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Abstract

We prove a conjecture by Van Dam & Sotirov on the smallest eigen-
value of (distance-j) Hamming graphs and a conjecture by Karloff on the
smallest eigenvalue of (distance-j) Johnson graphs. More generally, we
study the smallest eigenvalue and the second largest eigenvalue in abso-
lute value of the graphs of the relations of classical P- and @Q-polynomial
association schemes.

1 Introduction

In this paper we study the smallest eigenvalue as well as the second largest
one in absolute value of the adjacency matrix of several important families of
graphs, all belonging to the classical P- and Q-polynomial association schemes
[2, Chapter 6].

The most well-known example of a P-polynomial association scheme is the
Hamming scheme. We investigate the eigenvalues of the graphs that have the
vectors in IFZ as vertices and two vertices are adjacent if they have Hamming
distance j. The smallest eigenvalues are important for determining the max-
cut of certain graphs in the Hamming scheme. These graphs provide examples
where the performance ratio of the Goemans-Williamson algorithm is tight [1].
The smallest eigenvalues are also used for determining the max-k-cut [6] and
the chromatic number of the graphs in the Hamming scheme [6].

The second important scheme belonging to the family of P-polynomial as-
sociation schemes is the Johnson scheme. Here the vertices are the d-subsets
of {1,2,...,n}. We investigate the eigenvalues of the graph where two d-sets
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are adjacent if they differ in exactly j elements. As for the Hamming scheme,
these graphs provide examples for which the performance ratio of the Goemans-
Williamson algorithm is tight and their smallest eigenvalues are central for de-
termining their max-cuts [20]. These graphs are also important for investigat-
ing subsets with exactly one forbidden intersection, a variation of the classical
Erdds-Ko-Rado theorem due to Frankl and Fiiredi [18].

The other graphs under investigation are Grassmann graphs, dual polar
graphs, and various forms graphs, most prominently the bilinear forms graphs.
Again, the smallest eigenvalues can be used to investigate the max-cuts and
intersecting families in these graphs. The P-polynomial graphs obtain their
importance from various applications. For example, Grassmann graphs are of
interest due to their applications in network coding theory [26] and their role in
the recent proof of the 2-to-2-games conjecture [21].

In the following we give a short summary of our main results on the specific
families.

1.1 Hamming graphs

Let ¢ > 2,d > 1 be integers. Let @ be a set of size ¢. The Hamming scheme
H(d, q) is the association scheme with vertex set Q%, and as relation the Ham-
ming distance. The d + 1 relation graphs H(d,q,j), where 0 < j < d, have
vertex set Q?, and two vectors of length d are adjacent when they differ in j
places.

The eigenmatrix P of H(d, ¢) has entries P;; = K;(i), where

K;(i) = hio(l)h(q -y (2) (yd—le)

The eigenvalues of the graph H(d,q,j) are the numbers in column j of P, so
are the numbers K;(i), 0 < ¢ < d. The graph H(d, g, j) is regular of degree
K;(0)=(¢g—1) (?), and this is the largest eigenvalue. Motivated by problems
in semidefinite programming related to the max-cut of a graph, Van Dam &
Sotirov [6] conjectured

Conjecture 1.1. Letq>2 and j > d— % where j is even when q = 2. Then
the smallest eigenvalue of H(d,q,j) is K;(1).

Alon & Sudakov [1] proved this for ¢ = 2 and d large and j/d fixed. Dumer
& Kapralova [13, Cor. 10], proved this for ¢ = 2 and all d. Here we settle the
full conjecture.

In most cases K;(1) is not only the smallest eigenvalue, but also the second

largest eigenvalue in absolute value. The only exception is the case d = 4, ¢ = 3:
the P-matrix of H(4,3) is

8 24 32 16
5 6 —4 -8
2 -3 -4 4
-1 -3 5 =2
-4 6 -4 1

Y
I
— e e

and the eigenvalues of H(4,3,3) are —4, 5 and 32.



The binary case was already settled by Dumer & Kapralova. We give a short
and self-contained proof.

Theorem 1.2. ([13, Cor. 10]) Let ¢ = 2.
(1) If j # d/2, then |K;(i)| < |K;(1)| for alli, 1 <i<d-—1.
(11) If j = d/2, then K;(1) = 0 and |K;(i)| < |K;(2)| for alli, 1 <i<d-1.

Corollary 1.3. Let ¢ =2 and j > (d+1)/2.
(1) One has K;(1) < K;(i) for alli, 0 <i<d-—1.
(11) One has K;(1) < K;(d) if and only if j is even or j = d.

The nonbinary case is settled here.

Theorem 1.4. Let g >3 and d — &1 < j <d.
(1) One has K;(1) < K;(i) for all i, 0 <i <d.
(i1) One has |K;(1)| < |K;(1)| for all i > 1, unless (¢,d,i,5) = (3,4,3,3).

1.2 Johnson graphs

The Johnson graphs J(n,d) are the graphs with as vertices the d-subsets of
a fixed n-set, adjacent when they meet in a (d — 1)-set. W.l.o.g. we assume
n > 2d (since J(n,d) is isomorphic to J(n,n — d)), and then these graphs are

distance-regular of diameter d. The eigenmatrix P has entries P;; = E;(i),
where _
- (i) [(d—h\(n—d—i+h
E (i) = -1 i—h .
=200

For 0 < j < d, the distance-j graphs J(n,d, j) of the Johnson graph J(n, d)
are the graphs with the same vertex set as J(n, d), where two vertices are adja-
cent when they have distance j in J(n,d), that is, when they meet in a (d — j)-
set. For j = d this graph is known as the Kneser graph K(n,d). Motivated
by problems in semidefinite programming related to the max-cut of a graph,
Karloff [20] conjectured in 1999 the following:

Conjecture 1.5. Let n = 2d and j > d/2. Then the smallest eigenvalue of
J(n,d,j) is E;(1).

Here we prove this conjecture (Corollary 3.11), and more generally determine
precisely in which cases E;(1) is the smallest eigenvalue of J(n,d, j) (Theorem
3.10).

1.3 Graphs with classical parameters

For general information on distance-regular graphs, see [2]. In [2, §6.1], graphs
with classical parameters (d,b,«, ) are defined as distance regular graphs of
diameter d with parameters given by certain expressions in d, b, o, 8 (see Section
4 for details).

The concept of graphs with classical parameters unifies a number of fami-
lies of distance-regular graphs, such as the Hamming graphs, Johnson graphs,
Grassmann graphs, dual polar graphs, bilinear forms graphs, etc.



qg—1 g —1 bilinear forms graph H,(d, e)
2] ¢ ¢*—1 ¢* 2711 alternating forms graphs A,(n)
—q¢ —q—1 —(—¢)*—1 Hermitian forms graphs Q,(d)

]

[n

d b o} B family

d 1 0 qg—1 Hamming graphs H(d, q)

d 1 1 n—d Johnson graphs J(n,d), n > 2d

d q q q[”{d] Grassmann graphs Gy(n,d), n > 2d

d q 0 q° dual polar graphs C,(d, e), e = 0, %, 1, %, 2
d q

/

d

Below we give the asymptotic behavior of the eigenmatrix P of these graphs
when d, b, « are fixed and § tends to infinity (Theorem 4.5). We also give a
simple explicit expression for the eigenvalues Fy;, that perhaps has not been
noticed before (Proposition 4.1).

Subsequently, we investigate each of the individual families, and determine
smallest and second largest eigenvalues and/or other properties of the eigen-
values. Main results are Theorem 5.8 for the Grassmann graphs, Corollary 6.5
for the dual polar graphs, Theorem 7.5 for the bilinear forms graphs, Theorem
8.3 for the alternating forms graphs, and Theorem 9.5 for the Hermitian forms
graphs.

2 The Hamming case
We prove the stated results for the Hamming graphs.

2.1 Identities

We collect some (well-known) identities used in the sequel.
The defining equation gives K;(i) as a polynomial in 7 of degree j with
leading coefficient (—q)7/j!. We give three expressions.

S
ot () (57))
PR

(see Delsarte [7, p. 39], and [8, (15)]).
One has the symmetry

K,/ () a1 = K:(5)/ () (a 1)

In particular, K;(i) and K;(j) have the same sign.
There is also the symmetry

K;(i) =

Il
M- 1 I

>
I

Kqj(i) = (=1)" /(g = 1)V K;(d — ).

Proposition 2.1. Leti,j > 1. Then
(q—=1)(d—=i)K;(i+1) = (i + (¢ —1)(d — i) — qj) K; (1) +iK;(i — 1) = 0.



2.2 Proofs

The occurrence of d— 2=1 in Conjecture 1.1 is explained by the following propo-
sition. Where it refers to K;(1) or K;(2), it is assumed that d > 1 or d > 2.

Proposition 2.2. Let ¢ > 2 and 0 < j < d.
(i) K;(1) <0 if and only if j > d — 2.
(11) K;(2) = K;(1) if and only if j =0 or j =d — %.
(it) K;(2) > K;(1) if and only if j > d — 2.
(i) K;j(2) = =5 K;(1) if and only if j = (d —1)(1 = ) or j = d.
(i) Let d — =1 < j < d. Then |K;(2)| < |K;(1)].

Proof. (i) Since K;(i) has the same sign as K;(j), this follows from K;(j) =
(¢—1)d—qj.

(if) Since K;(i) = (§)(q — 1)77'K;(j)/({), the claim says that K(j) =
1(g—1)(d—1)K,(j) precisely for the two specified values of j. But this condition
is quadratic in j, and is up to a constant factor j(j — d + %) =0.

(ii)" Clear from (ii), since K2(j) has positive leading coefficient.

(iii) The condition is equivalent to K»(j) = —3(d — 1)K1(j). Again it is
quadratic in j. Up to a constant factor it is (j — d)(j — (d — 1)(1 — %)) =0.

