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Abstract

In this paper, we present some new results describing connections between the spec-
trum of a regular graph and its generalized connectivity, toughness, and the existence

of spanning trees with bounded degree.
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1 Introduction

The spectrum of a graph is related to many important combinatorial parameters. In his
fundamental and ground-breaking work, Fiedler [16,17] determined close connections be-
tween the Laplacian eigenvalues and eigenvectors of a graph and combinatorial parameters
such as its vertex-connectivity or edge-connectivity. Fiedler’s work stimulated tremendous

progress and growth in spectral graph theory since then.
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In this paper, we study the connections between the spectrum of a regular graph and
other combinatorial parameters such as generalized connectivity, toughness and the exis-
tence of spanning trees with bounded degree.

Throughout this paper, we consider only finite, undirected and simple graphs. Given a
graph G = (V, E)) of order n, we denote by A\i(G) > A\(G) > -+ > A\, (G) the eigenvalues
of its adjacency matrix. When the graph G is clear from the context, we use \; to denote
Ai(G). We also use the notation A = max{|As|, |\,|}. If G is d-regular, then A\; = d and the
multiplicity of d equals the number of components of G. We use k(G), x'(G) and ¢(G) to
denote the vertex-connectivity, the edge-connectivity and the number of components of a
graph G, respectively. For any undefined graph theoretic notions, see Bondy and Murty [3]
or Brouwer and Haemers [6].

One of well-known results of Fiedler [16] implies that the vertex-connectivity of a d-
regular graph is at least d — \y. This result was improved in certain ranges by Krivelevich
and Sudakov [25] who showed that the vertex-connectivity of a d-regular graph is at least
d — %. Given an integer [ > 2, Chartrand, Kapoor, Lesniak and Lick [8] defined the
l-connectivity r;(G) of a graph G to be the minimum number of vertices of G whose
removal produces a disconnected graph with at least [ components or a graph with fewer
than [ vertices. Thus k;(G) = 0 if and only if ¢(G) > [ or |V(G)| < [ — 1. Note that
kao(G) = Kk(G). For k > 1, a graph G is called (k,!)-connected if x; > k. See [8,14,23,
32] for more about [-connectivity and (k,)-connected graphs. In particular, a structural
characterization of (2,1)-connected graphs is presented in [23], as a generalization of the
standard characterization of 2-connected graphs (see [3, Chapter 5]).

Our results relating generalized connectivity to the spectrum of a regular graph are

below.
Theorem 1.1. Let I,k be integers with | > k > 2. For any connected d-reqular graph G
with |V(G)| > k+1—1, d > 3 and edge connectivity ', if K" = d, or, if &' < d and
d=24VPH12 ¢ ] s even,
AL(—k41)d (G) < 2 2 ’ Zf Z oo
el CZVELS - if d s odd,
then k) (G) > k.

Corollary 1.2. Let | > 2. For any connected d-reqular graph G with |V(G)| > 1+ 1 and

d>3, if
d=2+vd*+12 V2d2+12, if d is even,

K@) < { G2V EEE Gf s odd,
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then ki (G) > 2.

Corollary 1.3. For any connected d-reqular graph G with d > 3, if

d—2+Vd>+12 -
M(G) < 5 , if d 1s even,
2VEES i s odd

2 Y

then k(G) > 2.

Corollary 1.3 is a slight improvement of previous results of Krivelevich and Sudakov [25,
Theorem 4.1] and Fiedler [16, Theorem 4.1].

The toughness t(G) of a connected graph G is defined as t(G) = min{ %}, where
the minimum is taken over all proper subset S C V(G) such that ¢(G — S) > 1. A graph
G is t-tough if t(G) > t. This parameter was introduced by Chvatal [9] in 1973 and is
closely related to many graph properties, including Hamiltonicity, pancyclicity and spanning

trees, see [2]. By definitions of toughness and generalized connectivity, for a noncomplete

Ki(G)
1

connected graph G, we have t(G) = ming<j<q{ } where « is the independence number
of G (see also [14]).
The relationship between the toughness of a regular graph and eigenvalues has been

considered by many researchers, among which Alon [1] is the first one.

Theorem 1.4 (Alon [1]). For any connected d-reqular graph G, t(G) > %(% —1).

