heavy quarks, the value of ay, etc.) that
went into the original global analysis. Therefore, new insights that may change some of the
original assumptions, or the inclusion of new data that may require additional flexibility
in the parametrization (either through additional parameters or relaxation of constraints
between parameters) cannot be probed using the present method.

F. Examples of Updating using ePump

In this section we show some examples of updating the PDFs and observables using
ePump. We first begin by checking the results of updating with ePump versus refitting the
PDFs with a full global analysis. Then we consider an example of how ePump might be
used in practice to analyze the impact of a new data set by using ePump to update a current
standard PDF set with the inclusion of the new data.

As a check on the consistency of the ePump results with the full global analysis, we have
carried out the following studies. Firstly, we have checked that the ePump analysis can
reproduce the full CT14HERA2 best-fit to a very good accuracy. This was done by taking
the complete original CT14HERA2 data sets as the “new” input data set and using ePump
to update the CT14HERA2 PDFs. As expected the updated best-fit PDFs are essentially
unchanged, and the total x? of the best-fit found in the ePump analysis is only higher by 0.8
units as compared to the minimum total x? of the original CT14HERA2 best-fit, which is
3594 (for the total of 3302 data points). We have also checked that the updated predictions
for physical observables from the ePump updating code agree perfectly with our global fitting
code for all the data points included in our CT14HERA2 fit. The uncertainties on physical
observables induced by the PDF errors predicted by the ePump code also agree with our
global fit after taking into account the factor of 1/4/2 ~ 0.707 reduction in the ePump result
because the CT14HERA?2 data set was effectively counted twice in this exercise. Although
the fact that the central value of the best-fit parameters does not change in this exercise
makes the updating in this case less complex, it does demonstrate that ePump can easily
handle a large data set and that the uncertainties for the full global analysis are reasonably
given in the Hessian approximation. More detailed discussions about this comparison will
be presented in a separate paper [27].

Secondly, we have compared the results of adding new data with ePump versus adding
them with the complete global fitting code. Specifically, we prepared a base set of PDFs
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FIG. 1: Comparison of the gluon-PDF for three analyses: CT14HERA2mJet is the standard
CT14HERAZ2 analysis but with the four inclusive jet data sets removed, CT14HERA2mJett-eJet
is the CTI14HERA2mJet set updated by ePump to include the missing jet data sets, and
CT14HERA?2ex is the full CT14HERA2 analysis (but with the two gluon extreme sets excluded in

computing the uncertainty bands).

from a global fit to the full CT14HERA?2 data set with all the jet data removed, called the
CT14HERA2mJet PDF set. This includes a central set (00) and error PDF sets 01 through
54, so that there are N; = 27 eigenvector directions. This number of error PDFs is the
same as that in the CT14HERA2 PDF set, provided we exclude the two extreme sets from
CT14HERA2, which were added to enlarge the gluon-PDF errors in the small = region®.
We then compared the results of adding back the four sets of inclusive jet data (CDF [28],
DO [29], ATLAS [30], and CMS [31]) using ePump (labeled CT14HERA2+-elJet) with the
results of adding them back using the full global analysis (i.e., the published CT14HERA2
global fit, with the two extreme g-PDF sets removed, labeled CT14HERA2ex). In Fig. 1, we
show the comparison of the g-PDFs at the scale () = 100 GeV for the CT14HERA2m Jet,
CT14HERAZ2ex, and the CT14HERA2+-eJet fits. The left curves and error bands are nor-
malized to their respective central fits, while the right curves and error bands are each
normalized to the CT14HERA2mJet central PDF. These plots clearly show that the jet
data included in the CT14HERAZ2 fit further constrain the g-PDF for z between a few times
10~ to about 0.5. In addition, they show that ePump reproduces the result of the original
CT14HERA2 fit for = in the same range. Outside of that range, particularly at very large
x, the PDFs are nearly unconstrained relative to the best fit, so that nonlinear dependence
on the parameters becomes significant, which explains the apparent difference between the
result of ePump updating and true global fit. We note that the distance in parameter-space

3 As compared to the original CT14NNLO PDF set, the CT1I4HERA2 PDF set contains one more shape
parameter to describe the strange-PDF. Hence, it was not necessary to introduce two additional extreme

sets to enlarge the strange-PDF uncertainty in the small z region (in addition to the two gluon extreme

sets), as was done in the CT14NNLO PDF's.
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FIG. 2: Comparison of the gluon-PDF for three analyses: CT14HERA2c is the standard
CT14HERAZ2 analysis but with with all, except CDF, jet data removed, CT14HERA2c4-elJet is
the CT14HERA2c set updated by ePump to add back the D@ , ATLAS and CMS inclusive jet
data, and CT14HERA2ex is the full CT14HERA2 analysis (but with the two gluon extreme sets

excluded in computing the uncertainty bands).

between the original and new best-fits, relative to the original confidence-level boundary,
(given by Eq. (34)) is d° = 0.6, indicating that the new data is consistent within the uncer-
tainties of the CT14HERA2mJet fit. However, relative to the new confidence-level boundary
(Eq. (35)) the distance is d® = 1.3, indicating that the original parameter values are outside
the confidence-level boundaries of the updated fit. This might lead to some concern that
the approximations used in evaluating the contributions to y? of the new data might break
down in this analysis. To check on this we have also performed the update with ePump
while including the diagonal quadratic terms, as discussed in Appendix A, and found that
the gluon PDF's are essentially indistinguishable with the linear result except at very large
x 2 0.6. Of course, the ePump result is further vindicated by the direct comparison with
the full CT14HERA?2 global fit shown in Fig. 1.