(iv) We want to show that [K2(j)| < 3(g—1)(d—1)|K1(j)|. Since K1(j) < 0
tlhis is the pair of conditions K5(j) — (g —1)(d—1)K1(j) > 0 and —K>(j) —
3(a = 1(d=1)K1(j) = 0.

The former is up to a positive constant factor equivalent to j(j fdJr%l) >0

For the latter it suffices to see that —K»(j) — 3(d — 1)K;(j) > 0. Up to a
positive constant factor this is equivalent to (j —d)(j — (d—1)(1 — %)) <0. O
If j = d — %=1, then Ky(j) = —1, and K;(1) = —4(9) (g — 1)7~*,

In order to prove Theorems 1.2 and 1.4, we need three lemmas.
Lemma 2.3. [K;(i)] < (¢ —1)*7(}).
Proof. Since (JCI:,ZL) = 0 unless j —h < d — ¢, we have
|KJ(Z)| = | Zh(*l)h(q - 1)j7h(;11) (j:;zlﬂ < Zh2i+j—d(q - 1)j7h(;11) (j:;zl)

< (=D, () (5 = @= 0 (). 0

Lemma 2.4. Let 1 <i<d and d — % <j<d. Ifqji <2(q—1)(d—1i), then
|K; (i + 1) < max(|K; (i — 1)[, [K;(i)]).

Proof. Apply Proposition 2.1. Put a = (¢ — 1)(d — ¢). One has aK,;(i + 1) —
(t—qi+a)K;(@)+iK;i—1)=0. If |K;(i —1)| < M and |K,(i)| < M, then
a|K;(i+1)| <|i—qj+a|M+iM, and the conclusion follows if i+|i —gj+a| < a.
Now gj —i—a > (¢ —2)i > 0, so we need ¢j < 2a, and that was one of the
hypotheses. [l

For ¢ = 2 the scheme is imprimitive, and the graphs H(d, ¢, j) are bipartite
for odd j, and disconnected for even j. One has the additional symmetry K;(d—

i) = (=) K (4).

Lemma 2.5. Let j < d/2 and 0 <i <d. Then (1-7) <3 (5,)(5) < (471



We prove Lemma 2.5 in the proof of Theorem 1.2.

Theorem 1.2 ([13, Cor. 10]) Let ¢ = 2.
(1) If j # d/2, then |K;(i)| < |K;(1)| for alli, 1 <i<d-—1.
(it) If j = d/2, then K;(1) = 0 and |K;(i)| < |K;(2)| for alli, 1 <i<d—1.

Proof. (i) By the symmetry Kq_;(i) = (—1)'K;(i) we may suppose j < d/2.
We prove Lemma 2.5 and part (i) of the theorem simultaneously. Since

N hi\ (d—i\ _ iN(d—i d _ d—1 d—1
K;(i) =>2,(-1) (h) (jfh) =2 Zg (Qg) (j72g) - (j)’ and K;(1) = ( j ) - (jfl)’
both statements are equivalent for all 4.

Prove the statement of the lemma by induction of d. The conclusion follows
by adding the inequalities for (d — 1,7 — 1) and (d — 1, ), using that (:fl) =

(P ) + ("), except possibly when i =d —1or j = (d—1)/2. Ifi =d — 1,

m—1 m
the claim is that (;l:i) < (2?;/%) < (dgl), which is true. Instead of treating
j = (d—1)/2 we use symmetry and take j = (d+1)/2 and prove the statement
in (i) by induction on i, using Proposition 2.2 (iv) and Lemma 2.4. Here we
may suppose 2 < i < d/2 by the symmetry K;(d —i) = (—1)7 K, (i).
(ii) By symmetry, K;(i) = 0 when j = d/2 and ¢ is odd. The 3-term
recurrence reduces to (d—i)K;(i+1)+iK;(i—1) = 0 for odd 4, so that K;(2h) =

(—1)h(dc/12) (d}/f)/(;il) and |K;(2h)| decreases with increasing 2h < d/2. O

Corollary 1.3 Let g =2 and j > (d+1)/2.
(1) One has K;(1) < K;(i) for alli, 0 <i<d-—1.
(11) One has K;(1) < K;(d) if and only if j is even or j = d.

Proof. Since K;(1) < 0, part (i) follows from part (i) of the theorem, and
part (ii) from K;(d) = (—1)7K;(0). O

Next, consider the nonbinary case.

Theorem 1.4 Let ¢ > 3 and d — % <j<d.
(1) One has K;(1) < K;(i) for alli, 0 <i <d.
(it) One has |K;(i)| < |K;(1)| for all i > 1, unless (¢,d,i,7) = (3,4,3,3).

If (¢, d, j) = (3,4,3) then K;(0) = 32, K;(i) = —4 for i = 1,2,4, and K,(3) = 5.

Proof. Since K;(1) < 0 (and K;(0) is the largest eigenvalue), part (i) follows
from part (ii). The case ¢ = 2 was handled in Proposition 2.2, so we may assume
i>3.

For j = d one has K;(i) = (—1)"(g — 1)4~%, and the statement is true.

For j = d — 1 one has K;(i) = (—=1)""*(¢ — 1)4"1(¢i — d) and d > ¢ + 1.
To show the claim it suffices to show that ¢i —d < (¢ — 1)*"1(d — q) (%), and
this follows from ¢(i — 1) — 1 < (¢ — 1)*~1, unless (q,4) = (3,3), in which case
(%) still holds, unless d = 4.

So, we may assume d — % < j < d—2. This implies that 3 < ¢ < (d—1)/2.

If ¢ < 2(q—1)(d—i+1) then we can apply Lemma 2.4 (and induction on )
to conclude that |K; ()| < max(|K;(1)],|K;(2)|), and we are done. So, assume
qj >2(qg—1)(d—i+1).

One has K;(1) = (¢—1)77! (?) (¢g—1— %), where the last factor is negative.
From Lemma 2.3 we see that |K;(i)| < |K;(1)| when d < (¢ — 1)"7-471(gj —
(q—1)d).



Us1ngq]f(q71)d>1anddfz+1<2(q 1) jand]>d dglzgd
and ¢ > 3 we see that it suffices to have d® < 2%, so d > 30 suffices. The finitely
many d with d < 30 can be checked separately. [l

2.3 Large q

Proposition 2.6. For fized d, let q be sufficiently large. Then K;(i) is positive
fori+j <d, and has sign (—1)"*7=% fori+j > d. For each j > 0, the smallest
eigenvalue of H(d,q,7) is K;j(d —j + 1).

Proof. We have K;(i) = %:0(—1)h(q —1)7=h(}) (]d:,z) When ¢ tends to
infinity, and d, j are fixed, this sum is dominated by its lﬁrst nonzero term. So
K;(i)~ (¢ —1) (d Z) if i +j <d, and K;(i) =~ (=1)7+=4(q — 1)d_1(j+;_d) if
145 >d. O

How large is ‘sufficiently large’? The value K;(d — j + 1) is the unique
smallest eigenvalue of H(d, q,7) for all j when g > go(d).

d|2345678 9 10 12 14 16 18 20 30 40 50 60 100
q0|23457912 15 18 26 35 45 57 70 156 277 433 623 1730

Lemma 2.7. Suppose ¢ > +d*> +1. Then
(i) K;(i) >0 fori<d-—j,
(ii) K;(d—j+1) <0,
(iii) |K;(0)] < |K;(d—j+1)| fori>d—j+1.

Proof. If ¢ > 1d? + 1, then the terms (g — 1)j’h(2) (]d Z) decrease monotoni-
cally when h increases, so that the sign of K;() is that of the first nonzero term
and the difference between K (i) and the first nonzero term is smaller than the
next term.

For 2 < e < j we have _
[Kj(d—j+e) < (g—1)7¢(T77%) 4+ (¢ — 1)7=*1(“F]7°) ( — e) and
[Kj(d—j+1)|>(g—=1) 7 (d—j+1) = (¢—1)2("§)(j — 1), so that
[Kj(d—j+e)l/(g—1) " < (I (g~ 1+ EH( —e) < 3a(7F)
and |K;(d —j +1)[ > 1q(q —1)772(d — j +1). So, it suffices to see
(77%¢) < 3(g—1)*"Y(d — j +1). This holds for e > 3, and for e = 2, j > 3,
and for j = e = 2 we can drop the factor %, and the conclusion holds. O

2.4 Coincidences

A general matrix A in the Bose-Mesner algebra A of a d-class association scheme
(see [2, Chapter 2] for a definition) will have d 4+ 1 distinct eigenvalues, and
generate A, in the sense that each element of A is a polynomial of degree at
most d in A. Cases where some relation matrix A; has fewer eigenvalues (and
hence generates a proper subalgebra) are of interest.

Look at the Hamming scheme. For ¢ = 2, the main expected coincidences
between the P;; = K(¢) for fixed d and j are given in the following lemma.

Lemma 2.8. Let g = 2.
(1) If j is even, then Pjj = Py_; ;.
(11) If d = 2j, then P;; =0 for all odd i.



(Z’LZ) Ifd = 2] — 1, then Pghflﬁj = Pghﬁj fO’f’ 1 S h S j —1.
(iv) If j = d, then Pij = (—1) for all i.

Proof. We only have to show (iii), and this follows from Proposition 2.2 (ii),
and the 3-term recurrence given in Proposition (2.1). O

If K;(i) = 0, then also K;(d—i) = 0 and we have a further coincidence (when
j is odd and i # d/2). Integral zeros of Krawtchouk polynomials play a role
e.g. in the study of the existence of perfect codes or the invertibility of Radon
transforms, and have been studied by many authors, cf. [4, 12, 15, 16, 22, 30, 31].
For j = 1,2, 3 there are infinite families. For fixed j > 4 there are zeros only for
finitely many d. Recall that K (i) = 0 if and only if K;(j) = 0.

