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Abstract

A graph G is said to be determined by its spectrum if any graph having the same spec-

trum as G is isomorphic to G. Let Kn \ Pℓ be the graph obtained from Kn by removing

edges of Pℓ, where Pℓ is a path of length ℓ− 1 which is a subgraph of a complete graph Kn.

Cámara and Haemers [11] conjectured that Kn\Pℓ is determined by its adjacency spectrum

for every 2 ≤ ℓ ≤ n. In this paper we show that the conjecture is true for 7 ≤ ℓ ≤ 9.

AMS classification: 05C50
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1 Introduction

All graphs considered in this paper are undirected, finite and simple graphs. For some

notations and terminologies in graph spectra, see [1].

Let G = (V,E) be a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set

E(G) = {e1, e2, · · · , em}. Let A(G) be the (0,1)-adjacency matrix of G, the characteristic

polynomial of G is defined as PG(λ) = det(λI − A(G)). The spectrum of G consists of all

the eigenvalues of G (including the multiplicities). Two graphs are cospectral if they share

the same adjacency spectrum. A graph G is said to be determined by its spectrum (DS for

short) if any graph having the same spectrum as G is necessarily isomorphic to G.

The spectrum of a graph encodes useful combinatorial information about the given

graph. A fundamental question in the theory of graph spectra is “Which graphs are DS?”.

The problem dates back to more than 60 years ago and originates from Chemistry. It has

received a lot of attention from researcher in recent years.

However, it turns out that proving a graph to be DS is generally a very hard problem.

Up to now, very few classes of graphs with very special structures have been proved to be

DS. Usually it is case that the graphs shown to be DS have very few edges, such as the

∗This work is supported by the National Natural Science Foundation of China (No. 11471005)
†The corresponding author. E-mail address: wang weiw@xjtu.edu.cn
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T-shape trees [5], the ∞-graphs [6], the lollipop graphs [7], the θ-graphs [8], the graphs with

index at most
√

2 +
√
5 [9], and the pineapple graphs [10], to just name a few. For dense

graphs, it is usually quite difficult to show them to be DS, for example, the complement

of the path P̄n was shown to be DS in [4], but the proof is much more involved than the

proof that the path Pn is DS. For some excellent surveys of this topic, we refer the reader

to van Dam and Haemers [2, 3] and the references therein.

In [11], Cámara and Haemers investigated, among others, when a complete graph with

some edges deleted is DS. Denoted by Pℓ a path of length ℓ−1 and Kn the complete graph

on n vertices. Denoted by Kn \ Pℓ the graph obtained from Kn by removing the edges of

the path Pℓ. The authors proposed the following

Conjecture 1 ( Cámara and Haemers [11]). Kn \ Pℓ is DS for every 2 ≤ ℓ ≤ n.

It was shown in [11] that Conjecture 1 is true for ℓ ≤ 6. And for n = ℓ, Conjecture 1 is

true and it is the main result from [4]. In this paper we show that Conjecture 1 is true for

7 ≤ ℓ ≤ 9. Thus we have the following

Theorem 1.1. The graph Kn \ Pℓ is DS for 7 ≤ ℓ ≤ 9.

The proof of the above theorem is based on some eigenvalue properties of the graph

Kn\Pℓ, and a detailed classification of all of its possible cospectral mates.

The rest of the paper is organized as follows. In the next section, we will give some

important lemmas that will be needed in the sequel. In Section 3, we present the proof of

Theorem 1.1. Conclusions and some further research problems are given in Section 4.

2 Some lemmas

In this section, we will present some lemmas which are needed in the proof of the main

result. First we give some known results about the spectra of graphs.

Lemma 2.1 (van Dam and Haemers [2]). The following properties of a graph G can be

deduced from the adjacency spectrum:

(i) The number of vertices.

(ii) The number of edges.

(iii) The number of closed walks of any fixed length.

Let NG(H) be the number of subgraphs (not necessarily induced) of a graph G which

are isomorphic to H and let NG(i) be the number of closed walks of length i in G. Let

N ′
H(i) be the number of closed walks of H of length i which contain all the edges of H and

let Si(G) be the set consisting of all the connected subgraph H of G such that N ′
H(i) 6= 0.

It is easy to see that NG(i) can be expressed by

NG(i) =
∑

H∈Si(G)

NG(H)N ′
H(i).
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Lemma 2.2 (Omidi [13]). The number of closed walks of length of 2, 3, 4 and 5 of a graph

G are given as follows:

(i) NG(2) = 2m,NG(3) = 6NG(K3);

(ii) NG(4) = 2m+ 4NG(P3) + 8NG(C4), NG(5) = 30NG(K3) + 10NG(C5) + 10NG(Ga).

Where m is the number of edges of G and graph Ga denotes the graph obtained from a

triangle by adding a pendent edge to one of its vertices.

The following lemma is useful which gives the number of triangles of the complement

of a graph G in terms of that of G and the numbers of 4-walks and 5-walks of G.

