
Computing properties of stable configurations

of thermodynamic binding networks

Keenan Breik1, Chris Thachuk2, Marijn Heule1, David Soloveichik1

1 University of Texas at Austin
2 California Institute of Technology

Abstract. The promise of chemical computation lies in controlling sys-
tems incompatible with traditional electronic micro-controllers, with
applications in synthetic biology and nano-scale manufacturing. Compu-
tation is typically embedded in kinetics—the specific time evolution of a
chemical system. However, if the desired output is not thermodynamically
stable, basic physical chemistry dictates that thermodynamic forces will
drive the system toward error throughout the computation. The ther-
modynamic binding network (TBN) model was introduced to formally
study how the thermodynamic equilibrium can be made consistent with
the desired computation, and it idealizes tradeoffs between configura-
tional entropy and binding. Here we prove the computational hardness
of natural questions about TBNs and develop a practical algorithm for
verifying the correctness of constructions by translating the problem into
propositional logic and solving the resulting formula. The TBN model
together with automated verification tools will help inform strategies for
error reduction in molecular computing, including the extensively studied
models of strand displacement cascades and algorithmic tile assembly.

Keywords: chemical computation, hardness of approximation, reduction to
SAT.

1 Introduction

Similar to digital electronics, advances in engineering of molecular computation
have relied on a distinctive set of abstractions and models. The formalism of
algorithmic tile assembly [8] enabled the self-assembly of complex nanostructures
from simple parts, with a molecular computational process (e.g., simulating
binary counting) directing component placement [2, 17]. Likewise, DNA strand
displacement cascades (formalized as [18]) made it possible to rationally design
molecular reaction pathways, and this model has been used to engineer a wide
range of molecular devices, programmable structures, logic and neural circuits, and
dynamical systems [24, 22, 4]. The ultimate applications of molecular computation
are in contexts where traditional electronics cannot be used. These applications
include reprogramming biological cell behaviors or controlling complex nanoscale
assembly processes. It is also hoped that theories of molecular computing can

shed light on ill-understood design principles of natural biological regulatory and
development pathways.

The widely studied models of chemical computing such as algorithmic tile
assembly and strand displacement cascades are essentially kinetic as they describe
a desired time evolution of an information processing chemical system. However,
unlike electronic computation, chemical computation operates in a Brownian
environment subject to powerful thermodynamic driving forces. If the desired
output happens to be a meta-stable configuration, then thermodynamic driving
forces will inexorably drive the system toward error. For example, in tile assembly,
thermodynamically favored assemblies that are not the intended self-assembly
program execution are likewise a major source of error [19, 2]. Likewise, leak in
most strand displacement systems occurs because the thermodynamic equilibrium
of a strand displacement cascade favors incorrect over the correct output, or does
not discriminate between the two [23].

The thermodynamic binding network (TBN) model abstracts chemical systems
at the thermodynamic equilibrium [9]. The model is simple and general due to its
two main features: (1) abstracting away of “geometry”, and (2) the simplification
of thermodynamics to a tradeoff between the number of separate complexes
(configurational entropy), and the number of bonds formed. These features of
the model make it widely applicable, including for understanding the consistency
of kinetics and thermodynamics for strand displacement cascades, algorithmic
tile assembly, as well as other contexts. The simplicity of the model makes it
amenable to rigorous proofs.

The most basic question is how can we distinguish (thermodynamically)
stable configurations—that is configurations that are energetically favorable—from
unstable ones. Predicting the thermodynamic equilibrium is often computationally
difficult: for example, determining the lowest energy configurations of Ising
models [5], predicting secondary structure of nucleic-acids with pseudoknots [15],
and predicting protein folding [11] were shown to be NP-hard. These problems
derive their hardness from geometrical constraints; in contrast the TBN model
avoids geometry, and the computational complexity originates in the interplay
between the opposing forces of increasing binding and increasing the number of
separate complexes. Even without configurational entropy, there are interesting
computational problems derived solely from geometry-free binding [14].

In the TBN model, the hard part of checking whether a given configuration is
stable is determining whether the system can reconfigure to increase the number
of polymers, thereby increasing configurational entropy, without reducing the
total number of bonds. We prove that this problem is NP-complete in the worst
case, and also that the problem of computing the number of polymers in a stable
configuration is not in nδ-APX for any δ < 1 (that is, it is hard to approximate).

