Spectral characterization of the complete graph removing a path

of small length*

“Lihuan Mao bSebastian M. Cioab *Wei Wang
“School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, P.R. China, 710049
b Department of Mathematical Sciences, University of Delaware, Newark, DE 19716-2553, USA

Abstract

A graph G is said to be determined by its spectrum if any graph having the same spec-
trum as G is isomorphic to G. Let K,, \ P; be the graph obtained from K, by removing
edges of Py, where Py is a path of length £ — 1 which is a subgraph of a complete graph K.
Camara and Haemers [11] conjectured that K, \ Py is determined by its adjacency spectrum

for every 2 < £ < n. In this paper we show that the conjecture is true for 7 < ¢ < 9.
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1 Introduction

All graphs considered in this paper are undirected, finite and simple graphs. For some
notations and terminologies in graph spectra, see [1].

Let G = (V,E) be a graph with vertex set V(G) = {v1,v2, - ,v,} and edge set
E(G) ={e1,e2, -+ ,em}. Let A(G) be the (0,1)-adjacency matrix of G, the characteristic
polynomial of G is defined as Pg(\) = det(A — A(G)). The spectrum of G consists of all

the eigenvalues of G (including the multiplicities). Two graphs are cospectral if they share
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the same adjacency spectrum. A graph G is said to be determined by its spectrum (DS for
short) if any graph having the same spectrum as G is necessarily isomorphic to G.

The spectrum of a graph encodes useful combinatorial information about the given
graph. A fundamental question in the theory of graph spectra is “Which graphs are DS?”.
The problem dates back to more than 60 years ago and originates from Chemistry. It has
received a lot of attention from researcher in recent years.

However, it turns out that proving a graph to be DS is generally a very hard problem.
Up to now, very few classes of graphs with very special structures have been proved to be
DS. Usually it is case that the graphs shown to be DS have very few edges, such as the
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T-shape trees [5], the co-graphs [6], the lollipop graphs [7], the f-graphs [8], the graphs with
index at most v/2 + /5 [9], and the pineapple graphs [10], to just name a few. For dense
graphs, it is usually quite difficult to show them to be DS, for example, the complement
of the path P, was shown to be DS in [4], but the proof is much more involved than the
proof that the path P, is DS. For some excellent surveys of this topic, we refer the reader
to van Dam and Haemers [2, 3] and the references therein.

In [11], Camara and Haemers investigated, among others, when a complete graph with
some edges deleted is DS. Denoted by P; a path of length ¢/ —1 and K,, the complete graph
on n vertices. Denoted by K, \ P; the graph obtained from K,, by removing the edges of
the path P,. The authors proposed the following

Conjecture 1 ( Cadmara and Haemers [11]). K, \ P is DS for every 2 < ¢ < n.

It was shown in [11] that Conjecture 1 is true for £ < 6. And for n = ¢, Conjecture 1 is
true and it is the main result from [4]. In this paper we show that Conjecture 1 is true for
7 < ¢ <9. Thus we have the following

Theorem 1.1. The graph K, \ Py is DS for 7 <{ <9.

The proof of the above theorem is based on some eigenvalue properties of the graph
K, \ Py, and a detailed classification of all of its possible cospectral mates.

The rest of the paper is organized as follows. In the next section, we will give some
important lemmas that will be needed in the sequel. In Section 3, we present the proof of

Theorem 1.1. Conclusions and some further research problems are given in Section 4.

2 Some lemmas

In this section, we will present some lemmas which are needed in the proof of the main

result. First we give some known results about the spectra of graphs.

Lemma 2.1 (van Dam and Haemers [2]). The following properties of a graph G can be
deduced from the adjacency spectrum:

(i) The number of vertices.

(i) The number of edges.

(iii) The number of closed walks of any fixed length.

