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Abstract

Graham and Pollak showed that the vertices of any graph G can be addressed
with N-tuples of three symbols, such that the distance between any two vertices
may be easily determined from their addresses. An addressing is optimal if its length
N is minimum possible.

In this paper, we determine an addressing of length k(n — k) for the Johnson
graphs J(n, k) and we show that our addressing is optimal when k& = 1 or when k =
2,n =4,5,6, but not when n =6 and k = 3. We study the addressing problem as
well as a variation of it in which the alphabet used has more than three symbols, for
other graphs such as complete multipartite graphs and odd cycles. We also present
computations describing the distribution of the minimum length of addressings for
connected graphs with up to 10 vertices. Motivated by these computations we settle
a problem of Graham, showing that most graphs on n vertices have an addressing
of length at most n — (2 — o(1)) logy n.

1 Introduction
Let r > 2 be an integer. A (0,1,...,7 — 1,*)-addressing of a graph G = (V,E) is a

function f:V — {0,1,...,7 — 1,%}" for some natural number N such that for any two
vertices x,y € V, the distance between x and y in the graph G equals the number of
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positions j such that the j-th entries of f(u) and f(v) are distinct and neither equals =.
Let N,(G) denote the minimum N for which such an addressing is possible. Addressings
of length N,.(G) will be called optimal. The distance multigraph D(G) of the graph G
is the multigraph whose vertex set is V', where the number of edges between z,y € V
equals the distance in G between x and y. It is not too hard to see that N, (G) equals the
minimum number of complete multipartite graphs whose edges partition the edge multiset
of the distance multigraph of GG, where each complete multipartite graph in the partition
must have between 2 and r color classes.

For r = 2, Graham and Pollak [8] conjectured that No(G) < n — 1 for any connected
graph G with n vertices. This conjecture, also known as the squashed cube conjecture,
was proved by Winkler [15]. Graham and Pollak [8] proved the following result (which
they attributed to Witsenhausen):

N(G) = max(n, (D),n_(D)), (1)

where D is the |V| x |V| matrix whose entry (z,y) is the distance in G between x and
y, and ny (D) and n_(D) denote the number of positive and negative eigenvalues of D,
respectively. Following Kratzke, Reznick and West [12], an addressing of G of length
max(n, (D),n_(D)) will be called eigensharp. Note that eigensharp addressings are opti-
mal. Graham and Pollak [8] proved that complete graphs, trees and odd cycles of order n
have eigensharp addressings of length n — 1 and even cycles have eigensharp addressings
of length n/2. Elzinga, Gregory and Vander Meulen [5] proved that the Petersen graph
does not have an eigensharp addressing and found an optimal addressing of it of length
6 (one more than the lower bound (1)). Cioaba, Elzinga, Markiewitz, Vander Meulen
and Vanderwoerd [4] gave two proofs showing that the Hamming graphs have eigen-
sharp addressings and started the investigation of optimal addressings for the Johnson
graphs. The Johnson graph J(n, k) has as vertices all the k-subsets of the set {1,...,n}
and two k-subsets S and T are adjacent if and only if |S nT| = k — 1. In this paper,
we prove that No(J(n,k)) < k(n — k) by constructing an explicit addressing of J(n, k)
with (0,1, %)-words of length k(n — k). We answer a question from [4] and show that
No(J(n,2)) =2(n—2) for n = 5,6. In the case of n = 6 and k = 3, using the computer,
we prove that No(J(6,3)) = 8 which is smaller than our general bound above. The best
known lower bound is Ny(J(n, k)) = n (see [4, Theorem 5.3]).

For r > 3, Watanabe, Ishii and Sawa [14] studied (0,1,...,r — 1, *)-addressings and
proved that N,.(G) = max(n.(D)/(r — 1),n_(D)/(r — 1)). Note that the stronger re-
sult N,(G) = max(ny(D),n_(D)/(r — 1)) follows from the work of Gregory and Vander
Meulen [9, Theorem 4.1] (see also [13]). In [14], the first three authors prove that the
Petersen graph can be optimally addressed with (0, 1,2, *)-words of length 4 and show
that N,(C,) = n/2 for any n even and any r > 3. For odd cycles, they prove that
N3(Capy1) = n+1for n € {2,3,4} and ask whether this statement is true for larger values
of n. In this paper, we determine that this is true for n = 5 and N3(C1;) = 6, but fails
for n e {6, 7,8,9}, where Ng(clg) = 8, N3(015) = 9, Ng(Cn) = 10 and Ng(clg) =11.

For a,m > 1, let K(a;m) denote the complete m-partite graph where each color class
has exactly a vertices. The problem of computing No(K (2;m)) has been investigated by



Hoffman [11] and Zaks [16]. Using the some small length addressings found by computer
for K(3;3), K(4;4) and K(5;5) and a simple combinatorial blow-up argument, we obtain
the upper bounds below for any s > 1:

6s < No(K(3;3s) <8 —1
125 < Nao(K(4;4s)) < 155 — 1
20s < No(K (5;5s)) < 24s—1

The lower bounds follow from (1) and unfortunately are quite far from our upper bounds.
We conclude our paper with an investigation of the typical value of No(G) for connected
graphs G on n vertices. We start with computations describing the distribution of Ny(G)
when G ranges over all connected graphs with n < 10 vertices. These computations led us
to believe that for any fixed integer ¢ > 1, almost all connected graphs G of order n must
have Ny(G) < n — ¢, contradicting a suggested conjecture of Ron Graham from [7, page
148], where he writes that it is natural to guess that No(G) = n—1 for almost all graphs on
n vertices. Motivated by these computations we have been able to prove our conjecture,
showing that in fact No(G) < n — (2 — o(1)) logy n for almost all graphs on n vertices.