In practice, a more typical use of ePump would be to add new data to the original
CT14 or CT14HERA2 PDF analysis, in which some jet data have already been included
to constrain the g-PDF. Hence, the difference in the g-PDF between the original global fit
and the updated ePump analysis would be expected to be smaller than what is observed in
Fig. 1, unless the new data set had a strong tension with the old data set included in the
CT14 global analysis. Though more detailed discussions about this topic will be presented
in a separate paper, we shall illustrate this point by the following example. The data set
of the CT14HERAZ2 global analysis includes four sets of inclusive jet data, which are CDF
28], DO [29], ATLAS [30], and CMS [31] inclusive jet data. Let us consider a new global
fit in which all of the CT14HERA2 non-jet data is included, but only the CDF jet data [28]
is included, which results in a new error PDF set, called CT14HERA2¢, with 54 error PDF's
plus its central set. In Fig. 2 we show the g-PDF and its error bands for CT14HERA 2c,
for CT14HERAZ2ex (excluding its last two extreme PDF's), and for CT14HERA2c updated
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by ePump to add back the other three (D@ , ATLAS and CMS) jet data, whose result is
labelled as CT14HERA2c+elJet. It is interesting to note that the CDF data alone already
constrain the g-PDF in the relevant x range. This is corroborated by considering the distance
in parameter-space, both relative to the original and updated confidence-level boundaries.
For this case we obtain d° = 0.42 and d° = 0.65, respectively. The first value shows that the
additional three jet data are consistent with the CDF data, while the second value shows
that the CDF data alone is sufficiently strong that the CT14HERA?2c best-fit is well within
the confidence-level boundaries obtained after including the full set of jet data. In addition,
we see that the ePump result agrees very well with CT14HERA?2 in the g-PDF for most of
the range of x, with almost perfect agreement up to about z ~ 0.3.

Finally, we present a simple example of the error PDF updating method using ePump by
adding new data to a current standard PDF set. We consider the effect of the CMS inclusive
jet data measured at the LHC at 8 TeV [32], when added to the CT14HERA2NNLO global
analysis. In other words, we use ePump to obtain an approximation of the outcome of a full
NNLO global analysis that includes all of the data included in the CT14 analysis plus the
CMS double-differential inclusive jet cross section measurements as a function of jet rapidity
(y) and transverse momentum (pr). For this study we have included all of the rapidity bins
for a total of 185 data points. As in our PDF global analysis, we have considered all three
different types of experimental error, including statistical, correlated and uncorrelated errors,
in the ePump analysis. (Details of the error analysis are discussed in Appendix B.) For the
theoretical prediction, we have used the FastNLO grids [33, 34], including the corresponding
k-factors, defined as the ratios of NNLO to NLO double-differential inclusive jet cross sections
for each data point. For the initial PDF set we have used the CT14HERA2NNLO central set
(00) and the error PDF sets 01 through 56, including the final two extreme sets. With this
set of inputs, we can now use the ePump executable UpdatePDFs to calculate the impact of
the new data on the CT14HERA2NNLO PDFs, using the method discussed in section I B.
In Fig. 3 we show the updated gluon-PDF evaluated at the scale Q = 100 GeV. As before,
the left curves and error bands are normalized to their respective central fits in order to
emphasize the changes to the uncertainty bands, while the right curves and error bands are
each normalized to the CTI4HERA2NNLO central PDF in order to emphasize the changes
to the updated central fit. These plots show that including these data makes the gluon-PDF
become softer when z is larger than around 0.2, and it reduces the uncertainty in the gluon
PDF in the same region of z.

For completeness, we also compare in Fig. 4 the changes in the other flavor (u, d, @, d, s
and ¢) PDFs after updating the CT14HERA2 PDF's using ePump to include the additional
CMS 8 TeV jet data. Though these jet data are expected to have the largest effect on the g-
PDF, it could also modify slightly the other flavor PDFs, as shown in the figure. In Ref. [25]
it was proposed that the most relevant parton flavor and its range of z values affected by this
new data set could be found by examining the correlation cosine, cf. Eq. (31), between each
data point and the various PDF flavors. The result, displayed in Fig. 5 for the correlation
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FIG. 3: Comparison between the gluon-PDF at Q = 100 GeV for CT14HERA2 NNLO and for
CT14HERAZ2 updated by ePump using the CMS 8 TeV double-differential inclusive jet cross section
measurements as a function of jet rapidity (y) and transverse momentum (gr). The left curves and
error bands are normalized to their respective central fits, while the right curves and error bands

are each normalized to the CT14HERA2NNLO central PDF.

cosines between the gluon PDF as a function of z at () = 100 GeV with the CMS 8 TeV jet
data points in the first two bins of rapidity, shows that the CMS 8 TeV double-differential
inclusive jet cross section data are most sensitive to the g-PDF a z between a few times 1072
and 0.5. This result is consistent with the sensitivity analysis of Ref. [35], which identified
this data set as one of the more important new LHC data sets to constrain the PDF's.

The distance in parameter space between the original and updated best-fits for this anal-
ysis is d° = 0.33 and do = 0.42, relative to the original and updated 90% confidence levels,
respectively, indicating that the ePump result is most likely reliable. We note that the change
in the updated gluon PDF observed in Fig. 3 for z larger than about 0.5 (and similarly for
the other PDF's in Fig. 4) is not significant, due to the large uncertainty of the PDF in
that region (not to mention that the PDF's themselves go rapidly to zero as x goes to zero).
As mentioned in Sec. I1 E, we cannot be certain that the result of ePump would agree well
with a full global analysis at very small or large = values, because in those regions, the PDF
uncertainties are so large compared to their central value that the linear approximation used
to evaluate the PDFs in ePump is likely to fail.

As discussed in the previous section, ePump can also directly update the predictions for
any physical observables after the inclusion of new data. For example, one might want to
know how the inclusion of the CMS double-differential inclusive jet cross section measure-
ments at the LHC at 8 TeV [32] in the global PDF fits would modify the prediction for the
total cross section of the Higgs boson produced via gluon-gluon fusion process at the LHC,
at 8 and 13 TeV center-of-mass energies. In Table I, two sets of predictions are compared by
using the CT14HERA2 PDF's and the CT14HERA2+eCMS8 PDF's, obtained by updating
the CT14HERA2 with the CMS jet data using ePump. The updated cross sections are the
direct output of the ePump code, without recalculating it by running through all of the
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FIG. 4: Same as Fig. 3, but for the updated u, d, @, d, s and ¢ PDFs.

updated error PDFs. As we can see from the table, the uncertainties decrease slightly after
the update, while the change in the predicted central value is negligible compared to the
uncertainties.

In addition to updating PDF's and physical observables, ePump can also update cor-
relation cosines in order to study the degree of correlation between various experimental
observables, before and after updating the PDFs with the newly included data. For exam-
ple, let us examine the correlation ellipse of the following two observables: the CMS 8 TeV
double-differential inclusive jet cross section measured in the first y and pr bin (0 <y < 0.5,
74 GeV < ppr < 84 GeV), and the Higgs boson inclusive cross section o(gg — H) at the 13
TeV LHC. This is defined such that the predictions for the two observables will fall within
the ellipse at the 90% CL, when including only the uncertainties due to the PDF's (and using
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FIG. 5: Correlation cosine, cf. Eq. (31), of CMS 8 TeV double-differential inclusive jet cross section
data points in the first two bins of rapidity versus various the gluon PDF, as a function of = at

Q = 100 CeV.

