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The relationship between the biodiversity and the stability of 
ecosystems has long been a fundamental subject of ecologi-
cal research1–4. More recently, this research topic has gained 

new impetus due to concerns about the consequences of global 

environmental change and biodiversity loss, both of which threaten 
the stability of ecosystem functions and the ecosystem services 
they underpin5–8. Much of this work has examined the relationship 
between plant species diversity and biomass production, often in 
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A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland 
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remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investi-
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grasslands. Both theoretical and empirical research has consistently 
demonstrated that the primary productivity of species-rich com-
munities shows lower variation over time than that of less diverse 
communities, a finding that has been attributed to a wide range of 
non-exclusive mechanisms9–16.

Temporal stability (or invariability) of ecosystem functioning is 
an integrative measure of the responses of populations and commu-
nities to each other and to environmental variation17. While there are 
many means of measuring stability8,18, temporal stability of primary 
biomass production is typically defined as mean biomass divided 
by its temporal standard deviation (μ/σ19) and it is this invariability 
measure that we use throughout this paper. Thus, the higher stability 
of species-rich ecosystems is related to several properties including 
their greater biomass, higher resistance (biomass shows little devia-
tion from average levels during perturbations) and/or resilience 
(biomass returns to average levels rapidly after perturbations)3,20,21. 
Furthermore, numerous statistical mechanisms have been proposed 
as drivers of stability and tested empirically11,13,14. Of these, perhaps 
the primary mechanism through which diversity stabilizes biomass 
production is species asynchrony13,14,22,23, which describes the extent 
to which species-level productivity is correlated within a commu-
nity over time. Asynchrony, where decreases in the productivity of 
some species are compensated by increases in the productivity of 
other species, can promote ecosystem stability as a consequence of 
interspecific interactions14,24, negative frequency dependence, for 
example due to pathogen outbreaks25,26 and/or the greater likelihood 
that diverse communities contain a wider range of species’ responses 
to environmental conditions13,27. Accordingly, it is likely that mul-
tiple and correlated facets of biodiversity28 underpin species asyn-
chrony, including taxonomic diversity29, functional diversity30,31 and 
phylogenetic diversity32, which collectively may influence ecosystem 
stability33–35. We hypothesize that the relationship between biodiver-
sity and ecosystem stability is mediated by four classes of biological 
drivers and that these operate both directly, for instance by affecting 
biomass production, and indirectly, via species asynchrony.

The first class of biological drivers is functional composition, 
which may stabilize biomass production in grasslands because 
growth-related traits strongly influence the production, persistence 

and stability of plant biomass36. While plants differ greatly in their 
trait values and strategies, a large proportion of global plant trait 
variation is correlated along a single leaf economics axis that dis-
tinguishes between exploitative species that are capable of rapid 
resource uptake, growth and tissue turnover (hereafter ‘fast’ spe-
cies) and conservative species with slower rates of growth, resource 
uptake and tissue turnover (hereafter ‘slow’ species)37,38. The former 
typically possess high specific leaf area (SLA), low leaf dry matter 
content (LDMC) and high leaf nitrogen concentrations (N), the 
latter the opposite38–40. There is growing evidence that variation 
in functional composition along this ‘fast–slow’ leaf economics 
spectrum influences ecosystem stability. For example, communi-
ties dominated by species with high LDMC values have been found 
to increase ecosystem stability in experimental and semi-natural 
grassland communities41. As high ecosystem resistance may limit 
the capacity for high resilience to be expressed by preventing per-
turbations from affecting baseline conditions, we may therefore 
expect that communities dominated by species with slow leaf eco-
nomics (‘slow communities’) will be more stable than those domi-
nated by species with fast leaf economics (‘fast communities’)42. 
However, the net effect of fast–slow functional composition on eco-
system stability across multiple communities may be low because 
the opposing effects of fast communities, which should be more 
resilient, and slow communities, which should be more resistant, 
may cancel each other out.