In DNA strand displacement cascades, output is usually represented by the
release of a previously bound DNA strand. The question of whether releasing the
output is thermodynamically favorable corresponds to the problem of deciding
whether a given monomer is free in some stable configuration of the TBN model.
We show that this problem is complete for PNP

‖ (which is P with parallel access

to an NP oracle), making it one of very few known natural complete problems
for this class.

Despite these worst-case negative results, we develop a software package
accompanying this paper that can answer many questions in practice [1]. The
package computes a non-trivial reduction to the boolean satisfiability problem
(SAT) which is then passed to a SAT solver. An exponential speed up can be
achieved in certain cases, compared with a naive solution based on enumerating all
configurations, or even the subset of maximally bound (saturated) configurations.
Our package assists in manipulating and understanding the behavior of TBNs.

Our ultimate goal is molecular computation in which the thermodynamic
equilibrium is consistent with the desired computation, and that it can be
reached by an efficient kinetic pathway. The TBN model permits differentiating
thermodynamic and kinetic contributions to the computational power of the
chemical system, and by ensuring that both are consistent we can ensure greater
fidelity of molecular computing. We mention two instances where our solver
verified such consistency. One is a “counter” tile assembly system in the aTAM
model introduced in prior work that we verified also works in the TBN model [9].
Similarly, Section 3 shows an example of a strand displacement AND gate
introduced in prior work that our solver verified to be correct in the TBN model
as well [23].

Although we show that NP-hard problems can be encoded in TBNs, we in
no way claim that TBNs by themselves provide an effective physical mechanism
for solving NP-hard problems. Indeed, in general there are no guarantees on the
time required to approach thermodynamically favored states.

2 Model

TBNs consider chemical systems affected by two (often opposing) thermodynamic
driving forces: the free-energy benefit due to forming additional bonds, and the
penalty for separate molecules joining together (free-energy of association). TBNs
focus on these two driving forces due to their wide applicability, as well as the
existence of systematic ways to amplify their strength relative to other driving
forces [9]. A further aspect of the model that makes it inclusive is that it does
not rely on geometric constraints to enforce correct behavior. Thus, in the TBN
model, we think of a monomer as simply being an unstructured collection of
binding sites.

Formally, a TBN is a triple (D, ∗, T) where

– D is a finite set, which we call the set of site types. These represent specific
binding motifs, with the prototypical example of DNA “domains”—sequences
that are designed to bind as a unit.

– ∗ : D → D is an involution (its own inverse) with no fixed point (a∗ 6= a
for all a). This way the complement of the site type a∗ is (a∗)∗ = a. The
prototypical example is that of DNA, where two sequences are complementary
if they are Watson-Crick complements of each other.

in prior work, but the TBN model gives us a way of precisely articulating the
question and proving the correctness of the construction [23].

In the remainder of the paper, we formally define and resolve questions about
TBNs such as these. In Sections 4 and 6 we focus on analyzing their computational
complexity. In Section 5 we develop a method to answer them via a reduction to
SAT. The tool we develop also handles the examples in this section and confirms
the answers we have discussed here.

4 SaturatedConfig

Stable configurations are of central interest, so we need to be able to identify
them. More generally, we ask what is the maximum number of separate polymers
achievable in a saturated configuration of a TBN, which we call S(T). Knowing
this quantity, we can determine if a given configuration is stable (does it have
S(T) polymers?). We will see in later sections that other questions about TBNs
that can be reduced to calculating S(T) as well.

Definition 1. (T , k) is in SaturatedConfig if some saturated configuration of the
TBN T has at least k polymers. S(T) is the greatest such k.

In this section, we prove that SaturatedConfig is NP-complete and even that S
is hard to approximate. To formalize our analysis, we establish the encoding of
a TBN as follows. First, the encoding of a monomer is a sequence of its sites
(arbitrarily ordered). Then the encoding of a TBN is a sequence of the encoding
of its monomers (also arbitrarily ordered).

Claim 1. SaturatedConfig is in NP.