Around the same time, Brouwer [4] independently discovered a slightly better bound of

HG).

- 2.

>l

Theorem 1.5 (Brouwer [4]). For any connected d-regular graph G, t(G) >

Brouwer [5] conjectured that the lower bound of the previous theorem can be improved
to % — 1 for any connected d-regular graph G. For the special case of toughness 1, Liu and

Chen [27] improved Brouwer’s previous result.

Theorem 1.6 (Liu and Chen [27]). For any connected d-reqular graph G, if

M(G) < | 47w i dis even,
d—1+ 2, ifdis odd,

then t(G) > 1.

Recently, Cioaba and Wong [13] further improved the above result.
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Theorem 1.7 (Cioaba and Wong [13]). For any connected d-regular graph G, if

d—24VPHI12 g

=rva s gf d s even,
)\2(G) < { d—2+\/2d2+8 fd s odd
=R, if dois odd,

then t(G) > 1.

Moreover, Cioaba and Wong [13] showed the previous result is best possible by con-
structing d-regular graphs whose second largest eigenvalues equals the right hand-side of
the previous theorem, but having toughness less than 1. An immediate corollary of the

previous result is the following.

Corollary 1.8 (Cioaba and Wong [13]). For any bipartite connected d-reqular graph G, if

d—2+Vd2+12 .
M(G) < { d_2+\2/m : zfd z.s even,
=R, if dois odd,

then t(G) = 1.

These authors also found the second largest eigenvalue condition for ¢(G) > 7, where

T < Kk'/d is a positive number.

Theorem 1.9 (Cioaba and Wong [13]). Let G be a connected d-reqular graph with edge
connectivity k' and d > 3. Suppose that T is a positive number with T < k'/d. If \2(G) <

d— #dl, then t(G) > 7.

In this paper, we continue to investigate the relationship between toughness of a regular
graph and its eigenvalues. The following theorems are the main results. As [ﬁ} > 2,
Theorem 1.10 is an improvement of Theorem 1.7. For bipartite regular graphs, Theorem 1.11
improves Corollary 1.8. We shall also mention that in Theorem 1.9 the eigenvalue condition
is not needed, see Theorem 1.12. As an application of Theorem 1.12, Corollary 1.13 confirms

a conjecture of Brouwer [5] when x’ < d.

Theorem 1.10. Let G be a connected d-reqular graph with d > 3 and edge connectivity .
If k' =d, or, if ¥ < d and

— 2 . .
L2 if d s even,

Ar_a (G) <{
[+ _ /d2 18 . .
d—kK W’ Zfd 18 Odd,

then t(G) > 1.



Theorem 1.11. For any bipartite connected d-reqular graph G with k" < d, if \;_a 1(G) <
d—r/
d— L then t(G) = 1.

“2d
Theorem 1.12. Let G be a connected d-regular graph with edge connectivity x'. Then
tHG) > K /d.

Corollary 1.13. For any connected d-reqular graph G with d > 3 and edge connectivity
R<d t(G)>L-1>¢-1.

Recently, there has been a lot of activity concerning connections between eigenvalues
of a graph and the maximum number of edge-disjoint spanning trees that can be packed
in the graph [12,19, 21, 22, 26, 28, 29, 35]. Another interesting problem would be to see
how eigenvalues of a graph influence the types of spanning trees contained in it. For an
integer k > 2, a k-tree is a tree with the maximum degree at most k. This topic is
related to connected factors. A [1,k]-factor is a spanning subgraph in which each vertex
has the degree at least one and at most k. By definition, a graph G has a spanning k-
tree if and only if G has a connected [1, k]-factor. For more about degree bounded trees,
we refer readers to the survey [33]. For spectral conditions of k-factors in regular graphs,
please see [11,20,30,31]. In his PhD Dissertation, Wong [35] proved the following sufficient

spectral condition for the existence of spanning k-trees in regular graphs for k£ > 3.

Theorem 1.14 (Wong [35]). Let k > 3 and G be a connected d-regular graph. If Ay <

d— m, then G has a spanning k-tree.

In this paper, we improve this result.