2 Johnson graphs

For any natural number m, we use [m] to denote the set {1,...,m}. Let n > k > 1 be
two integers. The Johnson graph J(n, k) has as vertices all the k-subsets of the set [n]
and two k-subsets S and T are adjacent if and only if |[S nT| = k — 1. When k = 1,
the Johnson graph J(n,1) is the complete graph K,. When n = 2, the Johnson graph
J(n,2) is the line graph of K, also known as the triangular graph. Note that the distance
between S and T' in J(n, k) equals % = |S\T'| = |T\S| [3, p- 255].

To describe our {0, 1, *}-addressing of .J(n, k), we need the following function. Let ([Z])
denote the family of all k-subsets of [n] and let P(X) denote the power-set of a set X.
Define f: (")) — P(([n]\[k]) x [K]) as follows. If S = [k], then f(S) = &. If S # [K],
then let A = S\[k] = {z1,...,2¢}, witht > 1andn > 2, > --- > 2, > k+ 1 and let
B =[k]\S ={y1,...,y} with 1 <y; <--- <y, < k. Define

f(S) ={(z1,11), -, (@, u0)}- (2)

For example, if n = 12)k = 5 and S = {1,4,6,8,12}, then A = {12,8,6}, B = {2,3,5}
and f(5) = {(12,2),(8,3),(6,5)}.

Our (0, 1, =)-addressing a(S, (x,y)) of each vertex S of J(n, k) with words of length
k(n — k) (indexed by the ordered pairs of the form (z,y) with = € [n]\[k] and y € [k]) is
done by the following procedure:

1. If (z,y) € f(9), then a(S, (x,y)) = 1, else
2. if max(S) < z, then a(S, (x,y)) = 0, else
3.4 (32)((z < y) A (2, 2) € f(S))), then a(S, (z,y)) = *, else
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4. if y € S, then a(S, (z,y)) = 0, else

5. if (32)((z < z) A ((2,9) € F(5))), a(S, (z,y)) = 0, else

6. a(S, (x,y)) = =

We give below three examples of this addressing in the cases of J(4,1), J(5,2), and
J(6,3). The superscripts in the tables below indicate the rule used for generating that
symbol. Since the symbol 1 can only be generated in step 1, we omit that superscript.

subset | (2,1) | (3,1) | (4,1) | address
{1} 02 0? 0 000
2y | 1 | 02 | 0% | 100 (3)
BY |« | 1T | 0° | 0
{4} %0 %0 1 *k 1
subset | (3,1) | (3,2) | (4,1) | (4,2) | (5,1) | (5,2) | address
{12} | 02 0? 02 0? 0 0% | 000000
{13, | 0* 1 02 02 02 02 | 010000
237 [ 1 | @ [ 02 [ 02 | 02 [ 0% | 1¥0000
Q4 [ 0F [ 5 [ 0f [ 1T | 0% [ 0% |0%0100
4 [ [0 [ 1 | = [ 02 [ 07 [*0rf00 (4)
{3,4} x0 1 1 = 02 02 | *¥11*00
{15} | 0* x0 04 x0 04 1 0*0*01
{2’5} 4«0 04 %0 04 1 %3 *0*(Q1*
{3,5} x0 1 50 0° 1 5 | FTFO1H
{4’5} %0 %0 %0 1 1 %3 Kok ok




subset | (4,1) | (5,1) | (6,1) | (4,2) | (5,2) | (6,2) | (4,3) | (5,3) | (6,3) | address
{1,2,3} | 07 0 0? 0? 0 0? 0? 0 02 | 000000000
{124} | 0 0 0? 0* 0 0? 1 0 0?2 | 000000100
{1,34} | 0 02 02 1 02 02 = 02 02 | 000100*00
{2,3,4} 1 02 0? = 02 0? = 02 02 | 100*¥00*00
{125} ] 0 0* 0? 0* 04 0? x0 1 02 | 000000*10
{1,35}] 0 0* 0? x0 1 0? 0* 53 02 | 000¥100*0
{235} | «° 1 0? 0* = 0? 0* = 02 | *100*00*0
{145} | o 04 0? +0 1 0? 1 = 02 | 000%101*0
(245} 1 02 | 0F | & | 0 1 S| 02 | ¥100%01%0
(345} | 1 02 1 S 07 | S | «5 | 0% | FI01F0F0
{1,2,6} | 0 04 0* 0* 04 0* +0 50 1 000000**1
{1,3,6} | 0 04 0* x0 50 1 0* 04 =1 000%*100%*
{2,3,6} | «° 50 1 0* 04 = 0* 04 | F*¥100%00%*
{146} | 0 04 0* +0 x0 1 1 0° « | 000%¥*110*
(246} | 0 1 or | of | & 1 0 S5 | FF100%10%
{3,4,6} 4«0 %0 1 1 05 %3 %3 04 %3 *X110%*0*
(156} 0 | 0F | oF | 0 | 1 0 1 | 000FF1F1F
{2,5,6} %0 %0 1 04 04 %3 %0 1 %3 R OO***
{3,5,6} %0 %0 1 %0 1 %3 04 %3 %3 Fok R KRk
{4,5,6} +0 +0 1 +0 1 %3 1 %3 %3 Fok kxR Rk
(5)

We give two examples below where the order of our algorithm is significant to the

output.