Let Ng(H) be the number of subgraphs (not necessarily induced) of a graph G which
are isomorphic to H and let Ng(i) be the number of closed walks of length ¢ in G. Let
Ni; (i) be the number of closed walks of H of length ¢ which contain all the edges of H and
let S;(G) be the set consisting of all the connected subgraph H of G such that N (i) # 0.
It is easy to see that Ng(i) can be expressed by

Na(i)= Y Na(H)Npl(i).
HeS;(G)



Lemma 2.2 (Omidi [13]). The number of closed walks of length of 2,3,4 and 5 of a graph

G are given as follows:

(Z) Ng(2) = 2m, Ng(?)) = 6Ng(K3);
(Z’L) Ng(4) =2m + 4Ng(P3) + 8NG(O4), NG(5) e 30Ng(K3) + 10Ng(05) + 10Ng(Ga).

Where m is the number of edges of G and graph G, denotes the graph obtained from a

triangle by adding a pendent edge to one of its vertices.

The following lemma is useful which gives the number of triangles of the complement
of a graph G in terms of that of G and the numbers of 4-walks and 5-walks of G.

Lemma 2.3 (Doob and Haemers [4]). Let G be a graph with n vertices, m edges, t triangles,

and degree sequence dy,da, -+ ,d,. Let T be the number of triangles in the complement of

G. Then
t = _(n_])m+_§ A2 —t
3 2 ‘ -

i=1
Lemma 2.4 (Camara and Haemers [11]). The number of 4-walks in the complement of
a graph G only depends on the number of vertices and edges of G, and the number of
different subgraphs (not necessarily induced) in G isomorphic to Py, Ko U Ko, Py and Cjy.
More precisely, if these numbers are n,m,my, ma, msz, and my, and W,, = (n —1)* +n —1

is the number of 4-walks in K, then the number of 4-walks in the complement of G equals
W, — (802 — 32n 4 34)m + (8n — 20)my + 16my — Smz + Smy,
where
n:=|V(G) |,m :=| E(G) |,m1 := Ng(Ps),
mo 1= Ng(Kz U Kg),m3 = Ng(P4),m4 = Ng(C4).
For closed walks of length 5-walks things become more complicated. We have the

following lemma.

Lemma 2.5. The number of 5-walks in the complement of a graph G only depends on the
number of vertices and edges of G, and the number of different subgraphs (not necessarily
induced) in G which are isomorphic to Py, Ko U Ko, Py, K3, Ps U K9, K1 3, P5, G, and Cs.
More precisely, let these numbers be n, m,m1, ma, ms, S1, S2, 83, S4, S5 and Sg, and let W,, =
30(%) +120(%) +30(n—3)(3) be the number of 5-walks in K,. Then the number of 5-walks

in the complement of G equals

W, — (10n® — 50n? + 90n — 60)m + (10n? — 20n)m; + (40n — 120)m.
— (10n — 20)ms — (30n — 60)s1 — 20s2 — 3083 + 10s4 + 10s5 — 10s6,

where
S1 ‘= NG(Kg), S9 = NG(Pg U KQ), S3 = Ng(Klyg),
S4 1= Ng(P5), S5 = Ng(Ga), Sg - — Ng(C5).
Proof. The result is a consequence of the inclusion-exclusion principle. Assume that G
and K, have the same vertex set. Let FE be the edge set of GG. For a subset I' C E. Let



W denote the set of 5-walks in K, containing all edges of F. Then the total number of

5-walks in K, that contain at least one edge from E equals

U Wr
|F>1

= Wel = 3 Wl 3 Wel = 3 Wl + 3 (Wl

|F|=1 |F|=2 |F|=3 |F|=4 |F|=5

If |F| = 1, then |[Wp| = 10(n — 2)(n — 3)(n — 4) + 40(n — 2)(n — 3) + 30(n — 2). If
|F'| = 2, then |Wp| depends on the mutual position of the two edges. If they have a vertex in
common, then |Wr| = 10(n—3)(n—4)+50(n—3)+30, and if the two edges are independent
then [Wg| = 40(n —4) +40. If |F| = 3, then the three edges are Py, K3, PsU K5, K1 3 in G
and if the three edges are a path P, then |[Wg| = 10(n — 4) 4 20, if the three edges are a
triangle K3 then |[Wp| = 30(n — 3) 4 30, if the three edges are P3 U Ks, then |Wg| = 20, if
the three edges are a star K 3 then |Wp| = 30. If |F| = 4, then the four edges are a path or
a triangle with a pendant edge to one vertex. If the four edges are a path, then |Wr| = 10
and if the four edges are a triangle with a pendant edge then |Wg| = 10. Suppose |F| = 5,
then the edges are a cycle of length 5 in G. Each of them leads to 10 distinct 5-walks, so
|[Wr| = 10. O