Lemma 2.3 (Doob and Haemers [4]). Let G be a graph with n vertices, m edges, t triangles,

and degree sequence d1, d2, · · · , dn. Let t̄ be the number of triangles in the complement of

G. Then

t̄ =

(

n

3

)

− (n− 1)m+
1

2

n∑

i=1

d2i − t.

Lemma 2.4 (Cámara and Haemers [11]). The number of 4-walks in the complement of

a graph G only depends on the number of vertices and edges of G, and the number of

different subgraphs (not necessarily induced) in G isomorphic to P3,K2 ∪K2, P4 and C4.

More precisely, if these numbers are n,m,m1,m2,m3, and m4, and Wn = (n− 1)4 +n− 1

is the number of 4-walks in Kn, then the number of 4-walks in the complement of G equals

Wn − (8n2 − 32n+ 34)m+ (8n− 20)m1 + 16m2 − 8m3 + 8m4,

where
n :=| V (G) |,m :=| E(G) |,m1 := NG(P3),

m2 := NG(K2 ∪K2),m3 := NG(P4),m4 := NG(C4).

For closed walks of length 5-walks things become more complicated. We have the

following lemma.

Lemma 2.5. The number of 5-walks in the complement of a graph G only depends on the

number of vertices and edges of G, and the number of different subgraphs (not necessarily

induced) in G which are isomorphic to P3,K2 ∪K2, P4,K3, P3 ∪K2,K1,3, P5, Ga and C5.

More precisely, let these numbers be n,m,m1,m2,m3, s1, s2, s3, s4, s5 and s6, and let Wn =

30
(
n

3

)
+120

(
n

5

)
+30(n−3)

(
n

3

)
be the number of 5-walks in Kn. Then the number of 5-walks

in the complement of G equals

Wn − (10n3 − 50n2 + 90n− 60)m+ (10n2 − 20n)m1 + (40n− 120)m2

− (10n− 20)m3 − (30n− 60)s1 − 20s2 − 30s3 + 10s4 + 10s5 − 10s6,

where
s1 := NG(K3), s2 := NG(P3 ∪K2), s3 := NG(K1,3),

s4 := NG(P5), s5 := NG(Ga), s6 := NG(C5).

Proof. The result is a consequence of the inclusion-exclusion principle. Assume that G

and Kn have the same vertex set. Let E be the edge set of G. For a subset F ⊂ E. Let
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WF denote the set of 5-walks in Kn containing all edges of F . Then the total number of

5-walks in Kn that contain at least one edge from E equals

∣
∣
∣
∣

⋃

|F |≥1

WF

∣
∣
∣
∣
=
∑

|F |=1

|WF | −
∑

|F |=2

|WF |+
∑

|F |=3

|WF | −
∑

|F |=4

|WF |+
∑

|F |=5

|WF |.

If |F | = 1, then |WF | = 10(n − 2)(n − 3)(n − 4) + 40(n − 2)(n − 3) + 30(n − 2). If

|F | = 2, then |WF | depends on the mutual position of the two edges. If they have a vertex in

common, then |WF | = 10(n−3)(n−4)+50(n−3)+30, and if the two edges are independent

then |WF | = 40(n− 4)+40. If |F | = 3, then the three edges are P4,K3, P3 ∪K2,K1,3 in G

and if the three edges are a path P4 then |WF | = 10(n− 4) + 20, if the three edges are a

triangle K3 then |WF | = 30(n− 3) + 30, if the three edges are P3 ∪K2, then |WF | = 20, if

the three edges are a star K1,3 then |WF | = 30. If |F | = 4, then the four edges are a path or

a triangle with a pendant edge to one vertex. If the four edges are a path, then |WF | = 10

and if the four edges are a triangle with a pendant edge then |WF | = 10. Suppose |F | = 5,

then the edges are a cycle of length 5 in G. Each of them leads to 10 distinct 5-walks, so

|WF | = 10.

Suppose Kn \ Pℓ and Kn\H are cospectral. Here and below we define that mi (resp.

m′
i), sj (resp. s′j) to be the number of P3,K2 ∪K2, P4, C4,K3, P3 ∪K2,K1,3, P5, Ga, C5 in

graph Pℓ (resp. graph H) for i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5, 6.

Lemma 2.6. The pair of graphs Kn \ Pℓ and Kn \ (C4 ∪ Pℓ−4) are not cospectral for any

ℓ ≥ 7.

Proof. For graph Pℓ we can directly compute that

m1 = ℓ− 2,m2 =
(ℓ− 2)(ℓ − 3)

2
,m3 = ℓ− 3,m4 = 0.

And for graph C4 ∪ Pb we have

m′
1 = ℓ− 2,m′

2 =
(ℓ− 2)(ℓ − 3)

2
,m′

3 = ℓ− 3,m′
4 = 1.

According to Lemma 2.4, it follows that the pair of graphs in the lemma can be distin-

guished by the number of 4-walks.