Lemma 2.9. ([4, Th. 4.6] and [12, Ex. 10]) Let ¢ =2, i < d/2, j < d/2.

(i) K1(2) = 0 if and only if d = 2i.

(ii) K2(i) =0 if and only if i = (Z), d = h? for some integral h > 3.

(iii) K3(i) = 0 if and only if i = h(3h £1)/2, d = 3h> + 3h + 2 £ (h + 3)
for some integral h > 2.

(iv) Kon(4h — 1) = 0 if d = 8h + 1.

The family given last has j = (d —3)/2. There are also infinite families with
j=(d—1t)/2for t =4,5,6,8 ([15]).

For arbitrary q there are fewer obvious coincidences.

Lemma 2.10. Let g > 2.
(i) If j =0, then P;; =1 for all i.
(i) If j = 2, then Pyj = Py if and only if h+i=2(d —1)(1 — 7) + 1.

Proof. (i) The matrix Ag = I only has the single eigenvalue 1.
(ii) Note that K2(7) is quadratic in 4.
(iii) This is what Proposition 2.2 (ii) says. O

We look for cases where some A; has fewer distinct eigenvalues than expected
(given the above lemmas), or just has few distinct eigenvalues. Below we list
cases where H(d, q,j) has precisely n distinct eigenvalues, while d + 1 > n, for
n=3,4,5,6.

Conjecture 2.11. If H(d,q,j) is connected, it has more than d/2 distinct
eigenvalues.

2.4.1 Three distinct eigenvalues

If H(d, q,7) has three distinct eigenvalues, it is strongly regular, or (in case ¢ = 2
and j even) it is the disjoint union of two isomorphic connected components,
both strongly regular.

For example, the P-matrix of H(4,3) was given above,

8 24 32 16
) 6 —4 =8
2 -3 -4 4
-1 -3 5 =2
-4 6 -4 1

Y
I
— e e



and H(4,3,3) is strongly regular with parameters (v, k, A\, u) = (81,32,13,12)
and spectrum 32! 532 (—4)18.
For H(7,2) one gets

T 21 3 35 21 7 1
5 9 5 -5 -9 -5 -1
3 1 -5 -5 1 3 1
1 -3 -3 3 3 -1 -1
-1 -3 3 3 -3 -1 1
-3 1 5 -5 -1 3 -1
-5 9 -5 -5 9 -5 1
1 -7 21 -3 3 =21 7 -1

—_ = s

and the graph H(7,2,4) has two connected components, both isomorphic to
the graph A on the 64 binary vectors of length 7 and even weight, adjacent
when they differ in 4 places. The graph A is strongly regular with parameters
(v, k, A\, ) = (64, 35,18, 20) and spectrum 35 335 (—5)28.

Cases with three eigenvalues (the connected graphs among these are strongly
regular—we give the standard parameters (v, k, A, p)):

7 comment

2 copies of 4K,

2 copies of the Clebsch graph

2 copies of the complement of the Clebsch graph
2 copies of VO™ (6,2)

(81,24,9,6)

(81,32,13,12): VO™ (4,3)

(64,27,10,12): VO~ (6,2)

W | Ot Ot =
W W NN N|R
DWW N = NN

More generally, if we take the Hamming scheme H(d,q) with ¢ = 4, and
call two distinct vertices adjacent if their distance is even, we obtain a strongly
regular graph (as was observed in [19, Case ITI]), namely the graph VO*(2d, 2),
where the sign is (—1)?. Indeed, the weight of a quaternary digit is given by
the (elliptic) binary quadratic form x% + z1x + 23. For d = 3 this graph is
H(3,4,2).

2.4.2 Four/five/six distinct eigenvalues

In Table 1 below we list further cases in which H(d, ¢, 7) has fewer than d + 1
distinct eigenvalues.
For example, the eigenmatrix of H(7,3) is

1 14 84 280 560 672 448 128
1 11 48 100 80 —48 -—128 -—64
1 8 21 10 —40 —48 16 32
p_ 1 5 3 =17 -16 24 16 —16
1 2 -6 =8 17 6 -20 8
1 -1 -6 10 5 —21 16 —4
1 -4 3 10 —-25 24 —-11 2
1 -7 21 -3 35 =21 7 -1

and we see coincidences in columns 2, 3, 5, 6.



d ¢ J comment
6 2 3 1.2.8 (ii) d q j  comment
8 2 2,6 L2.8 (i) T2 3 Pi3=Ps3
9 2 2468 L2.8 (i) 9 2 5 L2.8 (iii)
10 2 4 L2.8 (i) 10 2 26 L28(i)
Poyy=P3y 11 2 210 L238 (i)
d ¢ j comment 10 2 8  L2.8(i) 12 2 4 128 (i)
5 2 3 L2.8 (i) Pss = Fus Pas = Pos
o 5 o4 los o 1 2 4 L2.8 (i) 12 2 8 L2.8 (i)
72 26 128 (i) Pas = Pus Pas = Fos
8 9 4 Ios 0,6 1 2 8  L2.8(i) 16 2 8 L2.8 (i),(ii)
0 2 6 los (1)7(111) Psg=Psg 19 2 10 L2.8 (i),(iii)
e 12 2 6 L2.8(i),31) 7 3 3  P3 = Ps3 = Ps3
5 3 3 ]P;IS = 543 15 2 8 128(),Gi) 7 3 6 Pag= Py = Psg
— L;310 (115)3 3 2  L[210() 7 4 2 L2.10 (ii)
10 (u 3 5  L210 (i) 7 4 4 Py =P
4 6 2 L210 (11) P35 — P65 P54 — P74
. Pss =Pr5 6 5 3  Py3 = Ps3
Four eigenvalues 5 4 3 Py3=Ps3 6 5 5 1210 (iii)
5 4 4 L1210 (G 7 6 2 1.2.10 (i)
6 b5 2 L210(Gi) 6 10 2 L2.10 (i)
5 6 3 P23 = P53 6 10 3 P43 = P63
5 8 2 L2.10 (i)

Six eigenvalues
Five eigenvalues

Table 1: Cases where H(d, g, j) has fewer than d + 1 distinct eigenvalues

3 The Johnson case

The eigenvalues of J(n,d,j) are P;; = E;(i) (0 < 4,5 < d). We give three
expressions for the F;(4):

(i) = };(—W WG
N O D
e ()5

(see Delsarte [7, p. 48], and Karloff [20, Theorem 2.1]).

3.1 Identities

Using the second of the expressions given above for E; (i) we find the eigenvalues
of the Kneser graph.

Proposition 3.1. (Lovész [23]) The eigenvalues of the Kneser graph are Piq =
(D757 = (%)

Proof. We use that ("Zh) =(-Dh(" _1) and >, (.%,) (2) = (“‘CH)) and find
Pig =3, (=D () (70 = (G104, (4E) T

= (DT = 0T M



Let us write E]"d(z) instead of F;(i) when it is necessary to make the de-
pendence on n and d explicit. Now we have the following induction.

Proposition 3.2. Leti,j > 1. Then E">"!(i) = ElY(i— 1) — Bl (i — 1).

Proof. Using E]"d(z) = S, (=D"(}) (j:;z) (";d,:l) one sees that the claim
reduces to (;) = (1711) + (;;11) O

There is a symmetry if n = 2d.

Proposition 3.3. If n = 2d, then Eq_;(i) = (—=1)'E;(i). In particular, if
moreover j = d/2, i odd, then E;(i) =0. O

3.2 Coincidences

The association scheme on the set X of partitions of a 2k-set into two k-sets has
| 1k+1] relations R; (mutual intersection sizes 0+k, 1+(k—1), ..., [3k]+[3k]).
If one picks a fixed element in the 2k-set, one sees that (X, R;) is isomorphic to
the graph on the (k — 1)-subsets of a (2k — 1)-set, adjacent when they meet in
either 7 — 1 or k — 7 — 1 points. Thus, in the Johnson scheme with n = 2d + 1,
the matrices A; + Aq—;+1 have not more than (d + 3)/2 distinct eigenvalues.

Proposition 3.4. Letn =2d+1 and j = (d+1)/2 and 0 < t < d/2. Then
EMY2t—1) = E(2t) = Er 2t - 1). O

3.3 Negative Ej(1)
Let us write e := n — d to make our formulas shorter and nicer.

Proposition 3.5. Let 7 > 0. Then

(1) E;(1) =0 if and only if j = de/n.

(it) E;(1) < 0 if and only if j > de/n,

(11t) E;(1) = E;(2) if and only if j(n — 1) = de.

() E;(1) < E;(2) if and only if j(n — 1) > de.
Proof. (i)-(ii) We have E;(1) = (1 — %)(j) (;)

(ili)-(iv) Let j > 1. Writing out the expressions for E;(1) and F;(2), dividing
by (;l:g) (5:3), multiplying by j2(j — 1)?, and simplifying, we see that E;(1) <
E;(2) is equivalent to j(n—1) > de. (There is a factor n—2, but ¢ = 2 occurs only
ford > 2,n >4.) For j =1 we have Ey(i) = (d—i)(e—i)—i =de—i(n—i+1),
and E;(1) < E;(2) is equivalent to n < 2, which is false. O

For J(8,3) we have

1 15 30 10
17 -2 —6
P=111 5 3
1 -3 3 -1

11



3.4 Auxiliary results

For any regular graph I" with adjacency matrix A, the sum of the squares of the
eigenvalues of T" (i.e., of A) is the trace of A2, which is vk, if I has v vertices and is
regular of valency k. We apply this to J(n,d, j), and find vk; = Zf:o m; E;(i)?,
where v = (7}) is the number of vertices of J(n,d), k; = (;l) (Je) is the valency of
J(n,d,j) (with e :=n —d), and m; = (7;) — (:1) is the multiplicity of the ¢-th
eigenvalue (cf. [2, 9.1.2]). It follows that F;(i)? < vk;/m;.