Proof. Consider a TBN T and an integer k. Suppose T has a saturated con-
figuration γ with at least k polymers. Then γ is a certificate. Check that γ is
saturated by checking that every two unpaired sites are not complements. Check
that γ has k polymers by counting the connected components. ⊓⊔

To show hardness we reduce from the decision problem ExactCover, one of Karp’s
original NP-complete problems.

Definition 2. A set X of sets is in ExactCover if some subset of X partitions
U =

⋃

X. Such a subset is called an exact cover.

The reduction relies on a transformation from an instance X of ExactCover to a
TBN T(X), which Figure 4 illustrates. Let U =

⋃

X be the set of elements of ...,
and let B =

∑

X be the multiset of Then T(X) has three kinds of monomers:
px = x for each set x in X, pU = {s∗ : s ∈ U}, and pB = {s∗ : s ∈ B − U}. The
number of polymers in a stable configuration of T(X) depends on whether X is
a yes or no instance.

Claim 2.

S(T(X)) =

{

2 if X is in ExactCover

1 otherwise

Definition 3. A is a ρ factor approximation for f if f(x)/ρ ≤ A(x) ≤ f(x) for
all x.

A trivial n factor approximation algorithm for S simply returns the number 1.
This trivial algorithm turns out to be optimal.

Claim 4. No nδ factor approximation algorithm for S runs in time polynomial
in n for any δ < 1 unless P = NP, where n is the number of monomers.

Proof. To the contrary, suppose A is such an algorithm, and consider a set X
of m sets. Then Tj(X) has n = (m + 1)(j − 1) + 1 < 2mj monomers. So choose

j > (2m)
δ

1−δ . Raise both sides to 1−δ and rearrange to see that j > (2mj)δ > nδ.
If X is not in ExactCover, then S(Tj(X)) = 1. So

A(Tj(X)) ≤ S(Tj(X)) = 1.

If X is in ExactCover, then S(Tj(X)) = j. So

A(Tj(X)) ≥ S(Tj(X))/nδ = j/nδ > 1.

So X is in ExactCover if and only if A(Tj(X)) > 1. ⊓⊔

5 Computing SaturatedConfig

A hallmark property of an NP-complete decision problem is that some instances
will be hard to solve unless P = NP. However, there are still interesting instances
that can be solved efficiently. Since many real-world problems are NP-complete,
various approaches have been developed to perform well on interesting instances.
In this section, we apply such an approach. We encode the SaturatedConfig

problem into SAT, the Boolean Satisfiability problem, which allows a SAT solver
to find a solution that we can decode to obtain a saturated configuration.

5.1 The Boolean Satisfiability Problem

Definition 4. A formula φ in propositional logic is called satisfiable iff there
exists an assignment to the Boolean variables in φ such that the formula evaluates
to true. The Boolean Satisfiability problem asks whether a given formula φ is
satisfiable.

A SAT solver is a tool that determines whether a formula has a satisfying
assignment. In the last two decades, SAT solvers have become powerful enough
to efficiently solve interesting instances of hard problems. The approach has been
successful in areas such as hardware and software verification [6, 7, 13].

To use this approach to solve SaturatedConfig, we will translate a TBN T
and an integer k into a CNF formula φ such that satisfying assignments of φ
correspond to saturated configurations of T with at least k polymers. Recall that
a CNF (conjunctive normal form) formula is a conjunction of disjunctions, such
as (x ∨ ¬y) ∧ (x ∨ z) ∧ z.

5.2 Encoding saturated configurations

We construct a formula where satisfying assignments correspond to saturated
configurations of a TBN T . The formula uses a Boolean variable Pair(s, t) for
each pair of complementary sites s and t. Assigning Pair(s, t) true will mean that
s and t are paired. Otherwise they are unpaired. Note that pairing is symmetric,
so Pair(s, t) and Pair(t, s) are the same variable.

In order to encode a valid configuration, we add the constraint

≤1{Pair(s, t) : t ∈ C(s)}

to the formula for each site s, where C(s) is the sites in T complementary to
s. The direct encoding of ≤1 (read “at most one”) includes a binary clause
¬ Pair(s, t) ∨ ¬ Pair(s, u) for each two sites t and u in C(s). The number of such
clauses is quadratic in the size of C(s). Although there do exist encodings that
consist of only a linear number of binary clauses [20], due to the limited size of
C(s) in our test suite we found that the direct encoding works best.