Lemma 2.7. The pair of graphs Kn \ Pℓ and Kn \ (aK1,3 ∪ Pb) are not cospectral for any

a ≥ 1, b ≥ 2, where 3a+ b = ℓ.

Proof. For graph Pℓ we can directly compute that

m1 = ℓ− 2,m2 =
(ℓ− 2)(ℓ − 3)

2
,m3 = ℓ− 3,m4 = 0.

And for graph aK1,3 ∪ P2 and aK1,3 ∪ P3 we have

m′
1 = ℓ− 2,m′

2 =
(ℓ− 2)(ℓ − 3)

2
,m′

3 = 0,m′
4 = 0.

And for graph aK1,3 ∪ Pb (b ≥ 4) we have

4



m′
1 = ℓ− 2,m′

2 =
(ℓ− 2)(ℓ− 3)

2
,m′

3 = b− 3,m′
4 = 0.

By use of Lemma 2.4 it follows straightforwardly that they can be distinguished by the

number of 4-walks.

Lemma 2.8. The pair of graphs Kn \ Pℓ and Kn \ (Pa ∪ Tb,c,d) are not cospectral for any

a ≥ 2, b ≥ 1, c ≥ 1, d ≥ 1, where a+ b+ c+ d = ℓ (ℓ ≥ 6).

Proof. For graph Pℓ we can directly compute that

m1 = ℓ− 2,m2 =
(ℓ − 2)(ℓ− 3)

2
,m3 = ℓ− 3,m4 = 0,

s2 = (ℓ− 3)(ℓ − 4), s4 = ℓ− 4, s1 = s3 = s5 = s6 = 0.

And for graph Pa∪Tb,c,d, we can also compute the corresponding number of subgraphs;

see Table 1 below:

Table 1: The number of subgraphs in Pa ∪ Tb,c,d

(a, b, c, d) m′
1 m′

2 m′
3 m′

4 s′1 s′2 s′3 s′4 s′5 s′6

a ≥ 4, b = 1, c = 1, d = 1 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 6 0

a ≥ 3, b = 1, c = 1, d ≥ 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 5 0

a = 2, b = 1, c = 1, d ≥ 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 4 0

a ≥ 3, b = 1, c ≥ 2, d ≥ 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 4 0

a = 2, b ≥ 2, c ≥ 2, d ≥ 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 2 0

a = 2, b = 1, c = 2, d = 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 9 1 1

a = 2, b = 1, c = 2, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 5 0 0

a = 2, b = 1, c ≥ 3, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 4 0 0

a = 3, b = 2, c = 2, d = 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 6 0 0

a ≥ 4, b = 2, c = 2, d = 2 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 7 0 0

a = 3, b = 2, c = 2, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 5 0 0

a ≥ 4, b = 2, c = 2, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 6 0 0

a = 3, b = 2, c ≥ 3, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 4 0 0

a ≥ 4, b = 2, c ≥ 3, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 5 0 0

a = 3, b ≥ 3, c ≥ 3, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 3 0 0

a ≥ 4, b ≥ 3, c ≥ 3, d ≥ 3 ℓ− 2 (ℓ−2)(ℓ−3)
2 ℓ− 3 0 0 ℓ2 − 7ℓ+ 9 1 ℓ− 4 0 0

From Table 1 we know that for only the case a ≥ 4, b = 2, c = 2, d = 2 the pair

of graphs in the lemma have the same number of 4-walks and 5-walks. However, the

adjacency matrix A of Kn \ Pℓ satisfies rank(A) ≥ n − 1 whilst the adjacency matrix A′

of Kn \ (Pℓ−6 ∪ T2,2,2) satisfies rank(A′) ≤ n − 2. Thus the two graphs have different

multiplicities for the eigenvalue 0.
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Lemma 2.9. Suppose that the pair of graphs Kn \Pℓ and Kn \H are cospectral. Then the

number of triangles t′ in H must be even.

Proof. We use the same notations di ,d′i, mi, m
′
i and t′ as above. If graph Kn \ Pℓ and

Kn \H are cospectral, then they have the same number of 3-walks. By Lemma 2.3 we have

n∑

i=1

d′2i − t′ =

n∑

i=1

d2i .

Graphs Kn \Pℓ and Kn \H also have the same number of 4-walks. By Lemma 2.4 we have

(8n− 20)m′
1 + 16m′

2 − 8m′
3 + 8m′

4

=(8n− 20)m1 + 16m2 − 8m3 + 8m4

=(8n− 20)m1 + 8(ℓ− 3)2.

Moreover,

m′
1 =

n∑

i=1

(

d′i
2

)

=

n∑

i=1

(

di

2

)

+ t′ = m1 + t′.

so we have

(2n− 5)t′ + 4m′
2 − 2m′

3 + 2m′
4 = 2(ℓ− 3)2.

As 4m′
2, 2m

′
3, 2m

′
4 and 2(ℓ− 3)2 are all even numbers, 2n− 5 is an odd number, so the

number of triangles t′ in H must be even.