Suppose K, \ Py and K,,\H are cospectral. Here and below we define that m; (resp.
m}), s; (resp. 33) to be the number of Py, Ko U Ko, Py, Cy, K3, PsU Ko, K1 3, P5, Gy, C5 in
graph Py (resp. graph H) for i =1,2,3,4, j = 1,2,3,4,5,6.

Lemma 2.6. The pair of graphs K, \ Py and K,, \ (C4 U Py_4) are not cospectral for any
£>7.

Proof. For graph P, we can directly compute that

9/ —
m1:€—2,mgzw,m3=€—3,m4=0.
And for graph C4 U P, we have
mi = 2,y = D) g1,

According to Lemma 2.4, it follows that the pair of graphs in the lemma can be distin-

guished by the number of 4-walks. O

Lemma 2.7. The pair of graphs K, \ Py and K, \ (aK; 3U Py) are not cospectral for any
a>1,b>2, where 3a+b=~¢.

Proof. For graph P, we can directly compute that

L—2)(0—3
mq =€—2,m2=¥2(),m3:£—3,m420.
And for graph aK; 3 U P> and aK; 3 U P we have
—2)(¢—3
m/1:€_27m/2:7( )2( >,m/3:O,m£1:0.

And for graph aKy 3 U P, (b > 4) we have



(L —2)(¢-3)
2
By use of Lemma 2.4 it follows straightforwardly that they can be distinguished by the

!/ !/ !/ !/
my =0—2,my = ,mg=b—3,my =0.

number of 4-walks. O

Lemma 2.8. The pair of graphs K, \ Py and K, \ (P, U Ty cq) are not cospectral for any
a>2b>1,c>1,d>1, wherea+b+c+d=10 (L >06).

Proof. For graph P, we can directly compute that

(£—2)(¢—-3)
2
ng(f—3)(f—4),84:£—4781283285286:0.

m1:£—2,m2: ,m3:€—3,m4=0,

And for graph P, UT} . 4, we can also compute the corresponding number of subgraphs;
see Table 1 below:

Table 1: The number of subgraphs in P, UT} ¢ 4

(a,b,c,d) m) mh my  omly s sh sh sy st

a>4b=1c=1d=1 (-2 A3 4y _¢5

a>3b=1lc=1d>2 (-2 B 4 5

a=2b=1,c=1,d>2 (-2 A y_4

a>3b=1,c>2d>2 (-2 A3 4 _4

a=2,b>2c>2d>2 (-2 A3 4 9

a=2b=1lc=2d=2 (-2 B 4 3 9 1 1
a=2b=1,c=2d>3 (-2 I 4y 3 o 0 2-7*+9 1 L-5 0 0
a=2b=1,c>3d>3 (-2 A3 y_ 3 o 0 2-74+9 1 (-4 0 0
a=3b=2c=2d=2 (-2 B 4 3 o 0 2-7U+9 1 (-6 0 0
a>4b=2c=2d=2 (-2 B 4y 3 o 0 2-w+9 1 (-7 0 0
a=3b=2c=2d>3 (-2 D 4y 3 o 0 2-74+9 1 L-5 0 0
a>4,b=2c=2d>3 (-2 AL y_ 3 o 0 2-74+9 1 £-6 0 0
a=3b=2c¢>3d>3 (-2 B 4y 3 o 0 2-7U+9 1 (-4 0 0
a>4,b=2,c>3d>3 (-2 ANy 3 9 0 2-7U+9 1 £-5 0 0
a=3b>3,c>3d>3 (-2 LD 4y 3 o 0 2-74+9 1 £-3 0 0
a>4,b>3,c>3d>3 (-2 Ay 3 o 0 2_7+9 1 (—4 0 0

2

From Table 1 we know that for only the case a > 4,0 = 2,¢ = 2,d = 2 the pair
of graphs in the lemma have the same number of 4-walks and 5-walks. However, the
adjacency matrix A of K, \ Py satisfies rank(A) > n — 1 whilst the adjacency matrix A’
of K, \ (Pr—g U Ts22) satisfies rank(A’) < n — 2. Thus the two graphs have different
multiplicities for the eigenvalue 0.

