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Abstract

In many real-world settings, a decision-maker must combine
information provided by different experts in order to decide
on an effective policy. Alrajeh, Chockler, and Halpern (2018)
showed how to combine causal models that are compatible in
the sense that, for variables that appear in both models, the
experts agree on the causal structure. In this work we show
how causal models can be combined in cases where the ex-
perts might disagree on the causal structure for variables that
appear in both models due to having different focus areas.
We provide a new formal definition of compatibility of mod-
els in this setting and show how compatible models can be
combined. We also consider the complexity of determining
whether models are compatible. We believe that the notions
defined in this work are of direct relevance to many practical
decision making scenarios that come up in natural, social, and
medical science settings.

1 Introduction

In many real-world settings, a decision-maker must com-
bine information provided by different experts in order to
decide on an effective policy. For example, when deciding
policing and criminal justice policy, it may be necessary to
consult different experts specializing in areas such as crimi-
nology, psychology, sociology, and economics. Intelligently
combining the information provided by the various experts
is necessary if the decision-maker hopes to select the best
course of action.

Much work has been done on combining simple proba-
bilistic judgments of different experts. However, we are in-
terested in settings where a decision-maker wants to choose
an action in order to induce a particular outcome, so we are
interested in the setting where experts provide models of the
causal relationships between different factors. Despite the
clear importance of combining causal models in real-world
situations, there has been very little work on how to combine
models with this extra structure.

Much work has been done on the related problem of
learning causal models: given data and possibly some prior
structured knowledge, extract the causal model that best
fits the given information (see, e.g., (Claassen and Hes-
kes 2010; 2012; Hyttinen, Eberhardt, and Jarvisalo 2014;
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Tillman and Spirtes 2011; Triantafillou and Tsamardinos
2015); Triantafillou and Tsamardinos (2015) provide a good
overview of work in the area). In a certain sense, if all of the
experts we consult have learned their models in this manner
and can provide us with all of their data, then the best thing
to do is simply to learn a new causal model from the union
of all the data. However, in many real world settings, this is
completely impractical. Experts develop intuitions based on
years worth of data, training, and discussions; providing all
of this background information to the decision maker may
be infeasible.

On the topic of combining causal models without data,
Bradley, Dietrich, and List (2014) proved an impossibility
result. Given a set of desiderata for combining causal mod-
els, they show that no algorithm satisfies them all. They fur-
ther examine ways of circumventing the impossibility result
by weakening some of those conditions.

It is perhaps not too surprising in retrospect that it will
sometimes be impossible to combine causal models, as two
models can explicitly disagree on every causal relationship.
In the work most related to this, Alrajeh, Chockler, and
Halpern (2018) (ACH from now on) provide conditions for
the compatibility of models and show how to combine mod-
els that meet their compatibility conditions. They define a
dominance relation according to which a model M1 domi-
nates model M2 with respect to a variable C if the two mod-
els agree on the causal dependence of C on the other vari-
ables shared by the two models, but model M1 has perhaps
a more detailed picture of the exact way that the effects are
mediated. Two models are compatible if, for every variable,
one of the models dominates the other; the combined model
takes the causal information from the dominant model for
each variable C. ACH also provide a way of assigning prob-
abilities to causal models in settings where not all models
under consideration are compatible.

The present work can be seen as providing an approach
complementary to that of ACH. Philosophically, the ap-
proach presented by ACH is intended to allow for combina-
tion of models where the modelers fundamentally agree on
the causal relationship between the variables they both dis-
cuss, but go into different levels of detail as to how some of
those relationships are mediated. But consider, for instance,
the following scenario: a medical scientist is interested in
the conditions under which a particular reaction occurs, and



consults with two experts. The first specializes in the exact
mechanism by which this reaction occurs; the second spe-
cializes in how one of the reactants gets produced. Because
of their different focus areas, they in fact do not agree on
everything; each of them is more aware of the details of the
reaction that she studies, and thus has more understanding
of what factors can cause that reaction to occur differently.
Our intuition tells us that there should be a way of combin-
ing these models to get the true expertise of both modelers,
but with the ACH approach, these models would in fact have
to be deemed incompatible.

In this work, we allow for combining models where the
modelers disagree due to their different focus areas. Intu-
itively, if the first modeler considered more possibilities than
the second, and her conclusion can explain the observations
of the second, then we accept the conclusion of the first mod-
eler. To this end, we define a new notion of a “can explain”
relation and provide new formalizations of compatibility and
model combination relative to this notion.

The rest of this paper is organized as follows. In Section 2,
we review the basic framework of causal models, and extend
them so as to accommodate focus areas. In Section 3, we de-
fine our approach to combining these models. Section 4 con-
tains an approach to weighting models in settings where the
models under consideration are not all compatible. We char-
acterize the computational complexity of the can-explain re-
lation that we define in Section 5. Section 6 concludes.

2 Causal Models with Focus
In this section, we review the framework of causal models.
We largely follow Halpern and Pearl (?), but extend their
basic framework so as to allow the models to express focus
areas.

We assume that a situation is characterized by the val-
ues of a number of variables. There are structural equa-
tions describing the effect that the variables have on each
other. Among the variables, we distinguish between exoge-
nous variables (whose values are determined by factors out-
side of the model) and endogenous variables (whose values
are determined by other variables in the model).

A causal model with focus is a tuple M = (S,F ,G),
where S is a signature, F is a set of structural equations,
and G is a focus function. The signature S is itself a tu-
ple (U ,V,R). Here U is a (finite but non-empty) set of ex-
ogenous variables and V is a (finite but non-empty) set of
endogenous variables. R is a range function mapping ele-
ments of U ∪ V to the (finite but non-empty) set of values
they can take on. We assume without loss of generality that
|R(C)| > 1 for all variables C. (If a variable can take on
only one value, then it can neither be a cause nor have its
value be caused by another variable, so we can remove it and
get a semantically equivalent model.)F associates with each
endogenous variable X ∈ V a function denoted FX such
that FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y )) → R(X);
that is, FX determines the value of X , given the values of
all the other variables in U ∪V . For example, we might have
FX(u, y, z) = u+y, which is usually written as X = U+Y .
Thus, if Y = 3 and U = 2, then X = 5, regardless of how
Z is set.