J(4,2)
subset | entry | step 1 | step 2 | step 3 step 4 | step 5
{2,3} | (3,2) | Fails | Fails | Succeeds | Succeeds | Fails
J(5,3)
subset | entry | step 1 | step 2| step3 |step4 | stepb
{3,4,5} | (5,2) | Fails | Fails | Succeeds | Fails | Succeeds

For S,T € ("), a pair (z,y) € ([n]\[k]) x [K] is called (S,T)-good if

{a(S, (2,9)),a(T' (z,y))} = {0, 1},

Let ¢(S,T) denote the number of (S,7)-good pairs. Our goal is to prove the following
result which implies that our procedure on page 2 gives a valid (0,1, *)-addressing of

J(n, k).

Theorem 2.1. For any S,T € (), c(S,T) = 251 = |S\1| = |T\S|.




Proof. 1f S = T, then the statement is obvious. If S # T, then the proof follows from
Lemma 2.3, Lemma 2.10 and the last sentence of the first paragraph in this section. [

The following results gives a characterization of the (S, T)-good pairs and we will use
it later in this section.

Lemma 2.2. Let S # T € ([Z]) and (x,y) € ([n]\[k]) x [k]. Then
a(S, (z,y)) = 1 and a(T, (z,y)) = 0
if and only if the following three conditions are satisfied:

(z,y) € F(SN(T) (8)

and
~[32)((z < 2) A ((2,9) € £(T)))] (9)

and

~[32)((z < y) A ((2,2) € £(1)))] (10)

Proof. Assume that the conditions (8), (9) and (10) are true. From (8), we deduce
immediately that a(9S, (x,y)) = 1 and a(T), (x,y)) # 1. Thus, (T, (z,y)) is 0 or =. When
evaluating a(7T', (x,y)), the first step fails since (z,y) ¢ f(T). If max(T") < z, then step 2
succeeds, we get a(T, (x,y)) = 0 and we are done. Otherwise, assume that max(7T") > =.
Step 3 of evaluating a(7), (z,y)) fails because (10) is satisfied. If y € T, then step 4
succeeds, a(T, (z,y)) = 0 and we are done. Otherwise, assume that y ¢ 7. There
exists z € T\[k] such that (z,y) € f(T). By condition (9), we must have that z < x.
Note that if z = x, then we would have that (z,y) = (z,y) € f(T), contradiction with
(x,y) € fF(S)\f(T). Thus, z < x. But now step 5 is satisfied and a(7, (z,y)) = 0. Thus,
a(S, (z,y)) =1 and a(T, (x,y)) = 0.

Assume that a(S, (z,y)) = 1 and (T, (z,y)) = 0. From the definition on the previous
page, we deduce that (z,y) € f(S)\f(T). Thus, (8) is true.

Assume that (9) is not true. Thus, there exists zp such that x < zo and (z0,y) € f(T).
This implies that y ¢ 7. When evaluating a(7T, (z,y)), step 1 obviously fails. Also, since
max(T) = zy > x, step 2 fails as well. Because a(T, (z,y)) = 0, step 3 must also fail.
Because y € T, then step 4 must fail. Thus, in order to have a(T, (z,y)) = 0, step 5
must succeed and therefore, there is z; < z such that (z1,y) € f(T). Now (zp,y) €
f(T),(z1,y) € f(T) and zy > x > z; provide a contradiction which shows that (9) is true.

Assume that (10) is not true. Thus, there exists zy such that zp < y and (x, z9) € f(T).
Hence, x € T and zy ¢ T. When evaluating a(7T, (x,y)), step 1 obviously fails. Also,
because x € T', we must have that max(7") > = and step 2 fails. The existence of z, with
the above properties implies that step 3 succeeds and a(7', (z,y)) = *, contradiction with
a(T, (z,y)) = 0. Thus, (10) is true and our proof is complete. O

For S e ([Z]), let ~(S) denote the graph with vertex set [n] whose edges are the pairs in
f(S). When S = [k], the graph h(S) has no edges and when S # [k], h(S) is a matching.

For S #T € ([Z]), let h(S,T) denote the multigraph obtained as union of the graphs A(S)

6



and h(T'). The non-trivial components of h(S,T") must be cycles or paths. We prove later
in this section (Lemma 2.6) that the only cycle components possible are cycles of length
2, but first we will show that the distance in J(n, k) between S and T" equals the number
of path components in A(S,T).

Lemma 2.3. The set of vertices of degree one in h(S,T) equals SAT. Consequently, the
number of path components in h(S,T) equals % = |S\T'| = |T\S|.
Proof. First, we show that x € [n]\[k] has degree 1 in h(S,T) if and only if x € (SAT)\[k].

