


Over the past two decades, a particular class of numericalmethods,
called direct collocation methods, has been used extensively for
solving continuous optimal control problems. A direct collocation
method is an implicit simulation method where the state and control
are parameterized, and the constraints in the continuous optimal
control problem are enforced at a specially chosen set of collocation
points. Traditional direct collocation methods take the form of an h

method (e.g., Euler or Runge–Kutta methods) where the domain of
interest is divided into a mesh, the state is approximated using the
same fixed-degree polynomial in each mesh interval, and
convergence is achieved by increasing the number and placement
of the mesh points [1]. In contrast to an hmethod, in recent years so-
calledpmethods have been developed. In apmethod, the number of
intervals is fixed, and convergence is achieved by increasing the
degree of the approximation in each interval. To achieve maximum
effectiveness, p methods have been developed using orthogonal

collocation at Gaussian quadrature points [5–12]. For problems
whose solutions are smooth andwell-behaved, aGaussian quadrature
orthogonal collocation method converges at an exponential rate [9–
11]. Gauss quadrature collocation methods use either Legendre–
Gauss (LG) points [5–7,10], Legendre–Gauss–Radau (LGR) points
[6–9,11], or Legendre–Gauss–Lobatto (LGL) points [12].
Although h methods have been used extensively and p methods

are useful on particular types of problems, both h and p
approximations have limitations. In the case of anhmethod, itmay be
required to use an extremely fine mesh to improve accuracy. In the
case of a p method, it may be required to use an unreasonably large
degree polynomial to improve accuracy. To reduce significantly the
size of the finite-dimensional approximation, and thus improve
computational efficiency of solving the NLP, in recent years a new
class of hp collocation methods has been developed for solving
optimal control problems. The class of hp methods was originally
developed for solving partial differential equations [13–17]. The
extension of these techniques into an optimal control setting is not
straightforward because for an optimal control problem it is not only
necessary to solve a differential equation, but it is also necessary to
solve an optimization problem in order to determine an
approximation of the optimal control. The difference between the
numerical solution of a differential equation and the numerical
solution of an optimal control problem can be seen using a Runge–
Kutta method. When solving a differential equation, a seventh-order
Runge–Kutta method must satisfy 48 conditions; on the other hand,
when solving an optimal control problem, a corresponding seventh-
order Runge–Kutta scheme must satisfy 4116 conditions [18,19]. To
overcome the intractability associated with Runge–Kutta methods,
an hp framework has been developed for optimal control based on
collocation at the LGR quadrature points [9–11,20]. In Ref. [21], it is
shown that, by a suitable choice of the mesh, extremely fast
(exponential) convergence rates can be achieved by using a different
polynomial on each mesh interval and by collocating at the LGR
quadrature points in each mesh interval. The hp approach has the
advantage that convergence is achieved in cases where a p method
would fail while an hp method converges faster than an h method
because an hp method achieves the same accuracy using a
significantly smallermesh thanwould be required using anhmethod.
Finally, in the hp approach, the mesh is adaptively adjusted to locate
discontinuities at the boundaries of mesh intervals, and the
smoothness of the solution is exploited between themesh intervals by
using higher-degree polynomials. Consequently, optimal control
problems can be solved much faster in the newly developed hp

framework than in an h approach.
Concurrent with the aforementioned hp Gaussian quadrature

collocationmethods, a great deal of research has been done recently in
the area of computational optimal guidance and control where the
generation of guidance and control commands “relies extensively on
onboard computation” [22] and “are model-based or data-based” [22].
Recent research in computational guidance and control includes
Refs. [23–28]. Reference [23] presents a new onboard-implementable,
real-time convex optimization-based powered-descent guidance
algorithm for planetary pinpoint landing. Reference [24] describes
terrestrial flight-test demonstrations of large diverts planned using the

so-called guidance for fuel-optimal large diverts (G-FOLD) onboard a
vertical-takeoff/vertical-landing rocket. Reference [25] provides a
verification of fully numerical predictor-corrector entry guidance
(FNPEG) for orbital and suborbital entry and skip entry missions.
Reference [26] describes an approach for generating optimal feedback
control laws for infinite time problems by solving the corresponding
Hamilton–Jacobi–Bellman equation. Reference [27] develops a
parallelizable quadratic programming approach for model predictive
flight control. Reference [28] develops a real-time trajectory
optimization framework for autonomous suspended load operations in
outdoor environments. It is seen that from the aforementioned research
the integration of computational optimizationhas becomean important
aspect of guidance and control.
When solving an optimal control problem computationally using

the recently developed hp methodology, a process called mesh
refinement [29–33] is implemented where the nonlinear program-
ming problem (NLP) associated with the hp approximation is solved
on a series of meshes such that the solution on a given mesh is higher
in accuracy than the solution on the preceding mesh. The mesh
refinement method terminates when a specified accuracy tolerance
has been attained. Because the hp method employs Gaussian
quadrature collocation, the integration accuracy is as high as possible
relative to the number of collocation points. A key aspect of mesh
refinement is that the majority of time required by the mesh
refinement process is spent determining the mesh itself. It is noted,
however, that once amesh has been determined to a desired accuracy,
the solution to the hp discrete approximation of the optimal control
problem can be computed quickly.
The research described in this paper is not a mesh refinement

method. Mesh refinement is an offline procedure that is performed
only once on the full horizon before the execution of themotion of the
system, whereas this paper develops an hp Gaussian quadrature
collocation method for use online in guidance and control in
applications. In particular, in this research, anhpmesh truncation and
remapping method is developed over a shrinking horizon. The
approach of this paper is to divide the time interval at the end of each
guidance cycle into an expired and an unexpired horizon, delete the
portion of the mesh associated with the expired horizon, and remap
the mesh on the unexpired horizon to a scaled mesh time. In the
context of guidance and control, the truncated and remapped mesh is
then in close proximity to a mesh that meets the desired accuracy
tolerance. The optimal control problem is then solved on the
unexpired horizon using this truncated and remapped mesh. In most
cases, the solution to the control problem associated with the
remapped mesh meets the specified accuracy tolerance, whereas in a
few cases a smallmesh adjustment is used tomeet the tolerance. After
solving the optimal control problem on a given horizon, the
computed optimal control is then implemented in the system over a
time interval, called a guidance cycle, that is significantly shorter than
the unexpired horizon. At the end of the guidance cycle, the optimal
control problem is solved on the remaining horizon (where now the
remaining horizon has shrunk relative to the start of the previous
guidance cycle), taking into account new information based on the
evolution of the actual system over the previous guidance cycle. In
this research, the hp form of the LGR Gaussian quadrature
orthogonal collocation method [6–8,29–34] is employed as
implemented in the MATLAB optimal control software GPOPS −
II as described in Ref. [35]. It is noted that GPOPS − II is
implemented using the sparse NLP solver IPOPT [4], where IPOPT
operates in full-Newton mode. In addition, all first and second
derivatives required by the NLP solver are supplied using the
MATLAB algorithmic differentiation toolbox ADiGator [36,37].
Finally, it is noted that the offline mesh refinement (i.e., before the
execution of themotion) and anyminimalmesh adjustments required
online are performed using the hp mesh refinement method
of Ref. [33].
It is important to contrast this research with methods for nonlinear

model predictive control (MPC) [38–41]. In our approach the full
dynamics are employed, and the optimal open loop control is
computed for the entire remaining horizon in each guidance cycle.
Also, in earlier work [42–44] collocation techniques employing
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nonlinear programming are used in guidance maneuvers. Different

from this prior research, this paper focuses on the development of a

hp mesh truncation and remapping method for use in guidance and

control (i.e., for online applications).
The contributions of this research are to develop a mesh truncation

and remapping strategy for use online in guidance and control

applications. These techniques essentially eliminate the need for

mesh refinement. The full nonlinear dynamics and all constraints

(nonlinear path constraints and nonlinear boundary conditions) can

be included on each guidance cycle due to the speed of the method.