We need to estimate k; close to its maximum value, and use Chvétal’s tail

inequality for the hypergeometric distribution.
Lemma 3.6. Let [ = (% —+/d, 9 +/d). Then Y .. k; > Fv.

Proof. Consider the random variable X that is j with probability k;/v. It
has expected value E(X) = €. According to Chvétal [5] (cf. [27]),

Pr(|X — B(X)| > td) < 2exp(—2t%d).
Choosing t = d~'/? yields the assertion, as 1 — 2exp(—2) > 2. O

Lemma 3.7. Let jo = 9, and let jo < j < jo+ 2. If 4= <j<dandi>3,
then |E;(i)] < |E;(1)].

Proof. We start with some observations that hold when d is not too small.

(1) Since -2¢- < j < d—1, we find de < (d—1)(d+e—1), that is, e < (d—1).

(2) Since n?/d%e? decreases with e for e < 2d, and increases with e for e > 2d,
it is maximal for e = (d—1)? (for d > 7), so that n/j¢ < (d>—d+1)3/d*(d—1)* <
1+ 3 (for d > 10).

(3) We show that kj_1/k; < 3 if d > 10. Indeed, k;—1/k; = ¢;/bj—1 =
72/(d—j+1)(e—j+1) so that k;j_q /k; < 3 is equivalent to de —n(j — 1)+ (j —
12— ]2 > 0. The LHS decreases Wlth 7, so it suffices to show this for j = j0+—
Since de = njo we have to show 3j¢ > n + 1, and this follows from (2).

(4) We show that v/k; < &(n —5) for n > 42. According to Lemma 3.6,
Zlé—joK\/ﬁ ke > %v. Let kj;, be the largest among the k;. Then |jo| < ji <
[jo] and 2V/d kj, > Lo, that is, v/kj, < V/d. The index j differs at most
2 from jl; andj > jl- Since kj_g/k/’j_l < kj_l/k/’j < 3 we have k/’jl/k/’j <9
and hence v/k; < 2+v/d. Our aim was v/k; < #(n —5), and since n > 2d so
that n > v/2nV/d this follows from n > 11255. The finitely many cases with
42 < n < 11255 were checked by computer.

(5) We show that E;(:)? < E;(1)? if i > 3. In the discussion above we found

that E;(i)? < vk;j/m;, Where m; > ms = én(n —1)(n —5). On the other hand,

Ej(1) = () (51— 4£), and j — jo > ;4 — de = do i(1)? < E;(1)?
will hold when v/k; < é"gl" 15). That was shown in (4). Earlier we needed
d > 10 (or n > 42), but if d < 9 then n < 73, and these cases were checked by

computer. O

3.5 The smallest eigenvalue

It looks like |E;(1)] is the largest among the |E;(i)| (1 < ¢ < d) when j is not
very close to the zero € o< of Fj(1) (viewed as polynomial in j), say at least when

12



lj — 4| > 1. If |E;(1)] is largest, and moreover E;(1) < 0, then Ej;(1) is the
smallest among the E;(i), 0 < ¢ < d. We prove below that this is the case if

and only if j > ndfl.

Lemma 3.8. Let (j —1)(n+ 1) > de. Then E;(0) + |E;—1(1)| + |E;(1)] <
E;_1(0).

Proof. Use E;(0) = (’;) (;) and E;(1) = (f) (;)( *‘{Tz) and jn. > de to see
that the desired inequality is equivalent to 4% d_j'ﬂ e_;-H +1]1— (J;i)"| <1.1If

(j — D)n < de we have to show that (d —j+ 1)(e—j+ 1) < j(j — 1), that is,
de < (j — 1)(n + 1), which is our hypothesis. If (j — 1)n > de we have to show
that (d—j+1)(e—j+1)+j(j —1) < 22 that is, de— (j—1)(n—2j+1) < 24
that is, de(n — 2j) < (j — 1)n(n — 24 + 1), which holds by hypothesis. O

Since we know the eigenvalues of the Kneser graph, the case j = d is imme-
diate.

Proposition 3.9. Let d > 1. The smallest eigenvalue of K(n,d), and the
second largest in absolute value, is E4(1). O

Theorem 3.10. Let j > 0. Then E;(1) is the smallest eigenvalue of J(n,d, j)
if and only if j(n — 1) > de. In this case E;(1) is also the second largest in
absolute value among the eigenvalues of J(n,d, 7).

Proof. By Proposition 3.5, if E;l’d(l) is the smallest eigenvalue of J(n,d, j),
then j(n — 1) > de, and E}“d(l) < 0. We now show by induction on d that
if j(n—1) > de, then [E?(i)| < [EP?(1)]. If j = d the statement follows
from Proposition 3.9. If % <j< ndfg, then (since n > 2d and d > 3)
Jo<j<jo+ %, where jg = %, and our claim holds by Lemma 3.7 if ¢« > 3. We
wish to show that if j(n—1) > (d-+1)(e+1), then [EI > (5)] < |EI+H>9+1 (1)),
that is, by Proposition 3.2, |E]"d(z -1)— E;l;dl (i—1) < |E?’d(0) — E?;dl (0)].
Now j(n—1) > (d+ 1)(e+1) implies (j — 1)(n — 1) > de, and by induction, or
trivially if i = 2, [E}](i —1)] < |E]Y(1)| and |E[>] (i —1)] < E7%(1)] and our
claim follows by Lemma 3.8. O

Karloff [20] studied graphs J(n,d,j) for the special case n = 2d. (His no-
tation is J(n,d,d — j) instead of our J(n,d, j).) He proves (]20], Theorem 2.3)
that E;(1) is the smallest eigenvalue of J(n,d,j) when d = n/2 and j > 5d/6.
He conjectures ([20], Conjecture 2.12) that E;(1) is the smallest eigenvalue of
J(n,d,j) when d =n/2 and j > d/2. This conjecture immediately follows from
the above theorem.

Corollary 3.11. If j > d/2, then the smallest eigenvalue of J(2d,d, j), and the

second largest in absolute value, is E;(1). O
For n = 2d + 1 and j = 3d we have E;(2) = —2% E;(1) so that |E;(2)| >

B (1)]-

3.6 Largen

Proposition 3.12. For fized d, let n be sufficiently large. Then E; (i) is positive
fori+j <d, and has sign (—1)"+9=< fori+j > d. For each j > 0, the smallest
eigenvalue of J(n,d, j) is E;j(d—j+1).

13



Proof. We have E;(i) = Zzo(fl)h(,ﬁ) (]d:Z) (”;_dhﬂ) When n tends to in-

finity, and d is fixed, this sum is dominated by its ﬁrs‘g nonzero term. So
Bi(i) ~ () (T if i 4§ < d, and Bi() ~ (“1)4(L 0 ) (70

i+ > d Also, for i+ j < d, Ej(i)/E;(i +1) m Z=00=0=0— > 1, 50 the

E; (i) decrease in absolute value with increasing i. O

For example, for J(27,5):

1 110 2310 15400 36575 26334

1 83 1176 4060 665 —5985
p_ 1 58 451 60 —1710 1140

1 35 60  —400 475 —-171

1 14 —66 104 —71 18

1 =5 10 —10 5 -1

For d = 5 this is the smallest n with the described sign pattern. We have to
go to n = 34 to get decreasing absolute values in the columns.

4 Graphs with classical parameters

Given a constant b, define

0 if m <0,
n .
n]  [n] _ (m) ifb=1,
m|  {m], | M=t pa-n _
- otherwise.
h=0

Graphs with classical parameters are distance-regular graphs with intersec-
tion numbers b; = (m - [1hB—=alj]) and ¢; = [}] (1 +o¢[z_11]) (0 <i<d) (see
[2, §6.1]). It follows that k = ﬁ[ﬂ and a; = [}](B—1+ a([cll] -[i] - [111]))
In [2], Corollary 8.4.2, the eigenvalues of graphs with classical parameters are

found to be 0; = [*77](B —a[i]) = [}] (0<i<d).

The base b is an integer different from 0, —1 ([2, 6.2.1]).

4.1 Identities

The Pij follow from the recurrence Pi7j+1 = ((91 — aj)Pi» — bj—IPi,j—l)/Cj—H
and the starting values P,g = 1, P;; = 0; (see [2, Chapter 4.1 (11)]). There is a
simple explicit expression for the last row of the P matrix. It is independent of
«a and f.

Proposition 4.1. Py = (—1)7 [ﬂb(%)
Proof. Induction on j, using the recurrence. (|

Graphs with classical parameters are formally self-dual when o = b — 1. If
this is the case, then P;;/Py; = Pj;/ Py, for all 4, j, and the number of vertices
is v = (B + 1)%. In this case, the above proposition can be translated to give
the values of the last column of P.

Proposition 4.2. P;/P;i10=1— (84 1)b7" O
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4.2 Sign changes

The columns of the matrix P correspond to the graph distances on the distance-
regular graph under consideration, and hence have a natural ordering. For
general distance-regular graphs one is free to choose the ordering of the rows,
corresponding to an ordering of the eigenspaces. According to [3], Proposition
11.6.2, the i-th row and the i-th column of P have exactly ¢ sign changes if we
order the rows according to descending real order on the 6;.

Graphs with classical parameters are Q-polynomial, and hence have a nat-
ural ordering on the eigenspaces. Usually this is the order with descending 6;,
provided b > 0.

Proposition 4.3. Suppose b > 0. Then 6y > 01 > ... > 04 if and only if
a<b—1orpg> a[dIl} — b?=1. If this is the case, then the i-th row and the
i-th column of P have exactly i sign changes (0 <i <d).