Definition 5. A site type a of a TBN T is limiting iff a∗ occurs at least as
many times as a in T .

In our example Tex, b is the only limiting site type.

Claim 5. A configuration is saturated iff every limiting site is paired.

We omit the proof, but this fact allows us to easily encode saturation. To do
so, we add the constraint

∧

s∈L

≥1{Pair(s, t) : t ∈ C(s)},

to the formula where L is the set of limiting sites of T . Notice that each ≥1 (read
“at least one”) constraint is simply a clause.

5.3 Encoding polymers

To begin identifying polymers, we convert site pairing to monomer binding using
Boolean variables like Bind(p, q). For now, assigning Bind(p, q) true will mean
that monomers p and q are bound. Note that binding is also symmetric, so
Bind(p, q) and Bind(q, p) are the same variable. To convert pairing to binding,
we add the constraint

Pair(s, t) → Bind(p, q)

to the formula for each site s in a monomer p and each complementary site t in
a different monomer q.

We expand Bind(·, ·) to be transitive by adding the constraint

Bind(p, q) ∧ Bind(p, r) → Bind(q, r)

to the formula for every three distinct monomers p, q, r. The addition of
transitivity ensures that monomers p and q are part of the same polymer iff
Bind(p, q) is true.

5.4 Maximizing the number of polymers

The most involved part of the encoding is enforcing the configuration to have at
least k polymers. There are various ways to encode such a cardinality constraint,
and the quality of that encoding can make or break our entire approach. Several
techniques have been developed to automatically improve a low quality encod-
ing [10, 16]. However, it typically pays to manually optimize it. We implemented
several encodings, and describe here the one that resulted in the best performance,
which was inspired by the representative encoding [12].

Let p1, p2, . . . , pn be an arbitrary ordering of the n monomers of T . We call
a monomer p the representative of a polymer P iff every other monomer in P
follows p in the ordering. To determine the representatives, we add the constraint

Bind(p, q) → ¬ Rep(q).

to the formula for each monomer p that precedes each monomer q.

Now, we can use these Boolean variables to enforce that a configuration has
at least k polymers by adding

≥k{Rep(p) : p ∈ T }

to the formula. To effectively encode this cardinality constraint, we introduce
new Boolean variables Sum(i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ k, which will mean
that among p1, . . . , pi there are at least j representatives. The encoding, which
is a simplification of [20], is shown below and also illustrated in Figure 5.

¬ Sum(i, j) → ¬ Sum(i + 1, j + 1)

¬ Sum(i, j) ∧ Sum(i + 1, j) → Rep(pi+1)

¬ Sum(1, 2)

Sum(n, k).

Overall, the size of the formula we generate is bounded in terms of the number
n of sites in a TBN. O(n2) clauses of size O(n) encode a saturated configuration.
O(n3) clauses of size O(1) encode polymers, and O(nk) clauses of size O(1) check
for k polymers. This gives us a total of O(n3) clauses of size O(n) (since k ≤ n).

6 Stably free

We will want to compute more complicated properties of stable configurations
than just the number of polymers.

Definition 6. A monomer is free in a configuration if no other monomer binds
to it. A monomer can be free (can be stably free) in a TBN if it is free in some
saturated (stable) configuration.

Rep(1)

Sum(1, 2)

Rep(n)

Sum(n, k)

0

×

×

×

×

0

×

×

×

0

×

×

0

× 0 1

×

×

×

×

×

1

×

×

×

×

1

×

×

×

1

×

×

1

×1

0 1

1

Fig. 5. An illustration of the Sum(·, ·) variables (above) and the Rep(·) variables (below)
for a SaturatedConfig problem with n = 16 monomers and k = 6. Variables that are
assigned to false/true are shown as 0/1. The zeros propagate up diagonally, while the
ones propagate down diagonally. A 0,1 pair in a row (above) implies that the monomer
at the position of the 1 is a representative (below). The bold entries indicate the unit
clauses, while × indicates out redundant variables.