Because the horizon shrinks with each successive guidance cycle, the

hpmesh decreases in size and the computation time required to solve

the hp discrete approximation also decreases as the horizon shrinks.
This paper is organized as follows. Section II describes the

independent variables used in this research and the context in which

these independent variables are used. Section III provides a

description of the continuous-time Bolza optimal control problem

under consideration in this research. Section IV provides a discussion

of the formulation of the Bolza optimal control problem in multiple-

interval form and the approximation of the multiple-interval Bolza

optimal control problem using LGR collocation. Section V provides

a high-level description of how the control obtained from the solution

of the Bolza optimal control problem given in Sec. III is used as an

input for guidance and control of the systemover the current guidance

cycle. SectionVI provides a detailed description of the computational

guidance and control method developed in this research using hp

LGR collocation and sparse nonlinear programming. Section VII

provides a detailed description of the exclusion or inclusion of a

computation time delay, where the time delay is equal to the

computational time required to solve the sparse NLP arising from the

hp LGR collocation method. Section VIII provides two examples

that demonstrate the utility of the computational guidance and control

method in both the absence and the presence of the aforementioned

time delay. Section IX provides a discussion of the results obtained in

Sec. VIII. Finally, Sec. X provides conclusions on this research.

II. Independent Variables

Two different but related independent variables will be used in this

study. The first independent variable, t, is called the elapsed time and

has a domain t ∈ �t0; tf�, where t0 and tf are the initial and terminal

elapsed times, respectively. The second independent variable, τ, is

called themesh time and has a domain τ ∈ �−1;�1�. The elapsed time

and the mesh time are related as

t ≡ t�τ; t0; tf� �
tf − t0

2
τ�

tf � t0

2
(1)

These two independent variables are used in different contexts in

this study. First, consider the controlled dynamical system

dy

dt
� a�y�t�; u�t�; t� (2)

where y�t� ∈ Rny and u�t� ∈ Rnu are the state and control,

respectively, of the system, and a:Rny × Rnu × R → Rny . When

performing explicit simulation (i.e., time-marching) of a system, the

elapsed time is used as the independent variable. Second, consider an

optimal control problem of the kind presented in Sec. III. When

solving an optimal control problem, implicit simulation (i.e.,

collocation as described in Sec. IV) is used and the simulation is

performed using the mesh time as the independent variable. In the

case of implicit simulation, the dynamics of the system as given in

Eq. (2) are rewritten as

dy

dτ
�

tf − t0

2
a�y�τ�; u�τ�; t�τ; t0; tf�� (3)

where t�τ; t0; tf� is given by Eq. (1).

III. Bolza Optimal Control Problem

Without loss of generality, consider the following optimal control
problem in Bolza form in terms of the mesh time, τ. Determine the
state y�τ� ∈ Rny and the control u�τ� ∈ Rnu on the domain
τ ∈ �−1;�1�, and the terminal time, tf, that minimize the cost
functional

J � M�y�−1�; t0; y��1�; tf�

�
tf − t0

2

Z

�1

−1

L�y�τ�; u�τ�; t�τ; t0; tf�� dτ (4)

subject to the dynamic constraints

dy

dτ
�

tf − t0

2
a�y�τ�; u�τ�; t�τ; t0; tf�� (5)

the inequality path constraints

cmin ≤ c�y�τ�; u�τ�; t�τ; t0; tf�� ≤ cmax (6)

and the boundary conditions

�

y�−1�

t0

�

�

�

y0
Fixed

�

; bf�y��1�; tf� ≤ 0 (7)

Suppose now that the independent variable τ ∈ �−1;�1� is
partitioned into a mesh consisting of K mesh intervals

I k � �Tk−1; Tk�, k � 1; : : : ; K, where −1 � T0 < T1 < : : : <
TK � �1. The mesh intervals have the property that
S

K
k�1 I k � �−1;�1�. Let y�k��τ� and u�k��τ� be the state and control

in the mesh interval I k, k � 1; : : : ; K. The Bolza optimal control
problem of Eqs. (4–7) can then be rewritten as follows. Minimize the
cost functional

J � M�y�1��−1�; t0; y
�K���1�; tf�

�
tf − t0

2

X

K

k�1

Z

Tk

Tk−1

L�y�k��τ�; u�k��τ�; t�τ; t0; tf�� dτ (8)

subject to the dynamic constraints

dy�k��τ�

dτ
�

tf − t0

2
a�y�k��τ�; u�k��τ�; t�τ; t0; tf��;

�k � 1; : : : ; K� (9)

the path constraints

cmin ≤ c�y�k��τ�; u�k��τ�; t�τ; t0; tf�� ≤ cmax; �k � 1; : : : ; K�

(10)

and the boundary conditions

�

y�1��−1� − y0
t0

�

�

�

0

Fixed

�

; bf�y
�K���1�; tf� ≤ 0 (11)

Because the state must be continuous at each interior mesh point, it
is required that the condition y�T−

k � � y�T�
k �, �k � 1; : : : ; K − 1�

be satisfied at the interior mesh points �T1; : : : ; TK−1�.

IV. LGR Collocation Method for Optimal Control

The multiple-interval form of the continuous-time Bolza optimal
control problem in Sec. III is discretized using the hp form of the
LGRcollocationmethod as described inRefs. [6–8,29–33]. In thehp

LGR collocation method, the state of the continuous-time Bolza
optimal control problem and its derivative with respect to τ are
approximated in I k, k ∈ �1; : : : ; K�, as
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y�k��τ� ≈ Y�k��τ� �
PNk�1

j�1 Y
�k�
j l

�k�
j �τ�

dy�k��τ�
dτ

≈ dY�k��τ�
dτ

�
PNk�1

j�1 Y
�k�
j

dl
�k�

j
�τ�

dτ

9

=

;

;

l
�k�
j �τ� �

Y

Nk�1

l�1
l≠j

τ − τ
�k�
l

τ
�k�
j − τ

�k�
l

(12)

where τ ∈ �−1;�1�, l
�k�
j �τ�, j � 1; : : : ; Nk � 1, is a basis of

Lagrange polynomials, �τ
�k�
1 ; : : : ; τ

�k�
Nk
� are the LGR [45] collocation

points in I k � �Tk−1; Tk�, and τ
�k�
Nk�1 � Tk is a noncollocated point.

Approximating the dynamics and path constraints given in Eqs. (9)
and (10) at the Nk LGR points in each mesh interval I k,
�k � 1; : : : ; K�, approximating the boundary conditions given in
Eq. (11) using the approximations of the initial and terminal time and
state, and approximating the integral in Eq. (8) using an Nk-point
LGR quadrature in mesh interval I k, �k � 1; : : : ; K� leads to the
following nonlinear programming problem (NLP).Minimize the cost
function:

J ≈M�Y
�1�
1 ; t0;Y

�K�
NK�1; tf�

�
tf − t0

2

X

K

k�1

X

Nk

j�1

w
�k�
j L�Y

�k�
j ;U

�k�
j ; t�τ

�k�
j ; t0; tf�� (13)

subject to the constraints

PNk�1
j�1 D

�k�
ij Y

�k�
j −

tf−t0
2

a�Y
�k�
i ;U

�k�
i ; t�τ

�k�
i ; t0; tf�� � 0

cmin ≤ c�Y
�k�
i ;U

�k�
i ; t�τ

�k�
i ; t0; tf�� ≤ cmax

Y
�1�
1 − y0 � 0

t0 � Fixed

bf�Y
�K�
NK�1; tf� ≤ 0

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

�i � 1; : : : ; Nk� (14)

where w
�k�
j are the Nk LGR weights in mesh interval I k, k ∈

�1; : : : ; K� and D
�k�
ij � dl

�k�
j �τ

�k�
i �∕dτ, �i � 1; : : : ; Nk; j � 1;

: : : ; Nk � 1� are the elements of the Nk × �Nk � 1� LGR
differentiation matrix [6] in mesh interval I k, k ∈ �1; : : : ; K�. It is
noted that the continuity in the state at the interior mesh points

�T1; : : : ; TK−1� is enforced via the condition Y
�k�
Nk�1 � Y

�k�1�
1 ,

�k � 1; : : : ; K − 1�, but this continuity constraint is eliminated from

the NLP by using the same variable for both Y
�k�
Nk�1 and Y

�k�1�
1 .

Furthermore, we note thatN �
P

K
k�1 Nk is the total number of LGR

points on τ ∈ �−1;�1�. The sparse NLP arising from the hp LGR
collocation method as given in Eqs. (13) and (14) has a specific
structure that has been studied extensively. In particular, the key
elements of the structure of the NLP arising from the hp LGR
collocation method can be found in the NLP constraint Jacobian and
the Lagrangian Hessian. The structure of these two matrices can be
found in Ref. [46] along with extensive details on the sparse structure
of the NLP arising from the hp LGR collocation method.