Variation in fast–slow plant ecological strategies within a com-
munity, which can be quantified using functional diversity metrics, 
is the second class of biological drivers that may explain ecosystem 
stability. As fast species are likely to recover rapidly following dis-
turbance (resilience), and slow species will be better able to toler-
ate environmental stresses and perturbations (resistance)38,39, we 
hypothesize that communities with a diversity of fast–slow traits will 
exhibit both greater resistance and higher resilience, thus increasing 
ecosystem stability.

The third class of biological drivers that we propose as under-
lying the diversity–stability relationship are those associated with 
phylogenetic diversity. Generally, phylogenetic diversity can be 
seen as representing the diversity of phylogenetically conserved 
functional traits, which may constitute a broader set of traits than 
is typically included in functional diversity measures. Traits that 
reflect a shared co-evolutionary history of biotic interactions often 
show a high degree of phylogenetic conservatism43, such as symbi-
otic N2 fixation and mycorrhizal tendency33,44. Closely related spe-
cies are also known to share pathogens or immune responses via 
their shared co-evolutionary history45,46. Importantly, phylogenetic 
diversity has been shown to positively affect ecosystem stability in 
grasslands in most analyses32,33,35, but not all29. We therefore hypoth-
esize that greater phylogenetic diversity will stabilize biomass pro-
duction over time by increasing (measured and unmeasured) trait 
diversity and by diluting the effects of pathogen outbreaks and her-
bivore attacks, which are strong regulators of biomass production 
in grasslands46.

Finally, plant species richness may affect ecosystem stability 
via pathways that are trait-based but not associated with the leaf 
economics spectrum and not phylogenetically conserved. This 
class of mechanism may include the effects of persistent seed-
banks47, regrowth from belowground storage organs48, carbohy-
drate reserves49, variation in rooting depth50 and phenology51. We 
expect that these effects will indirectly enhance ecosystem stability 
via increased asynchrony13 and directly via greater mean biomass 
production over time29,52.

While there is empirical evidence, typically from single sites, 
that each of the aforementioned biological drivers contributes to 
the overall relationship between diversity and stability, they prob-
ably operate concurrently and their relative importance and inter-
relationships have not been investigated. Here, we make a general, 
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Fig. 1 | Relationships among ecosystem stability, plant species richness 
and species asynchrony across experimental grasslands. a, b, Plant species 
richness (a) and species asynchrony (b) effects on ecosystem stability of 
aboveground biomass production across 39 experimental grassland studies. 
Lines are mixed-effects model fits for each study (light grey lines) or across 
all studies (black lines; P ≤  0.05). Synchrony ranges from − 1 to 1, where − 1 
represents maximum synchrony and + 1 maximum asynchrony. Marginal 
and conditional R2 represent model variation explained by fixed effects and 
the combination of fixed and random effects, respectively. Light blue bands 
represent 95% confidence intervals.
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integrative assessment of the contribution of different facets of bio-
diversity in driving biodiversity–stability relationships. This was 
achieved by performing a meta-level analysis using data from 39 
grassland biodiversity–ecosystem function experiments distributed 
across North America and Europe. Direct and indirect effects of 
the biological drivers were assessed using structural equation mod-
els (SEM), which represented the relationships described above 
(Supplementary Figs. 1 and 2), and which control for covariation 
among the different facets of biodiversity29,35. We hypothesized that: 
(1) greater plant species richness, diversity in traits that capture the 
fast–slow leaf economics spectrum, and phylogenetic diversity will 
increase ecosystem stability by increasing asynchrony and that (2) 
species-rich communities with high fast–slow functional diversity 
and phylogenetic diversity, and those dominated by species with 
slow leaf economics, will increase ecosystem stability directly as 
they increase the temporal mean of biomass production, a compo-
nent of stability, via classical diversity–function mechanisms, such 
as complementarity and selection effects24,53.