Up to now, we have essentially described the Halpern-
Pearl (?) model. In our setting, though, we add an addi-
tional focus function that intuitively tells us what variables
the modeler considered when trying to determine the struc-
tural equation for each variable. In practice, we might ex-
tract such information from the modeler herself or from
the published experiments of the modeler. Formally, we let

G : (U ∪ V) → 2(U∪V) be a function that, given a variable
C, gives us the set of variables that the modeler considered
as possibly having an effect on C. We require for all C that
C /∈ G(C), as a variable cannot have a causal effect on it-
self. It may seem surprising at first that we define this func-
tion even for exogenous variables, which are not affected by
other variables in the model. We think that it is more natu-
ral to do so, as it is possible that the modeler considered the
possibility of the variable being endogenous before deciding
that it wasn’t affected by any other variables in the model.

We define B to be a parent of C if there exists some set-
ting of all the variables in (V∪U)−{B,C} such that C takes
on some value c1 for a value b1 of B and takes on a differ-
ent value c2 for some other values b2 of B. Let Par(C) be
the set of parents of C. Thus, the parents of C are exactly
those variables that might have a direct effect on C. We re-
quire that Par(C) ⊆ G(C) for every variable C. A modeler
cannot have an equation for C showing that B has a direct
influence on C unless the modeler considered B as a possi-
bly having an effect on C.

A causal model with focus with exogenous variables U
and endogenous variables V can be represented by a pair of
graphs on U ∪ V . In the first graph, called the parent graph,
the edge set E consists of edges from the vertices in Par(C)
to C, for each endogenous variable C. In the second graph,
called the focus graph, the edge set E′ consists of edges to
each vertex C from the members of G(C). Pictorially, we
can depict this representation with directed edges for the el-
ements of E and crossed-out directed edges for the elements
of E′ − E. We call a model recursive or acyclic if the par-
ent graph does not contain any cycles. In cases where the
model is acyclic, given a context ~u (i.e., a setting of the ex-
ogenous variables), the values of all the endogenous vari-
ables are uniquely determined by the structural equations.
As is standard in the literature, we restrict our discussion to
acyclic models in this work.

Given a model M , an endogenous variable X ∈ V , and a
value x ∈ R(X), we define MX←x to be the model that is
the same as M except that the equation for X is replaced by
X = x. We can think of the model MX←x as describing the
result of intervening to set X to x in model M .

Take a causal formula to be one of the form [Y1 ←
y1, . . . , Yk ← yk]ϕ, where Yj ∈ U ∪ V and ϕ is a Boolean
combination of primitive formulas of the form X = x,
where X is an endogenous variable and x ∈ R(X).1 In the
special case where k = 0, we identify [ ]ϕ with the formula
ϕ.

We now define what it means for a causal formula ϕ to
be true in a causal setting (M,~u) consisting of a causal

1In previous work, each Yi is taken to be an endogenous vari-
able. For our purposes, it is useful to also allow Y to be exogenous.



model M and a context ~u, written (M,~u) |= ϕ, by induc-
tion on the structure of ϕ. For a primitive event X = x,
(M,~u) |= X = x if X = x in the unique solution to the
equations in M given context ~u (the solution is unique since
we are dealing with acyclic models, so the setting of the ex-
ogenous variables determines all other variables). The truth
of a Boolean combination of primitive events is defined in
the obvious way. If k ≥ 1 and Yk is an endogenous variable,
then

(M,~u) |= [Y1 ← y1, . . . , Yk ← yk]ϕ iff
(MYk←yk

, ~u) |= [Y1 ← y1, . . . , Yk−1 ← yk−1]ϕ.

If Yk is an exogenous variable, then

(M,~u) |= [Y1 ← y1, . . . , Yk ← yk]ϕ iff
(M,~u[Yk/yk]) |= [Y1 ← y1, . . . , Yk−1 ← yk−1]ϕ,

where ~u[Yk/yk] is the result of replacing the value of Yk in
~u by yk.

We now show how to model the example from the intro-
duction in this framework.

Example 2.1. Recall the basic scenario: a medical scien-
tist is trying to understand under what conditions a par-
ticular reaction occurs, and consults with two experts. The
first specializes in the exact mechanism by which this re-
action occurs; the second in how one of the reactants gets
produced. The scientist then wants to combine the informa-
tion provided by the two experts. The models provided by
the experts are depicted in Figure 1, where expert i pro-
vides model Mi. The main difference between these mod-
els is that expert 1 takes into account the effect that tem-
perature T can have on reaction C, while modeler 2, who
does not, takes into account the effect temperature can have
on the production of reactant B. Formally, the parame-
ters of these two models are defined as follows: for the
ranges, we haveR1(T ) = R2(T ) = {Freezing,Cool,Hot},
R1(A

′) = R1(B
′) = R2(A

′) = R2(B
′) = {1, 2, 3},

R1(A) = R1(B) = R2(A) = R2(B) = {1, . . . , 5}, and
R1(C) = R2(C) = {true, false}. We have G1(A) = {A

′},
G1(B) = {B′}, and G1(C) = {A,B, T}, while G1(A) =
{A′}, G1(B) = {B′, T}, and G1(C) = {A,B}. This is
how we model the fact that expert 1 does not take into ac-
count the effect that temperature (T ) can have on B, while
expert 2 does not take into account the effect that temper-
ature can have on C. The structural equations in M1 are
defined by taking A = A′, B = B′, and C = ((T =
Freezing) ∧ (A + B ≥ 9)) ∨ ((T = Cool) ∧ (A + B ≥
5))∨((T = Hot)∧(A+B ≥ 4)). In M2, the structural equa-
tions are A = A′; B = B′ +2 if T = Freezing and B = B′

otherwise; and C = true if A + B ≥ 5 and C = false
otherwise. ut

3 Combining Causal Models with Focus

In this section we turn to the question of combining causal
models. We define a new relation and show how it can be
used to define compatibility and combination.

3.1 The “can-explain” relation

We want to capture the intuition that if modeler i considered
the causes of some variable C more carefully than modeler

𝑀𝑀1
B

A
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𝑀𝑀2 𝑀𝑀1⊕′ 𝑀𝑀2
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B
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C
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Figure 1: M1 and M2 are the models of the two scientists
trying to understand reaction C.

j, then i’s analysis is preferable. Roughly speaking, we pre-
fer modeler i’s structural equation for C over j’s if i’s model
can explain (in some appropriate sense) j’s observations.