O



Lemma 2.9. Suppose that the pair of graphs K, \ Py and K, \ H are cospectral. Then the

number of triangles t' in H must be even.

Proof. We use the same notations d; ,d}, m;, m, and t’ as above. If graph K, \ P, and
K, \ H are cospectral, then they have the same number of 3-walks. By Lemma 2.3 we have

n

dodP -t = zn:d;%.
1=1

i=1

Graphs K, \ Py and K,, \ H also have the same number of 4-walks. By Lemma 2.4 we have
(8n — 20)m} + 16m, — 8mj + 8m

(8n — 20)m1 + 16mo — 8m3 + 8my

(8n — 20)m; + 8(¢ — 3)2.

d’ i d;
( 2Z>:Z< 2 )H/:mlﬂl'
=1

(2n — 5)t' 4+ 4mly — 2mj + 2m), = 2(¢ — 3)*.

Moreover,

so we have

As 4mb, 2mf, 2m/, and 2(¢ — 3)? are all even numbers, 2n — 5 is an odd number, so the

number of triangles ¢’ in H must be even. O

Let T' be a graph with |V(I')| = ¢, and C' = (Cj;)exk be a (0, 1)-matrix. We construct a
new graph, denoted by (I',C,n — ¢), which is obtained from the disjoint union of T" and &
copies of the complete graph K,,_, by adding some edges according to the following rule: if
C;; = 1, then each vertex of the j-th complete graph K,,_, is adjacent to vertices i € V(I')
and is not adjacent to vertices i € V(I') with C;; =0 (for ¢ = 1,2, ,4;5 = 1,2,--- k)
(see Fig. 1).

11

01

11

Fig. 1: The graph (I',C,n —1) for T' = P;.

Lemma 2.10 (Jing and Koolen [14]). Apin (T, C,n—0) > Xpin (T, Cyn—041), Appin (T, C,n—
0) > Amin(A = CCT) and limp, 0o dmin (T, Cy;n — €) = Apin(A — CCT), where A = A(T).

A vector [x1,- -, x,] is called skew palindromic if [x1,--- ,2,]T = —[zp, - , 1]

Lemma 2.11 (Doob and Haemers [4]). Suppose A is the adjacency matriz of K¢\ Py, then

Z_l . . . .
771 With skew palindromic eigenvectors &;

A has | 5] known eigenvalues \; = —1 + 2cosm
if2<i</landi={(mod 2).



A Jox (n—t)

Suppose B = is the adjacency matrix of K, \ P;. Then B
Jn—e)xe J(nff)x(nfl) -1
also has L%J known eigenvalues \; = —1 + 2 cos wﬁ with skew palindromic eigenvectors

[&:, 0] since &; is a skew palindromic eigenvector, orthogonal to the all-one vector 1.

Lemma 2.12 (Doob and Haemers [4]). If £ > 2, then every eigenvalue of Ko\ Py has

multiplicity one.
The following lemma lies at the heart of the proof of Theorem 1.1.

Lemma 2.13. Let n > 2. Then every eigenvalue of graph K, \ Py has multiplicity one,
except for -1. The multiplicity of —1 is n — £ if £ is odd, and it is n — £ — 1 if £ is even.
Moreover, we have \pin (K, \ Pr) > —3.