In a TBN that implements a computation, whether a certain monomer can
be stably free can be interpreted as a bit of output [9]. The accompanying
software package [1] shows two examples of AND gates from prior work that
work this way [9]. The designated output monomer can be stably free iff both
designated input monomers are present. Predicting such behavior is important
to understanding the computations TBNs implement.

Definition 7. (T , p) is in StablyFree if p can be stably free in T .

StablyFree seems harder than NP. For SaturatedConfig, a saturated configuration
with k polymers served as a certificate. For StablyFree, a stable configuration
with p free might seem to serve as a certificate. But checking that a configuration
is saturated is easy, while checking that it is stable seems hard. So we look to a
class larger than NP.

PNP is the class of problems decided by some deterministic polynomial-time
Turing machine with access to an oracle in NP. The Turing machine can alternate
between computing and querying its oracle as it chooses. If we instead require
the machine to make all of its queries in parallel as a single group, then we get
the class PNP

‖ [21].

Claim 6. StablyFree is in PNP
‖ .

Proof. Consider a TBN T and monomer p. Let Gk (r. Fk) mean that some
saturated configuration of T has k polymers (r. and has p free). Query Gk and
Fk for each k from 1 to the number of monomers in T in parallel. Then the
largest k that makes Gk true is S(T). And p can be stably free iff FS(T). ⊓⊔

6.1 Hardness

To show hardness, we reduce from a graph problem. Recall that I is an independent
set of a graph G if no two vertices in I are neighbors in G. I is maximal if no
independent set properly contains it. I is maximum if no independent set has
more vertices. For problems X and Y, we use the notation X ≤ Y to indicate that
X can be reduced to Y via a polynomial time many-one reduction.

Definition 8. (G, v) is in MaxIndSet(Not)Member if some maximum indepen-
dent set of the graph G (does not) contain the vertex v.

Claim 7. MaxIndSetMember ≤ StablyFree.

Proof. Consider an instance of MaxIndSetMember, that is, a graph G with n
vertices and a particular vertex m. Construct a TBN T with 1 + n monomers
as follows. Include a monomer p = E(G) consisting of the edges of G. Then for
each vertex v of G, include a monomer qv = {e∗ : v is incident to e ∈ E(G)}
consisting of e∗ for each edge e incident to v. Notice that the qv can bind with p

but not with each other, which makes p a sort of template.
Suppose G has an independent set I. Since the complement of I is a vertex

cover, binding qv to p for each v not in I yields a saturated configuration. It has
qv free for each v in I. Its number of polymers is the size of I plus one.

Conversely, suppose T has a saturated configuration γ. Then collecting each
vertex v where qv is bound to p yields a cover. The complement, each vertex v
where qv is free, constitutes an independent set. It contains v for any qv that is
free. Its size is the number of polymers in γ minus one.

So G has an independent set of size k containing m iff T has a saturated
configuration with k + 1 polymers and with qm free. ⊓⊔

We now connect MaxIndSetMember to MaxIndSetNotMember. First notice that,
for example, the graph consisting of a single edge between vertices u and v has
v in the maximum independent set {v} and not in the maximum independent
set {u}. So the two problems are not complements. We connect them in another
way.

Claim 8. MaxIndSetNotMember ≤ MaxIndSetMember.

Proof (of Claim 8). Consider a graph G and a target vertex m. Form G′ by
first splitting each vertex. This means replace each vertex u with u̇ and ü and
replace each edge u−v with u̇−v̇, ü−v̈, u̇−v̈, ü−v̇. This way u̇ and ü have the
same neighbors. Then connect a new vertex m′ to ṁ and m̈. We will show that
(G, m) is in MaxIndSetNotMember iff (G′, m′) is in MaxIndSetMember.

Let [H] denote the maximal independent sets of the graph H. We claim that
the mapping f : [G] → [G′] is a bijection when defined by

f(I) =

{

İ ∪ Ï if m ∈ I

İ ∪ Ï ∪ {m′} else.