Results
Our analysis shows positive bivariate relationships between stabil-
ity, asynchrony and several biodiversity facets: species richness, 
phylogenetic diversity (calculated as mean nearest taxon distance 
(MNTD); see Methods), fast–slow functional diversity (calculated 
using traits associated with the fast–slow leaf economics spec-
trum), and that these are significant and generally consistent across 
experiments (Figs. 1 and 2). These drivers explained low amounts 
of variation in ecosystem stability (Supplementary Table 1, mar-
ginal R2), with a larger proportion being explained by the random 
effects (Supplementary Tables 1 and 2, conditional R2). In contrast, 
although phylogenetic diversity and fast–slow functional diversity 
were positively related to ecosystem stability, there was no consis-
tent effect of the community-weighted mean of fast–slow traits on 
ecosystem stability (P >  0.10; Fig. 2c). However, the effect of the 
community-weighted mean of fast–slow traits was highly variable 
across all experimental sites; at certain experimental sites domi-
nance by species with slow traits stabilized productivity (Fig. 2c), 
while fast species stabilized production at others.

These relationships were investigated in more depth with our 
structural equation model, which provides strong evidence that 
asynchrony is a key mechanism mediating the biodiversity–sta-
bility relationship and that asynchrony is driven by multiple fac-
ets of biodiversity (Fig. 3). Overall, the data fit our model well 
(Fisher’s C =  7.51, d.f. =  12, P =  0.82; K =  34, n =  1,699). Fixed effects 
explained 20% of variation in ecosystem stability (marginal R2), 
which increased to 59% (conditional R2) when accounting for fixed 
and random effects. In total, plant species richness, phylogenetic 
diversity, fast–slow functional diversity and mean and inter-annual 
variation in water availability explained 52% of variation in species 
asynchrony (marginal R2), which increased to 79% when random 
effects were accounted for (conditional R2).

The strongest pathway of influence on ecosystem stability was 
from plant species richness via species asynchrony (standardized 
path coefficient of indirect effect =  0.21). This effect was larger 
and more consistent across experimental sites than the direct 
effect of species richness (standardized path coefficient of direct 
effect =  0.03, P =  0.60), thus suggesting that much of the effect of 
plant species richness on ecosystem stability is explained by spe-
cies asynchrony. Phylogenetic diversity also had strong yet oppos-
ing effects on ecosystem stability. It indirectly increased ecosystem 
stability via asynchrony (standardized path coefficient of indirect 
effect =  0.12), while the direct pathway between phylogenetic diver-
sity and ecosystem stability was negative (standardized path coef-
ficient of direct effect =  − 0.10; P <  0.001). This negative effect was 
weaker than the positive indirect effect via species asynchrony, thus 
explaining the overall positive relationship between phylogenetic 

Marginal R 2 = 0.03

Conditional R 2 = 0.49

Marginal R 2 = 0.04

Marginal R 2 = 0.01

Conditional R 2 = 0.57

Conditional R 2 = 0.68

1

2

4

8

16

0 5 10 15 20

PD

E
co

sy
st

em
 s

ta
bi

lit
y 

(µ
/σ

) 
a

1

2

4

8

16

0.0 0.5 1.0 1.5 2.0

Fast−slow FD

E
co

sy
st

em
 s

ta
bi

lit
y 

(µ
/σ

) 

b

1

2

4

8

16

−4 −2 0 2 4

CWM fast−slow

E
co

sy
st

em
 s

ta
bi

lit
y 

(µ
/σ

) 