Proof. First we give the eigenvectors associated with eigenvalue -1 explicitly. We distin-
guish the following cases:

Case 1. For ¢ = 2k, there are n — ¢ — 1 eigenvectors:

4

———

(0707"' 707_171707"' 7070)7

(0707"' 707_170717"' 7070)7

(0507"' 507_170507"' 7150)7

(0507"' 507_170507"' 7051)

Case 2. For { = 4k 4 1, there are n — { eigenvectors:
4
(_17071707_17071707"' 7_17071707_171707"' 7070)7
(_17051705_15071507"' 5_15071507_170517"' 7050)7
(_170517())_1)071)07"' ,—1,0,1,0,—1,0,0,"' 71)0)7
(_17071707_17071707"' 7_17071707_170707"' 7071)
Case 3. For ¢ = 4k + 3, there are n — { eigenvectors:
4
(_15071507_17051705"' 7_17071707_1707170707"' 70)7
14

——N—
(0707"' 707_171707"' 7070)7
(0705"' 705_150715"' 7050 )
(0705 '705_150705"'7150)7
(0707 '707_170707"'7071)



It follows from Lemma 2.10 that
)\mzn(Kn \ PZ) > )\mzn(A - CCT) = )\mzn(J —I—-A- J) = )\min(_l - A)7

where A is the adjacency matrix of the path P;.

The eigenvalues of Py (that is the eigenvalues of A) are well known to be

™
N =2 —i=1,2,--- /.
cos£_|_1 )

So the smallest eigenvalue of K, \ Py satisfies that Ay (K, \ Pr) > —3.

It remains to show that every eigenvalue of graph K, \ P, has multiplicity one, except
for -1. We prove this assertion by induction on k. First suppose k = 1, we shall show that
K41\ P; has multiplicity one.

From Lemma 2.12 Ky \ P; has ¢ different eigenvalues which will be ordered as A\; >
Ay > .-+ > )y where LéJ known eigenvalues are given in lemma 2.11. Kpq \ Py has £+ 1
eigenvalues which will be ordered as g1 > pa > -+ > per1. The eigenvalues of Ky \ Py
interlace those of Kyi1 \ Pr, that is, p1; > A\; > piqq for i = 1,2, £. Next we shall show
that Lg] known eigenvalues have multiplicity 1. This proves this assertion, since every
other eigenvalue lies between two eigenvalues with multiplicity 1.

Suppose A is such an eigenvalue. Then, substituting i = £42—2m gives \ = —1—2cos¢

with ¢ = 2mm/(¢ + 1) for some integer m, 1 < m < (/2. Let © = [x1,22, -+, 27,

y1 = [z1,T2,- - ,2¢,a]T be an eigenvector for \. If a = 0, y; is an eigenvector of K, \ P

and the corresponding eigenvalue is 2cos . Suppose a # 0, Biy; = A\y; (where B =
J-—T-A 1

[ 1T is the adjacency matrix of K1 \ P, ) implies that

lTx:Xa,
ry=a(A+ 1) — (A + 1)y,
ri=aA+1) = A+ 1)z — 39, fori=2,3,... L

The general solution of this recurrence has the form

. o a(A+1)
T; = QCOSLY + psInity + ———.
P ¥ Osinie (A+3)
Note that A + 3 > 0). Substituting zo = 0 gives a = aQ+1) Moreover, x; =
g g

~ k T (AF3)
a(A41) a(A+1)
) FOR Hence

acosly + Bsinly +

=acosy — fsing +

2a(A+1) -
1+ a0 =2acosp+ —— =a(A+1).
1 [ P (O +3) ( )
Next we equate 17(Az) to (17 A)z to get A2 — £ = (£ —3)XA 4+ (A + 1). Thus we find
(=2+1-15H
Next, suppose k > 2. By induction, we have K, \ P, has different eigenvalues (except
for -1) which will be ordered as \y > Ao > -+ > —1=—-1=---=—1> -+ > A\pjj where

which cannot be an integer; a contradiction.

L%J known eigenvalues are given in lemma 2.11. Kyyp41 \ Pr has ¢ + k + 1 eigenvalues

which will be ordered as 1 > po > -+ > pgyp+1. The eigenvalues of Kyi \ Py interlace



those of Kyypi1 \ P, that is, p; > N; > pipq for i = 1,2,--- £ + k. Next we shall show
that L%J known eigenvalues have multiplicity 1.