V. Optimal Guidance

Suppose now that Bs � �y�t�; u�t�; tf� is a solution of the Bolza
optimal control problem given on the time horizon t ∈ �t

�s�
0 ; t

�s�
f � as

given in Eqs. (8–11), where s ∈ �1; 2; 3; : : : ; S� is the start of
guidance cycle s ∈ �1; : : : ; S�, S is the number of guidance cycles
(i.e., S is the number of times that the control is updated during the
motion), and

t
�s�
0 � t0 � sG (15)

is the initial time of guidance cycle s ∈ �1; 2; : : : ; S�, where G is the
guidance cycle duration. Suppose now that the optimal control u�t�

corresponding to Bs is implemented in the actual system on a

guidance cycle �t
�s�
0 ; t

�s�
e �, where

t
�s�
e � t0 � �s� 1�G (16)

is the terminal elapsed time of guidance cycle s ∈ �1; 2; : : : ; S�.
Because the actual dynamics given in Eq. (17) are different from

those of the reference dynamics of Eq. (2) [due, for example, to

modeling errors and disturbances], the actual system will evolve

according to a different set of dynamics given generically in terms of

elapsed time as

d ~y

dt
� ~a� ~y�t�; u��t�; t� (17)

where ~a:Rny × Rnu × R → Rny is the vector field that represents the

actual dynamics and ~y�t� is the state that arises from the evolution of

the actual dynamics. Also, it is important to note that over the first

time interval t ∈ �t0; t0 �G� (i.e., when s � 0), the motion of the

actual system given in Eq. (17) is obtained using the optimal control

from the solution of the reference optimal control problemon the time

horizon t ∈ �t0; tf�. Now, themotion of the actual system differs from

that of the reference solution, ~y�t� ≠ y�t�, which implies that
~y�t

�s�
e � ≠ y�t

�s�
e � at the end of guidance cycle s ∈ �0; 1; 2; : : : ; S�. This

deviation from the optimal solution will not only increase the cost on

the actual solution ~y�t� but also lead to violations in both the path

constraints of Eq. (6) and the boundary conditions of Eq. (7). To

correct for the deviation from the optimal solution, the Bolza optimal

control problem is re-solved on the unexpired horizon �t
�s�
e ; t

�s�
f �. This

shorter-horizon optimal control problem is referred to as the

shrinking-horizon optimal control problem, and the start time of this

shrinking-horizon optimal control problem, denoted a guidance

update time, is t
�s�
0 � t

�s−1�
e . The shrinking-horizon optimal control

problem is identical in its mathematical form to the Bolza optimal

control problem given in Eqs. (8–11) but requires the following

substitutions:

y0 � y�t
�s�
0 � � ~y�t

�s−1�
e � � Fixed; t0 � t

�s�
0 � t

�s−1�
e � Fixed;

tf � t
�s�
f � Free (18)

where t
�s−1�
e is the elapsed time at the terminus of guidance cycle s − 1

and ~y�t
�s−1�
e � � ~y�T

�s−1�
e � is the state of the actual system at the

terminus of guidance cycle s − 1 (where t
�s−1�
e and T

�s−1�
e represent,

respectively, the elapsed and mesh times at the terminus of guidance

cycle s − 1). For completeness, note again that t
�s−1�
e and T

�s−1�
e are

related via Eq. (1). The process of re-solving the shrinking-horizon

optimal control problem on the unexpired horizon �t
�s�
0 ; t

�s�
f � together

with the motion of the system evolving over a guidance cycle

�t
�s�
0 ; t

�s�
e � is then repeated for each guidance cycle s ∈ �1; 2; : : : ; S�.

Figure 1 provides a block diagram schematic that shows the process

of optimal guidance and control for the actual system [i.e., the system

defined by the dynamics given in Eq. (17)] over the time interval

t ∈ �t
�s�
0 ; t

�s�
e � associated with guidance cycle s. It is noted that Fig. 1

includes a possible time delay Td, where the time delay is equivalent

to the computation time required to solve the optimal control problem

on the unexpired horizon (see Sec. VII for further details regarding

the inclusion of a time delay in this research).

Fig. 1 Optimal guidance and control block diagram.
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VI. Computational Method for Optimal Guidance and
Control

In this section, a computational method is developed for optimal
guidance and control. The approach is to solve the optimal control
problem of Sec. V at the start of each guidance cycle using hp LGR
collocation together with sparse nonlinear programming. The optimal
control obtained from the solution of the sparse nonlinear
programming problem (NLP) is then used for both guidance and
control over the current guidance cycle. A key aspect of the method
described in this paper is to truncate and remap a mesh on which the
shrinking-horizon optimal control problem is re-solved at the start of
each guidance cycle. The goal of the mesh truncation and remapping
strategy is to develop amesh forwhichmesh refinement is unnecessary
while maintaining a specified solution accuracy tolerance.
To develop the method of this paper, consider again the shrinking-

horizon optimal control problem as defined in Eqs. (4–7) but with the
substitutions given in Eq. (18). Also, assume that the shrinking-
horizon optimal control problem will be solved using hp LGR
collocation as described in Sec. IV. Using Fig. 2 as a guide, the mesh
truncation and remapping strategy is as follows. Suppose that hp
LGR collocation has been used to generate a solution Bs−1 of the
reduced-horizon optimal control problem for guidance cycle s − 1 ∈
�0; 1; 2; : : : ; S − 1� to a desired accuracy as described in Sec. V. The
solution Bs−1 carries with it a mesh composed of the mesh points
T
�s−1�
k ∈ �−1;�1�, mesh intervals I k � �T

�s−1�
k−1 ; T

�s−1�
k �, and colloca-

tion points �τ
�s−1�
1 ; : : : ; τ

�s−1�

N�s−1��, where

N�s−1� �
X

K�s−1�

k�1

N
�s−1�
k (19)

and N
�s−1�
k is the number of collocation points in mesh interval

k ∈ �1; : : : ; N
�s−1�
k � as defined in Sec. IV. The mesh points T

�s−1�
k ∈

�−1;�1� have corresponding elapsed time points
t
�s−1�
k ∈ �t

�s−1�
0 ; t

�s−1�
f �, k ∈ �1; : : : ; K�s−1��, where the mesh points

T
�s−1�
k and the elapsed time points t

�s−1�
k are related though Eq. (1),

that is,

t
�s−1�
k �

t
�s−1�
f − t

�s−1�
0

2
T
�s−1�
k �

t
�s−1�
f � t

�s−1�
0

2
;

�k � 1; : : : ; N�s−1�� (20)

Given the mesh that was used to generate a solution to the optimal
control problem using hp LGR collocation on guidance cycle s − 1,
the following approach is used to generate amesh for use on guidance
cycle s. Figure 2 provides a schematic of the approach used to
truncate and remap the mesh from the previous guidance cycle s − 1
to the current guidance cycle s. First, let the domain from guidance
cycle s − 1 be divided into the following two parts. The portions of

the mesh domain τ ∈ �−1;�1� corresponding to �−1; T
�s−1�
e � and

�T
�s−1�
e ;�1� are the expired horizon and unexpired horizon,

respectively, as defined in Sec. V. It can be seen from Fig. 2 that there

exist E�s−1� mesh intervals, I
�s−1�
k � �T

�s−1�
k−1 ; T

�s−1�
k �, �k � 1; : : : ;

E�s−1��, that lie within the expired horizon of guidance cycle s − 1,

while the remaining K�s−1� − E�s−1� mesh intervals, I
�s−1�
k �

�T
�s−1�
k−1 ; T

�s−1�
k �, �k � E�s−1� � 1; : : : ; K�s−1��, lie within the un-

expired horizon of guidance cycle s − 1. It is important to note that

the mesh time T
�s−1�
e is not a mesh point on the mesh domain

τ ∈ �−1;�1� but in general lies between the two mesh points T
�s−1�

E�s−1�

and T
�s−1�

E�s−1��1
. Thus, the choice of the duration of a guidance cycle is

independent of the mesh intervals.
Given the division of the time interval into the expired and

unexpired horizons on guidance cycle s − 1, the goal is to generate a
mesh for use on the current guidance cycle s ∈ �1; 2; 3; : : : ; S� such
that the mesh used on guidance cycle s consists of mesh points that
are aligned with the mesh points from the unexpired horizon of the