Let Γ be a graph with |V (Γ)| = ℓ, and C = (Cij)ℓ×k be a (0, 1)-matrix. We construct a

new graph, denoted by (Γ, C, n− ℓ), which is obtained from the disjoint union of Γ and k

copies of the complete graph Kn−ℓ by adding some edges according to the following rule: if

Cij = 1, then each vertex of the j-th complete graph Kn−ℓ is adjacent to vertices i ∈ V (Γ)

and is not adjacent to vertices i ∈ V (Γ) with Cij = 0 (for i = 1, 2, · · · , ℓ; j = 1, 2, · · · , k)
(see Fig. 1).

1

0

0

1

1

1

1

1

C=
1

2 3
4

K2 K2

Fig. 1: The graph (Γ, C, n− l) for Γ = P4.

Lemma 2.10 (Jing and Koolen [14]). λmin(Γ, C, n−ℓ) ≥ λmin(Γ, C, n−ℓ+1), λmin(Γ, C, n−
ℓ) ≥ λmin(A− CCT ) and limn→∞λmin(Γ, C, n− ℓ) = λmin(A− CCT ), where A = A(Γ).

A vector [x1, · · · , xn] is called skew palindromic if [x1, · · · , xn]
T = −[xn, · · · , x1].

Lemma 2.11 (Doob and Haemers [4]). Suppose Ā is the adjacency matrix of Kℓ \Pℓ, then

Ā has ⌊ ℓ
2⌋ known eigenvalues λ̄i = −1 + 2 cosπ i−1

ℓ+1 with skew palindromic eigenvectors ξi

if 2 ≤ i ≤ ℓ and i ≡ ℓ(mod 2).
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Suppose B =

[

Ā Jℓ×(n−ℓ)

J(n−ℓ)×ℓ J(n−ℓ)×(n−ℓ) − I

]

is the adjacency matrix of Kn \Pℓ. Then B

also has ⌊ ℓ
2⌋ known eigenvalues λ̄i = −1 + 2 cosπ i−1

ℓ+1 with skew palindromic eigenvectors

[ξi, 0] since ξi is a skew palindromic eigenvector, orthogonal to the all-one vector 1.

Lemma 2.12 (Doob and Haemers [4]). If ℓ > 2, then every eigenvalue of Kℓ \ Pℓ has

multiplicity one.

The following lemma lies at the heart of the proof of Theorem 1.1.

Lemma 2.13. Let n > 2. Then every eigenvalue of graph Kn \ Pℓ has multiplicity one,

except for -1. The multiplicity of −1 is n − ℓ if ℓ is odd, and it is n − ℓ − 1 if ℓ is even.

Moreover, we have λmin(Kn \ Pℓ) > −3.

Proof. First we give the eigenvectors associated with eigenvalue -1 explicitly. We distin-

guish the following cases:

Case 1. For ℓ = 2k, there are n− ℓ− 1 eigenvectors:

(

ℓ
︷ ︸︸ ︷

0, 0, · · · , 0,−1, 1, 0, · · · , 0, 0),
(0, 0, · · · , 0,−1, 0, 1, · · · , 0, 0),

...

(0, 0, · · · , 0,−1, 0, 0, · · · , 1, 0),
(0, 0, · · · , 0,−1, 0, 0, · · · , 0, 1).

Case 2. For ℓ = 4k + 1, there are n− ℓ eigenvectors:

(

ℓ
︷ ︸︸ ︷

−1, 0, 1, 0,−1, 0, 1, 0, · · · ,−1, 0, 1, 0,−1, 1, 0, · · · , 0, 0),
(−1, 0, 1, 0,−1, 0, 1, 0, · · · ,−1, 0, 1, 0,−1, 0, 1, · · · , 0, 0),

...

(−1, 0, 1, 0,−1, 0, 1, 0, · · · ,−1, 0, 1, 0,−1, 0, 0, · · · , 1, 0),
(−1, 0, 1, 0,−1, 0, 1, 0, · · · ,−1, 0, 1, 0,−1, 0, 0, · · · , 0, 1).

Case 3. For ℓ = 4k + 3, there are n− ℓ eigenvectors:

(

ℓ
︷ ︸︸ ︷

−1, 0, 1, 0,−1, 0, 1, 0, · · · ,−1, 0, 1, 0,−1, 0, 1, 0, 0, · · · , 0),

(

ℓ
︷ ︸︸ ︷

0, 0, · · · , 0,−1, 1, 0, · · · , 0, 0),
(0, 0, · · · , 0,−1, 0, 1, · · · , 0, 0),

...

(0, 0, · · · , 0,−1, 0, 0, · · · , 1, 0),
(0, 0, · · · , 0,−1, 0, 0, · · · , 0, 1).

7



It follows from Lemma 2.10 that

λmin(Kn \ Pℓ) ≥ λmin(A− CCT ) = λmin(J − I −A− J) = λmin(−I −A),

where A is the adjacency matrix of the path Pℓ.