CT14HERA2|CT14HERA2+eCMSS8

8 TeV | 18.601155% 18.57) o0
T1.76% +1.67%
13 TeV| 42.561175% 42,551 157%

TABLE I: Higgs boson (with a 125 GeV mass) production cross sections (in pb) for the gluon
fusion channel at the LHC, at 8 and 13 TeV center-of-mass energies, respectively, obtained using
the CT14HERA2 and CT14HERA2+eCMS8 PDFs, with a common value of ag(Mz) = 0.118. The
errors given are due to the PDFs at the 68% C.L.

the Hessian approximations). In Fig. 6 we compare their correlation ellipses before and after
updating the CT14HERA2 PDFs with the full CMS 8 TeV double-differential inclusive jet
cross section. From the ePump output we can easily identify this CMS data point as the
one with the largest correlation to the o(gg — H) at 13 TeV (with cosf = 0.85 before and
08 Opewy = 0.83 after the update). Similarly, we can also identify the most anti-correlated
(CMS 8 TeV) data point to (g9 — H) at the 13 TeV LHC, which is the bin with 0 < y < 0.5
and 686 GeV < pr < 737 GeV (with cos = —0.67 before and cos b, = —0.61 after the
update). In Fig. 7 we show the correlation ellipses for this bin with (g9 — H) at the 13
TeV LHC. From both of these plots, we see that the PDF uncertainty in the Higgs cross
section decreases, and that the magnitude of the correlation with the respective data points
decreases after the update by ePump.

It is also interesting to examine the quality of the fit to this new CMS data after updating
by ePump. As proposed in Ref. [26], this can be addressed by examining the distribution of
the residuals for each data point of the CMS data. The residuals, which are automatically
supplied by the output of ePump, compare the difference between the theory prediction
and the shifted data relative to the uncorrelated error (with the full correlated systematic
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FIG. 7: Similar to Fig. 6, but for y between 0 and 0.5 and pr between 686 GeV and 737 GeV.

errors included via the data shift). In an excellent fit, the residuals follow a standard normal
distribution, with a mean of zero and a unit width. A non-zero mean observed in the
residual distribution would indicate a systematic discrepancy affecting the whole data set;
on the other hand, a smaller or larger than normal width may be due to unaccounted
random effects or non-Gaussian errors (see Appendix B.2 in Ref. [24]). The distribution of
the residuals for the CMS 8 TeV data, using the updated best fit, is plotted in Fig. 8. It
is evident that the frequencies of the residuals agree well with a standard distribution; the

mean of the residual distribution is consistent with zero and the width of the distribution is
about one.
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FIG. 8: The distribution of residues for each data point of the CMS 8 TeV double-differential

inclusive jet cross section measurements.

III. OPTIMIZATION OF HESSIAN ERROR PDFS

A scenario that arises frequently in experimental error analyses is the repeated simulation
of events via Monte Carlo with the Hessian error PDF's, in order to evaluate various cuts
or experimental uncertainties and their interplay with the PDF uncertainties. With 50 or
more error PDF's, this can be a time-consuming endeavor. Therefore, a smaller, reduced set
of error PDF's that contain the majority of the PDF dependence of the observables under
consideration is often critical for the analysis. In this section we present a method, entirely
based within the Hessian approach, that can be used to produce a new set of Hessian error
PDF's that are optimized for a given set of observables. In addition, the optimized set of
error PDFs is ordered in such a way that a reduced set of the error PDFs can be easily
chosen to reproduce the PDF-induced variances in the observables to any desired precision.

Our optimization method is based on the observation that the Hessian parametrization
of the x? function around its minimum is not unique. This idea was used in the data set
diagonalization procedure by Pumplin [20] to diagonalize the contribution of some subset
of the data to the total y? function in order to assess its impact on the PDFs and its
compatibility with the rest of the data. In our present application, we use this additional
freedom to find new eigenvector directions that have the maximal PDF sensitivity for a given
set of observables, which may or may not be included in the original global analysis. The
new eigenvectors contain exactly the same information as the original eigenvectors, but are
optimized so that a smaller set of error PDF's can be chosen for use with the set of observables
to any required PDF-sensitivity. This procedure is easiest to understand when applied to
a single observable. Thus, we quickly review the idea of extreme PDFs [36], and show how
they can be constructed in the Hessian method, before generalizing to an arbitrary number
of observables.
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A. Extreme PDF Sets for a Single Observable

For a single observable X one can define two “extreme” PDF sets that give the maximum
and minimum uncertainty values for the observable at the CL corresponding to the tolerance
T'. We can obtain extreme PDF sets by maximizing the function

S(z,)\) = w(X(z) —X(o))2 — A (A (z)/T? 1), (38)

where A is a Lagrange multiplier and w is an arbitrary positive constant, which we will set
for convenience shortly. The extreme sets can be calculated without any approximations on
the behavior of X(z) or Ax?(z) using the Lagrange multiplier method [37]. This method
has been used to obtain the extreme PDF sets for describing the total inclusive cross section
of gg — H at the LHC [36].

We can also obtain the extreme sets* using the quadratic approximation for the chi-square
function, Eq. (1) and the linear approximation for the observables,

X(z) = X(0)+ ) AXIz (39)

j=1
to obtain

S(z,\) = w(izj AXJ') — A (sz—l)

j=1 i=1
N
= ZziM@ij—/\(ZZE—l)} (40)
i,j=1 i=1

where M;; = w AX* AX7. If we choose

N

w = (AX)? = (Z (Axi):’) , (41)

i=1

then the matrix M;; has the nice property that Tr(M) = 1. The maximization of S is
obtained by solving the eigenvector equation

Z Miij = AZ._;;, (42)

4 In this presentation, we use a single global tolerance T, but the derivation also follows for dynamical
tolerances if we let T; be the average of TE.i and assume that the confidence level boundary is given by

Ei\;l(T/Ti)ZZE =1.
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N 2

with the normalization condition ) ., 2

1. Since M;; is an N x N real symmetric matrix,
it has NN real linearly-independent eigenvectors, Ui(r) with real eigenvalues A", r =1 to N,

which satisfy

N
> MU = AU, (43)
j=1
and can be made orthonormal,
N
S UPUE = 6. (44)

i=1
By inspection one can see that the uncertainty in X is saturated by a single eigenvector,
AX?