Assume that = has degree 1 in h(S,T"). Without loss of generality, there exists y € [k]
such (z,y) € f(S)\f(T). This implies that z € S. Also, we deduce that x ¢ T, as
otherwise there would exist z such that (x,z) is an edge in A(S,T) implying that the
degree of z is 2, contradiction. Hence, x € S\T' < SAT.

Assume that = € (SAT)\[k]. This means that x € [n]\[k] and without loss of gener-
ality, assume that x € S and = ¢ T'. Because = € S, there exists y € [k] such that (z,y) is
an edge in h(S). The edge (x,y) is the only edge involving z in h(S). Because x ¢ T, it
means that there is no z such that (z,z) € f(T'). Hence, x is not contained in any edges
of h(T'). Thus, x has degree 1 in h(S,T).

Secondly, we show that y € [k] has degree 1 in A(S,T) if and only if y € (SAT) n [k].

Assume that y has degree 1 in h(S,T). Without loss of generality, there exists x €
[n]\[k] such that (x,y) € f(S)\f(T). This implies that y ¢ S. Also, y € T, as otherwise
there would exist z € T' such that (z,y) is an edge in A(S,T') implying that the degree of
y is 2, contradiction. Hence, y € T\S < SAT.

Assume that y € (SAT) n [k]. Without loss of generality, assume that y ¢ S and
y € T. Because y ¢ S, there exists z € S such that (z,y) is an edge in h(S). This edge is
the only edge involving y in h(S). Because y € T', it means that there is no edge involving
y in h(T'). Hence, y has degree 1 in h(S,T"). This finishes our proof. O

Our goal for the remaining part of this section will be to prove that each path com-
ponent of (S, T') contains exactly one good (S, T)-pair and that any other component of
h(S,T) (isolated vertex or cycle) contains no good (.S, T")-pairs.

For the remaining part of this section, let S # T € ([Z]). Let C' be a non-trivial
component of h(S,T). Define the following:

Lemma 2.4. Given any non-trivial component C' in h(S,T), at least one of the following
statements 1s true:

o The vertex Ty, (C) has degree one.

o The vertex Ymin(C) has degree one.



o The edge (Tmaz(C), Ymin(C)) is contained in both f(S) and f(T).

Proof. Assume that each claim above is false. If 2,4, (C) and y,,:,(C) are adjacent, then
since (Tmaz(C), Ymin(C) ¢ f(S) n f(T), assume that (pme(C), Ymin(C)) € fFIS)\F(T).
Because both Z,,4:(C) and ¥, (C) have degree two, there exists xy and yo such that
(Tmaz(C),y0) € f(T) and (zo, Ymin(C)) € f(T). Because Tpq.(C) > o, the definition
of f(T) implies that ¥y < Ymin(C), contradiction. If x,,,(C) and Y, (C) are not adja-
cent (a case that we will see later in Lemma 2.8, never happens), then we can derive a
contradiction in a similar manner. O

Lemma 2.5. Given any non-trivial component C' in h(S,T), at least one of the following
18 true:

o The vertex Ty, (C) has degree one.
o The vertex Yma(C) has degree one.
o The edge (Tmin(C), Ymaz(C)) is contained in both f(S) and f(T).
Proof. The proof is similar to Lemma 2.4 and will be omitted. O

A consequence of Lemma 2.4 is that the only cycle components of h(S,T') are cycles
of length 2 (double edges joining a pair of vertices).

Lemma 2.6. The graph h(S,T) does not contain cycles with more than 2 vertices.

Proof. 1f C'is a cycle component of h(S,T), then each vertex has a degree two. Thus by
Lemma 2.4, 2,4, (C) and Y, (C) must be doubly adjacent and each only adjacent to one
another, and thus must be all the vertices of the cycle. O

This limits the cases of components in h(S,T) to just paths, isolated vertices, and
doubly adjacent pairs of vertices. The following lemma uses Lemma 2.2 to give the first
restriction on (S, T)-good pairs showing that the only possible good (S, T')-pairs are edges
involving a vertex of degree one.

Lemma 2.7. No edge (z,y) in h(S,T) with both vertices of degree two is (S, T")-good.

Proof. Let (x,y) be an edge with both vertices x and y having degree two. Assume that
(x,y) € f(S). Thus there must exist yo such that (x,yo) € f(T). If yo = y, then (8) is
not satisfied. If yo < y, then (10) is not satisfied. If y < 7o, then there must also exist
such that (zg,y) € f(T). Because y < 1, it must be that x < xy and (9) is not satisfied.
Thus, (z,y) is not (S, T)-good. O

Lemma 2.8. For any non-trivial component C' of h(S,T), Tmaz(C) and ymi(C) are
adjacent.