Proof. We have to check that §; > 0,1, i.e., that 8 > a[2i+11_d] —p? 1= for
0<i<d—1. If a <b—1 then the strongest of these is the inequality for ¢ = 0,
but it is automatically satisfied since 6y is the graph valency. If o > b — 1 the
strongest is the inequality for ¢ = d — 1, and we find the stated bound on 5. O

The hypothesis of this proposition is satisfied for all families of graphs with
classical parameters considered in this note, except for that of the Hermitian
forms graphs, which have b < 0.

In many cases the sign pattern is forced.

Proposition 4.4. If the i-th row and the i-th column of_P_ have exactly © sign
changes, and P;j > 0 if i +j < d, then Pi; has sign (=1)79=4 if i+ j > d.

Proof. The only way to have ¢ sign changes in Pj;, d — i < j < d is to have
P;; and P; j1 of opposite sign for all j, d —¢ < j <d—1. O

4.3 Large [

In the theorem below we show for graphs with classical parameters (d, b, «, 3)
that if (d,b, @) is fixed and S is large, then Py_ ;1 ; is the smallest eigenvalue
of the distance-j graph, and |P;| is its second largest eigenvalue in absolute
value. We also determine the sign pattern of the matrix P. This generalizes
Propositions 2.6 and 3.12 above.

There are families of graphs with classical parameters with b < 1, such as the
Hermitian forms graphs and the triality graphs. However, Metsch [24] showed
that g is bounded as a function of (d,b, ) unless the graph is a Hamming,
Johnson, Grassmann, or bilinear forms graph. It follows that b > 1 when [ is
unbounded.

Theorem 4.5. For fized (d,b, ), let B be sufficiently large. Then
(i) P;j > 0 fori+j <d, and Pij has sign (—1)79=2 fori+j > d.
(Z’L) Pd,jJrLj = mln{Pw | 0<i< d} fO’f’j > 0.
(ZZZ) ]fb >1, then |P¢+17j| < |PU| f07“ 0<i<d-1.

Proof. For |3| — oo, we have a; ~ mﬂ, hence > 0 and b+ 1 > 0 since
a; >0 for i =1,2. By [2] (6.2.1), b is an integer different from 0,—1, so b > 1.
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(i) In order to prove this, one only has to prove the first part, then the second
part follows by Propositions 4.3 and 4.4.

From the recurrence Pi,jJrl = ((9Z — aj)Pi- — bjflﬂﬁjfl)/chrl and bz ~
(m - [ﬂ)ﬁ, and ¢; = O(1), and a; ~ [ﬂﬁ, and 0; ~ [d;qﬁ, it follows by
induction that F;; ~ Cy; 87 for i 4+ j < d and some positive constants Cj;.

(if) Now we know that P;_;11; < 0 for large 5. By downward induction on
j one sees that all P;; with j > d — ¢ have the same degree m; in 8. (Indeed,
let P,y have degree m = m; in 8. Then coy1-nPia+1-n = (0i — ag—n)Pia—n —
bi—n—1P;,d—n—1 applied for h =0,1,...,¢ — 1 shows that P; 4_,—1 has degree m
in 3 since the LHS has degree (at most) m, the middle term precisely m+ 1 and
the final term must cancel that highest term.) Since P; 4—; has degree d — ¢ this
proves that m; = d —i. It follows that F;; ~ Dijﬁd*i for i + 7 > d and some
nonzero constants D;;. Thus, Py—;41,; is the most negative in its column when
B is large enough.

(iii) In the interval d — j < i < d the P;; have decreasing degrees d — i in
B and hence decrease in absolute value when § is sufficiently large. For the
interval 0 < ¢ < d — j the degree is always j, and we have to work a bit more.

Put (just here) c4+1 = 1. Define polynomials F(z) for —1 < j < d+1
by F_1(J:) = 0, Fo(.%’) = 1, Cj+1Fj+1($) = ($ — aj)Fj(x) — Fj_l(.l’)bj_l. Then
each Fj has degree j in x (for j > 0), and P;; = F;(0;) (0 <4,j < d). Finally,
Fy41(0:;) =0 (0 < i < d). The ¢; are independent of 3, but a; and b; and 6;
depend linearly on 3. Consider the coefficient of 5 in 6; = [d;i] (8- oz[ﬂ) — m
a linear expression in the variable w = =% (if b # 1) or i (if b = 1). Then the
coefficient of 47 in F};(6;) is a degree j polynomial g;(w) = Hf;t([dlﬂ] - m)
that vanishes for d — 7 +1 < i < d and hence nowhere else. That means that
Py; = F(0;) ~ g;(b=")87 (or g;(i)B?) is monotone in i, assuming b > 1. Since

[dfz

1 } decreases with increasing i, also P;; does (for 0 <4 <d—7j). O

5 Grassmann graphs

The Grassmann graphs G4(n, d) are the graphs with as vertices the d-subspaces
of an n-dimensional vector space over Iy, adjacent when they meet in codimen-
sion 1. W.l.o.g. we assume n > 2d (since G4(n, d) is isomorphic to G4 (n,n—d)),
and then these graphs are distance-regular of diameter d. Let G4(n, d, j) be the
distance-j graph of Gy(n,d), where 0 < j < d. The eigenvalues of G4(n,d, j)
are P;; = G;(i) (0 <i<d), where

6,(0) = Y1y ) [dhi] [j—ﬂ [n L h]

h=0
S oo [i] [ r =
P h j n—d—j
(see Delsarte [9], Theorem 10, and Eisfeld [14], Theorem 2.7).

5.1 Identities
Proposition 5.1. G4(i) = (—1)iqd(d_i)+(§) [, O

d—1i
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Let us write G}”d(i) instead of G;(i) when it is necessary to make the de-
pendence on n and d explicit. The analog of Proposition 3.2 is as follows.

Proposition 5.2. Leti,j > 1. Then
+2,d+1. i - i1 d -
G (1) =¢G (i —1)— ¢G5 (i — 1).

Proof. Use the first formula for G}”d(i), and " =q¢m["]+[",] O

m m—1

5.2 The smallest eigenvalue

In Theorem 5.8 we find the smallest among the eigenvalues of G4(n,d, j) (for
(n,q) # (2d,2)). In Proposition 5.4 (ii) we determine the second largest in
absolute value (in all cases).

The following lemma provides tools to estimate Gaussian coefficients, and
their quotients.

Lemma 5.3.
(i) If n <m, b>1, then (b —1)/(b™ —1) < "™,
(it) If m > 1, b> 1, then (b — 1)/(b™ — 1) < b»~™*1/(b—1).
(iii) If b> 1, then [}], > b=,
(iv) ([17, Lemma 37]) If 0 <k <n, b > 1, then [}], > (14 §)b*"=0).

(v) ([17, Lemma 34]) If 0 < k < n, b >4, then [}], < (14 )p*=H . O

Proposition 5.4.

(1) G;(1) < 0 if and only if j = d. G;(1) is never zero.

(ii) Let i > 1. Then |G;(i)] < |G;(1)|.

(11i) Let j > 1,147 <d. Then 0 < G;j_1(i) < G;(i) if not ¢ =2, n = 2d,
it+j=d

(i) Let (n,q) # (2d,2). Then G;(i) has sign (—1)max(0i+i=d),

(v) Among the G4(i) with i > 0, the smallest is G4(1).

Proof.
(i) This is immediate from the second expression for G; (7).

.. . 2 1d7 re 2 [d—17 e i(Gi—1) [d] [e—

(ii) Using G;(0) = ¢’ [J] m and G;(1) = ¢’ [ p 1} []] —giU=1) [J] [j_ﬂ, where
e =n —d, we see that G,;_1(0) + |G,-1(1)| + [¢G;(1)| < ¢G,(0).

Now apply induction on d and i: |G"+24+1(4)] < |G?+2’d+1(1)| follows from

n,d . n,d /- n,d n,d n,d n,d
quj (i —1)|+ |Gj71(l -1 < Q|Gj (D] + |Gj71(1)| < qu (0) - Gj71(0)-

(iii) Induction on d. Positiveness follows from monotony since Go(i) = 1.
For ¢ = 0 we have to show that qj2 [;l] [ﬂ increases with j, and it does, with the
indicated exception. Now for ¢ > 0, using j + 1 < d and ¢ > 2:

n+2,d+1 /. n+2,d+1/. i n,d (. i ~ynud g, j— n,d /-

Gj:f " (Z)*Gj-‘_ o (i) = ‘IJJrlGjJ’A(Z*l)*QqJGj’ (i-1)+¢ 1Gj’,1(1*1) >
0.

(iv) This follows by part (iii) and Propositions 4.3, 4.4.

(v) This follows by parts (i) and (ii). O

Conjecture 5.5.

(1) If (n,q) # (2d,2), then |G, (i + 1)| < |G;(2)] when 0 <i<d—1.

(11) If (n,q) = (2d,2), then G;(d— j) is negative for (d, j) = (5,3) and when
d>6,2<j<d-2, and Gj(d—j) is the smallest among the G;(i) when d > 6,
3<j<d—2.
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We can prove part (i) for ¢ > 5, but omit the details.

%
Y

We show that G;(¢) is well-approximated by its main term 7.
Lemma 5.6. Ifi+j <d, let s:=1 and T := qu [d;i} [nf;ij]. Ifi+j
lets:=i+j—dandT := (fl)sqj(dfi”(;) [dij} [::;iﬂ If ¢q > 3 orq = 2,
n > 2d, then

G(i 2d+1—n
3 () _ ’ < q .
(¢—1)
Proof. Let T} be the term with index h in the second expression for G, (%),

so that T = Ty, with m = min(é,d — j), and 0 < h < m. This expression is
alternating, and

Th_1 _ 7q7h+i7j qh -1 qdihH -1 q]-*’b'“rh -1
Th qi—h+1 -1 qd—h—j+1 -1 qn—d—i+h -1
< githtitl-n p2d+ion

@-12 = (g-12

if h > 1. (Here we used Lemma 5.3 (ii) twice, and (i) once, using that h <
n—d—i+h.) If ¢>3orqg=2n>2d, then the right-hand side is less than 1,
and the sum is alternating with decreasing terms, so that the difference between
the main term and the sum is not larger than the second term. The main term
is T' = T,,, the maximal index that occurs. O

Remark. For g=2,7>d—j+1 we shall need a slightly sharper bound. Now
i —h 4+ 1> 2 and in the inequalities in the proof and conclusion of the lemma
we can bound by ¢?27"/((¢ — 1)(¢* — 1)).