previous guidance cycle s − 1. Because the first E�s−1� mesh

intervals, I
�s−1�
k � �T

�s−1�
k−1 ; T

�s−1�
k �, �k � 1; : : : ; E�s−1��, lie within

the expired horizon, it is reasonable to consider themesh on guidance

cycle s to be constructed using the portion of the mesh on guidance

cycle s − 1 that consists of the unexpired horizon plus the last mesh

point on the expired horizon [i.e., the portion of the mesh consisting

of points �T
�s−1�

E�s−1� ; : : : ; T
�s−1�

K�s−1��]. Now, it is seen from Fig. 2a that the

mesh points T
�s−1�

E�s−1��1
; : : : ; T

�s−1�

K�s−1� that lie within the unexpired

horizon are already aligned with the expected locations for use on

guidance cycle s. Note, however, that because T
�s−1�
e is not a mesh

point but, instead, lies between the mesh points T
�s−1�

E�s−1� and T
�s−1�

E�s−1��1
,

the mesh point T
�s−1�

E�s−1� is not aligned with those mesh points

corresponding to the unexpired horizon (in general, T
�s−1�

E�s−1� <

T
�s−1�
e < T

�s−1�

E�s−1��1
). To bring the first mesh point into alignment with

the unexpired horizon for use on guidance cycle s, the final mesh

point on the expired horizon, T
�s−1�

E�s−1� , must be relocated to be equal to

T
�s−1�
e . The relocation of the mesh point T

�s−1�

E�s−1� to the time T
�s−1�
e is

shown in Fig. 2b. Once the mesh point T
�s−1�

E�s−1� has been relocated to

T
�s−1�
e , the mesh for use on guidance cycle s can be transformed to the

domain τ ∈ �−1;�1� for usewith theLGRcollocation as described in

Sec. IV. The transformation of the mesh points �T
�s−1�

E�s−1� ; : : : ; T
�s−1�

K�s−1��

to the time interval τ ∈ �−1;�1� is accomplished via the

transformation

T
�s�
k �

2
�

T
�s−1�

k�E�s−1�−1
− T

�s−1�

E�s−1�

�

−
�

1 − T
�s−1�

E�s−1�

�

1 − T
�s−1�

E�s−1�

;

�k � 1; : : : ; K�s−1� − E�s−1� � 1� (21)

a) Expired and unexpired horizons on guidance cycle s–1

b) Final mesh point on the expired horizon of guidance cycle s–1 as

shown in Fig. 2a relocated to the terminus of guidance cycle s–1

c) Mesh on guidance cycle s, where T 0
(s) = –1 and T (s) = +1 correspond,

respectively, to Te
(s–1) and T (s–1)     from guidance cycle s–1

K
(s)

K
(s–1 )

Fig. 2 Schematic formesh truncation and remapping strategy as part of
the computational method for guidance and control using hp LGR
collocation.
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It is seen fromEq. (21) that themesh on guidance cycle s is defined
on the domain τ ∈ �−1;�1� because

T
�s�
1 �

2
�

T
�s−1�

E�s−1� − T
�s−1�

E�s−1�

�

−
�

1 − T
�s−1�

E�s−1�

�

1 − T
�s−1�

E�s−1�

� −
1 − T

�s−1�

E�s−1�

1 − T
�s−1�

E�s−1�

� −1

(22)

T
�s�

K�s−1�−E�s−1��1
�

2
�

T
�s−1�

K�s−1� − T
�s−1�

E�s−1�

�

−
�

1 − T
�s−1�

E�s−1�

�

1 − T
�s−1�

E�s−1�

�
2
�

1 − T
�s−1�

E�s−1�

�

−
�

1 − T
�s−1�

E�s−1�

�

1 − T
�s−1�

E�s−1�

� �1 (23)

The number of LGR collocation points used in eachmesh interval,

I �s� � �T
�s�
k−1; T

�s�
k �, k ∈ �1; : : : ; K�s��� on guidance cycle s

corresponds to the number of LGR points that were used in the
corresponding mesh interval on guidance cycle s − 1, that is,

N
�s�
k � N

�s−1�

k�E�s−1�−1
; �k � 1; : : : ; K�s−1� − E�s−1� � 1� (24)

Now, it is noted that, with the exception of the first mesh point,
everymesh point of themesh developed for use on guidance cycle s is
aligned with the mesh associated with the unexpired horizon on
guidance cycle s − 1. Moreover, with the exception of the first mesh
interval, the LGR collocation points associated with every mesh
interval of the shrinking-horizon on guidance cycle s are exactly
aligned with the LGR collocation points associated with the
unexpired horizon on guidance cycle s − 1. With regard to the first

mesh interval, the relocatedmesh point (i.e.,T
�s−1�

E�s−1� on guidance cycle

s − 1 or, equivalently, T
�s�
1 � −1 on guidance cycle s) results in a

compression of the LGR points on the first mesh interval of the mesh
for use on guidance cycle s. Although the first mesh interval of the
mesh used on guidance cycle s has been compressed due to the need
to relocate the first mesh point from guidance cycle s − 1, the mesh is
still nearly exactly aligned with the mesh associated with the
unexpired horizon on guidance cycle s − 1. The mesh on guidance

cycle s then consists of the K�s� � K�s−1� − E�s−1� � 1 mesh

intervals, I �s� � �T
�s�
k−1; T

�s�
k �, k ∈ �1; : : : ; K�s��, together with the

N
�s�
k LGR collocation points in each mesh interval as defined in

Eq. (24). It is seen that the mesh on guidance cycle s is smaller and
reduced in comparison to the mesh used on guidance cycle s − 1.
Using the aforementioned procedure to produce the mesh on

guidance cycle s from the unexpired horizon on guidance cycle s − 1,
the computational guidance and control method of this paper consists
of the following steps. First, the solution on the unexpired horizon of
guidance cycle s − 1 is truncated and remapped for use on guidance
cycle s as described above and shown in Fig. 2. This interpolated
solution is then used as the initial guess for solving the sparse NLP
associatedwith hpLGR collocation on guidance cycle s. In addition,
the boundary conditions given inEq. (7) [again,with the substitutions
given in Eq. (18)] are updated and included as constraints in the
sparse NLP. As the time horizon is shrinking, the mesh on guidance
cycle s is smaller than the mesh was on guidance cycle s − 1, and the
sparse NLP that is solved on guidance cycle s is also smaller than the
sparse NLP that was solved on guidance cycle s − 1. After the
shrinking-horizon optimal control problem is solved on guidance
cycle s, the dynamics are simulated over the current guidance cycle

t ∈ �t
�s�
0 ; t

�s�
e �. In the absence of a time delay (i.e., Td � 0), the control

on the horizon t ∈ �t
�s�
0 ; t

�s�
f � is then used as an input to simulate the

actual dynamics on t ∈ �t
�s�
0 ; t

�s�
e � (i.e., guidance cycle s). In the

presence of a time delay (i.e., Td ≠ 0), the control on the horizon

t ∈ �t
�s−1�
0 ; t

�s−1�
f � (which is obtained on guidance cycle s − 1) is used

to simulate the actual dynamics on t ∈ �t
�s�
0 ; t

�s�
0 � Td�, while the

control on the horizon t ∈ �t
�s�
0 ; t

�s�
f � (which is obtained on guidance

cycle s) is used to simulate actual dynamics on t ∈ �t
�s�
0 � Td; t

�s�
e �.

After the dynamics evolve over the current guidance cycle s, themesh
is again truncated and remapped for use on the next guidance cycle.
This cycle continues, as seen in Fig. 1, until terminal conditions are
met. For completeness, Sec. VII provides more information on the
exclusion or inclusion of the computation time delay. Themethod for
computational optimal guidance and control is then repeated for
every guidance cycle s ∈ �1; : : : ; S�.

VII. Inclusion of Computation Time Delay

The optimal control generated as described in Sec. VI can be
employed either in the absence or the presence of a time delay. In the
absence of a time delay, it is assumed that the sparse NLP associated
with hp LGR collocation can be solved instantaneously, and thus the
optimal control for use on the current guidance cycle is available for
use at the start of the current guidance cycle. In the presence of a time
delay, it is assumed more realistically that the sparse NLP cannot be
solved instantaneously, and thus the optimal control for use on the
current guidance cycle is available for use only at the time when the
sparse NLP has returned a solution. Denoting C as the computation
time required to solve the sparse NLP arising from hp LGR

collocation on the horizon t ∈ �t
�s�
0 ; t

�s�
f �, letTd � C be the time delay.