To see that f is onto, consider I ′ in [G′]. If u̇ is in I ′, then by independence, no
neighbor of u̇ is in I ′. By construction, these are also the neighbors of ü. So by
maximality, ü is in I ′. So I ′ \ {m′} = İ ∪ Ï for some I. This way m is in I iff
ṁ and m̈ are in I ′. By independence and maximality, this is iff m′ is not in I ′.
So I ′ = f(I). If we could add some u to I, then we could add u̇ to I ′, but I ′ is
maximal. So I is in [G].

Now notice that |f(I)| is 2 |I| or 2 |I| + 1. So |I| < |J | if and only if |f(I)| <
|f(J)|. So I is a maximum independent set if and only if f(I) is. And m is not
in I if and only if m′ is in f(I). ⊓⊔

Now MaxIndSetNotMember is the same problem as MinVertexCoverMember, and
MinVertexCoverMember has been shown to be PNP

‖ -hard [21]. So overall, StablyFree

is PNP
‖ -complete.
Many other interesting properties of stable configurations are probably also

PNP
‖ -complete to decide. In particular, a monomer being stably free can be used

as a signal to control the stable configurations of another TBN. The problem
of deciding a property that can be controlled in this way will be as hard as
StablyFree, which we would see by reducing from StablyFree. For instance, prior
work introduces a weak-to-strong module U [9]. It can cause a monomer p to be
free in every stable configuration of T ∪U iff p is free in some stable configuration
of T .

6.2 Computing StablyFree

To decide more complex properties of stable configurations, we can modify the
SaturatedConfig solver by adding appropriate constraints to have it search for
saturated configurations with that property. But for StablyFree, we can use the
SaturatedConfig solver as a black box.

Definition 9. |γ| is the number of polymers in a configuration γ.

Claim 9. For a monomer p in a TBN T , the following are equivalent.

1. p can be stably free in T .
2. p can be free in T and S(T \ {p}) ≥ S(T) − 1.

Proof. For convenience, let T ′ = T \ {p}.
Suppose p is free in a stable configuration γ of T . Then p can be free in T .

Also, form the configuration γ′ of T ′ by removing p from γ. Since p is free, γ′

remains saturated. So S(T ′) ≥ |γ′| = |γ| − 1 = S(T) − 1.
Conversely, suppose p can be free, but not stably free, in T , and consider a

stable cofiguration γ′ of T ′. Form the configuration γ of T by adding p to γ′ as
a free monomer. Since γ remains saturated, γ is not stable. So |γ| < S(T), so
S(T ′) = |γ′| = |γ| − 1 < S(T) − 1, and so S(T ′) 6≥ S(T) − 1. ⊓⊔

Note that p can be free in T if none of its sites are limiting, a property that is
easy to check.

7 Conclusion

The TBN model brings the complementary perspective of thermodynamic equi-
librium to diverse models of chemical computation. In applying it, we discover
two computational problems, SaturatedConfig and StablyFree, at the core of any
questions about the behavior of TBNs. We prove tight bounds on their hardness,
and present algorithms and implementations for solvers effective in many cases
in practice.

Restricting TBNs in certain ways could be a useful design strategy for engi-
neering systems that are powerful yet easy to verify. There may be interesting
classes of TBNs for which the problems we consider are provably easy. Such
classes might arise from imposing a specific global or local property on the TBN.

Alternatively, rather than restricting the classes of TBNs, understanding the
nature of composition of TBN modules could achieve complex yet easy to verify
behavior. However, it is not clear in general how the stable configurations of
T1 ∪T2 relate to those of T1 and T2. It appears hard to “isolate” distinct functional
parts in TBNs because stability is a global property.

Rather than ensuring that only desired configurations are stable, in practice
we may need to consider unstable configurations (in particular, “close to stable”)
and limit how many of them are undesirable. If there are too many they may end
up occurring with non-negligible probability. To avoid this we need to solve a
counting problem like how many configurations with a given level of stability have
a given bad property. How hard is this counting problem exactly? For instance,
is it in #P?

Computing with a TBN as presented involves only looking at the existence of
certain stable configurations. Instead, we can imagine unifying this thermody-
namic equilibrium perspective with a kinetic perspective entirely within the TBN
model—by asking about which configurations can be reached without traversing
thermodynamically unfavorable configurations [3]. The computational difficulty
of this problem, and what algorithms solve it, remain to be answered.