Suppose A is such an eigenvalue. Let @ = [z1, 29, -+, 247,y = [a1, a2, ,ar41]T and
Y2 = (21,22, -+ 20,01, ,ak+1]T be an eigenvector for A Actually aq,a9,- - ,ak41 must
be equal if A # —1.
J—I1—A J-
Let By = ! 2 be the adjacency matrix of Kyypi1 \ Pr. It follows

JT Jy —1T
from Bays = Ay that
Jix+ (Js—I)y =,

i.e.

[N+ 1) — J3]y = Ji .

Then we have (A + 1)(a; — a;) = 0 and if A # —1, then ay,as, -+ ,ax11 must be equal
to each other.

So we can assume yo = |11, 2, , T, a,---,a]’. If a =0, then y, is an eigenvector of
Koips1 \ Po. Suppose a # 0. It follows from Bays = Ay that

{(Jl—I—A);v—i-(k—i—l)al:)\x,

17z + ka = la.
ie.,
ri=aA+1) = A+ 1Dz — a9, fori=23,... ¢
Similarly as before we also get a contradiction. This completes the proof. O

Remark. As we know that every eigenvalue of K, \ Py—; has multiplicity one. So all
conclusions in [11] hold for the graph Ky \ P;—1. So we directly have K, \ Py is DS.

Lemma 2.14. Suppose K, \ H is cospectral with K, \ P;. Then graph H has the following

three properties.
1. No component of H is a cycle except for C3 and Cj.

2. Graph H cannot contain the disjoint union of two cycles Cy, U Cy, where Cy and Cj
are both induced subgraph of H.

3. No two components of H are paths of the same nonzero length except for Ps.

Proof. (i) Suppose that there exists one component of H that is a cycle Cy, (a # 3,4). The
eigenvalues of C, are 2cos(2mi/a) for i = 0,1,--- ,a — 1. Note that a — i and i give the
same value, so almost all eigenvalues have multiplicity 2. Since each cycle has eigenvalue
2 with all-one eigenvector 1, every other eigenvectors & with eigenvalue 2cos(2mi/a) are
all orthogonal to all-one vector 1, for ¢ = 1,---,a — 1. We readily find that K, \ H
has eigenvalues —1 — 2 cos(27i/a) with eigenvectors [¢;, 07 for i = 1,--- ,a — 1, which
contradicts Lemma 2.13.

(ii) Suppose H contains an induced subgraph A which consists of two disjoint cy-

cles C; and Cs. Then the complement of A has eigenvalue -3 with the eigenvector



/_/H —
v=I[—s,---,—8,k,---,k|. Eigenvalue interlacing theorem gives that \pin (K, \ Pr) < —3;
a contradiction.

(iii) Suppose H contains Py (k # 3) twice. Then both paths have an eigenvalue A
with a skew palindromic eigenvector. Since a skew palindromic vector is orthogonal to 1,
graph H has an eigenvalue A with at least two independent eigenvectors orthogonal to 1.
This implies that K, \ H has an eigenvalue —\ — 1 with multiplicity at least two, which

contradicts Lemma 2.13. O

3 The Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1.
Let G = Py+ (n—{)K; (the complement of K,\P;). Apparently, G has n vertices, £ — 1
edges, no triangles, and degree sequence {0"* 12,22}, Thus, the number of triangles ¢

in graph K, \ P is '
f= (g) —(n=1)( = 1)+ 5 (4~ 6).