Because the solution on guidance cycle s will not be available until

the time t � t
�s�
0 � Td, the control obtained on the previous horizon

t ∈ �t
�s−1�
0 ; t

�s−1�
f � is used from t ∈ �t

�s�
0 ; t

�s�
0 � Td� (i.e., the control

obtained on guidance cycle s − 1 is used until the solution on
guidance cycle s has been computed). Upon solving the sparse NLP
(which, as indicated, takes Td time units), the control computed on

guidance cycle s is available for use from t � t
�s�
0 � Td onward and is

used as an input to simulate the actual dynamics on

t ∈ �t
�s�
0 � Td; t

�s�
e �. In the case where a time delay is absent, it is

assumed that Td � 0, and the control computed on guidance cycle s

is available from t � t
�s�
0 onward.

VIII. Examples

Two examples are now considered that employ the method for
guidance and control as described in Sec. VI. Both examples are
considered in the absence and in the presence of a time delay. The
guidance cycle duration for the first example is G � 30 s, whereas
the guidance cycle duration for the second example, which is a four-
phase optimal control problem, is G � 30 s in the first three phases
andG � 5 s in the fourth phase. The guidance cycles were chosen to
be small enough that the vehicle can accurately attain the terminal
conditions, but large enough that it is possible to solve the optimal
control problem in less time than the guidance cycle duration. In the
case where a time delay is absent, the actual dynamics of Eq. (17) are
simulated in elapsed time t on �t

�s�
0 ; t

�s�
e � (the current guidance cycle)

using a cubic spline interpolation of the time series of the hp LGR
collocation control that has been computed on the current unexpired
horizon �t

�s�
0 ; t

�s�
f � with the initial conditions obtained from the

simulation of the actual dynamics at the terminus of the previous
guidance cycle s − 1. In the case where a time delay is present, the
actual dynamics of Eq. (17) are simulated in elapsed time t on
�t
�s�
0 ; t

�s�
0 � Td� using a cubic spline interpolation of the time series of

the hp LGR collocation control that was computed on the previous
unexpired horizon �t

�s−1�
0 ; t

�s−1�
f �, and simulated in elapsed time t on

�t
�s�
0 � Td; t

�s�
e � using a cubic spline interpolation of the time series of

the hp LGR collocation control that was computed on the current
unexpired horizon �t

�s�
0 ; t

�s�
f �. Regardless of whether a time delay is

absent or present, the initial state y�t
�s�
0 � � y�T

�s�
0 � � y

�s�
0 [see

Fig. 2c] used at the start of the current guidance cycle s is equal to the
state ~y�t

�s−1�
e � � ~y�T

�s−1�
e � [see Fig. 2a] obtained from the simulation

of the actual dynamics at the terminus of the previous guidance cycle
s − 1 [see Fig. 1, where it is shown that y�t

�s�
0 � � ~y�t

�s−1�
e �]. All

results shown in the section were obtained using the MATLAB
optimal control software GPOPS − II [35] with the nonlinear
programming problem (NLP) solver IPOPT [4], where IPOPTwas
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employed in full-Newton (second-derivative) mode using a warm

start on each guidance cycle. For both examples, the reference

optimal solutions and all guidance solutions were computed using an

NLP solver tolerance, ϵNLP, of 10
−7. In addition, all reference optimal

solutions were obtained using a mesh accuracy tolerance, ϵmesh, of

10−7. With regard to the guidance and control solutions, for the first

example, the mesh accuracy tolerance used for the guidance updates

was set to 10−7, whereas for the second example, the mesh accuracy

tolerance used for the guidance updates was set to 10−5. Finally, the
perturbed dynamics were simulated using the MATLAB differential

equation solver ode113 using a relative error tolerance of 10−5.
Furthermore, in addition to the mesh truncation and remapping

strategy described in Sec. VI, any necessary mesh refinement was

performed using the mesh refinement method described in Ref. [33]

using a minimum of three and maximum of 14 allowable collocation

points per interval. To employ IPOPT in full-Newton mode, all

required first and second derivatives were obtained using the open-

source algorithmic differentiation software ADiGator [37]. Finally,

all computations shown in this section were on a 3.1 GHz Intel Core

i7 MacBook Pro running Mac OS-X version 10.12.6 (Sierra) with

16 GB 1867 MHz DDR3 RAM and MATLAB Version R2016a

(build 9.0.0.341360), and all computation (CPU) times, denoted C,

are in reference to this aforementioned machine.

A. Example 1: Reusable Launch Vehicle Entry

Consider the problem of steering a reusable launch vehicle from an

entry condition to a terminal state while maximizing the cross-range

during entry [1]. The problem is to minimize the objective functional

J � −ϕ�tf� (25)

subject to the dynamic constraints

_r � v sin γ; _θ �
v cos γ sinψ

r cosϕ
;

_ϕ �
v cos γ cosψ

r
; _v � −D − g sin γ;

_γ �
L cos σ

v
−

�

g

v
−
v

r

�

cos γ; _ψ �
L sin σ

v cos γ
�

v cos γ sinψ tanϕ

r

(26)

the boundary conditions

t0 � t
�s�
0 ; �r�t0�; r�tf�� � �r

�s�
0 ; rf�;

θ�t0� � θ
�s�
0 ; ϕ�t0� � ϕ

�s�
0 ; �v�t0�; v�tf�� � �v

�s�
0 ; vf�;

�γ�t0�; γ�tf�� � �γ
�s�
0 ; γf�; ψ�t0� � ψ

�s�
0 (27)

where r is the geocentric radius, θ is the longitude,ϕ is the latitude, v is

the speed, γ is the flight path angle, ψ is the azimuth angle, α is the

angle of attack, σ is the bank angle, L � qSCL∕m is the lift specific

force, D � qSCD∕m is the drag specific force, q � ρv2∕2 is the

dynamicpressure,ρ � ρ0 exp�−h∕H� is the atmospheric density,ρ0 is

the sea level density, h � r − Re is the altitude, Re is the radius of the

Earth,H is the density scale height,g � μ∕r2 is the acceleration due to
gravity, and μ is the gravitational parameter. In this example, the initial

conditions �r
�s�
0 ; θ

�s�
0 ;ϕ

�s�
0 ; v

�s�
0 ; γ

�s�
0 ;ψ

�s�
0 � change depending upon the

initial time t
�s�
0 where s ∈ �0; 1; 2; : : : ; S�, and S is the number of

guidance cycles. Finally, the initial conditions corresponding to the

full-horizon (reference) optimal solution are given as

�t
�0�
0 ; tf� � �0; Free� s;

�r�t
�0�
0 �; r�tf�� � �79248; 24384� m� Re;

�θ�t
�0�
0 �; θ�tf�� � �0; Free� deg;

�ϕ�t
�0�
0 �;ϕ�tf�� � �0; Free� deg;

�v�t
�0�
0 �; v�tf�� � �7802.88; 762� m∕s;

�γ�t
�0�
0 �; γ�tf�� � �−1;−5� deg;

�ψ�t
�0�
0 �;ψ�tf�� � �90; Free� deg (28)

and tf corresponds to the final time obtained on the reference optimal
solution on the entire horizon t ∈ �t

�0�
0 ; t

�0�
f �.

The computational method for optimal guidance and control
developed in this paper is analyzed using the following model that is
perturbed from the reference dynamics of Eq. (26). Specifically, in
the perturbed model the lift, L, and the drag, D, in Eq. (26) are
replaced with

~L � q1L; ~D � q2D (29)

where �q1; q2� are random variables drawn on each guidance cycle
from a uniform distribution on the interval �a; b�.