Before going on, we introduce some notation conven-
tions that will simplify the exposition. When we write
Mi, we assume that the model Mi has components
((Ui,Vi,Ri),Fi,Gi), and Pari(C) refers to the parents of
variable C in model Mi. Also, for a model M , we write FM

to denote the F function in model M , and similarly for the
other components of the model.

Definition 3.1. M1 can explain M2 with respect to C, writ-
ten M1 �C M2, if

(a) R1(C) = R2(C),

(b) G2(C) ⊆ G1(C), and

(c) for all exogenous settings ~u2 for M2 and all interven-
tions G2(C) = ~x there is a context ~u1 in M1 such that
if (M2, ~u2) � [G2(C) ← ~x](C = c) then (M1, ~u1) �

[G2(C)← ~x](C = c).

This relation ought really be called can explain and has
considered everything considered by, but for the sake of
brevity we use simply can explain.

The intuition here is that expert 2 (whose knowledge
is characterized by M2) has considered carefully the ef-
fect on C of all the variables in G2(C) and has observed
that those in Par2(C) have an effect on C, while those in
G2(C)−Par2(C) do not. She has not bothered considering
the effect of the variables not in G2(C) on C, because she
is reasonably sure that they have no effect (but could turn
out to be wrong about this). Expert 1 (whose knowledge is
characterized by M1) can explain expert 2’s observations (at
least, with regard to C) if she has also considered at least all
of the interventions that expert 2 has considered, and can ex-
plain all of expert 2’s observations in the sense of condition
(c) of Definition 3.1.

We conclude this subsection with two technical results
that highlight useful properties of the �C relation. Say that
M1 and M2 are C-compatible if either M1 �C M2 or
M2 � M1. We now show that �C is transitive when re-
stricted to C-compatible models.



Proposition 3.2. If M1 �C M2, M2 �C M3, and M1 and
M3 are C-compatible, then M1 �C M3.

Proof. Assume that M1 �C M2, M2 �C M3, and by way
of contradiction, that M1 6�C M3. Because M1 and M3

are C-compatible, it must then be the case that M3 �C

M1. Since R1(C) = R2(C) and R2(C) = R3(C), we
have that R1(C) = R3(C). And since G2(C) ⊆ G1(C),
G3(C) ⊆ G2(C), and G1(C) ⊆ G3(C), we get that
G1(C) = G2(C) = G3(C). Now consider any interven-
tion G3(C) = ~x. Because M2 �C M3, we know that any
value of C that can be achieved in M3 under intervention
~X = ~x can also be achieved in M2 under the same inter-
vention; that is, for all contexts ~u and values c ∈ R(C), if
(M3, ~u) |= [G3(C) ← ~x](C = c), then there exists a con-
text ~u′ such that (M2, ~u

′) |= [G3(C) ← ~x](C = c). But
because G2(C) = G3(C) and M1 �C M2, it follows that
there exists a context ~u′′ such that (M1, ~u

′′) |= [G3(C) ←
~x](C = c). Thus, condition (c) of Definition 3.1 holds, so
M1 �C M3.

The requirement in Proposition 3.2 that M1 and M3 are
C-compatible is necessary, as we show below (see Exam-
ple 3.8).

Definition 3.3. M1 ≡C M2 iff either (a) C ∈ U1 ∩ U2,
R1(C) = R2(C), and G1(C) = G2(C) or (b) C ∈ V1 ∩ V2,
R1(C) = R2(C), G1(C) = G2(C), and F1(C) = F2(C).2

The next result shows that, in a sense, �C is anti-
symmetric.

Proposition 3.4. M1 �C M2 and M2 �C M1 iff M1 ≡C

M2.

Proof. The fact that M1 ≡C M2 implies M1 �C M2 and
M2 �C M1 follows easily from the definitions, using the
fact that Pari(C) ⊆ Gi(C).

To prove the opposite implication, suppose that M1 �C

M2 and M2 �C M1. We first show that C cannot be in
either U1∩V2 or U2∩V1. Suppose, by way of contradiction,
that C ∈ U1 ∩ V2. Consider an intervention G2(C) = ~x.
Because C is exogenous in M2, there must exist contexts

~u2 6= ~u′2 such that (M2, ~u2) � [G2(C) ← ~x](C = c2) and
(M2, ~u

′
2) � [G2(C) ← ~x](C = c′2) for some c2 and c′2 such

that c2 6= c′2. Now consider this same intervention in M1.
Since M1 �C M2 and M2 � M1, we have that G1(C) =
G2(C). By definition, Par1(C) ⊆ G1(C). Thus there must
exist a unique c1 such that, for all exogenous settings ~u1 in
M1, (M1, ~u1) � [G2(C) ← ~x](C = c1). But because c2 6=
c′2, there cannot be contexts ~u1 and ~u′1 such that (M1, ~u1) �
[G2(C) ← ~x](C = c2) and (M1, ~u

′
1) � [G2(C) ← ~x](C =

c′2). This contradicts the assumption that M1 �C M2. A
similar argument shows that C cannot be in U2 ∩ V1.

It is almost immediate from the definition of �C that if
M1 �C M2, M2 �C M1, and C ∈ (U1 ∩ U2) ∪ (V1 ∩ V2),
then R1(C) = R2(C) and G1(C) = G2(C). It follows that

2TechnicallyF1(C) = F2(C) is not defined if U1∪V1 6= U2∪
V2; all we mean is that Par1(C) = Par2(C), R1(D) = R2(D)
for all D ∈ Par1(C), and (M1, ~u1) � [Par1(C) ← ~p](C = c)
iff (M2, ~u2) � [Par2(C)← ~p](C = c) for all ~u1, ~u2, and ~p.

if C ∈ U1 ∩ U2, then M1 ≡C M2. It remains to show that if
C ∈ V1 ∩ V2, then F1(C) = F2(C).

So suppose that C ∈ V1 ∩ V2. If Par1(C) = Par2(C),
then since G1(C) = G2(C) and Pari(C) ⊆ Gi(C) for
i = 1, 2, it follows that (M1, ~u1) � [G2(C) ← ~x](C = c)
iff (M2, ~u2) � [G2(C) ← ~x](C = c) for all contexts
~u1 and ~u2, so F1(C) = F2(C). On the other hand, if
Par1(C) 6= Par2(C), then without loss of generality there
is some variable D ∈ Par1(C)−Par2(C). There must thus
exist two interventions G2(C) = ~x and G2(C) = ~y that dif-
fer only on the value of D such that for some c ∈ R(C),
we have (M1, u

′
1) � [G2(C) ← ~x](C = c) and (M1, u

′
1) �

[G2(C) ← ~y]¬(C = c) for all exogenous settings u′1 in
M1. Because D /∈ Par2(C), we know that interventions
G2(C) = ~x and G2(C) = ~y will give the same value of C in
M2 for all settings of exogenous variables u2. Thus, it is not
the case that M1 can explain M2 with respect to C, giving a
contradiction.