JEL (axi?

in agreement with Eq. (6) from Sec. ITA. The corresponding eigenvalue is A1) = 1. The

v~ 4 (45)

remaining eigenvectors, Ui(ﬂ for r = 2 to N, are annihilated by M;; and therefore have
eigenvalues A\(" = 0. If we introduce new coordinates (ci,...,cy) that are coefficients of the
displacement along the eigenvectors of M;;, we obtain

r=1
N N
Zcf, = sz (46)
r=1 i=1
N
S(z,\) = Z:)\("")c2 = c
r=1

Thus, the PDF uncertainty on X is dependent only on displacements along eigenvector Ui(l)
and is completely insensitive to displacements in the directions orthogonal to this.
This analysis of the extreme sets in the Hessian method suggests a re-diagonalization of

the error PDFs. We define new error PDF's as:
N
FE(@,Qo) = f2(2,Q0) + YU (f5(z,Q0) — (=, Qu)) - (47)
i—1

The PDFs f&Y(x, Q) are the Hessian version of the extreme sets. In the Hessian approxi-
mation, the dependence of the observable X on the PDFs is contained only in f&Y(z, Q),

whereas it is insensitive to variations along the remaining eigenvector directions, given by
the re-diagonalized error PDFs f&)(z, Q) for r = 2 to N.
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FIG. 9: The gluon extreme sets for the Higgs cross section through gluon fusion at the LHC with
/s = 14 TeV, as a ratio to the CT10NNLO central prediction. The green and red curves are the
CT10H extreme sets, obtained using the Lagrange Multiplier method, while the gold and brown
curves are the Hessian extreme sets, obtained as discussed in the text. The blue shaded region is
the CT10NNLO gluon uncertainty band at the 90% CL.

For the same reasons that were discussed in Sec. I B, we make the above linear approxi-
mation for the optimized PDFs with the constraint Ei\;l Uy) > 0. This gives good, but not
perfect, agreement between the original and optimized eigenvector bases for the asymmetric
errors on the PDFs themselves. However, it gives perfect agreement for the symmetric errors
by construction.

In Fig. 9, we plot the Hessian gluon extreme PDFs, f&*V(z,Q), starting from the
CT10NNLO and optimized for the gg — H cross section at the LHC at 14 TeV. These
are compared to the CT10H gluon PDF's from Ref. [36], obtained by the Lagrange Mul-
tiplier method for the same observable. As can be seen from the figure, the two different
versions of the extreme gluon sets agree well in the range 107* < z < 0.3 They only dif-
fer substantially at large z or very small z values, where the PDFs are unconstrained and
nonlinear dependence on the parameters becomes significant.

B. Optimization of error PDF's for a set of observables

The method of the last section can be generalized to a set of observables X, where a = 1
to Nx. The goal is to find the directions in the parameter space, z, that maximize the
deviations of each of the observables from their best-fit values, while keeping Ax?(z) < T*?
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at the prescribed CL. Thus, we maximize the function

Nx 2
S(z,)\) = Zwa(Xa(z) —Xa(o)) A (AR(2)/T? 1) | (48)

where A is a Lagrange multiplier and the w, are positive constants that weight the contri-
bution of each of the observables to the sum. In the Hessian approximation, we obtain

Nx N 2 N
S(z,A) = > wa (Z 2 Axg;) - (Z 22— 1)

j—1 i=1
N N
= ZZﬁMiij—)\(ZZf—l)? (49)
ij=1 i=1
where
Nx
My =) w,AXEAXD (50)
a=1

and AX! = (Xa(f*") — Xa(f™)) /2, as defined previously. A natural choice for the con-

stants are
N

Wy = (AXQ)_Q — (Z (AX;)Q) 3 (51)

i=1
so that each observable is weighted equally®, and the matrix satisfies Tr(M) = Nx.

At this point, the solution of this problem is formally identical to that for a single ob-
servable. To maximize S we solve the eigenvector equation

N
Z Miij = AZ._;;, (52)
j=1
with the normalization condition Ef’;l 22 = 1. We obtain Ny orthonormal eigenvectors U@m

and corresponding non-negative real eigenvalues A), » = 1 to Nx. If Nx < N, then in
general there will be Ny non-zero eigenvalues and (N — Ny ) eigenvalues that are identically
Z€ro.

As before, we introduce new coordinates (i, . .., cn) defined by

N
5= U (53)
r=1

5 This equal-weighting assumption can be easily modified, if different observables require different precision

on their PDF uncertainty for a given analysis.
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and satisfying

2} (54)

Mz

N
da =
r=1 i=1

N

S(z,\) = Y A"e.
r=1

The re-diagonalized error PDF's, optimized for this set of observables, are
N
FE(@,Qo) = £22,Q0) + YU (f5(z,Q0) — (=, Qo)) (55)
i=1

where again we fix the sign by Ef’;l Ui('r) > 0.
We can calculate the Hessian uncertainty on any observable using the re-diagonalized

error PDF's. Defining

Xalf47) = XalF7)
2 b

AXM = (56)

using the new error PDF's, then the Hessian uncertainty on the observable X, using the
Symmetric Master Equation is

AX, = (AXS”)) ’

M) =

1

_i
I

Mz

N N
(Z Uf”AX@) (Z U}"”)AXQ;)

1 1 j=1

ZMZ

\
\ r
\ AXiAX] (Z Uﬁ”U}"”))

1 r=1

=
=Y
I

(ax3)°, (57)

M) =

\E

where we have used the linear approximation assumed by the Hessian analysis. Thus, the
uncertainty calculated with the re-diagonalized error PDF's is identical to that calculated with

1

the original error PDF's in this approximation. In particular, the symmetric uncertainty on
the PDF's themselves is exactly identical in the calculations using the two different error PDF
sets, because the re-diagonalized error PDF's are defined explicitly using a linear expansion
in Eq. (55).