1. Results Using Computational Optimal Guidance and Control Method

in the Absence of a Time Delay

Suppose now that the optimal guidance and control method of this
paper operates in the absence of a computation time delay (i.e.,
Td � 0). Then, starting with the reference initial conditions of
Eq. (28), the optimal control problem given in Eqs. (25–27) is re-
solved at the start of each guidance cycle s ∈ �1; 2; 3; : : : ; S� on a
shrinking horizon �t

�s�
0 ; t

�s�
f � (where t

�s�
0 � t0 � sG). Furthermore, the

simulation of the actual dynamics is performed with the random
variables q1 and q2 in Eq. (29), each drawn from a uniform
distribution �a; b� � �0.8; 1.2�. The state obtained by simulating the
actual dynamics [i.e., using the perturbed lift and drag given in
Eq. (29)] on the intervals t ∈ �t

�s�
0 ; t

�s�
0 �G� (where s ∈ �0; 1; 2;

: : : ; S�) using the control computed on �t
�s�
0 ; t

�s�
f � via hp LGR

collocation is shown in Figs. 3a–3d alongside the reference state. In
addition, Figs. 3e and 3f show the control used in the simulation of the
actual dynamics alongside the reference control. It is seen that the
simulated solution on each of the guidance cycles is close to the
reference solution even though the model used in the simulation
[Eq. (40)] is different from the reference model [Eq. (31)].
Now let Δy�t� � ~y�t� − y��t� be the difference between the state,

~y�t�, obtained using the actual dynamics [i.e., using the perturbed lift
and drag given in Eq. (29)] and the state, y��t�, obtained from the
reference solution of the optimal control problem using hp LGR
collocation. Furthermore, let t�f be the terminal time obtained from
the numerical solution of the optimal control problem using hp LGR
collocation over the last guidance cycle. Then the differencesΔh�t�f�,
Δv�t�f�, and Δγ�t�f� are given, respectively, as �Δh�t�f�;Δv�t

�
f�;

Δγ�t�f�� � �−8.6047 × 10−1 m;−7.0626 × 10−2 m∕s; 3.92 × 10−6

rad�. It is seen that these differences are, respectively, O�10−1� m,
O�10−2� m∕s, and O�10−6� rad. Next, Fig. 4 shows the character-
istics of the mesh as a function of the guidance cycle, s, where Fig. 4a
shows the number of mesh intervals, K, and the number of
collocation points, N, whereas Fig. 4b shows the computation time,
C, and the number of mesh refinements, M, as a function of the
guidance cycle s ∈ �1; : : : ; S�. It is seen that a minimal amount of
mesh refinement is required through all of the guidance cycles in that
nearly all of the solutions are obtained on the first mesh without
requiring anymesh refinement. Furthermore, it is seen that the size of
the mesh progressively decreases as the guidance cycles evolve such
that the last guidance cycle mesh consists of 20 collocation points
(i.e.,N � 20) and only twomesh intervals (i.e.,K � 2). Thus, for the
vast majority of guidance cycles the optimal control problem is not
only solved efficiently, but the mesh size decreases, making it
possible to re-solve the optimal control problemusing a progressively
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a) K and N vs. s b) C and M vs. s

Fig. 4 Mesh characteristics for Example 1 on each guidance cycle using hp LGR collocation method in the absence of a time delay.

K(s)

a) h vs. v

c) γ(t) vs. t

e) α (t) vs. t f) σ (t) vs. t

d) ψ(t) vs. t

b) φ φ vs. θ

Fig. 3 Solution obtained via simulation of the actual dynamics [i.e., using the perturbed lift and drag given in Eq. (29)] for Example 1 on each guidance
cycle in the absence of a time delay.
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smaller finite-dimensional approximation of the optimal control

problem.

2. Results Using Computational Optimal Guidance and Control Method

in the Presence of a Time Delay

Suppose now that the optimal guidance and control method of this

paper operates in the presence of a computation time delay (i.e.,

Td ≠ 0). Then, starting with the reference initial conditions of

Eq. (28), the optimal control problem given in Eqs. (25–27) is re-

solved at the start of each guidance cycle s ∈ �1; 2; 3; : : : ; S� on a

shrinking horizon �t
�s�
0 ; t

�s�
f � (where t

�s�
0 � t0 � sG). Furthermore, the

simulation of the actual dynamics is performed with the random

variables q1 and q2 in Eq. (29) each drawn from a uniform

distribution �a; b� � �0.8; 1.2�. The state obtained by simulating the

actual dynamics [i.e., using the perturbed lift and drag given in

Eq. (29)] on the intervals t ∈ �t
�s�
0 ; t

�s�
0 �G� (where s ∈ �0; 1; 2;

: : : ; S�) via hp LGR collocation is shown in Figs. 5a–5d alongside

the reference state. In addition, Figs. 5e and 5f show the control used

in the simulation of the actual dynamics alongside the reference

control. It is seen that the simulated solution on each of the guidance

cycles is close to the reference solution even though themodel used in

the simulation [Eq. (40)] is different from the reference

model [Eq. (31)].

Next, and similar to the approach used to analyze the results in the

absence of a time delay, let Δy�t� � ~y�t� − y��t� be the difference
between the state ~y�t� obtained using the actual dynamics [i.e., using

the perturbed lift and drag given in Eq. (29)] and the state y��t�
obtained from the reference solution of the optimal control problem

using hp LGR collocation. Furthermore, let t�f be the terminal time

obtained from the numerical solution of the optimal control problem

using hp LGR collocation over the last guidance cycle. Then the

differences Δh�t�f�, Δv�t�f�, and Δγ�t�f� are given, respectively,

as �Δh�t�f�;Δv�t
�
f�;Δγ�t

�
f�� � �−2.0341 × 10−1 m;−1.9212 ×

10−2 m∕s; 2.35 × 10−5 rad�. It is seen that these differences are,

a) h vs. v

c) γ(t) vs. t

e) α(t) vs. t f) σ(t) vs. t

d)  ψ(t) vs. t

b) φ φ vs. θ

Fig. 5 Solution obtained via simulation of the actual dynamics given [i.e., using the perturbed lift and drag given in Eq. (29)] for Example 1 on each
guidance cycle in the presence of a time delay.
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respectively, O�10−1� m, O�10−2� m∕s, and O�10−5� rad. Next,
Fig. 6 shows the characteristics of the mesh as a function of the
guidance cycle, s. Specifically, Fig. 6a shows the number of mesh
intervals, K, and the number of collocation points, N, while Fig. 6b
shows the computation time,C, and the number ofmesh refinements,
M, as a function of the guidance cycle s ∈ �1; : : : ; S�. It is seen that a
minimal amount of mesh refinement is required through all of the
guidance cycles in that nearly all of the solutions are obtained on the
first mesh without requiring any mesh refinement. Furthermore, it is
seen that the size of themesh progressively decreases as the guidance
cycles evolve such that the last guidance cycle mesh consists of 20
collocation points (i.e., N � 20) and only 2 mesh intervals (i.e.,
K � 2). Thus, for the vast majority of guidance cycles, not only is the
optimal control problem solved efficiently, but also the mesh size
decreases, making it possible to re-solve the optimal control problem
using a progressively smaller finite-dimensional approximation of
the optimal control problem.

B. Example 2: Reusable Launch Vehicle Ascent

Consider the following four-phase optimal control problem of
steering a reusable launch vehicle from an initial condition to an entry
condition while maximizing the fuel at the terminal conditions
[47,48]. The problem is to minimize the objective functional

J � −m�4��tf� (30)

subject to the dynamic constraints in each phase,

_r � v sin γ; _θ �
v cos γ cosψ

r cosϕ
; _ϕ �

v cos γ sinψ

r
;

_v �
FT

m
− g sin γ � ω2r cosϕ�sin γ cosϕ − cos γ sinϕ sinψ�;

v_γ �
FN

m
w1 − g cos γ �

v2

r
cos γ � 2ωv cosϕ cosψ

� ω2r cosϕ�cos γ cosϕ� sin γ sinϕ sinψ�;

v _ψ �
FN

m cos γ
w2 −

v2

r
cos γ cosψ tan ϕ

� 2ωv�tan γ cosϕ sinψ − sinϕ� −
ω2r

cos γ
sinϕ cosϕ cosψ ;

_m � −
P

g0Isp
(31)

the path constraint in each phase

w2
1 � w2

2 � 1 (32)

the path constraint in the fourth phase

α
�4�
min ≤ α�4� ≤ α

�4�
max (33)

the linkage constraints on the time and state between phases 1, 2,

and 3,

2

6

6

6

6

6

6

6

6

4

t
�p�
f − t

�p�1�
0 r�t

�p�
f � − r�t

�p�1�
0 �

θ�t
�p�
f � − θ�t

�p�1�
0 � ϕ�t

�p�
f � − ϕ�t

�p�1�
0 �

v�t
�p�
f � − v�t

�p�1�
0 � γ�t

�p�
f � − γ�t

�p�1�
0 �

ψ�t
�p�
f � − ψ�t

�p�1�
0 � m�t

�p�
f � −m�t

�p�1�
0 �

3

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

4

0 0

0 0

0 0

0 0

3

7

7

7

7

7

5

;

p ∈ �1; 2; 3� (34)

and the boundary conditions

t0 � t
�s�
0 ; �r�t0�; r�tf��� �r

�s�
0 ;rf�;

θ�t0�� θ
�s�
0 ; ϕ�t0��ϕ

�s�
0 ; �v�t0�;v�tf��� �v

�s�
0 ;vf�;