So we have in all cases that M1 ≡C M2, as desired.

3.2 Combining compatible models

We now turn to compatibility and combination of causal
models. We start by defining a simplified notion of compat-
ibility and an operator ⊕′ that gets us most of the way there.
Unfortunately, as we show, ⊕′ has a small shortcoming, so
we then modify it to get a more reasonable operator ⊕.

Definition 3.5. M1 and M2 are compatible if, for all C ∈
(U1 ∪ V1) ∩ (U2 ∪ V2), either M1 �C M2 or M2 �C M1.

If M1 and M2 are compatible then, for each variable C,
we intuitively want the combined model to take all of the
information for C from the model that best explains C. So
if M1 can explain M2 with respect to C, then we want the
combined model to use M1’s focus function and structural
equation (if C is endogenous in M1) for C. Formally, the
combined model M1⊕

′M2 = ((U ,V,R),F ,G) is defined
as follows:

• U ∪ V = (U1 ∪ V1) ∪ (U2 ∪ V2) (so the exogenous and
endogenous variables in the combined model comprise all
the endogenous and exogenous variables in M1 and M2).
A variable U is exogenous in M1⊕

′M2 if it is exogenous
in one of M1 or M2, say Mi, and either does not appear
in M3−i (i.e., the other model) or it appears in M3−i but
Mi �U M3−i; the remaining variables are endogenous.
Formally, U = (U1−(U2∪V2))∪(U2−(U1∪V1))∪{C :
∃i ∈ {1, 2}(C ∈ Ui and Mi �C M3−i} and V = (V1 −
(U2 ∪ V2))) ∪ (V2 − (U1 ∪ V1)) ∪ {C : ∃i ∈ {1, 2}(C ∈
Vi and Mi �C M3−i)}.

• For C ∈ (U1 ∪ V1) − (U2 ∪ V2), set R(C) = R1(C),
F(C) = F1(C), and G(C) = G1(C).

• Similarly, for C ∈ (U2 ∪ V2) − (U1 ∪ V1), set R(C) =
R2(C), FC = F2(C), and G(C) = G2(C).

• For C ∈ (U1 ∪ V1) ∩ (U2 ∪ V2), we must have either
M1 �C M2 or M2 �C M1. If Mi � M3−i, then set
R(C) = Ri(C), F(C) = Fi(C), and G(C) = Gi(C).
(By Proposition 3.4, this is well defined: if M1 �C M2

and M2 �C M1, then R1(C) = R2(C), F1(C) =
F2(C), and G1(C) = G2(C).)



Returning to Example 2.1, it is easy to check that the
models M1 and M2 are compatible. Specfically, we have
M1 �C M2 and M2 �B M1. (For all other variables D,
we have M1 �D M2 and M2 �D M1.) Thus, we can com-
bine M1 and M2 to get the model M1 ⊕

′ M2 depicted in
Figure 2𝑀𝑀1
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Figure 2: Taking into account what each scientist focused on
allows us to combine M1 and M2 to get the model shown on
the right.

In the ACH approach, M1 and M2 would be declared
incompatible. Since no information about who considered
what possibilities is available, expert 2 is assumed to have
come to the conclusion that T does not directly affect C,
and therefore be in fundamental disagreement with expert 1.
In our setting, though, we can take advantage of the focus
information to determine whether there is truly a fundamen-
tal disagreement. The disagreement may just be a result of
the fact that one of the experts was not focusing on certain
variables. In situations where this information is available, it
can allow us to take more complete advantage of the differ-
ent areas of expertise that different experts may have.

Slightly more generally, the ACH definition is designed
to take into account situations where one expert’s model is
more detailed in terms of the topology of the causal graph,
that is, where the causal relationship is considered to be me-
diated by variables the other modeler was simply not aware
existed. In our setting there is more information available, al-
lowing us to consider another sense in which one modeler’s
understanding might be locally more detailed than another’s,
namely, situations where one expert can explain the other’s
observed results by taking into account the fact that the other
was not focusing on certain variables.

This notion of combination is commutative and, when de-
fined, associative:

Proposition 3.6. Given three pairwise compatible models
M1, M2, and M3,

(a) M1⊕
′M2 = M2⊕

′M1;

(b) if M1 �C M2 or C ∈ (U1 ∪V1)− (U2 ∪V2), then M1⊕
′

M2 ≡C M1;

(c) if M3 is compatible with M1⊕
′M2 and M1 is

compatible with M2⊕
′M3 then M1⊕

′(M2⊕
′M3) =

(M1⊕
′M2)⊕

′M3.

Proof. Commutativity is immediate from the definition of
⊕′.

For part (b), suppose that M1 �C M2. Then C is ex-
ogenous in M1 ⊕

′ M2 iff C is exogenous in M1. More-

over, RM1⊕
′M2(C) = R1(C), FM1⊕

′M2(C) = F1(C) if

C ∈ V1, and GM1⊕
′M2(C) = G1(C), so it immediately fol-

lows that M1 ⊕
′M2 ≡C M1. A similar argument applies if

C ∈ (U1 ∪ V1)− (U2 ∪ V2).
For part (c), observe that to show that M1 ⊕

′ (M2 ⊕
′

M3) = (M1 ⊕
′ M2) ⊕

′ M3, it suffices to show that
M1 ⊕

′ (M2 ⊕
′ M3) ≡C (M1 ⊕

′ M2) ⊕
′ M3 for all C ∈

(U1 ∪ V1 ∪ U2 ∪ V2 ∪ U3 ∪ V3). We do this by considering,
for each variable C, how many models it appears in.