Let ' = H + (n — V(H))K; (the complement of K,\H), which has n vertices, £ — 1
edges, t’ triangles, and degree sequence {On—zle Ti 171 2%2 ... k"1 Then the number

of triangles ¢’ in graph K, \H is

k
t = (Z) —(n-1)¢-1)+ % Z(z’%i) —t.

i=1
Suppose the pair of graphs K,\ H and K,, \ P, are cospectral, then they have the same

number of triangles. So we have

k
Z iz =21 — 2,
i=1
: o
D i =4l-6+ 2t
i=1
Lemma 3.1. The graph K,, \ Pr is determined by its adjacency spectrum.
Proof. If £ =7, then we have 0 <t/ <4,0< k < 5,0 < x; < min{%, 22+22t/}, with the
help of Mathematica software, we find all possible combinations of {t',x1,x9, x3, x4, x5}
that satisfy (1):

{O’ 27 5’ 07 O’ 0}7 {O’ 57 27 ]" O’ O}’ {1’ 07 67 07 O’ O}’ {]" 3’ 3’ 17 07 0}7 {17 67 O’ 2’ 07 0}7
{]‘) 87 0) 07 ]‘) 0}7 {2) 1747 ]‘) O) O}’ {2) 47 17 27 0) O}’ {2) 6) 1) 07 17 0}7 {37 27 2) 2) 07 0}7
{3,4,2,0,1,0},{4,0,3,2,0,0}, {4,2,3,0,1,0},{4,3,0,3,0,0},{4,5,0,1,1,0}.

A set of parameters {t', x1, xa, x3, x4, x5} is called graphic if there exists a graph with

the same parameters. Actually not all of these combinations are graphic and for some of

10



Table 2: All the possible graphs cospectral with K, \ P;

graphic combinations corresponding graphs
{0,2,5,0,0,0} C5U Py,CyUPs
{0,5,2,1,0,0} T 13U, T 22U, T 12UP, T 11 UP,
{17313711070} K173UC37G,1UP3,G;LUP2

them there may exist more than one graphs; see the Table 2. Here we only give the graphic
combinations and corresponding graphs (the related subgraph in the Table see Fig. 2):
By Lemma 2.6, Lemma 2.7 and Lemma 2.9, we have that graph K, \ P; is determined

by its adjacency spectrum. [l

(a) Ga (b) Gy (c) Ge (d) Ga (e) Ge
(f) Gy (8) Gy (h) G (i) Gi () G

Fig. 2: Subgraphs related to K, \ Pr, K, \ Ps,and K, \ Py

Lemma 3.2. The graph K, \ Ps is determined by its adjacency spectrum.

Proof. If £ =8, then we have 0 <t' <4,0<k<5,0<z; < rm’n{l—»4 261.;22’5,}7 similarly we

7 )

find all possible combinations of {t', x1, 22, x3, x4, x5} that satisfy (1):

{0,2,6,0,0,0}, {0,5,3,1,0,0}, {0, 8,0,2,0,0}, {0, 10,0, 0,1, 0}, {1,0,7,0,0,0},
{1,3,4,1,0,0},{1,6,1,2,0,0},{1,8,1,0,1,0},{2,1,5,1,0,0},{2,4,2,2,0,0},
{2,6,2,0,1,0},1{3,2,3,2,0,0},{3,4,3,0,1,0},{3,5,0,3,0,0},{3,7,0,1,1,0},
{4,0,4,2,0,0},{4,2,4,0,1,0},{4,3,1,3,0,0},{4,5,1,1,1,0},{4,9,0,0,0, 1}.
Table 3 only gives the graphic combinations and its corresponding graphs (for the
related subgraph in the table, see Fig. 2):

By Lemma 2.6, lemma 2.7 , Lemma 2.8, Lemma 2.9, Lemma 2.14 all these graphs are
not cospectral with graph K,,\ Ps. So graph K,\Ps is DS. O

Lemma 3.3. The graph K, \ Py is determined by its adjacency spectrum.
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Table 3: possible cospectral graphs with K, \ Ps

graphic combinations corresponding graphs
{0,2,6,0,0,0} CsU Py, C5 U P3,Cy U Py,
{0,5,3,1,0,0} Ti1,aU P2, T103UPy,ToooU P, Ti13UP;,Ti20UPs, Ty12UP;,Ti1,1UPs
{0,8,0,2,0,0} GpyU2P,2K 13U Py
{0,10,0,0,1,0} K14 U3P;
{1,0,7,0,0,0} CsUCy
{1,3,4,1,0,0} GaUP;,T112UCs
{1,6,1,2,0,0} G, U2P,
(2,1,5,1,0,0} G U Cs
(2,4,2,2,0,0} GaU2P,