The eigenvalues of Pℓ (that is the eigenvalues of A) are well known to be

λi = 2 cos
πi

ℓ+ 1
, i = 1, 2, · · · , ℓ.

So the smallest eigenvalue of Kn \ Pℓ satisfies that λmin(Kn \ Pℓ) > −3.

It remains to show that every eigenvalue of graph Kn \ Pℓ has multiplicity one, except

for -1. We prove this assertion by induction on k. First suppose k = 1, we shall show that

Kℓ+1 \ Pℓ has multiplicity one.

From Lemma 2.12 Kℓ \ Pℓ has ℓ different eigenvalues which will be ordered as λ1 >

λ2 > · · · > λℓ where ⌊ ℓ
2⌋ known eigenvalues are given in lemma 2.11. Kℓ+1 \ Pℓ has ℓ + 1

eigenvalues which will be ordered as µ1 ≥ µ2 ≥ · · · ≥ µℓ+1. The eigenvalues of Kℓ \ Pℓ

interlace those of Kℓ+1 \ Pℓ, that is, µi ≥ λi ≥ µi+1 for i = 1, 2, · · · , ℓ. Next we shall show

that ⌊ ℓ
2⌋ known eigenvalues have multiplicity 1. This proves this assertion, since every

other eigenvalue lies between two eigenvalues with multiplicity 1.

Suppose λ̄ is such an eigenvalue. Then, substituting i = ℓ+2−2m gives λ̄ = −1−2 cosϕ

with ϕ = 2πm/(ℓ + 1) for some integer m, 1 ≤ m ≤ ℓ/2. Let x = [x1, x2, · · · , xℓ]
T ,

y1 = [x1, x2, · · · , xℓ, a]
T be an eigenvector for λ̄. If a = 0, y1 is an eigenvector of Kℓ \ Pℓ

and the corresponding eigenvalue is 2 cosϕ. Suppose a 6= 0, B1y1 = λ̄y1 (where B1 =
[

J − I −A 1

1T 0

]

is the adjacency matrix of Kℓ+1 \ Pℓ ) implies that

1Tx = λ̄a,

x2 = a(λ̄+ 1)− (λ̄+ 1)x1,

xi = a(λ̄+ 1)− (λ̄+ 1)xi−1 − xi−2, for i = 2, 3, . . . , ℓ.

The general solution of this recurrence has the form

xi = α cos iϕ+ β sin iϕ+
a(λ̄+ 1)

(λ̄ + 3)
.

(Note that λ̄ + 3 > 0). Substituting x0 = 0 gives α = −a(λ̄+1)

(λ̄+3)
. Moreover, xℓ =

α cos ℓϕ+ β sin ℓϕ+ a(λ̄+1)

(λ̄+3)
= α cosϕ− β sinϕ+ a(λ̄+1)

(λ̄+3)
. Hence

x1 + xℓ = 2α cosϕ+
2a(λ̄+ 1)

(λ̄+ 3)
= a(λ̄+ 1).

Next we equate 1T (Āx) to (1T Ā)x to get λ̄2 − ℓ = (ℓ − 3)λ̄ + (λ̄ + 1). Thus we find

ℓ = λ̄+ 1− 2
λ̄+1

which cannot be an integer; a contradiction.

Next, suppose k ≥ 2. By induction, we have Kℓ+k \Pℓ has different eigenvalues (except

for -1) which will be ordered as λ1 > λ2 > · · · > −1 = −1 = · · · = −1 > · · · > λℓ+k where

⌊ ℓ
2⌋ known eigenvalues are given in lemma 2.11. Kℓ+k+1 \ Pℓ has ℓ + k + 1 eigenvalues

which will be ordered as µ1 ≥ µ2 ≥ · · · ≥ µℓ+k+1. The eigenvalues of Kℓ+k \ Pℓ interlace

8



those of Kℓ+k+1 \ Pℓ, that is, µi ≥ λi ≥ µi+1 for i = 1, 2, · · · , ℓ + k. Next we shall show

that ⌊ ℓ
2⌋ known eigenvalues have multiplicity 1.

Suppose λ̄ is such an eigenvalue. Let x = [x1, x2, · · · , xℓ]
T ,γ = [a1, a2, · · · , ak+1]

T and

y2 = [x1, x2, · · · , xℓ, a1, · · · , ak+1]
T be an eigenvector for λ̄. Actually a1, a2, · · · , ak+1 must

be equal if λ̄ 6= −1.

Let B2 =

[

J1 − I −A J2

JT
2 J3 − I

]

be the adjacency matrix of Kℓ+k+1 \ Pℓ. It follows

from B2y2 = λ̄y2 that

JT
2 x+ (J3 − I)γ = λ̄γ,

i.e.,

[(λ̄+ 1)I − J3]γ = JT
2 x.

Then we have (λ̄+ 1)(ai − aj) = 0 and if λ̄ 6= −1, then a1, a2, · · · , ak+1 must be equal

to each other.