Above the main term of the second expression for G; (i) was T; (if i +j < d)
or Ty_; (ifi+j>d). Ifg=2,n=2d,i+j>d>6,and 3 <j <d-—2, the
main term is Ty ;_1.

Lemma 5.7. Letn=2d,¢q=2,d>13,5<j<d—-5andd—j<i<d. Set
s=i+j—d+1. LetT := (—1)qu(d_i_1)+(§) [d_;_J [+ [dej:jfl}. Then
|G;(i)| < 3|T|. Fori=d— j, G;(i) is negative, and |G;(i)| > 5|T|/171.

Proof. Let T} be the term with index h in the second expression for G, (i), so
that T = Ty—;—1 and 0 < h < min(é,d — j). As in the proof of Lemma 5.6, we

have
2h -1 2d—h+1 -1 2j—i+h -1

Th-1
Ty,

For h<d—j—1(<i—1), we find using Lemma 5.3 (i) with h < d —i + h,

— _2—h+i—j .
2i—h+1 _ 1 9d—h—j+1 _ 1 9d—i+h _ |

9j+2  9j—2i+2h+1 9h+j+3—d
3 3 - 9

< 92i—h—j—d < f
- -9

Th1
Ty,

Forh=d—jandi+j>dwefind, usingi <d—1and 5<j<d-5,

(247 —1)(27F —1)(2971 - 1) !

B Gl ni ly
(2FHi—d+1 —1)(22d——7 —1) ~ 63

‘ T
Ta,
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For h=d—jand ¢+ j = d, we find, using 5 < j < d—5 and d > 13,

T, @)@ - )@~ 1) 31-63-255 19

’de 57 1 < 328101 ~ 10°
If i+j = d, then G;(7) ZZ_ ' T, is an alternating sum with terms increasing in
absolute value up to T = T4—j_1, and then decreasing again, hence |G i) -1 <
2 + 18 1- 1—71 < 1, so that G;(d — j) has the sign of T, i.e., is negative. For
general i, if G;(7) has the same sign as T', then |G, (i | < |T| If G;(i) has the
opposite sign, then |G, (1)] < |Td_]|—|T|+|Td_J_2| <(B-1+HT| < 3T|. O

Theorem 5.8. Let 1 < j <d.

(1) If g >3 or ¢ =2, n > 2d + 1, then the smallest eigenvalue of G4(n,d, j)
18 G](d *j + 1)

(i) If (n,q) = (2d,2), and 7 < j < d — 5, then the smallest eigenvalue of
Gyln,d,) s Gy(d~ j).

Proof. (i) The case j = d is handled in Proposition 5.4, so we may assume
j < d. The smallest among the G;(7) is negative, and hence ¢ is one of the
values d — j + 1 4+ 2t where ¢t > 0. First consider the case ¢ > 3. We compare
G, (i) with G;(i+2). By Lemma 5.6, both are approximated by their main term
T Wlth an error that is not larger than 37. Let T', T', T" be the main terms
for G (i), Gy (i +1),Gy(i +2). Then [Gy(i +2)I/1G; ()] < (IT")/(IT))
7|T”|/|T|. Now

T’ gt =1 ¢ -1 gitimntl

|T| - qimditl gn—i—j _ 1 < g—1

using Lemma 5.3 (i), (ii), since d — i < n —i — j. It follows that |T"|/|T| <
(q2d+2i=2n43) /(g —1)2. Since i+2 < d and n > 2d we have 2d+2i—2n+3 < —1
and |G, (1 +2)|/|G,; (@) < 7|T"|/|T| < 7/12 < 1, as desired.

For ¢ = 2, n > 2d 4+ 1 we use the remark following Lemma 5.6 and find
|G;(i+2)] < 3|T"| and |G;(i)| > 3|7, so that |G;(i+2)|/|G;(i)| < 5|T"|/|T] <
5/8 < 1, as desired.

(ii) The cases with d < 13 can be checked by computer, so we may assume
d > 13. The smallest among the G, () is negative, so has i > d—j by Proposition
5.4 (iii). The value G;(d— j) is negative. We show that it has maximal absolute
value among the Gj(z') with ¢ > d — j.

Let T and T” be the main terms of G;(d — j) and G;(i), where i < d. By
Lemma 5.7, |Gj(d — j)| = 2|T'| and G; () 3T"|. Then |G;(i)/G;(d — j)| <
3 171|T’|/|T| Now, as d > 5, for i =d — j + 1 we have

|T/| N [d—%‘-‘rl] [31:3] - 9d—j+1 _195-1 _1 - 2-i+2 16

7| [477] [;?:ﬂ N 3 24-1 1 3 15
A52j+2-—g<31 for j > 7, |Gj(d—j+1)] < |Gj(d— 7). Now, let
d—j+1<i<d—2. Let T" and T” be the main terms of G, (i) and G;(i +1).

Then

T  iige1 271 -1 2d-i-1 _q 4.64 gi—d

<1.

|T’| 2itj—d+2 _ 1 92d—i—j—1 _ 1 — 3.63
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Hence, |G,(7)] < |G;j(d—j)| for d—j+2 < i < d—1. Lemma 5.7 excludes i = d, so
we need to treat that case separately. By Proposition 4.1, G;(d) = (—1) [;l] q(é)7
and hence

Gy 2@ 2 y
I e e S @@ -
Hence, |G,(d)| < |G;(d — 7). O

6 Dual polar graphs

Let ¢ be a prime power. There are six types of finite classical polar spaces, Cy4(q),
Ba(q), Da(q), 2Da+1(q), 2A24(q), and 2 Azq_1(q) with associated parameter (in
the same order) e = 1,1,0,2,1/2,3/2 (see [2, §9.4]). In the cases ?A24(q) and
2 A24-1(q) the parameter q is the square of a prime power. The dual polar graphs
Cy(d, e) are the graphs with as vertices the maximal subspaces of a polar space
of rank d with parameter e over F,, adjacent when they meet in codimension 1.
These graphs are distance-regular of diameter d. The eigenmatrix P has entries
Pij = Cj (Z), where

min(d—j,7) . .
; i i—i - d—1 1
C;(i) = _1)i=h (3N +C )G —ith)e _
= > (D N
h=max(i—j,0)
This formula was taken from Vanhove [32, Theorem 4.3.6]. An expression in
terms of g-Krawtchouk polynomials was given in Stanton [28, Thm. 5.4].

6.1 Identities

Let us write C¢ (i) instead of C; (i) when it is necessary to make the dependence
on d explicit.

Proposition 6.1. (i) If 0 <i <d, then C’J‘Hl(i) =qMteiCd (i) + CLG).
(ii) If 1 <i < d+ 1, then C{TH(i) = —¢'~1CY_, (i — 1) + C4(i — 1). O

Since these two values are equal, one also has C;(i — 1) = C;(i) + ¢" ' Cj_1 (i —
1) +qd+eficj71(i)'

We have C1(i) = ¢° [dfi} — [{] and Cq4(i) = (—1)1'(1(31)"’(‘1_1')(e_i)7 and see
that for j = 1 and for j = d the sequence |C;(7)| (0 < ¢ < d) is unimodal, with
smallest element |C;(¢)| for i = [ (d+e+1)/2], largest element C;(0) and second
largest element |C;(d)| if e < 1, and |C;(1)| if e > 1. This is what we try to
prove for all j.

There are small exceptions. E.g. for (¢,d,e) = (2,5,1) the j = 4 column of
P is not unimodal, and the 7 = 2 column has its minimum earlier:

1 62 1240 9920 31744 32768

129 250 680 64 —1024
p_ 1 11 16 —76 —80 128

1 -1 =20 20 64 —64

1 —-13 40 20 —176 128

1 =31 310 -—1240 1984 —1024
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More generally, if (¢,e) = (2,1), then |Cy—1(2)] > |Ca—1(1)] = q(d;) for all
d > 2, and the sequence |Cy_1(4)| is not unimodal for (¢,e) = (2,1), d > 5.

For e = 1 we have the coincidence |Cy(1)] = |Cq(d)|. More generally,
|Ca(i)] = |Cald + e — i) for integral e and e <4 < d.

For e = 0 the graphs Cy(d,e) are bipartite, and we have C;(d — i) =
(—1)/C; (i)

6.2 The smallest eigenvalue

The following conjecture is a variation of Lemma 47 in [17] where the authors
investigated the sum of the relations {d — j,d — j +1,...,d} instead of just the
jth relation.

Conjecture 6.2. The sequence |C;(i)| (7 fized, 0 < i < d) is unimodal if not
(g,e) = (2,1) and not (q,e,j) = (2,2,d —4), 8 < d < 12. If it is unimodal with
minimum at io, and iy = |(d+e+1)/2], then io =iy fore =0,%,3, and i —
i1| <1 for e = 1,2, except that ig = i1 — 2 for (q,e, j,d) = (2,1,3,4),(2,2,3,7).
Conjecture 6.3. The index imin of the smallest among the C;(i) (j fized, 0 <
i<d)is

1 if j=d and (j is even ore>1)

d if jis odd and (j < d ore<1)
[(d—j+2)/2] ifjiseven,e=0

(d—j+2)/2 if j and d are even, e =% ore=1
(d+j-1)/2 if j is even, d is odd, e = 3 ore =1
(d+7)/2 if 7 and d are even, e =

Tmin =

ore=2

(d—j+3)/2 if j is even, d is odd, e = 3 or e =2

(SIS

except that when ¢ = 2 and e = 2 and d is even and j > d—4 one finds iypin = 2
forj=d—2,d>6 and imin =3 for j=d—4, d > 14.