Acknowledgements. KB and DS were supported by NSF grants CCF-1618895
and CCF-1652824. We thank Lakshmi Prakash for helpful discussions, and for
developing the Mathematica interface to the SAT solver.

References

1. https://bitbucket.org/ksbtex/tbnsolverm/.

2. Robert D Barish, Rebecca Schulman, Paul WK Rothemund, and Erik Winfree. An
information-bearing seed for nucleating algorithmic self-assembly. Proceedings of
the National Academy of Sciences, 106(15):6054–6059, 2009.

3. Keenan Breik, Cameron Chalk, David Doty, David Haley, and David Soloveichik.
Programming substrate-independent kinetic barriers with thermodynamic binding
networks. In Proceedings of the 16th International Conference on Computational
Methods in Systems Biology (CMSB), 2018.

4. Kevin M Cherry and Lulu Qian. Scaling up molecular pattern recognition with dna-
based winner-take-all neural networks. Nature, pages 10.1038/s41586–018–0289–6,
2018.

5. Barry A Cipra. The ising model is NP-complete. SIAM News, 33(6):1–3, 2000.
6. Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. Formal Methods in System Design,
19(1):7–34, 2001.

7. Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando
Tacchella, and Moshe Y. Vardi. Benefits of bounded model checking at an industrial
setting. In CAV, pages 436–453. Springer, 2001.

8. David Doty. Theory of algorithmic self-assembly. Communications of the ACM,
55(12):78–88, 2012.

9. David Doty, Trent A. Rogers, David Soloveichik, Chris Thachuk, and Damien Woods.
Thermodynamic binding networks. In Robert Brijder and Lulu Qian, editors, DNA
Computing and Molecular Programming: 23rd International Conference, pages
249–266. Springer, 2017.

10. Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and
clause elimination. In SAT 2005, volume 3569 of LNCS, pages 61–75. Springer,
2005.

11. William E Hart and Sorin Istrail. Robust proofs of NP-hardness for protein folding:
general lattices and energy potentials. Journal of Computational Biology, 4(1):1–22,
1997.

12. Marijn Heule and Stefan Szeider. A SAT approach to clique-width. ACM Trans.
Comput. Log., 16(3):24:1–24:27, 2015.

13. Franjo Ivančić, Zijiang Yang, Malay K. Ganai, Aarti Gupta, and Pranav Ashar.
Efficient SAT-based bounded model checking for software verification. Theoretical
Computer Science, 404(3):256–274, 2008.

14. Natasha Jonoska, Gregory L McColm, and Ana Staninska. On stoichiometry for
the assembly of flexible tile dna complexes. Natural Computing, 10(3):1121–1141,
2011.

15. Rune B Lyngsø and Christian NS Pedersen. RNA pseudoknot prediction in energy-
based models. Journal of computational biology, 7(3-4):409–427, 2000.

16. Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated reencoding of
boolean formulas. In Proceedings of Haifa Verification Conference 2012, 2012.

17. Luvena L Ong, Nikita Hanikel, Omar K Yaghi, Casey Grun, Maximilian T Strauss,
Patrick Bron, Josephine Lai-Kee-Him, Florian Schueder, Bei Wang, Pengfei Wang,
et al. Programmable self-assembly of three-dimensional nanostructures from 10,000
unique components. Nature, 552(7683):72, 2017.

18. Andrew Phillips and Luca Cardelli. A programming language for composable DNA
circuits. Journal of the Royal Society Interface, 6(Suppl 4):S419–S436, 2009.

19. Rebecca Schulman and Erik Winfree. Programmable control of nucleation for
algorithmic self-assembly. SIAM Journal on Computing, 39(4):1581–1616, 2009.

20. Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints.
In Principles and Practice of Constraint Programming, pages 827–831, 2005.

21. Holger Spakowski. Completeness for parallel access to NP and counting class
separations. PhD thesis, 2005.

22. Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik.
Enzyme-free nucleic acid dynamical systems. Science, 358, 2017.

23. Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA strand dis-
placement systems. In Proceedings of DNA Computing and Molecular Programming
21, pages 133–153. Springer, 2015.

24. David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-
displacement reactions. Nature chemistry, 3(2):103–113, 2011.