So we can assume y2 = [x1, x2, · · · , xℓ, a, · · · , a]T . If a = 0, then y2 is an eigenvector of

Kℓ+k+1 \ Pℓ. Suppose a 6= 0. It follows from B2y2 = λ̄y2 that

{

(J1 − I −A)x + (k + 1)a1 = λ̄x,

1Tx+ ka = λ̄a.

i.e.,

xi = a(λ̄+ 1)− (λ̄+ 1)xi−1 − xi−2, for i = 2, 3, . . . , ℓ.

Similarly as before we also get a contradiction. This completes the proof.

Remark. As we know that every eigenvalue of Kℓ \ Pℓ−1 has multiplicity one. So all

conclusions in [11] hold for the graph Kℓ \ Pℓ−1. So we directly have Kℓ \ Pℓ−1 is DS.

Lemma 2.14. Suppose Kn \H is cospectral with Kn \Pℓ. Then graph H has the following

three properties.

1. No component of H is a cycle except for C3 and C4.

2. Graph H cannot contain the disjoint union of two cycles Ck ∪ Cs, where Ck and Cs

are both induced subgraph of H.

3. No two components of H are paths of the same nonzero length except for P3.

Proof. (i) Suppose that there exists one component of H that is a cycle Ca (a 6= 3, 4). The

eigenvalues of Ca are 2cos(2πi/a) for i = 0, 1, · · · , a − 1. Note that a − i and i give the

same value, so almost all eigenvalues have multiplicity 2. Since each cycle has eigenvalue

2 with all-one eigenvector 1, every other eigenvectors ξi with eigenvalue 2cos(2πi/a) are

all orthogonal to all-one vector 1, for i = 1, · · · , a − 1. We readily find that Kn \ H

has eigenvalues −1 − 2 cos(2πi/a) with eigenvectors [ξi, o]
T for i = 1, · · · , a − 1, which

contradicts Lemma 2.13.

(ii) Suppose H contains an induced subgraph ∆ which consists of two disjoint cy-

cles Ck and Cs. Then the complement of ∆ has eigenvalue -3 with the eigenvector

9



v = [

k
︷ ︸︸ ︷

−s, · · · ,−s,

s
︷ ︸︸ ︷

k, · · · , k]. Eigenvalue interlacing theorem gives that λ̄min(Kn \Pℓ) ≤ −3;

a contradiction.

(iii) Suppose H contains Pk (k 6= 3) twice. Then both paths have an eigenvalue λ

with a skew palindromic eigenvector. Since a skew palindromic vector is orthogonal to 1,

graph H has an eigenvalue λ with at least two independent eigenvectors orthogonal to 1.

This implies that Kn \H has an eigenvalue −λ − 1 with multiplicity at least two, which

contradicts Lemma 2.13.

3 The Proof of Theorem 1.1

In this section, we present the proof of Theorem 1.1.

Let G = Pℓ+(n− ℓ)K1 (the complement of Kn\Pℓ). Apparently, G has n vertices, ℓ−1

edges, no triangles, and degree sequence {0n−ℓ, 12, 2ℓ−2}. Thus, the number of triangles t̄

in graph Kn \ Pℓ is

t̄ =

(
n

3

)

− (n− 1)(ℓ− 1) +
1

2
(4ℓ− 6).

Let Γ = H + (n − V (H))K1 (the complement of Kn\H), which has n vertices, ℓ − 1

edges, t′ triangles, and degree sequence {0n−
∑

k

i=1
xi , 1x1, 2x2 , · · · , kxk}. Then the number

of triangles t̄′ in graph Kn\H is

t̄′ =

(
n

3

)

− (n− 1)(ℓ− 1) +
1

2

k∑

i=1

(i2xi)− t′.

Suppose the pair of graphs Kn\H and Kn \Pℓ are cospectral, then they have the same

number of triangles. So we have







k∑

i=1

ixi = 2l − 2,

k∑

i=1

i2xi = 4l − 6 + 2t′.

(1)

Lemma 3.1. The graph Kn \ P7 is determined by its adjacency spectrum.

Proof. If ℓ = 7, then we have 0 ≤ t′ ≤ 4, 0 ≤ k ≤ 5, 0 ≤ xi ≤ min{ 12
i
, 22+2t′

i2
}, with the

help of Mathematica software, we find all possible combinations of {t′, x1, x2, x3, x4, x5}
that satisfy (1):

{0, 2, 5, 0, 0, 0}, {0, 5, 2, 1, 0, 0}, {1, 0, 6, 0, 0, 0}, {1, 3, 3, 1, 0, 0}, {1, 6, 0, 2, 0, 0},
{1, 8, 0, 0, 1, 0}, {2, 1, 4, 1, 0, 0}, {2, 4, 1, 2, 0, 0}, {2, 6, 1, 0, 1, 0}, {3, 2, 2, 2, 0, 0},
{3, 4, 2, 0, 1, 0}, {4, 0, 3, 2, 0, 0}, {4, 2, 3, 0, 1, 0}, {4, 3, 0, 3, 0, 0}, {4, 5, 0, 1, 1, 0}.