Proof. If £ = 9, we have 0 < ¢/ < 5,0 < k < 6,0 < z; < min{® 30:32t,}, we find all

7

possible combinations of {t', x1,xa, x3, x4, x5, 26} that satisfy (1):

{0,0,6,0,1,0,0},{0,1,3,3,0,0,0},{0,3,3,1,1,0,0},{0,4,0,4,0,0,0},{0,6,0,2,1,0,0},
{0,7,2,0,0,1,0},{0,8,0,0,2,0,0},{1,1,4,1,1,0,0},{1,2,1,4,0,0,0},{1,4,1,2,1,0,0},
{1,5,3,0,0,1,0},{1,6,1,0,2,0,0},{1,8,0,1,0,1,0},{2,0,2,4,0,0,0},{2,2,2,2,1,0,0},
{2,3,4,0,0,1,0},{2,4,2,0,2,0,0},{2,6,1,1,0,1,0},{3,0,3,2,1,0,0},{3,1,5,0,0, 1,0},
{3,2,3,0,2,0,0},{3,3,0,3,1,0,0},{3,4,2,1,0,1,0},{3,5,0,1,2,0,0},{3,10,0,0,0,0, 1},
{4,0,4,0,2,0,0},{4,1,1,3,1,0,0},{4,2,3,1,0,1,0},{4,3,1,1,2,0,0},{4,5,0,2,0,1,0},
{4,7,0,0,1,1,0},{4,8,1,0,0,0,1},{5,0,4,1,0,1,0},{5,1,2,1,2,0,0},{5,3,1,2,0,1,0},
{5,5,1,0,1,1,0},{5,6,2,0,0,0,1}.
Table 4 only gives graphic combinations and its corresponding graphs (for the related
subgraph in the table, see Fig. 2):
Similarly, by Lemmas 2.6 2.9 and Lemma 2.14, all these graphs are not cospectral with
graph K, \ Py, except for graphs G, UP, U Ps, Ty 1 2o UK} 3U Py,and G4 U P, U P3. However,

these three graphs have different number of 4-walks with K, \Py. So graph K,\Py is
DS. O

Finally, we present the proof Theorem 1.1:

Proof. Combining Lemmas 3.1, 3.2 and 3.3, Theorem 1.1follows immediately. O

4 Conclusions

In this paper, we have derived some eigenvalue properties for the graph K, \ P, based on
which we are able to show that K, \ P is DS for some small values of ¢. It is noticed that
the multiplicity of the eigenvalue -1 of K,,\ P is larger than one, while it is one for K\ P;.
So the results in [4] cannot be directly applied in this paper. Also, the proof of Theorem 1.1
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Table 4: possible cospectral graphs with K, \ Py

graphic combinations corresponding graphs
{0,2,7,0,0,0,0} CrUPy,CoUPs,C5U Py, Cy U Ps,
{0,5,4,1,0,0,0} Ti15UPy,Ti0aUPy, Ty 33U P, Tro3UPy, Ty 14U Ps,Ti23UDPs,
To22UP3,T1 13U Py, T122UP;,T12UPs,T116U s
{0,8,1,2,0,0,0} Ge U2P,, Gy U2Py, Gy U P, UP3,Th 120 UKq 353U Py, 2Ky 53U Py
{0,10,1,0,1,0,0} GygU3P, K1 4U2P, U Ps
{1,0,8,0,0,0,0} CsUCs
{1,3,5,1,0,0,0} GpUPy, G, U Ps
{1,6,2,2,0,0,0} GiU2P,G. U P, U Ps
{1,8,2,0,1,0,0,0} G; U3P,
{2,1,6,1,0,0,0} GpUCs
{2,4,3,2,0,0,0} GqUP,U Ps

is based on a detailed classification of all the possible cospectral graphs of K, \ Py, and it

is geting more involved for larger ¢. Thus, to deal with the general case of Conjecture 1,

new tools and insights are needed. This will be investigated in the future.
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