Proof. We prove this result by contradiction. If z,,,,(C) and 9,,:,(C) are not adjacent,
then assume that (2,,4:(C),y0) € f(S) for some yy. It must be that vy < ymin(C), and
thus no edge from f(S) could contain ¥,,;,(C). Thus, there is only one edge containing
Ymin(C), say (2o, Ymin) € f(T). As well, by how f(T') is constructed, there are no edges
from f(T) that contain x,,.,(C). However, this would result in 2,,;,(C) < 2y < Ty (C)
and Ymin(C) < Yo < Ymaz(C). Since both .. (C) and Y, (C) have degree one, in this
path component neither z,,;,(C) nor y,,..(C) can have degree one and by Lemma 2.4,
they are doubly adjacent, which can not happen in a path component. This contradiction
disproves the assumption and proves the lemma. O

Lemma 2.9. For any non-trivial component C' of h(S,T), Tmin(C) and Yma.(C) are
adjacent.

Proof. The proof is similar to the one of the previous lemma and will be omitted. O

Lemma 2.10. For any path component C in h(S,T), the only edge that is (S, T)-good is
(Ima:c(c)> ymzn(c))

Proof. By Lemma 2.8, 2,4, (C) and 4,3, (C') are adjacent and without loss of generality,
suppose that (Zmaz(C), Ymin(C)) € f(S). Because C'is a path, (Zmaz(C), Ymin(C)) ¢ f(T)
and (8) is satisfied. Because there is no xy in C' such that z,,,.(C) < z,(9) is satisfied.
Also, there is no yo in C such that yo < ¥Ymin(C) and thus (10) is satisfied. Hence,
(Zmaz (C), Ymin(C)) is (S, T)-good.

If the component C'is a single edge, then we are done. If C' has two or more edges, then
the only other edge with a degree one vertex is (Zmin(C), Ymaz(C)) as shown by Lemma
2.5 and Lemma 2.9. Because C'is not a single edge, one of Z,,i,(C') 0r Ymae(C) has degree
one and the other has degree two. If x,,,(C) has a degree of two, there exists yo such
that (2min(C), yo) is an edge and (min(C'), Ymaz (C)) does not satisty (9) as Yo < Ymaz(C).
Otherwise, if ¥ma.(C) has a degree of two, there is zg such that (xg, Ymae(C)) is an
edge. In this case, (Zmin(C), Ymaz(C)) does not satisfy (10), as xpm:n(C) < xo. Hence,
(Zimin(C), Ymax (C)) is not (S, T)-good if C has two or more edges. O

2.1 An improved addressing

Given that No(J(n,k)) = k(n — k) for k = 1,n > 1 and for k = 2,n € {3,4,5,6}, it
might be tempting to conjecture that No(J(n, k)) = k(n— k) for any integers n > 2k > 4.
However, this fails for n = 6 and k = 3 where we found that N5(J(6,3)) = 8. Under the
obvious symmetries, there are exactly 246 equivalence classes of addressings of length 8,
one of which we show below. We leave determining No(J(n, k)) for other values of n and
k as an open problem.



subset address
{1,2,3} | 0000****
{1,2,4} | 0001****
{1,3,4} | 01**0000
{2,3,4} | 010*010*
{1,2,5} | 010*10*1
{1,3,5} | 01*010*0
{2,3,5} | 010011°**
{1,4,5} | 01*110*0
(2,4,5} | 010111**
{3,4,5} | 011**10*
{1,2,6} | *10*0011
{1,3,6} | *1*00010
{2,3,6} | *100011*
{1,4,6} | *1*10010
{2,4,6} | *101011*
{3,4,6} | 11**0*00
{1,5,6} | *11**011
{2,5,6} | 110%1%*1
(3,5,6} | ¥110%11*
{4,5,6} | ¥111¥11*

3 0Odd cycles

Watanabe, Ishii and Sawa [14] studied the optimal (0, 1, 2, )-addressings of various graphs.
They observed the following pattern for odd cycles N5(Cs) = 3, N3(C7) = 4, N3(Cy) = 5
and asked the natural question whether N3(Co,41) =n+1forn>57

By computation, we have confirmed these results as well as showing that N3(C1;) = 6.
However, the pattern does not continue further and we have computed N3(Ci3) = 8,
N3(Ci5) =9, N3(Cy7) = 10 and N3(Chg) = 11. The first four of these values were verified
by two independent programs. Examples of minimal addressings are below. It would be
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nice to determine N3(Cy,41) in general.

Cs Cr Cy Cn Ch3 Cis Chy Chg
1 {000 { 0000 | 00000 | 000000 | OOOOO000 | OOOOOOO00 | OOOOO00O00 | K00O0000000
2 | 001 | 0001 | 00001 | 00002* | 00000001 | 000000001 | 0000000001 | 00000000001
3 | 011 | 0101 | 01001 | 000011 | 00000101 | 000002*01 | 000002*001 | 0200000*001
4 | 11*% | 0111 | 012*1 | 010011 | 00100101 | 000001101 | 0000011001 | 01000001001
5 | 2*0 | 111* | 01111 | 012*11 | 0012*101 | 001001101 | 0010011001 | 010000*1101
6 *210 | 1111*% | 011111 | 00111101 | 0012*1101 | 0012*11001 | 110*00*1101
7 20*0 | *2110 | 11111* | 00111111 | 001111101 | 0011111001 | 210100*1101
8 201*0 | 11110* | 0111111* | 001111111 | 00111112*1 | 21*100*1111
9 200*0 | *21100 | 1*111*10 | 01111111* | 0011111111 | 211100*1121
10 201*00 | **211010 | 01111111* | 011111111* | 21110111*21
11 200*00 | 2*¥01*010 | 1*1110*10 | 1*1111*110 | 2111*111*22
12 2*00*010 | **2110010 | 1*1110*110 | 2111111**20
13 020000*0 | 2*01*0010 | **21100110 | 2011111**20
14 2*00*0010 | 2*01*00110 | 20112**0220
15 0200000*0 | 2*¥00*00110 | 201*2100020
16 02000001*0 | 001*2100020
17 02000000*0 | 00*022*0020
18 00*022*0000
19 000020*0000