c

Fig. 2 | Relationships among ecosystem stability, phylogenetic and fast-
slow functional diversity, and the community-weighted mean of fast–slow 
traits across experimental grasslands. a,b,c, Phylogenetic (a; PD) and fast–
slow functional diversity (b; fast–slow FD) and community-weighted mean 
of fast–slow traits (c; CWM fast–slow) effects on ecosystem stability of 
aboveground biomass production across 39 experimental grassland studies. 
Phylogenetic diversity is abundance-weighted mean nearest taxon distance 
and fast–slow FD is abundance-weighted functional dispersion of fast–slow 
traits. CWM fast–slow is the first axis of a principal component analysis 
of community-weighted means of key leaf functional traits associated 
with ‘fast’ and ‘slow’ ecological strategies: specific leaf area (SLA), leaf 
matter dry content (LMDC) and leaf N and P concentrations. Low values 
of the fast–slow spectrum correspond to communities dominated by ‘slow’ 
species, that is, low SLA and leaf N and P and high LDMC; and high values 
correspond to communities dominated by ‘fast’ species, that is, high SLA 
and leaf N and P and low LDMC. Lines are mixed-effects model fits for each 
study (light grey lines) or across all studies (black lines; P ≤  0.05). Marginal 
and conditional R2 represent model variation explained by fixed effects and 
the combination of fixed and random effects, respectively. Light blue bands 
represent 95% confidence intervals.
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diversity and ecosystem stability, along with covariance with species 
richness (Fig. 2a).

The community-weighted mean of fast–slow traits had a direct 
negative effect on ecosystem stability, meaning that communities 
dominated by slow species were more stable than those dominated 
by fast species (Fig. 3). Contrary to our expectations, the SEM 
revealed that fast–slow functional diversity did not directly or indi-
rectly (via asynchrony) stabilize ecosystem productivity (P >  0.05). 
Furthermore, these weak effects of fast–slow functional diversity on 
ecosystem stability were also generally robust to the use of an alter-
native measure of fast–slow functional diversity, functional richness 
(Supplementary Fig. 3). Finally, we assessed potentially important 
effects of climate and found that mean and inter-annual variation in 
water availability had significant, yet opposite effects on ecosystem 
stability and no significant effects on species asynchrony (Fig. 3).

Further analyses provided added insight into mechanisms 
underlying the biodiversity–stability relationship. By including the 
two components of the invariability measure in a separate SEM, 
that is, mean and standard deviation of biomass production, we 
found that species richness and the community-weighted mean of 
fast–slow traits stabilized mean aboveground biomass production 
while asynchrony decreased inter-annual variation in biomass (Fig. 
4; Fisher’s C =  22.19, d.f. =  22, P =  0.45; K =  49, n =  1,699). Fixed 
effects explained 52% of variation in ecosystem stability (marginal 
R2), which increased to 64% (conditional R2) when also accounting 

for random effects. Multiple facets of biodiversity and climate only 
explained 15% and 8% of variation in mean and standard devia-
tion of biomass production (marginal R2), respectively. When also 
accounting for across-site variation (conditional R2), explained vari-
ation increased to 66% for mean aboveground biomass production 
and 48% for the standard deviation of biomass.

Species richness promoted ecosystem stability by increasing 
mean aboveground biomass production but also increasing its vari-
ability, while the direct effect of phylogenetic diversity on ecosystem 
stability operated via negative effects on the standard deviation of 
biomass. Furthermore, these analyses revealed that the weak nega-
tive effect of the community-weighted mean of fast–slow traits on 
ecosystem stability masked contrasting effects on the components 
of the invariability measure; communities dominated by species 
with fast trait values decreased mean biomass (standardized path 
coefficient of direct effect =  − 0.12) to a greater extent than they 
decreased standard deviation of biomass (standardized path coef-
ficient of direct effect =  − 0.08). Asynchrony increased ecosystem 
stability by reducing the standard deviation of biomass. Finally, 
inter-annual variation in water availability had strong yet variable 
effects on the standard deviation of biomass (standardized path 
coefficient of direct effect =  0.17, P =  0.08), while those of mean 
water availability on mean aboveground biomass production were 
weak. These relationships were generally robust to the use of differ-
ent combinations of phylogenetic and functional diversity indices 
and detrended ecosystem stability (Supplementary Figs. 4–8).