�γ�t0�;γ�tf��� �γ
�s�
0 ;γf�; ψ�t0��ψ

�s�
0 ; m�t0��m

�s�
0 ;

i�tf�� if (35)

where r is the geocentric radius, θ is the Earth-relative longitude, ϕ is

the geocentric latitude, v is the Earth-relative speed, γ is the Earth-

relative flight path angle, ψ is the Earth-relative heading angle, m is

the mass, i is the orbital inclination, α is the angle of attack and is the

first control, and �w1; w2� form the second and third controls such

thatw1 andw2 represents, respectively, the cosine and the sine of the

bank angle, σ [i.e., the bank angle σ is not used as the control, butw1

and w2 are used as controls subject to the first path constraint of

Eq. (32)]. It is noted that the bank angle can be computed a posteriori

using w1 and w2 as

σ � tan−1�−w2;−w1� � π (36)

where tan−1�⋅; ⋅� is the four-quadrant inverse tangent, and negating

w1 and w2 in Eq. (36) ensures that σ ∈ �0; 2π�. Furthermore, h �
r − Re is the altitude, where Re � 6; 378; 166 m is the radius of the

Earth; FT � FT�P; α; D� is the sum of the tangential components of

the lift, drag, and thrust; and FN � FN�P; α; L� is sum of the normal

components of the lift, drag, and thrust. It is noted that the lift and drag

are obtained from two-dimensional polynomial fits of tabular data as

given in Ref. [47]. In this example, the initial conditions

�r
�s�
0 ; θ

�s�
0 ;ϕ

�s�
0 ; v

�s�
0 ; γ

�s�
0 ;ψ

�s�
0 ; m

�s�
0 � change depending upon the

initial time t
�s�
0 where s ∈ �0; 1; 2; : : : ; S�. Finally, the initial

conditions corresponding to the full-horizon (reference) optimal

solution are given as

a) K and N vs. s b) C and M vs. s

Fig. 6 Mesh characteristics for Example 1 on each guidance cycle using hp LGR collocation method in the presence of a time delay.
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t
�0�
0 � 126 s; r�t

�0�
0 � � 46447.6m� Re;

θ�t
�0�
0 � � −120.74 deg; ϕ�t

�0�
0 � � 34.1 deg;

v�t
�0�
0 � � 1384.7 m∕s;

γ�t
�0�
0 � � 26.4 deg; ψ�t

�0�
0 � � 259 deg;

m�t
�0�
0 � � 675702.8 kg (37)

the terminal conditions are given as

r�tf� � 203720 m� Re; θ�tf� � Free;

ϕ�tf� � Free; v�tf� � 7782 m∕s; γ�tf� � 0 deg;

ψ�tf� � Free; m�tf� � Free; i�tf� � 98 deg (38)

and the limits on the angle of attack in the fourth phase are

α
�4�
min � 0.1 deg; α

�4�
max � 15 deg (39)

where tf corresponds to the final time obtained on the reference

optimal control solution on the entire horizon t ∈ �t
�0�
0 ; t

�0�
f �.

The computational method for optimal guidance and control

developed in this paper is analyzed using the following model that is

perturbed from the reference dynamics. Specifically, in the perturbed

model the forces FT and FN in Eq. (31) are replaced with

~FT � q1FT ; ~FN � q2FN (40)

where �q1; q2� are random variables drawn on each guidance cycle

from a uniform distribution on the interval �a; b�, and the bank angle,

a) h(t) vs. t

c) γ (t) vs. t

e) α (t) vs. t f) σ (t) vs. t

d) m(t) vs. t

b) φ φ vs. θ

Fig. 7 Solution obtained via simulation of the actual dynamics [i.e., using the perturbedmodel given in Eq. (40)] for Example 2 on each guidance cycle in
the absence of a time delay.
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σ, is obtained from Eq. (36) using w�
1 and w

�
2 , where w

�
1 and w

�
2 are

obtained by solving the sparse NLP associated with hp LGR

collocation over the unexpired horizon.

1. Results Using Computational Optimal Guidance and Control Method

in the Absence of a Time Delay

Suppose now that the optimal guidance and control method of this

paper operates in the absence of a computation time delay (i.e.,

Td � 0). Then, starting with the reference initial conditions of

Eq. (37), the optimal control problem given in Eqs. (30–35) is re-

solved at the start of each guidance cycle s ∈ �1; 2; 3; : : : ; S� on a

shrinking horizon �t
�s�
0 ; t

�s�
f � (where t

�s�
0 � t0 � sG). Furthermore, the

simulation of the actual dynamics is performed with the random

variables q1 and q2 in Eq. (40) each drawn from a uniform

distribution �a; b� � �0.9; 1.1�. The state obtained by simulating the

actual dynamics [i.e., using the perturbedmodel given in Eq. (40)] on

the intervals t ∈ �t
�s�
0 ; t

�s�
0 �G� (where s ∈ �0; 1; 2; : : : ; S�) using the

control computed on �t
�s�
0 ; t

�s�
f � via hp LGR collocation is shown in

Figs. 7a–7d alongside the reference state. In addition, Figs. 7e and 7f

show the control used in the simulation of the actual dynamics

alongside the reference control. It is seen that the simulated solution

on each of the guidance cycles is close to the reference solution even

though the model used in the simulation is different from the

reference model.

Now let Δy�t� � ~y�t� − y��t� be the difference between the state,
~y�t�, obtained using the perturbed dynamics [i.e., using the perturbed

model given in Eq. (40)] and the state, y��t�, obtained from the

reference solution of the optimal control problem using hp LGR

collocation. Furthermore, let t�f be the terminal time obtained from

the numerical solution of the optimal control problem using hp LGR

collocation over the last guidance cycle. Then the differencesΔh�t�f�,
Δv�t�f�, Δγ�t�f�, and Δi�t�f� are given, respectively, as �Δh�t�f�;
Δv�t�f�;Δγ�t

�
f�;Δi�t

�
f����−3.6452 × 10−4 m;−1.264×10−1 m∕s;

−2.07 × 10−8 rad;−4.4409 × 10−15 rad�. It is seen that these dif-

ferences are, respectively, O�10−4� m, O�10−1� m∕s, O�10−8� rad,
andO�10−15� rad. Next, Fig. 8 shows the characteristics of the mesh

as a function of the guidance cycle, s. Specifically, Fig. 8a shows the

number of mesh intervals, K, and the number of collocation points,

N, while Fig. 8b shows the computation time, C, and the number

of mesh refinements, M, as a function of the guidance cycle

s ∈ �1; : : : ; S�. It is seen that no mesh refinement is required through

all of the guidance cycles in that all of the solutions are obtained on

the first meshwithout requiring anymesh refinement. Furthermore, it

is seen that the size of the mesh progressively decreases as the

guidance cycles evolve such that in the last guidance cycle the mesh

consists of four collocation points (i.e., N � 4) and only a single

mesh interval (i.e., K � 1). Thus, for the vast majority of guidance

cycles, not only is the optimal control problem solved efficiently, but

also the mesh size decreases, making it possible to re-solve the

optimal control problem using a progressively smaller finite-

dimensional approximation of the optimal control problem.

2. Results Using Computational Optimal Guidance and Control Method

in the Presence of a Time Delay

Suppose now that the optimal guidance and control method of this

paper operates in the presence of a computation time delay (i.e.,

Td ≠ 0). Then, starting with the reference initial conditions of

Eq. (37), the optimal control problem given in Eqs. (30–35) is re-

solved at the start of each guidance cycle s ∈ �1; 2; 3; : : : ; S� on a

shrinking horizon �t
�s�
0 ; t

�s�
f � (where t

�s�
0 � t0 � sG). Furthermore, the

simulation of the actual dynamics is performed with the random

variables q1 and q2 in Eq. (40) each drawn from a uniform

distribution �a; b� � �0.9; 1.1�. The state obtained by simulating the

actual dynamics [i.e., using the perturbedmodel given in Eq. (40)] on

the intervals t ∈ �t
�s�
0 ; t

�s�
0 �G� (where s ∈ �0; 1; 2; : : : ; S�) using the

control computed on �t
�s�
0 ; t

�s�
f � via hp LGR collocation is shown in

Figs. 9a–9d alongside the reference state. In addition, Figs. 9e and 9f

show the control used in the simulation of the actual dynamics

alongside the reference control. It is seen that the simulated solution

on each of the guidance cycles is close to the reference solution even

though the model used in the simulation is different from the

reference model.