First consider the case where C is in only one of the
three models (i.e., C ∈ Ui ∪ Vi for exactly one i ∈
{1, 2, 3}). Assume without loss of generality that C is in
M1. Then it follows almost immediately from our defini-
tions that M1⊕

′(M2⊕
′M3) ≡C M1 ≡C (M1⊕

′M2)⊕
′M3,

so M1⊕
′(M2⊕

′M3) ≡C (M1⊕
′M2)⊕

′M3. Similarly, in
the case where C is only in two models, assume without
loss of generality that C is in M1 and M2. Then it fol-
lows immediately that (M1⊕

′M2) ⊕
′ M3 ≡C M1⊕

′M2,
so if M1 �C M2 then (M1⊕

′M2) ⊕
′ M3 ≡C M1 and if

M2 �C M1 then (M1⊕
′M2) ⊕

′M3 ≡C M2. It is also im-
mediate that M2 ⊕

′ M3 ≡C M2, so if M1 �C M2 then
M1 ⊕

′ (M2 ⊕
′M3) ≡C M1. Now consider the case where

M2 �C M1. It must be the case that either M2 ⊕
′ M3 �C

M1 or M1 �C M2 ⊕
′ M3 because they are compatible. If

M2 ⊕
′ M3 �C M1 then M1 ⊕

′ (M2 ⊕
′ M3) ≡C M2 and

we are done. On the other hand, if M1 �C M2 ⊕
′M3 then,

because M2 ⊕
′ M3 ≡C M2, we know that M1 �C M2.

But then because we assumed M2 �C M1 we get by
Proposition 3.4 that M2 ≡C M1 and so M1 ⊕

′ (M2 ⊕
′

M3) ≡C M1 ≡C M2. Thus, in al cases, we have that
(M1⊕

′M2)⊕
′M3 ≡C M1 ⊕

′ (M2 ⊕
′M3).

Finally, if C is in all three models, by Propositions 3.2 and
3.4, for some choice of i, j, k we have Mi �C Mj � Mk.
Suppose that M1 �C M2 �C M3 (the argument is al-
most identical in all other cases). It follows from part (b)
that M1 ⊕

′ M2 ≡C M1. Because M3 is compatible with
(M1 ⊕

′ M2), we know that either (M1 ⊕
′ M2) �C M3 or

M3 �C (M1⊕
′M2). In the first case, it follows immediately

from part (b) that (M1⊕
′M2)⊕

′M3 ≡C M1. In the second
case, since (M1 ⊕

′ M2) ≡C M1 by part (b) and M3 �C

(M1 ⊕
′ M2) by assumption, it follows that M3 �C M1.

And since M1 �C M2 �C M3, we have that M1 �C M3

by transitivity (Proposition 3.2), so it follows from Proposi-
tion 3.4 that M3 ≡C M1. But then from part (b) we have
that (M1 ⊕

′M2)⊕
′M3 ≡C M3 ≡c M1. It is easy to show

by similar reasoning that M1 ⊕
′ (M2 ⊕

′ M3) ≡C M1. So
we get that M1 ⊕

′ (M2 ⊕
′ M3) ≡C (M1 ⊕

′ M2) ⊕
′ M3,

completing the argument.

One natural question to ask is whether this definition of
combination is guaranteed to preserve acyclicity. Unfortu-
nately, this is not the case, as the following example shows.

Example 3.7. Consider the models M1 and M2 in Figure 3,
where

• U1 = {A,C}, V1 = {B,D}, U2 = {B,D}, and V2 =
{A,C};



• all variables are binary (i.e. have range {0, 1});
• G1(C) = G1(A) = G2(B) = G2(D) = ∅, G1(B) = {A},
G1(D) = {C}, G2(A) = {D}, and G2(C) = {B};

• in M1, A is the parent of B and C is the parent of D,
and in M2, B is the parent of C and D is the parent of A.
The details of the equations do not matter; for simplicity,
suppose that in M1 we have B = A and D = C, while in
M2 we have A = D and C = B.

Thus, A and C are exogenous in M1, while B and D are
exogenous in M2. It is easy to see that, despite the fact that
both models are acyclic, when we combine them we get a
cyclic model. ut𝑀𝑀1 𝑀𝑀2 𝑀𝑀1⊕′ 𝑀𝑀2

A

BD

C

A

BD

C

A

BD

C

Figure 3: Although the models M1 and M2 are acyclic, the
combined model M1 ⊕M2 contains a cycle.

We can, however, provide a simple and efficient test to
guarantee that the combined model will be acyclic. Let
G1 = (U1 ∪ V1, E1) be the parent graph for model M1 and
let G2 = (U2 ∪ V2, E2) be the parent graph for model M2.
Let G′ = ((U1∪V1)∪(U2∪V2), E1∪E2). In linear time, we
can compute whether G′ contains any cycles. If it does not,
then M1⊕

′M2 is guaranteed to be acyclic. This is a suffi-
cient but not necessary condition for acyclicity, as edges can
be deleted via our combination process. In practice, though,
we suspect this condition will hold in most cases of interest
where the combined model is indeed acyclic.

3.3 Combination as least upper bound

When we combine two models, we would like the combined
model to be the simplest model that can explain both. Un-
fortunately, this may not be the case for M1 ⊕

′M2. Indeed,
even if M1 and M2 are compatible, M1 ⊕

′ M2 may not be
able to explain both Mi for all variables C that appear in
Mi. It follows from Proposition 3.6 that if Mi �C M3−i or
C ∈ (Ui ∪Vi)− (U3−i ∪V3−i), then M1⊕

′M2 ≡C Mi, so
(by Proposition 3.4) M1 ⊕

′M2 can explain Mi with respect
to C. But, as the following example shows, if M1 �C M2

and C appears in M2, M1⊕
′M2 may not be able to explain

M2 with respect to C.

Example 3.8. Consider the models M1 and M2 depicted in
Figure 4, where the range of all variables is {true, false};
the focus set of each variable consists of just its parents, as
defined in the parent graph; in M1, the structural equations
are such that C = AXORB, while in M2, A = D and
B = D. Then in M1 ⊕

′ M2, all three of these equations
hold.

It is easy to see that M1 ⊕
′ M2 6�C M2. The problem is,

to explain the value C = 0, A and B need to have different

𝑀𝑀1 𝑀𝑀2 𝑀𝑀1⊕′ 𝑀𝑀2
D

BA

C

D

BA

C

BA

C

Figure 4: Models M1 and M2 where M1 ⊕
′M2 6�C M2.

values, and there is no context in M1 ⊕
′M2 that gives them

different values. Intuitively, although M2 can explain M1

wth respect to each of A and B individually, it cannot ex-
plain them both together. In particular, the setting A = false
and B = true cannot be explained in M2. We have not de-
fined what it would mean to explain a setting involving more
than one variable; this is because our intuition for “can ex-
plain” is based on the assumption that experts are testing one
variable at a time.