As most studies available for inclusion in our analyses col-
lected data for less than four years (33 of 39 studies), we performed 
sensitivity analyses to test whether our results differed between 
short- and long-term studies. We found that bivariate relationships 
between stability and individual facets of biodiversity had similar 
results between short- and long-term studies, as indicated by non-
significant interactions between study duration and each facet of 
biodiversity (Supplementary Table 3). In an SEM using only data 
from long-term studies (six studies >  4 years, n = 454 plots), we 
found that our overall conclusions were not affected by study dura-
tion but that certain paths became stronger, with notable increases 
in the effects of fast–slow functional diversity (Supplementary Fig. 
9). In long-term studies, fast–slow functional diversity had both a 
direct positive effect on ecosystem stability and a negative effect 
operating on asynchrony (Supplementary Fig. 9). The strength of 
the effects of the community-weighted mean of fast–slow traits on 
ecosystem stability also increased, with fast communities having a 
direct negative effect on ecosystem stability (Supplementary Fig. 9). 
Further sensitivity analyses showed that trait identity affected path 
strength and direction (Supplementary Figs. 10–13). Of the four 
individual traits making up the fast–slow leaf economics spectrum 
(Supplementary Fig. 15), the community-weighted means of leaf 
P and leaf N had direct positive and negative effects on ecosystem 
stability, respectively, while the effects of the community-weighted 
means of LDMC and SLA on ecosystem stability were not statisti-
cally significant.

Discussion
The results support our overall hypothesis that multiple facets of bio-
diversity mediate the diversity–stability relationship, principally via 
their effects on species asynchrony. However, the relative importance 
of certain biological drivers, for example the community-weighted 
mean of fast–slow leaf traits, varied substantially across studies.

The strongest and most consistent driver of stability across the 
39 experiments examined in our study (Supplementary Table 4) was 
that of species richness, operating via species asynchrony. This prob-
ably reflects niche differences among species that affect their relative 
performance over time in a temporally variable environment22,54–56. 
However, these niche differences were not captured by the func-
tional diversity of fast–slow leaf traits or phylogenetic diversity.  
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Fig. 3 | Direct and indirect effects of multiple facets of biodiversity on 
ecosystem stability across experimental grasslands. Structural equation 
model (SEM) exploring the effects of plant species richness, fast–slow 
functional diversity (fast–slow FD; abundance-weighted functional 
dispersion), phylogenetic diversity (abundance-weighted mean nearest 
taxon distance), functional composition (CWM fast–slow), mean (xW̄aterAvail) 
and inter-annual variation in water availability (s.d.WaterAvail) on species 
asynchrony and ecosystem stability of aboveground biomass production 
across 39 experimental grassland studies. The model fit the data well 
(Fisher’s C =  7.51, d.f. =  12, P =  0.82; K =  34, n =  1,699). Boxes represent 
measured variables and arrows represent relationships among variables. 
Solid blue and dashed red arrows represent significant (P ≤  0.05) positive 
and negative standardized path coefficients, respectively, and grey arrows 
represent non-significant standardized path coefficients. Standardized path 
coefficients are given next to each (significant) path; widths of significant 
paths are scaled by standardized path coefficients. Conditional R2 (based 
on both fixed and random effects) for asynchrony and ecosystem stability 
is reported in the corresponding box.
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Instead, the species richness-asynchrony-stability relationship may 
be driven by unmeasured traits that are not phylogenetically con-
served. Such traits may be related to rooting strategies, photosyn-
thetic pathways, non-structural carbohydrate concentrations and 
properties related to phenology, demographic storage and regenera-
tion48,49,51,57–59. Data for some of these traits are relatively sparse60 and 
the collection of such information should be a priority in addressing 
the current question and those related to other aspects of ecosystem 
stability, such as resistance and resilience61.