Now let Δy�t� � ~y�t� − y��t� be the difference between the state
~y�t� obtained using the perturbed model [i.e., using the model given

in Eq. (40)] and the state y��t� obtained from the reference solution of

the optimal control problem usinghpLGRcollocation. Furthermore,

let t�f be the terminal time obtained from the numerical solution of the

optimal control problem using hp LGR collocation over the last

guidance cycle. Then the differences Δh�t�f�, Δv�t
�
f�, Δγ�t

�
f�, and

Δi�t�f� are given, respectively, as �Δh�t
�
f�;Δv�t

�
f�;Δγ�t

�
f�;Δi�t

�
f�� �

�−4.6885 × 10−3 m;−4.985 × 10−1 m∕s;−2.67 × 10−7 rad;
4.4408 × 10−15 rad�. It is seen that these differences are, respectively,
O�10−3� m, O�10−1� m∕s, O�10−7� rad, and O�10−15� rad. Next,
Fig. 10 shows the characteristics of the mesh as a function of the

guidance cycle, s. Specifically, Fig. 10a shows the number of mesh

intervals,K, and the number of collocation points,N, while Fig. 10b

shows the computation time,C, and the number ofmesh refinements,

M, as a function of the guidance cycle s ∈ �1; : : : ; S�. It is seen that no
mesh refinement is required through all of the guidance cycles.

Furthermore, it is seen that the size of the mesh progressively

decreases in size as the guidance cycles evolve such that in the last

two guidance cycles themesh consists of four collocation points (i.e.,

N � 4) and only a single mesh interval (i.e., K � 1). Thus, for the
vast majority of guidance cycles, not only is the optimal control

problem solved efficiently, but also the mesh size decreases, making

it possible to re-solve the optimal control problem using a

progressively smaller finite-dimensional approximation of the

optimal control problem.

a) K and N vs. s b) C and M vs. s

Fig. 8 Mesh characteristics for Example 2 on each guidance cycle using hp LGR collocation method in the absence of a time delay.
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a) K and N vs. s b) C and M vs. s

Fig. 10 Mesh characteristics for Example 2 on each guidance cycle using hp LGR collocation method in the presence of a time delay.

a) h(t) vs. t

c) γ(t) vs. t

e) α (t) vs. t f) σ (t) vs. t

d) m(t) vs. t

b) φ  φ vs. θ

Fig. 9 Solution obtained via simulation of the actual dynamics [i.e., using the perturbedmodel given in Eq. (40)] for Example 2 on each guidance cycle in
the presence of a time delay.
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IX. Discussion

The two examples analyzed in Sec. VIII illustrate the key features
of the computational optimal guidance and controlmethod developed
in this paper. The first key feature pertains to the size and placement of
the mesh as the horizon shrinks. As a result, the method developed in
this paper is designed such that the truncated and remapped mesh for
use on the current unexpired horizon is smaller than themesh thatwas
used to solve the optimal control problem on the previous unexpired
horizon. Also, it is seen in both examples that little to no mesh
refinement is required in order to meet the mesh refinement accuracy
tolerance. Specifically, it is seen from Figs. 4b and 6b that only 5 of
the 66 guidance cycles require anymesh refinement in the absence or
presence of a time delay for the reusable launch vehicle entry problem
(Example 1). Moreover, it is seen for Example 1 that in the few cases
where mesh refinement is required, the mesh refinement accuracy
tolerance is satisfied using only a single mesh refinement iteration
(where seen from Figs. 4b and 6b thatM � 1 for 5 of the 66 guidance
cycles and is zero otherwise). These results show that the mesh
truncation and remapping strategy described in Sec. VI provides a
mesh at the start of each guidance cycle that is quite close to a mesh
that satisfies the mesh refinement accuracy tolerance. Consequently,
in only a few cases,more than one sparseNLPmust be solved in order
to obtain a control that can be implemented for use on that
guidance cycle.
A second important property of the computational optimal

guidance method developed in this research pertains to the
computational efficiency with which a solution is returned by the
NLP solver that satisfies themesh refinement accuracy tolerance. For
the reusable launch vehicle entry problem (Example 1), the guidance
cyclewasG � 30 s. It is seen from Fig. 4b and 6b that in all cases the
time required to solve the sparse NLP is significantly shorter than the
guidance cycle. Specifically, the maximum time required to re-solve
the sparse NLP in Example 1 either in the absence or presence of a
time delay is approximately 0.5 s and 2.1 s, respectively (see again
Figs. 4b and 6b). Next, for the reusable launch vehicle ascent problem
(Example 2), the guidance cycle for the first three phases was
G � 30 s, and the fourth phase has a guidance cycle ofG � 5 s. It is
seen from Figs. 8b and 10b that, for the guidance cycles in the first
phase, the computation time is a significant fraction of the guidance
cycle (approximately 12 and 16 s, respectively, in the absence and the
presence of a time delay). It is noted, however, that for the second and
third phases the computation time is significantly smaller (never
greater than 3 s either in the absence or the presence of a time delay).
In the fourth phase, where the guidance cycle G � 5 s, the
computation time is significantly shorter than the guidance cycle.
Specifically, the maximum times required to re-solve the sparse NLP
in phase four of Example 2 in the absence and presence of a time
delay are, respectively, approximately 1.82 s (as shown in Fig. 8b)
and 0.25 s (as shown in Fig. 10b). Thus, although a large computation
time is required to perform a guidance update during the first phase of
the reusable launch vehicle ascent problem, it is still possible to
compensate for any modeling errors in the first phase of the motion,
because, in the first phase of flight, the vehicle is a sufficiently large
distance from the target.
The third key aspect of the computationalmethod for guidance and

control developed in this paper is the accuracy with which the
terminal constraints are attained via simulation of the actual
(perturbed) dynamics. For the reusable launch vehicle entry problem
(Example 1), the attained terminal conditions differ from the
specified terminal conditions in both the absence and the presence of
a time delay by slightly less than 1m and 1 m∕s in altitude and speed,
respectively, and by significantly less than 1 deg in flight path angle.
Next, for the reusable launch vehicle ascent problem (Example 2), the
attained terminal conditions differ from the specified terminal
conditions in both the absence and the presence of a time delay by
significantly less than 1 m in altitude, slightly less than 1 m∕s in
speed, and much less than 1 deg in both flight path angle and
inclination. These results indicate that the method developed in this
research is capable of compensating for the significant perturbations
in the dynamic model relative to the reference model.

Another key point, although somewhat subtle, pertains to the
manner in which the sparse NLP is solved. In this study, the highly
capable NLP solver IPOPT was used in full-Newton (second-
derivative) mode. Note, however, that IPOPT employs an interior-
point method. Although interior-point methods work extremely well
in full-Newton mode, one limitation of an interior-point method is
that the initial guess for the NLP solver, which in this case is accurate
and is based on a cubic spline interpolant of the solution on the
unexpired horizon, is generally perturbed away from the starting
point. Consequently, even using an accurate initial guess, it is
generally the case that an interior-point method will need to execute
several major iterations before it converges to a solution on the
unexpired horizon. As a result, the large computation times seen on
the guidance cycles in the first phase of the reusable launch vehicle
ascent problem are a result of the interior-pointmethod in IPOPT. It is
likely that optimization techniques such as a full-Newton sequential
quadratic programming (SQP)method could performbetter given the
initial guesses that are used in a method such as the one described in
this research.

X. Conclusions

Amethod has been developed for computational optimal guidance
and control using adaptive Gaussian quadrature collocation and
sparse nonlinear programming. The method employs adaptive
Legendre–Gauss–Radau (LGR) quadrature collocation together with
sparse nonlinear programming in order to numerically solve a
successively shrinking-horizon optimal control problem. A key
aspect of the method is that on any guidance cycle the mesh
truncation and remapping strategy results in a mesh that is smaller
than the mesh used on the previous guidance cycle. Moreover,
because the mesh on the previous guidance cycle satisfied the mesh
refinement accuracy tolerance, these mesh points are well placed for
rapidly solving the LGR quadrature collocation approximation of the
optimal control problem on the unexpired horizon. Using the reduced
size mesh, the LGR quadrature collocation sparse nonlinear
programming problem is solved to generate the control that is used as
an input to the system on the current guidance cycle. The
computational approach to guidance and control developed in this
paper has been demonstrated on two well-known and computation-
ally challenging aerospace flight optimal control problems. For both
examples, a perturbed dynamic model from that of the reference
model was used to simulate the motion of the system. In addition, the
method has been demonstrated in both the absence and the presence
of a computational time delay equal to the time required to solve the
sparse nonlinear programming problem. The results of this study
demonstrate that the method developed in this paper is viable as a
computational method for optimal guidance and control.
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