A set of parameters {t′, x1, x2, x3, x4, x5} is called graphic if there exists a graph with

the same parameters. Actually not all of these combinations are graphic and for some of

10



Table 2: All the possible graphs cospectral with Kn \ P7

graphic combinations corresponding graphs

{0,2,5,0,0,0} C5 ∪ P2, C4 ∪ P3

{0,5,2,1,0,0} T1,1,3 ∪ P2, T1,2,2 ∪ P2, T1,1,2 ∪ P3, T1,1,1 ∪ P4

{1,3,3,1,0,0} K1,3 ∪C3, Ga ∪ P3, Gh ∪ P2

them there may exist more than one graphs; see the Table 2. Here we only give the graphic

combinations and corresponding graphs (the related subgraph in the Table see Fig. 2):

By Lemma 2.6, Lemma 2.7 and Lemma 2.9, we have that graph Kn \ P7 is determined

by its adjacency spectrum.

(a) Ga (b) Gb (c) Gc (d) Gd (e) Ge

(f) Gf (g) Gg (h) Gh (i) Gi (j) Gj

Fig. 2: Subgraphs related to Kn \ P7,Kn \ P8, and Kn \ P9

Lemma 3.2. The graph Kn \ P8 is determined by its adjacency spectrum.

Proof. If ℓ = 8, then we have 0 ≤ t′ ≤ 4, 0 ≤ k ≤ 5, 0 ≤ xi ≤ min{ 14
i
, 26+2t′

i2
}, similarly we

find all possible combinations of {t′, x1, x2, x3, x4, x5} that satisfy (1):

{0, 2, 6, 0, 0, 0}, {0, 5, 3, 1, 0, 0}, {0, 8, 0, 2, 0, 0}, {0, 10, 0, 0, 1, 0}, {1, 0, 7, 0, 0, 0},
{1, 3, 4, 1, 0, 0}, {1, 6, 1, 2, 0, 0}, {1, 8, 1, 0, 1, 0}, {2, 1, 5, 1, 0, 0}, {2, 4, 2, 2, 0, 0},
{2, 6, 2, 0, 1, 0}, {3, 2, 3, 2, 0, 0}, {3, 4, 3, 0, 1, 0}, {3, 5, 0, 3, 0, 0}, {3, 7, 0, 1, 1, 0},
{4, 0, 4, 2, 0, 0}, {4, 2, 4, 0, 1, 0}, {4, 3, 1, 3, 0, 0}, {4, 5, 1, 1, 1, 0}, {4, 9, 0, 0, 0, 1}.

Table 3 only gives the graphic combinations and its corresponding graphs (for the

related subgraph in the table, see Fig. 2):

By Lemma 2.6, lemma 2.7 , Lemma 2.8, Lemma 2.9, Lemma 2.14 all these graphs are

not cospectral with graph Kn\P8. So graph Kn\P8 is DS.

Lemma 3.3. The graph Kn \ P9 is determined by its adjacency spectrum.

11



Table 3: possible cospectral graphs with Kn \ P8

graphic combinations corresponding graphs

{0,2,6,0,0,0} C6 ∪ P2, C5 ∪ P3, C4 ∪ P4,

{0,5,3,1,0,0} T1,1,4 ∪ P2, T1,2,3 ∪ P2, T2,2,2 ∪ P2, T1,1,3 ∪ P3, T1,2,2 ∪ P3, T1,1,2 ∪ P4, T1,1,1 ∪ P5

{0,8,0,2,0,0} Gb ∪ 2P2, 2K1,3 ∪ P2

{0,10,0,0,1,0} K1,4 ∪ 3P2

{1,0,7,0,0,0} C3 ∪ C4

{1,3,4,1,0,0} Ga ∪ P4, T1,1,2 ∪ C3

{1,6,1,2,0,0} Gc ∪ 2P2

{2,1,5,1,0,0} Ga ∪ C3

{2,4,2,2,0,0} Gd ∪ 2P2

Proof. If ℓ = 9, we have 0 ≤ t′ ≤ 5, 0 ≤ k ≤ 6, 0 ≤ xi ≤ min{ 16
i
, 30+2t′

i2
}, we find all

possible combinations of {t′, x1, x2, x3, x4, x5, x6} that satisfy (1):