The advantage of using the re-diagonalized error PDFs, optimized for the set of observ-

ables, X,, is that we can now define a prescription for keeping a reduced set of error PDF's,
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by removing those that have negligible effect on the observables of interest. Let us order
the optimized error PDFs by the size of their eigenvalues, so that A() > X2 > ... > \(V),
Then, if we keep only the first 2n error PDFs (including both + directions), the residual
error in the variance calculated for observable X, is

S (ax9)

M — 1
“ (AX,)?
= 1w,y (AXD)", (58)
r=1

If we sum this residual error over all Nx observables, and use the linear approximation in
the parameter dependence of the observables, we obtain

n

Nx Nx
S = Ny =Y we > (AXD)
a=1 a=1

Nx T:I N 2
= Nx — Z Wa Z (Z U}"”)AX;{)
a=1 r=1 i=1
n N
= Nx - Z Z Ua'(ﬂMijUi(r)
r=1 i,j=1

= Nx — Zn:)\(ﬂ
r=1

= ZNI AT (59)

r=n+1

Thus, the sum of the eigenvalues of the discarded error PDF's gives the sum of the residual
errors in the calculation of the variances for the set of observables. This implies that if the
number of observables is less than the number of eigenvector directions (Nx < N), then we
need only keep the first 2Ny error PDFs to obtain the full dependence of the observables
Xq on the PDF parameters, in the Hessian approximation.

Furthermore, in practice when performing studies on a set of experimentally-relevant
observables, there will be correlations among the observables. Therefore, even if Ny > N
there will be eigenvector directions that have negligible impact on the calculation of the X,,.
Thus, by producing the optimized error PDFs for the set of observables, and noting the
size of the eigenvalues obtained in the re-diagonalization procedure, one can determine how
many error PDF's are necessary to retain in order to study the observables at a particular
level of precision.
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FIG. 10: Comparison of u, d, @, d, s, and ¢ PDF uncertainties using original CT14HERA2 error
PDFs (light blue), error PDFs optimized for Higgs and t¢ cross sections (red hatched), labelled as
HttbOpt, and a reduced set of optimized error PDFs (green hatched), labelled as HtthOpt4.

C. Examples of Optimizing using ePump

As an example we have optimized the CT14HERA2 PDF's for the following eight observ-
ables: the NNLO Higgs cross section through gluon fusion at the LHC and the NNLO t¢
cross section at the LHC, each at center-of-mass energies 7, 8, 13, and 14 TeV. The cross
sections were calculated using the CT14HERA2 error PDF's, and the masses of the top quark
and Higgs boson are set to mfme = 173.3 GeV and myg = 125 GeV, respectively, as done
in Ref. [1]. Namely, we work with N = 28 error set pairs and Ny = 8 observables. The
eigenvalues that we obtain are: 4.40, 3.53, 6.8 x 1072, 1.6 x 1073, 1.1 x 107, 1.4 x 1073,
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9.1 x 1077, 1.5 x 1077, and the remaining 20 eigenvalues are identically zero. Two of the
nonzero eigenvalues are large, corresponding to the two main cross sections, and the other
nonzero eigenvalues are smaller, picking up the small changes in the PDF dependence of
the Higgs and tt cross sections as the energy is varied. By choosing a reduced eigenvector
set of the first 4 optimized eigenvector directions (corresponding to 8 error PDFs), one is
guaranteed to cover the full PDF uncertainties of these eight observables in the Hessian ap-
proximation with a residual error of less than 0.01% for any one of the observables. In Fig. 10
we have plotted the symmetric error bands at () = 100 GeV, relative to the CT14HERA?2
central fit, for the u, d, @, d, s, and gluon PDFs, calculated using the original CT1I4HERA2
error PDF's (light blue), the full set of optimized error PDF's (red hatched), labelled as Ht-
tbOpt, and the reduced set of the first 8 optimized error PDFs (green hatched), labelled
as HttbOpt4. From these plots we can first verify that the symmetric uncertainties of the
PDF themselves are identical whether calculated with the original CT14HERA2 error PDF's
or the full set of optimized error PDFs, as expected. However, the error bands of the re-
duced set of optimized error PDFs are generally much smaller than those calculated with
the original CT14HERA2 error PDF's. The only exception is for the gluon PDF error band,
which is almost completely spanned by the reduced set of optimized PDF's for the range of
x between about 107 to 0.2. This is consistent with our expectations that the Higgs and
tt cross sections at the LHC are most strongly dependent on the gluon PDF's in that range
of z. For the quark and antiquark PDFs, the reduced set spans a smaller region of the
full uncertainty bands, indicating less dependence of the observables on these PDFs. Note,
however, that the error PDFs contain correlated shifts between all of the flavors of PDF's,
which are not visible when plotting each of the PDF uncertainties individually.

For a more realistic application of optimized PDFs from ePump, we consider the rapidity
distributions from Z boson production at the LHCb experiment at 8 TeV center-of-mass
energy. The LHCD collaboration measured the cross section in 18 bins of Z boson rapidity
in the di-muon decay channel [38]. They also measured 17 bins of Z boson rapidity in the
ete” decay channel [39]. Therefore, for this exercise we consider the optimization of the
CT14HERA2 PDFs for these 35 observables. Note that this is more than the 28 pairs of
eigenvectors in the CT14HERA2 set. For the calculation of the 35 observables that goes
into the ePump analysis, we used a NNLO calculation obtained from the FEWZ [40-43] and
ApplGrid [44] codes. For this set of observables, the first 6 eigenvalues are 28.64, 4.61, 1.29,
0.30, 0.12, 0.03, with the remaining eigenvalues decreasing rapidly after that. From this we
see that the first eigenvector pair contains most of the dependence on the PDF's of the 35
observables. The rest of the eigenvector pairs are necessary to provide the sensitivity to the
different flavor and z-range probed by the different observables in the set of 35. In order to
decide how many eigenvector pairs are necessary for this particular analysis, it is useful to
consider the residual errors on the variance of each observable «a, as a function of the number
of eigenvector pairs n that are retained in the reduced set. These values, 5&71), which were
defined in Eq. (58), are included in the output of ePump. The residual errors for each of the
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FIG. 11: Comparison of u, d, @, d, s, and ¢ PDF uncertainties using original CT14HERA2 er-
ror PDFs (light blue), error PDFs optimized for LHCb Z rapidity distributions at 8 TeV (red
hatched), labelled as LHCbOpt, and reduced set of optimized error PDF's (green hatched), labelled
as LHCbOpt6.

observables, using up to 6 eigenvector pairs is shown in Table II. The maximal residual error
for each number of pairs used is enclosed in a box. From this table, we find 55 < 0.05 for
all observables «, so that 4 eigenvector pairs are sufficient to ensure that all residual errors
are less than 5%. Similarly, we find 6% < 0.004 and 6 < 0.001 for all observables a, S0
that a reduced set of 5 or 6 eigenvector pairs is sufficient to ensure that the residual error
on the variance for any of the 35 observables is less than 0.4% or 0.1%, respectively.