4 Complete multipartite graphs

The problem of finding optimal addressings for the complete multipartite graphs is non
trivial. Graham and Pollak [8] proved that No(T) = |V(T')| — 1 for any tree T. This
implies that Ny(K,) = n for any n > 1. The optimal lengths of {0, 1, *}-addressings of
all other complete bipartite graphs were obtained by several authors.

Theorem 4.1 (Fujii-Sawa [6], Graham-Pollak [8]). If m,n = 2, then

m4n—1if (myn) = (2,3),(2,4),(2,6), (3,3), (3,4), (3,5), (3,6), (4,4), (4,5)

NZ(Km,n) = {

m 4+ n — 2 otherwise

We now determine No(K, ) for several values of a, b, c.
Proposition 4.2. For any integer a = 1, No(K,11) = a + 1.

Proof. It is not too hard to see that the eigenvalues of the distance matrix of K, ;; are —2

with multiplicity a — 1, —1 with multiplicity 1 and 2atls (22a+1)2+8, each with multiplicity

1. Therefore, the number of negative eigenvalues of this matrix is a + 1. Inequality (1)
and Winkler’s result [15] imply that No(K,11) = a + 1. 0O

For other values of a, b, ¢, we will use the following simple lemmas and Theorem 4.1
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Lemma 4.3. If a,b,c > 1 are integers, then No(Kope) = No(Kospe) — 1.

Proof. Adding one column containing exactly a 0s and b 1s (corresponding to the partite
sets of sizes a and b respectively in K, ;) to an optimal addressing of K, . will yield an
addressing of K, p.c. O

Lemma 4.4. For any integers a,b,c =1, No(Kyi3pc) < No(Kape) + 3.

Proof. Take an optimal addressing f for K, . and make three copies (call them z,y and
z) of a given vertex v in the A color class. Give the vertices in the new graph K, 3, the
following addresses:

f(v)000 ifu=wv
f(v)01l  fu==x
glu) =< f(v)101  fu=y
f(w)110  fu==z2
[ f(u) ==+ otherwise.
It can be checked easily that the function ¢ is a valid addressing of K,43p... This proves
our assertion. O

Using these lemmas we now prove the following result.
Proposition 4.5. For any integers a,b > 2, No(K,p1) =a+b—1.

Proof. Combining Lemma 4.3 with Graham and Pollak’s result involving addressings of
stars, we deduce that

NQ(Ka’b’l) = NQ(KaerJ) —1l=a+b-1 (11)

for any a,b > 1.

To prove the upper bound, we use strong induction on a + b. By computer, we have
found the following optimal addressings of several complete 3-partite graphs. This takes
care of our base case for the induction.

Kyo1 | No=5
K N, — 4 2,

Kyoq | No=3 Xil 02000 Al | 00000
Al 000 A2 | 00011
A2 | 0011 s

A2 110 Az | 1 A3 | 011 12)
Bl 100 B1 0%01 Ad | 110%*
B2 010 B2 | 0*10 Bl | *0*01
C1 ok ] o1 Lo B2 | *0*10
Cl | 010%*
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K4,4,1 Ny =17
K331 | No=5 Kﬁvl %0602 A1 | 000001*
A1 | 0000% Ao | 00011+ A2 | 000010*
A2 | 0011* Az | 011%%0 A3 | 01%*000
A3 | 11%0 a1 | 1010 Ad | 1¥F%001 (13)
Bl | 0*010 B1 | #0010 Bl | 0001%**
B2 | 0*100 B2 | *0100 B2 | 0010%**
B3 | 1%¥¥] B3 | wkpee B3 | 0100**1
Cl | 10%*0 o1 | oorro B4 | 1%00**0
C1 | 000000*

Let a,b > 2 such that @ > 5 and b > 2. By induction hypothesis, No(K,_341) =
(@ —3)+b—1. Lemma 4.4 gives us that Nao(K,p.) < No(Kq—3p.) +3 = a+ b— 1 which
finishes our proof. O

By computer, we have found the following addressings of several other complete 3-
partite graphs. Theorem 4.1 and Lemma 4.3 imply that each addressing below is optimal.