Species richness also affected ecosystem stability directly. We 
found that species richness stabilizes biomass production via its 
stronger effects on mean biomass production over time than effects 
operating via the standard deviation, which is in line with previous 
studies14,29. As with the effects of species richness on asynchrony, we 
suggest that these effects may be explained by effects of species rich-
ness on complementarity and selection24,53 that are unrelated to the 
functional diversity of fast–slow leaf traits or phylogenetic diversity.

The next most important driver of diversity–stability relation-
ships was phylogenetic diversity. Interestingly, phylogenetic diver-
sity influences ecosystem stability via two different pathways, one 
positive and operating indirectly via species asynchrony, and one 
negative and operating directly. The indirect asynchrony pathway 
was the stronger of the two, resulting in a positive overall effect and 
is probably due to a range of phylogenetically conserved traits. As 
herbivores and pathogens often have a narrow and phylogenetically 
conserved host range45,46, herbivore attacks and disease outbreaks 
can be weaker in communities of distantly related species and thus 
affect only a small proportion of community biomass. In contrast, 
phylogenetically clustered communities will experience strong 
and simultaneous reductions in biomass production as pests and 
pathogens spread across the community. The weaker direct nega-
tive effect operated via standard deviation in biomass. This path 

may reflect experimental communities that are dominated by more 
inherently stable and phylogenetically clustered plant functional 
groups, such as grasses62,63. Furthermore, our analysis illustrates that 
the effects of phylogenetic diversity on ecosystem stability are sensi-
tive to the phylogenetic diversity metric used35. Consistent with a 
previous study29, but in contrast with those presented in Figs. 3 and 
4, SEMs using mean pairwise distance (MPD) showed weak direct 
and indirect effects of phylogenetic diversity on ecosystem stability, 
probably due to its strong, positive correlation with plant species 
richness (Supplementary Figs. 3 and 4 Supplementary Appendix 2). 
We suggest that the stronger effects of MNTD reflect the fact that it 
better represents the tendency for pathogens and herbivores, which 
play a major role in driving grassland productivity25,64, to have a 
phylogenetically narrow host range45,46.

Evidence for the fast–slow leaf economics spectrum affecting 
ecosystem stability as an overall strategy (community-weighted 
mean) was weak across the full dataset. However, this relation-
ship masked contrasting effects of fast traits, which reduced mean 
aboveground biomass production while reducing its standard devi-
ation. The net result was that communities dominated by species 
with fast trait values were marginally less stable than those domi-
nated by species with slow trait values. Furthermore, individual 
site-level relationships between the community-weighted mean 
of fast–slow traits and ecosystem stability were often very strong, 
but extremely variable across sites. These findings suggest that the 
relationship between the fast–slow leaf economics spectrum and 
ecosystem stability is heavily dependent on site-specific factors, 
which could include study duration, environmental conditions 
and the ‘matching’ of appropriate functional strategies to a site. For 
example, fast traits may confer ecosystem stability at sites subject 
to repeated disturbances due to their ability to allow fast recov-
ery, while slow traits may confer ecosystem stability in the face of 
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Fig. 4 | Direct and indirect effects of multiple facets of biodiversity on mean and variation in aboveground biomass production across experimental 
grasslands. Structural equation model (SEM) exploring the effects of plant species richness, fast–slow functional diversity (fast–slow FD; abundance-
weighted functional dispersion), phylogenetic diversity (abundance-weighted mean nearest taxon distance), functional composition (CWM fast–slow), 
mean (xW̄aterAvail) and inter-annual variation in water availability (s.d.WaterAvail) on species asynchrony, mean (xb̄iomass) and variation in (s.d.biomass) aboveground 
biomass production and ecosystem stability of aboveground biomass production across 39 experimental grassland studies. The model fit the data well 
(Fisher’s C =  22.19, d.f. =  22, P =  0.45; K =  49, n =  1,699). Boxes represent measured variables and arrows represent relationships among variables. Solid 
blue and dashed red arrows represent significant (P ≤  0.05) positive and negative standardized path coefficients, respectively, and grey arrows represent 
non-significant standardized path coefficients. Standardized path coefficients are given next to each (significant) path; widths of significant paths are 
scaled by standardized path coefficients. Conditional R2 (based on both fixed and random effects) for asynchrony, xb̄iomass, s.d.biomass and ecosystem stability 
is reported in the corresponding box.
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chronic environmental stresses, such as low nutrient availability or 
water availability, for example the Texan dry grasslands included in 
our study65,66. Site-level information detailing disturbance regimes 
and the constancy of soil water availability and nutrient supply at a 
finer temporal resolution may clarify in which environmental con-
ditions particular plant strategies stabilize (or destabilize) biomass 
production67.