This example also shows that �C is not necessarily tran-
sitive: we have M1 ⊕

′M2 �C M1 and M1 �C M2, we do
not have M1⊕

′M2 �C M2. This does not contradict Propo-
sition 3.2, since M1 ⊕

′M2 and M2 are not compatible. ut

The fact that M1 ⊕
′ M2 may not be able to explain both

M1 and M2 is somewhat disconcerting. However, the situa-
tion is not quite as bad as it appears.

Definition 3.9. M1 dominates M2, written M1 � M2, if
M1 �C M2 for all C ∈ U2 ∪ V2.

Note that if M1 dominates M2, then we must have that
U1 ∪ V1 ⊇ U2 ∪ V2.

Theorem 3.10. If M1 and M2 are compatible, then M1 ⊕
′

M2 dominates both M1 and M2 iff M1 ⊕
′M2 is the unique

least upper bound of {M1,M2}.

Proof. Suppose that M1⊕
′M2 � M1 and M1⊕

′M2 �
M2. Then, by definition, M1⊕

′M2 is an upper bound of
{M1,M2}, so now we must show that, for any other up-
per bound M ′ of {M1,M2}, we have M ′ � M1⊕

′M2.
We first note that the variables in M1⊕

′M2 are precisely
(U1∪V1)∪(U2∪V2). For each variable C in M1⊕

′M2, there

exists some i ∈ {1, 2} such that GM1⊕
′M2(C) = Gi(C) and

either FM1⊕
′M2(C) = Fi(C) or C is exogenous in both

M1⊕
′M2 and Mi. Moreover, ParM1⊕

′M2(C) = Pari(C).

Thus, given an intervention GM1⊕
′M2(C) = ~x in M1⊕

′M2

and context ~u such that (M1 ⊕
′M2, ~u) |= [GM1⊕

′M2(C) =
~x](C = c), there exists a context ~u′ in Mi such that

(Mi, ~u
′) |= [GM1⊕

′M2(C) = ~x](C = c). Since M ′ � Mi,
it follows that there exists a context ~u′′ in M ′ such that
(M ′, ~u′′) |= [GM1⊕

′M2(C) = ~x](C = c). It follows that
M ′ �C M1 ⊕

′ M2. Since C was arbitrary, it follows that
M ′ �M1 ⊕

′M2.
We have thus shown that M1⊕

′M2 is a least upper bound
of {M1,M2} if M1 ⊕

′ M2 � M1 and M1 ⊕
′ M2 � M2.

Uniqueness is straightforward: if M ′ is another least upper
bound of {M1,M2} then, by Proposition 3.4, it follows that



M ′ ≡C M1 ⊕
′M2 for all C ∈ U1 ∪V1 ∪U2 ∪V2, so M ′ =

M1 ⊕
′M2. The converse is also immediate: if M1 ⊕M2 is

not an upper bound of both M1 and M2, it certainly cannot
be a least upper bound of {M1,M2}.

So where does this leave us? Our goal is to combine
the information of experts. If a decision-maker believes that
models M1 and M2 both provide useful information, then
she would want to work with a model that somehow com-
bines this information. As Example 3.8 shows, the problem
with M1 ⊕

′ M2 is that it does not necessarily combine all
the information in M1 and M2. To deal with this problem,
we simply define ⊕ by taking M1 ⊕M2 = M1 ⊕

′ M2 if
M1 ⊕

′ M2 � Mi for i = 1, 2, and otherwise say that M1

and M2 are incompatible and M1 ⊕ M2 is undefined. In-
tuitively, in the latter case, there is no clear way to explain
both models, so more experiments are necessary. It is easy
to check that Proposition 3.6 holds for ⊕, with no change
in proof. Moreover, by Proposition 3.10, when it is defined,
M1 ⊕M2 is the least upper bound of {M1,M2}.

We conjecture that if M1 ⊕ M2 is not defined, then
{M1,M2} in fact has no least upper bound. This is the case
in the models of Example 3.8. Consider the models M ′1 and
M ′2, where M ′1 is identical to M1 except that it includes the

variable D, and GM
′

1(A) = GM
′

1(B) = {D}, and M ′2 is

just like M2 except that GM
′

2(C) = {A,B}. It is easy to
check that M1 and M2 are both upper bounds on {M1,M2},
and there is no upper bound M ′ of {M1,M2} such that
M ′1 �M ′ and M ′2 �M ′.

If this conjecture is correct (and we have shown that it
is in a number of special cases), then it shows that if we
think of� as an information ordering, then M1⊕M2, when
it is defined, is the model that combines the information in
M1 and M2 and has no additional information; if it is not
defined, then there is no such model.3

3.4 Explanation complexity and combination
complexity

Recall that M1 �C M2 if, for every intervention G2(C) =
~x, value c ∈ R(C), and context ~u2, there exists a context
~u1 such that if (M2, ~u2) � [G2(C) ← ~x](C = c) then
(M1, ~u1) � [G2(C) ← ~x](C = c). However, in principle,
we could use a different context ~u1 to explain each possi-
ble intervention on G2(C). We might be reluctant to accept
explanations that are complicated, in the sense of requiring
too many different contexts; if an overly complicated expla-
nation is needed to reconcile two models, we may instead
prefer to simply declare them incompatible. The following
definitions of explanation complexity and combination com-
plexity capture these intuitions.

Definition 3.11. M1 can explain M2 with respect to C using
a set U ′ of contexts if M1 can explain M2 with respect to C
using only contexts u′1 drawn from U1; that is, we just modify

3We remark that we can define an analogue of � for the notion
of combination considered by ACH, and show that M1 ⊕M2 as
ACH define it is the least upper bound M1 and M2 with respect
to the ACH notion. Thus, thinking in terms of least upper bound
seems like a useful way to think of combining models.

Definition 3.1 so that all the contexts u1 in condition (c) are
drawn from U ′. The complexity of M1’s ability to explain
M2 with respect to C is min{|U ′| :M1 can explain M2 with
respect to C using U ′}.