We show the second case of this conjecture in Corollary 6.5. We can show
the conjecture for some more cases if ¢ > 11, but omit the details.
Proposition 6.4. Let 1 < j <d.

(1) C;(1) <0 if and only if j =d or (j,e) = (d —1,0).

(11) Let d > 3. Then |C;(2)| < |C;(1)| unless (¢,j,e) = (2,d —1,1).

(11i) Let 1 < i <d. Then |C;(i)| < |C;(d)| if i >2 ore < 1.

() |C;(1)| <|C;(d)| if e <1 with equality only if (j,e) = (d,1).

Proof. (i) This is immediate from C;(1) = q(§)+je [d;ﬂ — q(jgl)"'(j_l)e [?:ﬂ

(ii) We can assume 1 < j < d as we did already show the claim for j = 1
and 7 = d. Rename d to d + 1, so that d > 2 and 5 < d. We have C}Hl(l) =
gOHie[d] U +U=De 4 ] and 0+ (2) = C4(1) ¢C§1(1) by Proposition
6.1 (i). Dividing the expression |C{T(2)] < |[C{F!(1)] by q(”?)ﬂifl)e[j:ﬂ
and simplifying yields the claim.

(ili) Note that C;(d) = (fl)jq(;) [dij] has alternating sign. Use induction
on d. By Proposition 6.1 (i) and (ii),

G| = g™ O () + O (0)]
< |q"Ci_1 (@) +|C{(d)] = |0 (d + 1)].
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(iv) This is immediate from the expressions for C;(1) and C;(d). O

Corollary 6.5. Letd >3 and 1 < j <d. Then

(i) 1C;(1)] = max{|C; ()| : 1 <1< d) if e > 1 or (j,e) = (d,1).

(11) |C;(d)] = max{|C;(i)| : 1 <i<d) ife <1.

(1ii) If j < d is odd, then Cj(d) = min{C;(i) : 0 < i < d}.
Proof. We only have to show (iii). Here we only have to show that C;(d) is
negative. This follows from Proposition 4.1.

7 Bilinear forms graphs

The bilinear forms graphs H,(d, e) are the graphs with as vertices d x e matrices
over Fg, adjacent when the difference has rank 1. W.l.o.g. we assume d < e.
The eigenmatrix P has entries P;; = B;(i), where

b Z() g [1m 0

(Delsarte [10], Theorem A2).
The valencies here are k; = B;(0) = [ﬂ (7] T (@@ =@M (2], p. 281).
The eigenvalues of H,(d,e) are 0; = (¢ —q¢ — ¢ +1)/(q¢ — 1).
The scheme is self-dual, so that P;;/FPo; = Pji/Po;, and P;; and P;; have the
same sign.

7.1 Identities

Let us write B;-i’e( ) instead of B, (i) when it is necessary to make the dependence
on d and e explicit.

Proposition 7.1. (Delsarte [10, Proof of Theorem A2])
d.e (. d,e. e—i—1pd—1,e—1/;
B(i) — B (i+ 1) = ¢ BIZ (i),
Proposition 7.2. (Stanton, [29, Prop. 1(ii),(iii)])
() @ = DB = (7 = g BG) + (0 DB - )
(ii) (g7 = B (i) = (¢! = ') By (i) + (¢ — 1)346(1 - 1.

7.2 Negative B;(1)

For the bilinear forms graphs the ¢ = 1 row of P has only a single negative
value.

Proposition 7.3.

(1) Bj(1) <0 if and only if j = d, and otherwise B;(1) > 0.

(ii) Ba(1) is the smallest eigenvalue of the distance-d graph, and the second
largest in absolute value.

Proof. (i) This follows from By (i) = (¢?t¢~% — ¢ —¢*+1)/(¢—1) and e > d
and the fact that By (i) and B;(1) have the same sign.

J

(ii) Proposition 4.1 gives B;(d) = (~1)[9]¢(), and it follows that By(i) =
(kd/ki)(*l)i[?]q( 2). The claim follows using k; = HINL (2 )Hh (" =1). O
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Lemma 7.4. Let 1 < j<d—1 and either j <d—2 orq>2 orq=2,e>d.
Then |B;j(2)| <|B;j(1)]. Ifj =d—1 andq =2 and e = d, then |B;(2)|/|B;(1)| =
(2971 4+ 1) /(297 —1).

Proof. Find Bj(1) and B;(2) from B (i) and Ba(i) and the relation P;; /k; =
Pj;/k;. Abbreviate ¢™ — 1 with [n]. One gets

B;(2) _ qldlld 1] — (¢ + 1)q°[d — 1][d — j] + ¢**[d — j][d — j — 1]
B;(1) qld —1][e — 1](¢?*+*~7 —q? —q° + 1)

The numerator is of the form A — B+ C where B > A > 0and C > 0. If
ji<d-3,orj=d—2,g>2,0orj=d—2,qg=2,e>d, then C > B. Now

estimate the numerator with C' and find that |EJ8§| < 1. The same conclusion
J

follows by direct computation in the case j = d — 2, ¢ = 2, e = d. This leaves
the case j = d — 1 (with C = 0). Again treat the cases ¢ > 2 and ¢ =2, ¢ > d
separately and find the same conclusion. [l

As the scheme is self-dual, so that P;;/k; = Pj;/ki, the recurrence ¢;41P; j11
= (91 — aj)Pij — bj—IPi,j—l implies biPi+1,j = (9] — al)PZ — CiPi—l,j- In our
case this gives (after multiplication by ¢ — 1)

1 = ilfe — 1B;(i + 1)

= (¢°ld =41 = [d) = [il(¢" + ¢* —¢' ="' = 1)) B;(i) — ¢"'[i]B; (i — 1),
again with the abbreviation [n] = ¢" — 1.
Theorem 7.5. For g >4, |B;(1)| > |B;(i)| for 1 <i<d, 0<j<d.

Proof. For j = 0 the claim is trivial, so we assume j > 1. By Propostion 7.3
we can assume j < d. Now |B;(i)| < |B,;(1)| follows by induction on %, starting
with Lemma 7.4 for i = 2, and using the recurrence for ¢ > 2. We have to show
that max(|g°[d— ] — [d]], [(¢° +q* — g — g™ — 1)) + ¢ [i] < ¢®[d—il[e ],
and that is easily checked, assuming ¢ > 4. [l

Conjecture 7.6. Forq >3, orq=2 and d # e, B;j(d—j+1) is the smallest
eigenvalue in the distance-j graph for 1 < j <d.

Let b; j(h) be the exponent of ¢ in the h-th term of the expression for B;(¢)
if we approximate [}] with ¢*("=%). That is, let

bi,j(h)h(d+eih)+(dj)(jh)+<j2h).

Let ho=e—i+ % Then the quadratic expression b; ;(h) is maximal for h = hy,
and b; j(ho +2) = b; j(ho) — 22%. Let hpax = min(j,d—14). The terms occurring
in the sum have indices h with A < hpax < hg, so the term with largest index
has largest exponent.

Lemma 7.7. Let ¢ > 4 and put s := b; j(hmax). We have
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Proof. The expression for B;() is an alternating series with terms decreasing
in absolute value after the first, so we can estimate B;(¢) by the main term with
an error not larger than the second term. |

Proposition 7.8. Let ¢ > 4. The sign of B;(i) is (—1)™2*©iti=d)  The
smallest among the B;(i) for fized j is B;(d — j +1).

Proof. The sign of B;(i) is that of the main term. The negative terms are
Bj(d—j+1+2t). Increasing i by 2 (from d — j+ 1+ 2t to d — j + 3 + 2¢) means
decreasing s by at least 2, and since %qQ > 14—3 that decreases the absolute value.
So Bj(d — j + 1) is most negative. O

8 Alternating forms graphs

The alternating forms graphs A,(n) are the graphs with as vertices the skew
symmetric n X n matrices over I, with zero diagonal, adjacent when the differ-
ence has rank 2.

Let d = [n/2]. The graph A,(n) is distance-regular with diameter d. The
eigenmatrix P has entries P;; = A;(i), where

J .
_ iy e [d— R [d—i
AJ(Z): E (71).7 hq(J h)(j—h—1) qh |:d_ :| |: b :| .
h=0 J1e b

Here the Gaussian coefficients have base b = ¢*> and m = n(n — 1)/(2d) =
2n — 2d — 1 so that {m,2d} = {n — 1,n} and m is odd (Delsarte [11, (15)]).
The valencies here are k; = A;(0) = ¢/0=1 7 (" = 1)/ TT_, (¢* —1).
The eigenvalues of A,(n) are 0; = (¢*" =21 —¢" —¢"" 1 +1)/(¢*> — 1).
The scheme is self-dual, so that P;;/FPo; = Pji/Po;, and P;; and P;; have the
same sign.

8.1 Identities

Let us write A} () instead of A;(i) when it is necessary to make the dependence
on n explicit.

Proposition 8.1. (Delsarte [11, (66)]) A7 (i) = A} (i—1)—¢*" =21 AT P (i-1).

Proposition 8.2. A4(i) = —(¢™ 2 —1)Ag(i +1) for 0 <i <d—1. O

8.2 The smallest and the second largest eigenvalue

We determine the smallest eigenvalue, and the second largest in absolute value,
for the distance-j graphs of A4(n).