The effect of fast–slow functional diversity and the community-
weighted mean of fast–slow traits became markedly stronger when 
only long-term (> 4 year) studies were considered. We hypothesize 
that this is due to the strengthening of biodiversity effects on mean 
community biomass production over time68. Furthermore, the 
hypothesized effects of fast and slow traits on resilience and resis-
tance have a greater chance of detection because extreme events, 
such as drought, are more likely to occur in long-term studies21. 
However, such patterns may also be driven by ecological differences 
in the sites where long- and short-term studies were conducted, as 
long-term sites tended to include more communities dominated by 
slow species (Supplementary Fig. 14).

The final driver of ecosystem stability in our models was cli-
mate. Mean and inter-annual variation in water availability had 
equally strong yet opposing effects on ecosystem stability, which 
were manifested largely via the standard deviation of aboveground 
biomass production over time. This is likely to represent the strong 
annual variation in the timing and intensity of aboveground bio-
mass production in seasonal environments, such as inter-annual 
variation in temperature and the timing and intensity of rains, and 
provides evidence that inter-annual climatic variability may be a 
key driver of ecosystem stability67,69,70. As mentioned above, a bet-
ter characterization of site conditions may provide a more complete 
understanding of the drivers of ecosystem stability4. Furthermore, 
other studies have indicated a powerful interactive role between 
environmental conditions and biotic community properties71,72, as 
abiotic and management factors not only control diversity and pro-
ductivity, but also influence the capacity for diversity to stabilize 
ecosystem function by altering the mechanisms that regulate diver-
sity, such as asynchrony and resource-use complementarity23,67,73. 
This means that under natural conditions changes in diversity are 
not the ultimate cause of ecosystem stability, but are an intermedi-
ate property of ecosystem response to global change drivers that 
might also influence ecosystem stability via other pathways. A 
greater understanding of these interactions and how they operate 
in natural ecosystems is required to improve both our fundamental 
understanding of ecosystem stability and to integrate knowledge of 
diversity–stability relationship into agroecosystem management74. 
To do this, further studies that incorporate both global change 
drivers, and the measurement and manipulation of diversity are 
required75,76. Threshold-based measures of stability17 may also be 
more relevant to agroecological research than the variability mea-
sures employed here, as such measures allow under- and overpro-
duction to be considered differently.

In conclusion, our study makes a general, multi-site assess-
ment of how multiple facets of biodiversity, such as taxonomic, 
functional and phylogenetic diversity, influence diversity–stability 
relationships. By integrating multiple factors that are hypothesized 
to control diversity–stability relationships in a single analysis, we 
were able to identify several important pathways, including those 
related to phylogenetic diversity and the fast–slow leaf economics 
spectrum, through which plant community properties affect the 
stability of grassland biomass productivity. Furthermore, the meta-
level approach here allows us to assess which of these relationships 
are general and strong, and which are context dependent. In an era 
of increased climatic variability77,78 and biodiversity change, it is 
important to gain a deeper understanding of each of these compo-
nent processes so that the functional benefits of biodiversity may be 
effectively conserved and promoted.