Example 3.12. Consider the models in Figure 5. In all of
these models, R(A) = R(B) = R(A1) = R(A2) =
R(A3) = {0, . . . , 10}, R(D) = {0, . . . , 30}, and R(C) =
{0, . . . , 60}. In model M1 on the left, we have the structural
equations C = A + B if D ≥ 1 and C = 2(A + B) if
D = 0; in model M2, we have C = A + B; in model M3

on the right, we have C = D; and in model M4, we have
C = A1 + A2 + A3. In the low-complexity models on the
left, the complexity of M1’s ability to explain M2 with re-
spect to C is 1, as every intervention can be explained by
the value of D simply having been 1 the entire time. For the
high-complexity models on the right, though, the complex-
ity of M3’s ability to explain M4 with respect to C is 30; for
each intervention, D must take on precisely the right value in
M3 for each particular outcome of C to be observed. Thus,
we would be more hesitant to combine the high-complexity
models M3 and M4. Combining them implicitly assumes
that M3 and M4 are compatible, and, in particular, that M3

can explain M4 with respect to C. ut

𝑀𝑀1 𝑀𝑀2
Low Complexity 𝑀𝑀3 𝑀𝑀4

High Complexity

𝐴𝐴2 𝐴𝐴3𝐴𝐴1
C

BA

C

D

BA

C

D 𝐴𝐴2 𝐴𝐴3𝐴𝐴1
C

Figure 5: The two models on the left have low explanation
complexity with respect to C whereas the two on the right
have high explanation complexity.

We can extend the notion of explanation complexity to the
combination complexity of two models.

Definition 3.13. The combination complexity of two com-
patible models M1 and M2 is the minimum cardinality |U ′|
taken over all sets U ′ such that, for all C ∈ (U1∪V1)∩(U2∪
V2), either M1 can explain M2 with respect to C using U ′

or M2 can explain M1 with respect to C using U ′.

A decision-maker may want to consider only explanations
that have complexity less than or equal to some threshold or
model combinations that have complexity less than a thresh-
old. In the next section, we show how combination complex-
ity can be used to weight models.

4 Weighting and Combining Expert

Opinions

Given a collection of models, it may be impossible to com-
bine all of them, but possible to combine a variety of dif-
ferent subsets of them. ACH proposed a way to assign con-
fidence to different possible combined models based on the



decision-maker’s confidence in the original models. Here we
provide a way to extend this to our setting.

We start with a collection of pairs (M1, p1), . . . , (Mn, pn)
where Mi is a causal model with focus and pi is a value
in (0, 1]. Here the intuition for each pair should be that Mi

was the model proposed by expert i and pi is the decision-
maker’s degree of confidence that expert i’s model is cor-
rect. More precisely, pi is not the decision-maker’s degree
of confidence that the assumptions built into Mi are correct,
but her confidence that, for each variable C and intervention
Gi(C) = ~x, if (Mi, ~u) � [Gi(C) = ~x](C = c) then ex-
pert i indeed observed a world where the variables in Gi(C)
were ~x and C did have value c. Following ACH, we define
Compat = {I ⊆ {1, . . . , n} : the models in {Mi : i ∈
I} are mutually compatible} and define MI = ⊕i∈IMi for
all I ∈ Compat. The mutual compatibility of a set M of
models is defined inductively on the cardinality of M. If
|M| = 1 thenM is automatically mutually compatible, and
if |M| = 2 thenM is mutually compatible if the two mod-
els in M are compatible. If |M| = n then M is mutually
compatible if every subset of cardinality n − 1 is mutually
compatible and, for each M ∈ M, M is compatible with
⊕M ′∈M:M ′ 6=MM ′.

One simple way to weight the combined models, pro-
posed by ACH, is to assign model MI probability

pI =
∏

i∈I

pi ∗
∏

j /∈I

(1− pj)/N, (1)

where N is simply a normalization term to get the proba-
bilities to sum to 1. Thus, pI captures the intuition that the
agents in I performed their experiments correctly while the
agents not in I may have made a mistake in one or more of
their experiments, where the probabilities of agents having
made a mistake are treated as being mutually independent.

Let MI = {Mi : i ∈ I}. In our setting, we may also
want to take into account how complex it is to combine the
models in MI when assigning MI a probability; if com-
bining the models inMI requires a large set of contexts to
make all of the necessarily explanations, then we may have
less confidence that the combined model captures the true
state of the world. To formalize this idea, we first generalize
Definition 3.13 in the obvious way: the combination com-
plexity of a setM is the minimum cardinality |U ′| of a set
U ′ such that all explanations made during the combination
process can be made using U ′. The combination complexity
of a singleton set is defined to be 1.

Exactly how complexity should be taken into ac-
count when assigning confidence scores may be context-
dependent; it is up to the decision-maker who is combin-
ing the models to decide. We propose several simple rules
here. One simple rule that may be relevant in some situa-
tions is to simply use a threshold, and assign confidence 0
to models where the combination complexity or the expla-
nation complexity with respect to any variable C is above
some constant µ. (Here and in the following two rules, the
normalization factor N must be updated accordingly.) An-
other natural option may be to add a weighting factor to (1)
that is inversely proportional to the combination complexity.

If the combination complexity ofMI is µI , then we set

p′I =
1

µI
∗
∏

i∈I

pi ∗
∏

j /∈I

(1− pj)/N.

A third rule that may be useful in some contexts is to assign
complexity weights that are inverse exponential in the com-
bination complexity. Here the confidence scores assigned
would be

p′′I = e−µI ∗
∏

i∈I

pi ∗
∏

j /∈I

(1− pj)/N.

Example 4.1. Consider three models M1, M2, and M3,
where

• U1 = U3 = {A,B,D}, V1 = V3 = {C}, U2 = {A,G},
and V2 = {B,C};

• R1(C) = R2(C) = R3(C) = R1(D) = R3(D) =
{0, 1, 2} and R1(A) = R1(B) = R2(A) = R2(B) =
R2(G) = R3(A) = R3(B) = {0, 1};

• G1(C) = {A,B,D}, G2(C) = {A,B}, G2(B) = {G},
and G3(C) = {A,B,D};

• the structural equations are such that, in M1, C = D; in
M2, C = A+B and B = G; and in M3, C = 2 if D = 0
and C = min(1, A+B) if D = 1 or D = 2.