K339 | Ny =6 Ky22 | Ny =6

Kg’i’Q ](\)[(230505 A1 [ 000000 A1 | 000000
a2 | o001l A2 | 000011 A2 | 000011
Az | 1reer A3 | 11¥eRx A3 | O11%¥*

51 | o1o%* Bl | 0100%* A4 | 101HF* (14)
By | *ore+ B2 | *001** Bl | 0010%*
c1 | o001 B3 | ¥010%* B2 | FFO1**
& | *0010 C1 | *00001 C1 | **0001
C2 | *00010 C2 | ¥%0010

K333 | No=7 Kyzo | No=7 K520 | No=7
A1 | *000000 A1 | 0000000 A1 | 0000000
A2 | *110000 A2 | 0000011 A2 | 0000011
A3 | ***1100 A3 | 011K A3 | 0000101
B1 | 0**1000 A4 | 101HFk** A4 | 0000110
B2 | 1#%**10 B1 | 00100** A5 | 0011%**
B3 | 1*%**%01 B2 | **001** B1 | 0001%***
C1 | 11000 B3 | **010** B2 | 0010***
C2 | 0100*** C1 | **00001 C1 | QIR
C3 | 0010*** C2 | **00010 C2 | 10%HHk*

For a,m > 1, let K(a;m) denote the complete m-partite graph where each color class
has exactly a vertices. Thus, K(1;m) is the complete graph on m vertices and K(a;2)
is the complete bipartite graph K, ,. Determining No(K(2;m)) is still an open problem
and the best results are due to Hoffman [11] (lower bound below) and Zaks [16] (upper
bound):

(3m — 2)/2, if m is even

16
(3m —1)/2, if m is odd. (16)

m+ [V2m] — 1 < No(K(2;m)) <{
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The following lemma will be used in this section to give upper bounds for N (K (a;m)).

Lemma 4.6. Let a,m,s =1 be integers. If No(K(a;m)) <t, then
Ny(K(a;ms)) < st +s— 1. (17)

Proof. Partition the vertex set of K(a;ms) into s copies of K(a;m). Address these s
graphs first using words of length st. Then we need to address the remaining edges. This
is in essence blow-up version of the complete graph K and we need s — 1 coordinates for
this part of the addressing. Thus, Ny(K (a;ms)) < st + s — 1. O

If we take a = m = 2, then it is easy to see that No(K(2;2)) = 2. Applying the
previous lemma, we get that No(K(2;2s)) < 2s+s—1 = 3s—1 which is the upper bound
of Zaks above for m even.

The tables in the Appendix show that No(K(4;4)) < 14 and No(K (5;5)) < 23. Apply-
ing Lemma 4.6, we obtain the following upper bounds for Ny(K (a;as)) when a € {3,4, 5}.
The lower bounds below are obtained by applying the eigenvalue bound (1). The gaps
between these bounds are quite large and it would be nice to close them.

Proposition 4.7. Let s = 1 be an integer. Then

6s < No(K(3;3s)) <8 —1
125 < No(K(4;4s)) < 155 —1
20s < No(K (5;5s)) < 24s—1

5 Random Graphs: computations and asymptotics

In [7], Graham uses r(G) for Ny(G) and writes that

It is not known how r(G) behaves for random graphs, but it is natural to quess that
r(G) = |G| =1 for almost all large graphs G.

For 3 < n <9, we have computed the distribution of Ny(G) for all connected graphs
G on n vertices. Let F,, denote the family of connected graphs on n vertices. Our results
are summarized below. Because every partition the distance multigraph of a connected
graph G is a biclique covering of K,,, note that No(G) = [log, n| (see [10]).

n| |F |n—=1] n—=2 |n-3|n—4|n—->5

2 1 1 0 0 0 0

3 2 2 0 0 0 0

4 6 5 1 0 0 0

5 21 17 0 0 0 (18)
6 112 67 42 3 0 0

71 833 316 498 38 1 0

8| 11117 | 1852 | 7765 1469 30 1

9 | 261080 | 12940 | 159229 | 87094 | 1811 6
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The computational difficulty of determining Ny(G) increases rapidly as the order of
G or the number of coordinates in addresses becomes greater. Our method relies on two
symmetry groups, one the symmetries of the address space and one the automorphisms
of G.

The set {0, 1, +}* is acted on by a group A, of order 2°/!, generated by the ¢! permu-
tations of the coordinates and the ¢ elements of order 2 that complement one coordinate.
It is easily checked that A, preserves distances. Consequently, we can restrict our search
to addressings that are lexicographically minimal under A,. Fully implementing this re-
striction would carry too much overhead, so we limited the pruning to the first three
vertices. For example, we can assume that the first vertex has an address consisting of
some number of Os followed by some number of s.

After the first three addresses were selected with full pruning by A,, we made lists
for each other vertex v of all the addresses which are the correct distance from each of
the first three addresses. These were then used in a backtrack search which processes the
vertices in increasing order of their number of available addresses. Addresses were stored
in one machine word in a format that allows distances to be calculated in a few machine
instructions. The counts in Table 18 required about 16 hours of cpu time in total.

Much larger graphs G can only be processed in reasonable time if their automorphism
group Aut(G) is large. For any address «, let wt(a) be the number of Os and 1s in a.
Note that wt(«) is preserved by A,, which implies that, if an addressing of length ¢ exists,
there is some addressing f* of length ¢ which is simultaneously lexicographically minimal
under A, and such that (wt(f*(vy1)),...,wt(f*(v,))) is lexicographically minimal under
Aut(G). We partially implemented the latter restriction as follows: the first vertex v;
has the smallest value of wt(f*) in its orbit under Aut(G), the second vertex vy has the
smallest value of wt(f*) in its orbit under the stabilizer Aut(G),,, and the third vertex
has the smallest value of wt(f*) in its orbit under the two-vertex stabilizer Aut(G).,, 4,.
It is likely that this strategy can be improved significantly.