Given these results, a reasonable choice might be to use a reduced set of 5 or 6 optimized
eigenvector pairs (corresponding to 10 or 12 optimized error PDF's), depending on the pre-
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a vz sy &) 55 S SR
1 2.000 — 2.125 | 0.2924 | 0.1165 | 0.0209 | 0.0099 | 0.0027 | 0.0005
2 2.125 —2.250 | 0.2371 | 0.0803 | 0.0067 | 0.0018 | 0.0002 | 0.0002
3 2.250 — 2.375 | 0.1787 | 0.0449 | 0.0013 | 0.0007 | 0.0007 | 0.0002
4 2.375 — 2,500 | 0.1322 | 0.0223 | 0.0034 | 0.0030 | 0.0014 | 0.0001
5 2.500 — 2.625 | 0.0975 | 0.0116 | 0.0082 | 0.0043 | 0.0009 | 0.0000
6 2.625 — 2.750 | 0.0757 | 0.0128 | 0.0123 | 0.0038 | 0.0002 | 0.0000
7 2.750 — 2.875 | 0.0638 | 0.0224 | 0.0131 | 0.0022 | 0.0001 | 0.0001
8 2.875 — 3.000 | 0.0582 | 0.0357 | 0.0102 | 0.0010 | 0.0006 | 0.0001
9| Z — ptp~ | 3.000 - 3.125 | 0.0562 | 0.0484 | 0.0061 | 0.0011 | 0.0009 | 0.0000
10 3.125 — 3.250 | 0.0576 | 0.0572 | 0.0033 | 0.0023 | 0.0007 | 0.0001
11 3.250 — 3.375 | 0.0621 | 0.0584 | 0.0038 | 0.0035 | 0.0002 | 0.0001
12 3.375 — 3.500 | 0.0752 | 0.0509 | 0.0084 | 0.0033 | 0.0002 | 0.0001
13 3.500 — 3.625 | 0.1033 | 0.0362 | 0.0139 | 0.0018 | 0.0007 | 0.0001
14 3.625 — 3.750 | 0.1559 | 0.0207 | 0.0169 | 0.0009 | 0.0008 | 0.0001
15 3.750 — 3.875 | 0.2442 | 0.0165 | 0.0140 | 0.0032 | 0.0002 | 0.0001
16 3.875 —4.000 | 0.3670 | 0.0360 | 0.0087 | 0.0071 | 0.0006 | 0.0000
17 4.000 — 4.250 | 0.5447 | 0.0897 | 0.0116 | 0.0023 | 0.0016 | 0.0001
18 4.250 — 4.500 | [0.7396 | | [0.2061 | | {0.1232] | [0.0408] | [0.0037 || 0.0001
19 2.000 — 2.125 | 0.3020 | 0.1259 | 0.0219 | 0.0113 | 0.0029 |[0.0009]
20 2.125 — 2.250 | 0.2337 | 0.0800 | 0.0071 | 0.0019 | 0.0001 | 0.0001
21 2.250 — 2.375 | 0.1821 | 0.0468 | 0.0015 | 0.0008 | 0.0008 | 0.0003
22 2.375 — 2,500 | 0.1327 | 0.0227 | 0.0034 | 0.0030 | 0.0015 | 0.0001
23 2.500 — 2.625 | 0.0975 | 0.0117 | 0.0083 | 0.0043 | 0.0009 | 0.0001
24 2.625 — 2.750 | 0.0764 | 0.0130 | 0.0125 | 0.0038 | 0.0002 | 0.0000
25 2.750 — 2.875 | 0.0631 | 0.0224 | 0.0131 | 0.0024 | 0.0002 | 0.0001
26 2.875 — 3.000 | 0.0579 | 0.0355 | 0.0104 | 0.0009 | 0.0006 | 0.0001
27| Z — eTe™ | 3.000 — 3.125 | 0.0564 | 0.0486 | 0.0062 | 0.0011 | 0.0009 | 0.0000
28 3.125 — 3.250 | 0.0574 | 0.0570 | 0.0034 | 0.0025 | 0.0007 | 0.0001
29 3.250 — 3.375 | 0.0619 | 0.0584 | 0.0041 | 0.0037 | 0.0003 | 0.0002
30 3.375 — 3.500 | 0.0751 | 0.0510 | 0.0085 | 0.0033 | 0.0002 | 0.0001
31 3.500 — 3.625 | 0.1033 | 0.0362 | 0.0134 | 0.0018 | 0.0008 | 0.0001
32 3.625 — 3.750 | 0.1562 | 0.0208 | 0.0170 | 0.0009 | 0.0009 | 0.0001
33 3.750 — 3.875 | 0.2422 | 0.0154 | 0.0134 | 0.0034 | 0.0006 | 0.0004
34 3.875 —4.000 | 0.3698 | 0.0383 | 0.0087 | 0.0072 | 0.0008 | 0.0001
35 4.000 — 4.250 | 0.5474 | 0.0940 | 0.0121 | 0.0033 | 0.0024 | 0.0005

TABLE II: Residual error in the PDF-induced variance, 5&71)‘ for each of the observables (a = 1, 35)

as a function of the number n of optimized eigenvectors retained in the reduced Hessian PDF set.
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cision required. In Fig. 11 we have plotted the symmetric error bands at () = 100.0 GeV,
relative to the CTI4HERA2 best fit, for the u, d, @, d, s, and gluon PDFs, calculated using
the original CT14HERA2 error PDF's (light blue), the full set of optimized error PDF's (red
hatched), labelled as LHCbOpt, and the reduced set of the first 12 optimized error PDFs
(green hatched), labelled as LHCbOpt6.