The models in the set {MI : I ∈ Compat} are M1, M2,
M3, M1⊕M2, and M3⊕M2, with combination complexity
5 for M1⊕M2 (3 for M1 to explain M2 with respect to C and
2 for M2 to explain M1 with respect to B) and combination
complexity 4 for M3⊕M2 (2 for M3 to explain M2 with re-
spect to C and 2 for M2 to explain M3 with respect to B). Of
course, M1, M2, and M3 (viewed as singleton sets) all have
combination complexity 1, by definition. Consider the sec-
ond weighting rule above, inversely proportional weighting,
with prior confidences p1 = 0.85, p2 = 0.8, and p3 = 0.9.
The assigned confidence scores would then be

p′M1
= (0.85)(0.2)(0.1)/N ≈ 0.176

p′M2
= (0.15)(0.8)(0.1)/N ≈ 0.124

p′M3
= (0.15)(0.2)(0.9)/N ≈ 0.280

p′M1⊕M2
= ( 15 )(0.85)(0.8)(0.1)/N ≈ 0.141

p′M3⊕M2
= ( 14 )(0.15)(0.8)(0.9)/N ≈ 0.280.

Under the third rule, inverse exponential weighting, with
the same prior confidences, the assigned confidence scores
would be

p′′M1
= (0.85)(0.2)(0.1)/N ≈ 0.291

p′′M2
= (0.15)(0.8)(0.1)/N ≈ 0.205

p′′M3
= (0.15)(0.2)(0.9)/N ≈ 0.462

p′′M1⊕M2
= (e−5)(0.85)(0.8)(0.1)/N ≈ 0.008

p′′M3⊕M2
= (e−4)(0.15)(0.8)(0.9)/N ≈ 0.034.

As expected, the inverse exponential weighting rule is
more complexity averse, and so assigns a greater proportion
of confidence to the uncombined models. ut

These three rules behave in a qualitatively similar manner,
with the importance of complexity being taken into account
in different ways. More generally, let µI be the combination



complexity of MI and let QI =
∏

i∈I

pi ∗
∏

j /∈I

(1 − pj). We

believe that there are many reasonable functions f(QI , µI)
that can be used to assign a confidence scores to MI ; we
leave it up to the decision-maker to decide what function f
is most suitable for a given context. The two requirements
that seem necessary to us is that f be non-increasing in µI

and non-decreasing in QI ; that is, f(QI , µI) ≥ f(QI , µ
′
I)

for fixed QI if µ′I ≥ µI , and f(QI , µI) ≤ f(Q′I , µI) for
fixed µI if Q′I ≥ QI . These two rules capture the intuition
that we should not prefer models that are more complicated,
nor should we prefer models that are composed of models in
which we had less prior confidence.

An additional factor that may sometimes play a role is the
likelihood of different endogenous settings occurring. If one
model can explain the other only by using a context that is
very unlikely to occur, then we may not want to assign much
weight to that combined model. Thus, in certain settings it
may also make sense to have the confidence scores depend
on a distribution over exogenous settings.

5 Computational Complexity

We now consider the computational complexity of determin-
ing whether one model can explain another with respect to
C.

Theorem 5.1. Determining whether M1 �C M2 is in ΠP
2 ,

and is ΠP
2 -hard, even in instances where all variables are

binary.

Proof. It is easy to see that the problem is in ΠP
2 : the first

two conditions in the can-explain relation can clearly be
checked in polynomial time, while, for a fixed intervention
G2(C) = ~x in M2, context ~u2 in M2, and context ~u1 in M1,
checking whether (M2, ~u2) � [G2(C) ← ~x](C = c) and
(M1, ~u1) � [G2(C) ← ~x](C = c) can be done in polyno-
mial time.

For the lower bound, consider the canonical ΠP
2 -hard lan-

guage ΠP
2 (SAT)={∀ ~X∃~Y ϕ:∀ ~X∃~Y ϕ is a closed quantified

Boolean formula, ∀ ~X∃~Y ϕ = true}. We show a reduction
from ΠP

2 (SAT) to our language.
Consider a CQBF (closed quantified Boolean formula)

∀ ~X∃~Y ϕ; we show how to transform this into an instance
of our problem. For ease of exposition, we assume that all

variables in ~X ∪ ~Y appear in ϕ. Let M2 contain exogenous

variables ~X and an endogenous variable C /∈ ~X∪ ~Y . In M2,

the range of all variables is {true, false}, G2(C) = ~X , and

the equation for C is C = true. In M1, we have U1 = ~X∪~Y ,

V1 = {C}, G1(C) = ~X ∪ ~Y , and the equation for C is
C = ϕ.

We now show that M1 �C M2 if and only ∀ ~X∃~Y ϕ
is true. First, suppose that M1 �C M2. Because C is al-

ways true in M2 and G2(C) = ~X , by condition (c) in the

definition of the can-explain relation, for all settings of ~X
there must be a setting of the remaining variables such that
C = true in M1. But because the equation for C in M1 is

C = ϕ, this means that for all settings of ~X , there exists

a setting of ~Y such that ϕ is true. For the other direction,

suppose that ∀ ~X∃~Y ϕ is true. Clearly G2(C) ⊆ G1(C) and
R1(C) = R2(C). To see that condition (c) of the definition

of can-explain holds, consider an intervention ~X = ~x on
~X . Because ∀ ~X∃~Y ϕ is true, there must be some setting of

the values in ~Y such that if ~X were set to ~x, then C would

evaluate to true in M1. So in the context where ~Y is set
correspondingly, we get that the original intervention would
make C = true, as desired.

While this result indicates that this computation is likely
to be intractable in the worst case, models that arise in the
physical and social sciences often contain only a small num-
ber of variables, so we would still expect these computations
to be feasible in practice.

6 Conclusion

We have shown how causal models can be combined in in-
stances where experts disagree due to different focus areas.
We defined what it means for one model to be able to ex-
plain another with respect to a given variable and showed
how this can be used to combine two compatible models.
Furthermore, we showed that the model obtained via this
combination process is in fact the least upper bound of the
combined models relative to the natural relation, in some
sense making it the simplest model that can explain the ob-
servations of both experts.

The can-explain relation embodies one way of explaining
why two experts may have different causal models. ACH can
be viewed as modeling a different reason, where M1 is “bet-
ter than” M2 with respect to a variable C in the ACH view
if, roughly speaking, M1 has a more detailed picture of the
causal relations among the ancestors of C. While we believe
that the can-explain relation captures quite a natural intuition
(as does the ACH notion of compatibility!), there may well
be other reasonable intuitions that are worth exploring. More
generally, this viewpoint suggests that a decision-maker try-
ing to combine experts’ models must think seriously about
the reasons underlying their disagreement before combining
models, and consider a notion of combination appropriate
for these reasons. Since the need to combine expert opin-
ions arises frequently in practice, having a principled under-
standing of the process seems to us critical. We hope that the
results of this paper help in this process.
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