Theorem 1.15. Let k > 3 and G be a connected d-regular graph with edge connectivity .
Let 1 = d — (k= 2)k'. Each of the following statements holds.
(i) If 1 <0, then G has a spanning k-tree.

(i) If 1 > 0 and )\(% <d- m, then G has a spanning k-tree.

Note that eigenvalue conditions for the existence of spanning 2-trees (Hamiltonian paths)

and Hamiltonian cycles have been obtained by Krivelevich and Sudakov [24] and Butler and
Chung [7].

2 Preliminaries

In this section, we present some eigenvalue interlacing results to be used in our arguments.

For a real and symmetric matrix M of order n and a natural number 1 < i < n, we denote
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by Ai(M) the i-th largest eigenvalue of M. The following interlacing theorem can be found
in many textbooks, for example, [6, page 35] or [18, page 193], and is usually referred to as

Cauchy eigenvalue interlacing.

Theorem 2.1. Let A be a real symmetric n xXn matriz and B be a principal m xm submatrix
of A. Then \i(A) > Ni(B) > A—msi(A) for 1 <i < m.

Corollary 2.2. Let 51,5, -+, 5, be disjoint subsets of V(G) with e(S;,5;) =0 for i # j.
For 1 <i<p, let G[S;] denote the subgraph of G induced by S;. Then

Ap(G) 2 Ap(GIUZ15i]) = min {A (G[Si])}-

~ 1<i<p

Let d > 3 be an integer, and X (d) denote the family of all connected irregular graphs
with maximum degree d, order n > d + 1 and size m with 2m > dn — d + 1 that have at
least two vertices of degree d if d is odd and at least three vertices of degree d if d is even.
If t > 2 is an even integer, let M, denote the disjoint union of ¢/2 edges. If G and H are
two vertex disjoint graphs, the join GV H of G and H is the graph obtained by taking the
union of G and H and adding all the edges between the vertex set of G and the vertex set
of H. The complement of G is denoted by G. For d > 3, define X; as My, V K, if d is
odd and M, V Kj if d is even.

Lemma 2.3 (Cioaba and Wong [13]). Let d > 3 be an integer and H € X (d). Then

(d—2+Vd®>+12), ifd is even,

1
_ 2
Al(H)Ze(d)—{ %(d—Q—F\/m)a if d is odd.

Equality happens if and only if G = X§.

Theorem 2.4 (Cioaba [10]). Let k and d be two integers with d > k > 2. If G is a d-regular
graph with \o(G) < d — 2220 then 1/(G) > k.

d+1 7

Corollary 2.5. Let G be a d-reqular graph with d > 2 and edge connectivity k' < d. Then
M(G) > d — 2

d+1°

Proof: Let k = k' + 1 in the contrapositive of Theorem 2.4. O



3 Spectrum and generalized connectivity of regular
graphs

In this section, we prove Theorem 1.1. Corollaries 1.2 and 1.3 follow from Theorem 1.1

obviously.

Proof of Theorem 1.1: We prove it by contradiction and assume that x;(G) < k. By
definition, there exists a subset S C V(G) with |S| < k — 1 such that ¢(G — S) > [. Let
s=1S|, ¢c=¢(G—S) and Hy, Hy,--- , H. be the components of G — S. For 1 <i < ¢, let
= |V(H;)| and t; be the number of edges between H; and S. Then ¢; > x/ for 1 <i <ec.
Since G is d-regular, > 7 t; < ds < d(k —1).
Asd(k—1) > > t; > ek’ > 1K', we have Id — d(k — 1) <ld — Ir'. If ¥’ = d, then the
previous inequality is impossible, a contradiction. Thus we may assume that v < d, and

hence [ > = k+1 . We claim that there are at least [ 'i,l | indices i such that ¢; < d.
(=k+1)d
d—r'

Otherwise, there are at most [-— | — 1 indices 7 such that t; < d. In other words, there
are at least ¢ — [M1 + 1 indices ¢ with ¢; > d. Thus

iz - D gy (UEEEDG )
= - (DG )
(Il —k+1)d

> cod— T (d—r)
= cd—(l—k+1)d=(c—Dd+ (k—1)d

> ds,
contrary to » ¢, t; < ds. Hence there are at least [(l_dk_ﬁ)d} indices i such that ¢; < d.
Without loss of generality, we may assume these indices are 1,2,-- -, ((l_dk_ﬁ)d}

For 1 <i < [WL n; > d+ 1. Otherwise, if n, < d, then dn; = t; + 2|E(H;)| <
ti + ni(n; — 1) < t; + d(n; — 1), which implies ¢; > d, contrary to t; < d.