Theorem 8.3. Let 1 < j <d.
(i) ming<i<a A;(i) = A;(d — j +1).
(i) maxi<ica |4 0)] = 145 (D).
(iii) Let 0 < i<d—1,1<j<d. Then:
a) |A; ()| < |A;(E41)| if and only if (¢, n,1) = (2,2d,d—1) and 1 < j < d-1.
b) |A; (1) = |A;(i+1)| if and only if (g, n,i) = (2,2d,d — 1) and j =d.
¢) In all other cases |A;(i)| > |A4;(i+1)|.
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The proof of this theorem is given below.
For (¢,n) = (2,4) we have

1 35 28
P=11 3 -4
1 -5 4

Let a; j(h) be the exponent of ¢ in the h-th term of the expression for A;(¢)

if we approximate [Z]b with ¢?*(»=%) Then
aij(h) = (j —h)(j —h—1)+hm+2(d—j)(j — h) +2h(d—i— h)
= —h2+h(m+1—2i)+j§(2d—j—1).

This quadratic function of h is maximal for hy = mTH — i. The nonzero terms
in the expression for A;(i) have indices h with 0 < h < min(d — ¢,5). Since
ho =d—1if nis even, and hg = d — i+ 1 if n is odd, the term with the largest
exponent is the one with index min(d — i, j).

Proposition 8.4. If i+ j < d, then

O<1- J:J[Sl)z] qm+2%2i72j :
TG

In particular, A;(i) > 0.

Proof. Use that a; j(ho—x) = a; ;j(ho)—?. Ifi+j < d, then min(d—1, j) = j.
The sum is alternating, and since b = ¢? > 4 and (1 + 2¢72)? < ¢? it follows
from Lemma 5.3 (iii,v) that terms after the first (reading down from largest h)
decrease in size, and the difference between A;(7) and the first term is not larger
than the second term. (That is, A;(i) = Tp — 11 + T> — - - where all T} have
the same sign, and |T7| > |T3| > ---. Our conclusion will be A;(:) = Ty — T}
with 0 < v < 1, that is, 1 — % < AJT'—(()Z) < 1.) Estimate the absolute value of
second term divided by the first, using Lemma 5.3 (ii), by

[d_{ﬂ} [j:i] — A | b] - 1 < qmrRit2=2 q* '
qm [d]—_z} b—1 pd—i—j+1 _ 1 (q2 _ 1)2

Ifnisodd, m+2—-2i—2j=2d+3—-2i—2j > 3. If niseven, m+2—2i—2j =
2d+1—2i—2j > 1. In both cases, the RHS of the inequality is less than 1. [

Proposition 8.5. If s:=i+j—d >0, then

b1 a6 LGS ¢ 1
> (_1)sqs(s—1)+(d—i)m I:di ] - q’m—QS [dij} (q2 _ 1)2 q2n74d

In particular, A;(i) has sign (—1)°.

Proof. If i+ j > d, then min(d — ¢,j) = d — i. Again the difference between
A;(i) and the first term is not larger than the second term. Estimate the
absolute value of second term divided by the first, using Lemma 5.3 (ii), by

[CZIJ:E] [d;q _ (bd—i _ 1)(bi+1 _ 1) B q_m+2d+2
N R e (R V[ VR VRS VN
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Finally, m — 2d = 2n — 4d — 1. O

Proof of Theorem 8.3. First of all, by Proposition 8.2 all statements are true
for j = d, so we may suppose 1 < j<d-—1.

Next, prove part (iiic). We have A7 (i +1) = A7(i) — ¢*" 23 AT 2(i).

If i + j +1 < d, then each of A"(i + 1), A7(i), A}=7(i) is positive, and
|A7 (i +1)| < [A}(7)| follows from 0 < A% (i + 1) < A7 (i).

If i + j > d, use the (strong form of the) second proposition to find
‘Aj(z‘ + 1)’ g ¢ []] 1

(7 i+1] [d—i s+1 d—i
A;(1) (1 B [dtj} (7] m—2s B =1 B

% q ; -
L v bz+1 1 b—1
qm—Qs[ }) [d ]]

d—j
_ (b—DE* 1)
S DT ) - (- D - )
(b _ 1)bi+1
(b — 1)2qm — pa+l’

If n is odd, then m = 2d + 1, and the RHS is at most 2 (since ¢ < d — 1 and
g > 2). If nis even, then m = 2d — 1. Now if ¢ > 3 then the RHS is at most
2. If g=2and i < d— 3 then the RHS is at most 3. For ¢ =2 and i = d — 2
we use the sharper form of the last inequality. The claim |A4;(i +1)/A4,(¢)] <1
mo2s U1 b > 1, which is true since b% > b?=* — 12

bH—l —1 bh—1 ) .
That proves part (iiic).

Part (iiib) is the case (¢,n,i) = (2,2d,d — 1) of Proposition 8.2.

Part (iila) follows from — Ag(jd(;)l) = qm—2j+222—:i

follows from ¢

— 1. This is larger than 1,
unless ¢ = 2 and n is even.

That proves part (iii). Now part (ii) follows, except in the case (¢,n) =
(2,2d). We show that in this case |A;(d — 2)| > |A;(d)|. Indeed, |A;(d)] =
A [dfj}b and [A;j(d — 2)| > (1 — v)qu=2G=3)+2m [Z:ﬂb, where v < § and
the desired inequality follows from Lemma 5.3 (iii),(v).

Finally part (i) follows, since the smallest among the A; (i) is the first one
that is negative. O

9 Hermitian forms graphs

The Hermitian forms graphs Q,(d) are the graphs with as vertices the Hermitian
d x d matrices over [F 2, adjacent when the difference has rank 1.

The graph Qq(d) is distance-regular with diameter d. The eigenmatrix P
has entries P;; = Q;(i), where

Q,(i) = (Dj;(“(jzh)m [fziﬂb [dﬂb'

Here the Gaussian coefficients have base b = —¢q. This formula was taken from
Schmidt [25]. An expression in terms of ¢g-Krawtchouk polynomials was given
in Stanton [29].

The eigenvalues of Q,(d) are 0; = ((—q)*=* —1)/(¢ + 1).
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The scheme is self-dual, so that P;;/Py; = Pji/Pos;, and P;; and Pj; have the
same sign.

9.1 Identities

Let us write Q?( i) instead of ();(¢) when it is necessary to make the dependency
on d explicit.

Proposition 9.1. (25, Lemma 7]) Q7 (i) = QJ(i — 1) + (—¢)**~ le Hi—1).

9.2 The smallest and the second largest eigenvalue

Conjecture 9.2. (i) If j is odd, then Q;(1) < Q;(i) for 0 <i <d.
(11) If j is even, j > 2, then Q;(d —j+2) < Q;(3) for 0 <1i <d.

Conjecture 9.3. Let d > 3. Then |Q;(i)| < |Q;(1)| for 2 <i<d.

In the following we prove both conjectures for ¢ > 4.
Let g; j(h) be the exponent of ¢ in the h-th term of the expression for Q;(¢)
if we approximate |[ } | with ¢*("=%) Then

Gij(h)=d—=7)G—-h)+hd—i—h)+ (G —h)(j—h—1)/2+hd.

Let hp =d—i+3 L Then the quadratic expression ¢; ;(h) is maximal for h = hy,
and ¢; j(ho+2) = gi,;(ho) — 222, Let hymax = min(j,d—i). The terms occurring
in the sum have indices h Wlth h < hmax < hg, so the term with the largest
index has the largest exponent.

Proposition 9.4. Letd >2, 7> 1 and ¢ > 4. Set S = S(i) := [d;] (—q)7? if
d—i>jand S=S(i):= [,'] (—q) ("2 VDD pyherise. Then

Qi) ~ (-1 < =15].

In particular, the sign of Q;(i) is the sign of (—1)7S.

Proof. If we divide the absolute value of the h-th term in the expression by
the absolute value of the (h—1)-th term in the expression, then we obtain, using
1 < h <min(j,d — i), and (for m > 0)

(1—¢g™)q™ <™ —-11< qm if m is even,
qm <pm—1< (I+¢™)g¢™ if misodd,

and g > 4, that
pi—h+l _ 1 pd—i—h+1 _ g

. Cphitd| > (1-¢7?)? gl > ﬂqa
bd—h+1 —1 b —1 T4+ gH(1+4¢73) 13

where a = 1 if h = d — i, and a = 2 otherwise. Then (again using ¢ > 4)

) < 13 o 11
Q) = (18] < 2= 3" 107" 18] < - Sl.

h>0

This shows the assertion. O
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Theorem 9.5. Let j > 1 and q > 4.
(i) Let d > 3. Then |Q;(i+ 1) < |Q;(%)| for 0 <i<d—1.
(11) If j is odd, then Q;(1) < Q;(3) for 0 <i <d.
(iii) If j is even, then Q;(d —j +2) < Q;(z) for 0 <i < d.

Proof. (i) By Proposition 9.4, we have |Q;(i)| > 48|5(i)| and |Q;(i + 1)| <
21S(i + 1)|. We have to show that [S(i)|/|S(i+1)] > £, If i+ j <d -1,

. d—i —; _
TG TR O O I O B e AP B
G I ] I e | R T
Ifi+j>d,
1S ()] _ [dij] pi—it2d| _ bt pi—i+2d| o 1—q " > 19
[SG+1 | bl — 1 1+q ! 8"

(ii) and (iii) By Proposition 9.4 and part (i), we only have to find the smallest
i for which (—1)7S(i) is negative. The sign of (—1)7 [d;l] b4 is positive for j
even, and (—1)79+4=% = (~1)? for j odd. This proves part (ii). The sign of

(1) [dij](fq)(iﬁ;d)ﬂd*i)d where j is even, is (71)(#];&), hence is positive
for i =d — j + 1 and negative for i = d — j + 2. This shows (iii). O
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