IV. EPUMP CODE

The ePump code is written in C++ and consists of two main executables, UpdatePDFs and
OptimizePDFs. We discuss some general features of the code here, and direct the interested
reader to the website http://hep.pa.msu.edu/epump/ to obtain the code and to find specific
details of its usage.

The UpdatePDFs executable updates the best-fit and Hessian eigenvector PDFs, as well
as predictions for observables, given one or more new data sets of observables, using the
approximations outlined in Sec. II. The PDF set to be updated can be in either LHAPDF
format (“.dat” files) or CTEQ format (“.pds” files), and the updated central and error PDFs
are output in the same format as the input files (i.e., either “.dat” or “.pds” files). Either
a global tolerance value may be used, or dynamical tolerances may be used, in which case
a file of tolerance-squared values, defined as (T.X)? for each + error PDF, in a “tol” file
must be included with the PDF set. For each data set of observables to be used to update
the PDF's, one must supply a “.data” file and a “.theory” file. The “.data” file contains
the experimental values and errors for each of the data points in a particular data set. The
errors can be included in several different formats, including a table of uncorrelated statistical
and systematic errors and correlated systematic errors, as detailed in Appendix B. This is
essentially identical to the format of the data tables used in the standard CT global analysis.
The “.theory” file contains a list of the theoretical predictions for the observables in the data
set for each of the PDF's in the original best-fit and Hessian error PDF set. The location
of the PDFs, the “.data” and “.theory” files, as well as other basic information to be used

“in” file. Individual weights can be given to the

by UpdatePDFs is contained in a master
contributions of each data set to the y? function, as well as an overall global weight to the
contribution of all new data sets, in order to easily probe the impact of the PDFs to each
of the new experimental data. The code takes only a few seconds to run on an early-2013
MacBook Pro, so it is quick and easy to try different combinations of data sets to compare
their impact on the PDF's.

In addition to the updated best-fit and error PDF's; the output (“.out” file ) of the
UpdatePDFs executable includes information on the updated x? contribution from each of the
data sets, including updated reduced y? and residuals for each of the data points, and best-
fit values for the nuisance parameters [1, 26]. Updated predictions and PDF uncertainties
for each of the observables, as well as updated correlation cosines for pairs of observables

are also included in the “.out” file. These updated predictions can also include auxiliary
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observables, not used in the update, by including additional “.theory’ files.

The OptimizePDFs executable optimizes the Hessian eigenvector PDF's for one or more
sets of observables, using the method described in Sec. III. The PDF's can be in LHAPDF
or CTEQ) formats (with the optimized error PDFs output in the same format as the original
PDFs), and the theoretical predictions used for optimizing the PDF's are given in “.theory”
files, identical to those used by UpdatePDFs. The locations of the PDFs and “.theory” files
and supplementary information is given in a single “.in” file, and useful information on the
optimized PDF set is output into the “.out” file. In particular, the “.out” file gives the
eigenvalues for each of the optimized eigenvector direction, as well as the residual errors to
the variance of each of the observables, when using a reduced set of the optimized Hessian
eigenvector PDF's. With this information it is then easy to decide how large the reduced set
must for the desired precision of a particular analysis.

The complete ePump package, as well as more detailed instructions for installing and file
formatting can be found at the website http://hep.pa.msu.edu/epump/.

V. CONCLUSIONS

Already, a large amount of precision data has been collected at the LHC, and many
advanced theoretical calculations have been produced in order to compare to the data to
better determine the parameters of the Standard Model and to search for possible new physics
signals. One of the key inputs to this important task is the parton distribution functions,
which must be determined as precisely and with as much information of their uncertainties
as possible. However, in the typical QCD global analysis of PDF's, the long computing time
that is necessary to obtain preliminary results can slow down the improvement of the PDFs,
even when just including a few LHC jet, high mass Drell-Yan, W, Z, and top quark data
sets in the fits at the NNLO accuracy in QQCD interaction.

In this work, we have presented a theoretical method which allows us to obtain preliminary
results of the updated PDF's in just a few seconds of CPU time. We have extended the
method of Paukkunen and Zurita to update the Hessian PDF's, of which CTEQ-TEA PDF's
are typical examples. Some specific advances, as compared to the previous work [13, 15],
are given as follows. As briefly reviewed in Secs. II A and C, the CT error PDF sets were
determined with a total tolerance T' (around 100 at the 90% CL), which also includes the
so-called Tier-2 penalties. In this work, we have consistently included the effect of the
Tier-2 penalties associated with each error PDF set along its eigenvector direction in the
CTEQ-TEA fitting parameter space. This allows us to obtain both the updated best-fit
PDF and the updated eigenvector PDFs (after making a reasonable assumption about the
the behavior of the Tier-2 penalties after the update). In addition to updating the central fit
and its associated error PDF's, we have also showed how to directly update the predictions
on experimental observables and their PDF uncertainties without requiring the use of the
updated PDF's to re-do the theory predictions in Sec. II D.
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We have implemented these functions in a numerical software package, called ePump. We
showed some examples and verifications of its functionality in Sec. II F, and discussed where
the approximations used in the method may break down in Sec. II E. The Hessian method
relies on a quadratic approximation for the parameter dependence of the x? minimization
function and a linear approximation for the parameter dependence of the observables, includ-
ing the PDF's and any other observables whose prediction will be impacted by the new data.
The Hessian updating also relies on the linear approximation for the parameter dependence
of the observables that describe the new data used in the updating. We presented some ways
to probe when these approximations might be pushed to their limits. In practice, the most
important limitation of the Hessian updating method is that it is tied to all of the system-
atic assumptions used in the original PDF' error set. For instance, if the non-perturbative
functional form of the original PDFs is not sufficiently flexible to describe the new data,
then the updating method will likely fail.

Recently, a public program, PDFSense [35], was developed as a tool to identify the relative
importance of new experimental data sets in reducing the uncertainties of the PDFs. The
ePump code provides complementary information to this by directly calculating the changes
to the PDF's and their uncertainties when the new data is included. In the process we have
corroborated that the largest impact on the PDF's do come from the experiments suggested
by the PDFSense program.