Since dn; = t; + 2|E(H;)| for 1 < i < [WL if d is even, then ¢; is also even, and
thus t; < d— 2. If dis odd, then t; < d—1. As n; > d+ 1, each H; contains at least
three vertices of degree d if d is even and at least two vertices of degree d if d is odd.
Thus H; € X, for 1 <i < (W] By Corollary 2.2 and Lemma 2.3, )\[W](G) >

min1<i<|—(l—k+1)d-|{Al(Hi)} > 6(d), contrary to the assumption. This finishes the proof. O
Y P



4 Spectrum and toughness of regular graphs

In this section, we prove Theorems 1.10, 1.11, 1.12 and Corollary 1.13.

Proof of Theorem 1.10. We prove it by contradiction and assume that ¢(G) < 1. By

definition, there exists a subset S C V(@) such that C(é*g_‘s) < 1. Let s =|S|, c=¢(G - 9)

and Hy, Ho,- -, H. be the components of G — S. For 1 <i < ¢, let n; = |V(H;)| and t; be
the number of edges between H; and S. Then s < ¢ and t; > &’ for 1 < i < ¢. Since G is
d-regular, >, t; < ds.

As ek’ < 377 t; < ds < d(c—1), we have ¢(d — k') > d. If ¥ = d, then we get a

contradiction. Thus we may assume that ' < d, and so ¢ > ﬁ. We claim that there are

d
d—~k'

such that ¢; < d. In other words, there are at least ¢ — (ﬁw + 1 indices ¢ with t; > d. Thus

at least [2-] indices ¢ such that ¢; < d. Otherwise, there are at most [-4-] — 1 indices i

Yot 2 (e[ D+ (] — e

d :
=l ([T
> cd—d_ﬁ/(d—/ﬁ):cd—d
> ds,

contrary to >, t; < ds. Thus there are at least [ 2] indices i such that t; < d. Without
loss of generality, we may assume these indices are 1,2, --- | (ﬁ]

For 1 <i < [24], n; > d+ 1. Otherwise, if n; < d, then dn; = t; + 2|E(H;)| <
t; + ni(n; — 1) < t; +d(n; — 1), which implies ¢; > d, contrary to t; < d.

Since dn; = t; + 2|E(H;)| for 1 <i < [ﬁ}, if d is even, then t; is also even, and thus
t; <d—2. Ifdisodd, thent; <d—1. Asn; > d+1, each H; contains at least three vertices
of degree d if d is even and at least two vertices of degree d if d is odd. Thus H; € X, for
1 <i < [74]. By Corollary 2.2 and Lemma 2.3, )\[ﬁ](G) > minlgig(ﬁ]{)\l(}[i)} >

0(d), contrary to the assumption. This finishes the proof. O
Lemma 4.1. For any bipartite reqular graph G, t(G) < 1.

Proof: Let S be the set of vertices of one part of the bipartition. Then ¢(G — S) = |5].

Thus t(G) < c(c|zs—‘5) = 1. O




Proof of Theorem 1.11: We prove it by contradiction and assume that ¢t(G) # 1. By
Lemma 4.1, ¢(G) < 1. By definition, there exists a subset S C V(G) such that c(c|zs_‘s) < 1.
Similar argument as Theorem 1.10 shows that there are at least [ﬁ} components H; of
(G— S such that t; < d, where t; is the number of edges between H; and S for 1,2, - -, [ﬁ]
Let n; = |V(H,)| and m; = |E(H,)| for 1,2, , [24]. Then 2m; = dn; — t; > dn; —d + 1.
As each H; is also bipartite, m; < n?/4. Thus n?/2 > 2m; > dn; —d+ 1, which implies that

n? — 2dn; + 2d — 2 > 0. Hence n; > 2d. By Corollary 2.2,

A G)> min {A\(H;)} > min > >d— ——o,
[di’]( )= 1Si§[di,1{ () = 1§z'sui,1{ n; = i B 2d
contrary to the assumption. This finishes the proof. O