The large number of connected graphs of order 10 (11716571) and the longer time
per graph would make it a major operation to do all of those. We ran a random sample
of 1/1000 of the connected graphs of order 10 (i.e., 11717 graphs) and obtained this
distribution:

Ny 9 8 7 6 |5
# graphs | 86 | 4105 | 7160 | 363 | 3

(19)

These results led us to believe that for any fixed integer ¢ > 1, almost all connected
graphs G of order n have Ny(G) < n—c. Indeed, we have been able to prove the following
stronger result which confirms this belief and refutes Graham’s guess. We conclude the
paper with the statement and its proof.

Theorem 5.1. For almost all graphs G on n wvertices, Na(G) < n — (2 — o(1)) logy n,
where the o(1) term tends to zero as n tends to infinity.

Proof. Let G = G(n,0.5) be the Erdés-Rényi binomial random graph on a set V =
{1,2,,...,n} of n labelled vertices. We have to prove that with high probability (whp,
for short), that is, with probability that tends to 1 as n tends to infinity, No(G) is at most
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n—(2—o0(1))log,n. Let k = k(n) be the largest k so that

(g)m > 45

It is easy to check that k = (2 — o(1)) log, n, and it is not too difficult to prove that whp
G(n,0.5) contains every graph on k vertices as an induced subgraph. This is proved, for
example, in [2], Theorem 3.1. (We note that we need a much weaker result, as we only
need to contain one specific graph on k vertices, as will be clear from the argument below.
This can be proved by a second moment calculation, without using the large deviation
techniques applied in [2]. This, however, only effects the o(1)-term in our estimate, and
it is therefore shorter to refer to a proven written result without having to include the
second moment computation in the alternative possible proof.)

By Theorem 1.1 in [1] there is a biclique covering of the complete graph K} on a set
U of k vertices by at most [2+/k] bicliques, so that each edge is covered once or twice.
Fix such a covering, and let H be the graph on U in which two vertices u,v € U are
adjacent if the pair {u,v} is covered once in the covering above, and are not adjacent if
this pair is covered twice. Since our random graph G contains, whp, an induced copy
of all graphs on k vertices, it contains an induced copy of H. Let W < V be the set
of vertices of such a copy. In addition, whp, the diameter of GG is 2, in fact, every two
vertices have at least (1/4—o0(1))n common neighbors. Therefore, whp, the distances in G
between any pair of vertices in W are realized precisely by the (at most) [2v/k] bicliques
we have chosen. To these bicliques we add now one complete bipartite graph with vertex
classes W and V — W. In addition, for each vertex z in V — W add a star centered in z
whose leaves are all vertices of W that are not adjacent in G to z, all vertices in V — W
that are not adjacent to z, and all vertices in V — W which are smaller than z and are
adjacent to it in G. It is easy to check that these bicliques realize all distances in G, i.e.,
they partition the distance multigraph of G. The number of these bicliques is at most
n—k+[2vVk] +1=n—(2—0(1))log,n. This completes the proof, and the paper. [
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Appendix

The tables below imply that Ny(K(4;4)) < 14 and No(K(5;5)) < 23.

K(5;5)

K(4;4)
A1 | 0000000
A2 | 0000011
A3 | 0000101
A4 | 0000110
Bl | sksssknqp ]k
B2 | *0000001**0***
B3 | ¥1100001**0***
Ba | %1 101%k0***
(1] | sk ko
C2 | 0**01001*Q*eHk*
C3 | 0**00101*Q*ekk*
(1 | xR ok
D1 | #skskon( ok
D9 | grrkrk] ks
D3 | 1100**Q 104k
D4 | 1010**Q 104k

Al
A2
A3
A4
Ab
B1
B2
B3
B4
B5
C1
C2
C3
C4
C5
D1
D2
D3
D4
D5
El
E2
E3
E4
E5

okoskokokoksk skokoskokokoksk
okoskokokoksk skokoskokokokk
okoskokokoksk skokoskokokoksk
Sokoskokoksksk skokoskokokoskosk
Sookoskokoksksk skokoskokokoskosk
okoskokokoksk skokoskokokoksk

dokokokkokk 0000000
dokokokokok ok 0000011
FRAEFKRAK (000101
FRARRAK ()000110

Kokokokokokok skokoskoskokkk
Kokoskokokokk 0001***

*000000 1H*Q*H*
*110000 1**Q*H*

O***llo 1**0***
Kokokokokokok Skokoskoskokkk

kokoskokokok sk 001****

0**0100 1*0****
0¥+0010 1T+Q****
1**1*** 1*0****
Kokokokokokok skokoskoskkkk
kokoskokokok ok 01*****
O*****l 10*****

1100**0 10*****
1010%**(Q 10%*Hx**

000000000
000000011
000000101
000000110
00001 17##*
0000071 ***
000*10***
000*10***
000*10%***
000*10***

001 Q% *H**
**01*****

**01*****
**01*****
**01*****
01*0*****
*0*1*****
*0*1*****
*0*1*****
*0*1*****
1**0*****
O**l*****
O**l*****
O**l*****
O**l*****
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