{0, 0, 6, 0, 1, 0, 0}, {0, 1, 3, 3, 0, 0, 0}, {0, 3, 3, 1, 1, 0, 0}, {0, 4, 0, 4, 0, 0, 0}, {0, 6, 0, 2, 1, 0, 0},
{0, 7, 2, 0, 0, 1, 0}, {0, 8, 0, 0, 2, 0, 0}, {1, 1, 4, 1, 1, 0, 0}, {1, 2, 1, 4, 0, 0, 0}, {1, 4, 1, 2, 1, 0, 0},
{1, 5, 3, 0, 0, 1, 0}, {1, 6, 1, 0, 2, 0, 0}, {1, 8, 0, 1, 0, 1, 0}, {2, 0, 2, 4, 0, 0, 0}, {2, 2, 2, 2, 1, 0, 0},
{2, 3, 4, 0, 0, 1, 0}, {2, 4, 2, 0, 2, 0, 0}, {2, 6, 1, 1, 0, 1, 0}, {3, 0, 3, 2, 1, 0, 0}, {3, 1, 5, 0, 0, 1, 0},
{3, 2, 3, 0, 2, 0, 0}, {3, 3, 0, 3, 1, 0, 0}, {3, 4, 2, 1, 0, 1, 0}, {3, 5, 0, 1, 2, 0, 0}, {3, 10, 0, 0, 0, 0, 1},
{4, 0, 4, 0, 2, 0, 0}, {4, 1, 1, 3, 1, 0, 0}, {4, 2, 3, 1, 0, 1, 0}, {4, 3, 1, 1, 2, 0, 0}, {4, 5, 0, 2, 0, 1, 0},
{4, 7, 0, 0, 1, 1, 0}, {4, 8, 1, 0, 0, 0, 1}, {5, 0, 4, 1, 0, 1, 0}, {5, 1, 2, 1, 2, 0, 0}, {5, 3, 1, 2, 0, 1, 0},
{5, 5, 1, 0, 1, 1, 0}, {5, 6, 2, 0, 0, 0, 1}.

Table 4 only gives graphic combinations and its corresponding graphs (for the related

subgraph in the table, see Fig. 2):

Similarly, by Lemmas 2.6 2.9 and Lemma 2.14, all these graphs are not cospectral with

graph Kn\P9, except for graphs Gb∪P2∪P3, T1,1,2∪K1,3∪P2,and Gd∪P2 ∪P3. However,

these three graphs have different number of 4-walks with Kn\P9. So graph Kn\P9 is

DS.

Finally, we present the proof Theorem 1.1:

Proof. Combining Lemmas 3.1, 3.2 and 3.3, Theorem 1.1follows immediately.

4 Conclusions

In this paper, we have derived some eigenvalue properties for the graph Kn\Pℓ, based on

which we are able to show that Kn\Pℓ is DS for some small values of ℓ. It is noticed that

the multiplicity of the eigenvalue -1 of Kn\Pℓ is larger than one, while it is one for Kℓ\Pℓ.

So the results in [4] cannot be directly applied in this paper. Also, the proof of Theorem 1.1
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Table 4: possible cospectral graphs with Kn \ P9

graphic combinations corresponding graphs

{0,2,7,0,0,0,0} C7 ∪ P2, C6 ∪ P3, C5 ∪ P4, C4 ∪ P5,

{0,5,4,1,0,0,0} T1,1,5 ∪ P2, T1,2,4 ∪ P2, T1,3,3 ∪ P2, T2,2,3 ∪ P2, T1,1,4 ∪ P3, T1,2,3 ∪ P3,

T2,2,2 ∪ P3, T1,1,3 ∪ P4, T1,2,2 ∪ P4, T1,1,2 ∪ P5, T1,1,6 ∪ P6

{0,8,1,2,0,0,0} Ge ∪ 2P2, Gf ∪ 2P2, Gb ∪ P2 ∪ P3, T1,1,2 ∪K1,3 ∪ P2, 2K1,3 ∪ P3

{0,10,1,0,1,0,0} Gg ∪ 3P2,K1,4 ∪ 2P2 ∪ P3

{1,0,8,0,0,0,0} C3 ∪C5

{1,3,5,1,0,0,0} Gh ∪ P4, Ga ∪ P5

{1,6,2,2,0,0,0} Gi ∪ 2P2, Gc ∪ P2 ∪ P3

{1,8,2,0,1,0,0,0} Gj ∪ 3P2

{2,1,6,1,0,0,0} Gh ∪ C3

{2,4,3,2,0,0,0} Gd ∪ P2 ∪ P3

is based on a detailed classification of all the possible cospectral graphs of Kn\Pℓ, and it

is geting more involved for larger ℓ. Thus, to deal with the general case of Conjecture 1,

new tools and insights are needed. This will be investigated in the future.
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[11] M. Cámara, W. H. Haemers, Spectral characterization of almost complete graphs,

Discrete Applied Mathematics, 176 (2014) 19-23.

[12] T.Z. Wu, H.P. Zhang, Per-spectral and adjacency spectral characterization of a com-

plete graph removing six edges, Discrete Applied Mathematics, 203 (2016) 158-170.

[13] G.R. Omidi, On a signless Laplacian spectral characterization of T-shape trees, Linear

Algebra Appl., 431 (2009) 1607-1615.

[14] H.J. Jing, J. Koolen, On fat Hoffman graphs with smallest eigevalue at least -3, Ars

Mathematica Contemporanea, 7 (2014) 105-121.

14


	1 Introduction
	2 Some lemmas
	3 The Proof of Theorem ??
	4 Conclusions