Proof of Theorem 1.12: Suppose that S is a vertex-cut of G. Let s = |S]|, ¢ = ¢(G — 9)
and Hy, Hs,--- , H. be the components of G — S. For 1 < i < ¢, let n; = |V(H;)| and
t; be the number of edges between H; and S. Then t; > k' for 1 < i < c¢. As G is d-
regular, Y ¢ t; < ds. Thus ck’ < > t; < ds, which implies that s/c > «'/d. Hence
tG) > K'/d. O
Proof of Corollary 1.13: By Corollary 2.5, \y > d — 5%’1, which implies that #’il) >
/\%—1. Ifd24,then)\22d—5—j:/1>2. If d =3, then ' < 2, andthus)\gzd—jT“,lzz
By Theorem 1.12,

K /d 2K’ d

tHG) > K /d > = >
(@) 2~/ 2(1+1) X(d+1) = X

_1’

which completes the proof. O

5 Spectrum and spanning k-trees in regular graphs

In this section, we prove Theorem 1.15. We will use the following sufficient condition of the
existence of a spanning k-tree obtained by Win [34], which was also proved by Ellingham
and Zha [15] with a new proof later.

Theorem 5.1 (Ellingham and Zha [15], Win [34]). Let k > 2 and G be a connected graph.
If for any S CV(G), ¢(G = 8) < (k—2)|S|+ 2, then G has a spanning k-tree.

Now we are ready to prove Theorem 1.15.



Proof of Theorem 1.15. We prove it by contradiction and assume that G does not have
spanning k-trees for k£ > 3. By Theorem 5.1, there exists a subset S C V(G) such that

o(G—8) > (k—2)|S| +3. (1)

Let s = |S|, c=c¢(G — S) and Hy, Hy,- -+, H. be the components of G — S. For 1 <1i <,
let n; = |V(H;)| and t; be the number of edges between H; and S. Then t; > &’ for
1 < i <e¢ Since G is dregular, ck’ < Y7 t; < ds. By (1), s < (¢ —3)/(k —2). Thus
ck! < d(c—3)/(k — 2), which implies that

c(d—(k—2)x") > 3d. (2)

Thus | = d — (k — 2)x’ > 0, contrary to (i). This proves (i). In the following, we continue
to prove (ii).

By (2), ¢ > [24]. We claim that there are at least [32] indices i such that ¢; < d/(k—2).
Otherwise, there are at most [3?] — 1 indices i such that ¢; < d/(k — 2). In other words,
there are at least ¢ — [2¢] + 1 indices i with ¢; > d/(k — 2). Thus

dsZZti > (c— (37d1+1)-i+((3—d} — 1)K

k—2 [
od  3d i
= k_2—([71—1)(m—“)
L _3_d.(i_,4)
k—2 I k-2
_ed 3d -3
k—2 k-2 k—2
> ds,

a contradiction. This proves that there are at least [2¢] indices i such that ¢; < d/(k — 2).

Without loss of generality, we may assume these indices are 1,2, - - | [37d1

For 1 <i < [34], since t; < d/(k — 2), it is not hard to get n; > d + 1 by counting total
degree of H;. By Corollary 2.2, )\(¥](G) > min1§i§[¥]{)\l(Hi)} >d— m, contrary
to the assumption. This finishes the proof. O

6 Final Remarks

In this paper, we determined some new connections between the spectrum of a regular graph

and its generalized connectivity, toughness or the existence of spanning k-trees. Some of
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our results are best possible. For example, the constructions from [13, Section 3| show that
the upper bound from Theorem 1.10 is best possible. Also, Corollary 1.3 is best possible
when d = 4. To see this, construct a 4-regular graph by taking two disjoint copies of Xy
and adding a new vertex adjacent to the 4 vertices (2 in each copy of X,) of degree 3.
The resulting graph is 4-regular, has vertex-connectivity 1 and its second largest eigenvalue
equals the upper bound from Corollary 1.3.

It would interesting to improve and generalize our results to general graphs and eigen-

values of Laplacian matrix, signless Laplacian or normalized Laplacian.
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