The second part of this paper was devoted to converting a given set of Hessian error
PDFs to a new (and smaller) set of Hessian error PDF's that are optimized for a given
set of observables. The motivation for this effort comes from the fact that it is frequently
required in experimental error analyses to repeat Monte Carlo simulation of events with
the Hessian error PDF's, in order to evaluate various cuts or experimental uncertainties and
their interplay with the PDF uncertainties. With 50 or more error PDFs, this can be a
time-consuming endeavor. Therefore, a smaller, reduced set of error PDF's, which provides
the same information on the PDF dependence of the observables under consideration is often
critical for the analysis. In Sec. III, we presented a novel method, entirely based within the
Hessian approach, that can be used to produce the new set of Hessian error PDF's that are
optimized for a given set of observables, and contain the full uncertainty information of the
original error set. This optimized set of error PDF's is ordered in such a way that a reduced
set of the error PDF's can be easily chosen to reproduce the PDF-induced variances in the
observables to any desired precision. This functionality has also been implemented in the
ePump code, and we discussed a couple applications of it in Sec. III C.

The ePump code is a simple and efficient package for performing the two tasks of updating
and optimizing the Hessian PDFs. With regards to updating PDF's to include the effects
of new data, we emphasize that the ePump code is not meant as a replacement for a true
global analysis, which very often requires the introduction of new parametrization forms for
the parton distributions at the initial evolution scale (around 1.3 GeV in the CT fits). In
addition, the final judgment for the applicability of the quadratic and linear approximations
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used in ePump will always be the full global analysis. Nevertheless, ePump provides a quick
way to estimate the impact of a given new data set (inclusive jets, for example) on the
updated error PDFs, which in turn affects other observables (the Higgs boson production
cross section at the LHC, in the example of Sec. II F'). With regards to optimizing PDF's, the
ePump code can produce an optimized set for a particular set of experimental observables,
from which the user can then choose a reduced set for their required precision. Again the
advantage is to shorten the CPU time needed for tedious Monte Carlo simulations, while
retaining as much of the dependence of the complete set of error PDF's as determined by the

user.
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Appendix A: Inclusion of diagonal quadratic terms in X (z)

Although the Hessian eigenvector PDFs do not provide enough information to numerically
calculate the full set of quadratic terms in the Taylor expansion of the operators X (z) as
given by Eq. (3), they can be used to obtain the diagonal quadratic terms. The results for
the linear and diagonal quadratic coefficients, while using dynamical tolerances, was given
in Eqgs. (24) and (25). In this appendix we discuss the inclusion of these quadratic terms in
the Hessian updating.

The new best-fit parameters, z°, of the y? function, Eq. (9), are a solution of the equation

_ 10AX%(2)new 2.0 X By ~-19X5
0 = ET . =T Z; + azﬁgl (XO:(Z) _Xa)caﬁa_zi 0 . (Al)

If the quadratic terms are not too large, this can be solved iteratively as

LD 0 ZN:((; + M™) ! ( AIm) _ z;?(“)) ? (A2)
j=1
where
P iﬁ: 8 - xom) o 2]
M7 = %Q%ZI 6‘;)2{:* C‘;‘; %);ﬁ - (Xe —Xa@) C;ﬁl % pmg0) (A9)
and z? © — .

Note that if the quadratic terms are exactly zero, this converges in the first iteration
to the result found previously, with 2z} = z?(l). In most applications, we have found it to
converge in 5 to 10 iterations, starting from the original best-fit parameters or from the
best-fit parameters from the updated linear solution. In these cases the difference in the
speed of ePump is hardly noticeable compared to the linear version. On the other hand, if
the y? function deviates too much from the quadratic approximation and the initial trial
best-fit zf © is too far from the exact best-fit solution, then the iterative procedure may
not converge. In that case it would be necessary to invoke a more sophisticated algorithm
to find the minimum, which is beyond the scope of the ePump project. Furthermore, it is
not possible to include the off-diagonal quadratic terms in X (z) using the error PDFs, and
we have not considered comparable corrections to the contributions to x? from the original
data. Therefore, we advocate using the implementation of ePump with linear terms in X (z)
only, as described in the main text, while including the quadratic terms only to check for
consistency of the results, as discussed in Sec. II E.
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Appendix B: Inverse Covariance Matrix from Uncorrelated and Correlated System-

atic Uncertainties

In many modern analyses, the experimental errors are given in terms of uncorrelated
experimental errors s, for each data point (labeled by «) and correlated systematic errors
Baa With @ = 1, N). The discussion here follows that of Ref. [26]. The assumption is that
the measured value and the true value are related by X2 = X},““E} + 5000+ Y, BaaAas Where
the nuisance parameters, é, and )4, are Gaussian random numbers with standard deviation
of one. The numbers §, are uncorrelated between data points, while the A, are independent
of a (i.e., A, is the same for each data point). If we replace the true value X {irue) by the
theoretical prediction X,(z) in the above equation, then the y? function is

Nx N,
X =D+ N
a=1 a=1

:iﬁi(Xa(z) XE + 02, Baaa) +§"}xg, -

2
Sa

a=1

and we obtain the best fit by minimizing with respect to the fitting parameters {z} and the
parameters A,.
Minimizing with respect to )\, and replacing back into the y? function gives

Nx
V= Y (Xa(2) = XF) Cad (Xa(2) - XF) (B2)
a,B=1
where
Cog = Z foo ;Jﬁ > (B3)
a,b=1
with

b _ 5b+ZJBo:a18ab ) (B4)

Note that we can write the (un-inverted) covariance matrix as

A
Cop = Siéﬂfﬁ + Zﬁaaﬁﬁa . (B5)

However, the former expression for C;g is typically less computationally intense than to
directly invert C,p if Ny < Nx.
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The residual for each data point « is given by the d,, at the best fit value of the parameters.
That is,

N ch; - Eivi] ﬁaa/\a - Xa(zo)

Ta = 50: —
Sa
Nx
= =Y 5aCij (Xp(2%) — XF) (B6)
B=1

Comparison of the residuals to a normalized Gaussian distribution gives information about
the self-consistency of the data points and the uncorrelated errors. Similarly, the best-fit
values of )\, give information about the self-consistency of the correlated systematic errors.
They are

0) —XJ) . (B7)

ZAab Z ﬁab

In practice the correlated systematic errors [3,, are given as percentages of Xa (brue)  In
ePump, we treat these errors as multiplicative errors and calculate the (3,, using the origi-
nal best-fit theory predictions. Note that the difference between using the original best-fit
predictions and the updated best-fit predictions in the computation of C} g 18 greater than
quadratic order in the parameter expansion, and so is beyond the Hessian approximation
that we are using.
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