Methods
Data preparation. We assembled a database by combining data from biodiversity 
experiments that manipulated plant species richness in grasslands and measured 
community- and species-level aboveground plant biomass annually for at least 
three years. In total, we used data from 39 studies across North America and 
Europe (Supplementary Table 4) from two previous studies21,73. Our dataset 
comprises observations from 1,699 plots and 165 plant species, which were 
standardized using the Taxonomic Name Resolution Service (http://trns.
iplantcollaborative.org)79.

For each plot within the experiments, we quantified ecosystem stability as 
the inverse of the coefficient of variation of aboveground plant biomass (μ/σ19), 
which is the ratio of the mean to the standard deviation of annual aboveground 
plant biomass over time. Ecosystem stability was determined with and without 
detrending, as recent studies have shown directional changes in aboveground 
plant biomass with time52,68. Ecosystem stability was detrended by regressing 
aboveground plant biomass against experimental year and calculating the 
standard deviation of the residuals of each regression9. For each plot, detrended 
ecosystem stability was calculated as mean aboveground plant biomass divided 
by the detrended standard deviation. All main analyses were performed using 
ecosystem stability with (Figs. 1–4) and without detrending (Supplementary Figs. 
5–8). As results were qualitatively similar, we present results for ecosystem stability 
without detrending in the main text and for detrended ecosystem stability in 
Supplementary Information.

Following a previous publication14, species synchrony (η) was quantified as the 
average correlation across species between the biomass of each species and the total 
biomass of all other species in a plot:

∑∑η = ∕ ≠( )n Y j i Y(1 ) corr , (1)
i

i j

where Yi is the biomass of species i in a plot containing n species. Because 
asynchrony implies negative synchrony, we multiplied η by − 1. Thus, species 
asynchrony (− η) ranges from − 1, where species’ aboveground plant biomass 
is maximally synchronous, to 1, where species’ aboveground plant biomass is 
maximally asynchronous. Further, − η is independent of the number of species and 
their individual variances14, which contrasts with species asynchrony as calculated 
previously80.

We selected four leaf traits associated with the fast–slow leaf economics 
spectrum37, specific leaf area (SLA; mm2 mg−1), leaf dry matter content (LDMC; 
g g−1), foliar N (%) and foliar P (%). These data were obtained from the TRY 
database81 (Supplementary Appendix 1) and additional studies in our database that 
measured traits82–85. Trait values were converted to standardized units and those 
considered unlikely to be correct (z-score >  481) were excluded. Values were then 
averaged by trait data contributor and then by species. Genus-level means were 
used when species-level data were not available; species-level data for SLA, LDMC, 
leaf N and leaf P were available for 98%, 83%, 92% and 62% of species, respectively. 
Combining species- and genus-level values, our final trait data set included SLA, 
LDMC and foliar N values for more than 96% of the species and leaf P values for 
93% of the species. While absolute values of species-level traits may differ between 
locally collected data and databases, which may influence our ability to detect 
biodiversity effects86, inter-specific variation is usually greater than intra-specific 
variation (particularly for organ-level traits) and species ranking is conserved for 
commonly used traits across data sources87,88.

Fast–slow functional composition and diversity. We used the first axis of a 
principal component analysis (PCA) of community-weighted means of SLA, 
LDMC, leaf N and leaf P to represent the fast–slow leaf economics spectrum 
(hereafter ‘community-weighted mean (CWM) of fast–slow traits’38). PCA was 
performed using the PCA function in ‘FactoMineR’89. The first PCA captured 
60.4% of variation among the four traits (Supplementary Fig. 15) and represents 
the fast–slow leaf economics spectrum of communities, from those dominated by 
slow species with low SLA and leaf N and P and high LDMC to those dominated 
by fast species with high SLA and leaf N and P and low LDMC.

We calculated functional diversity in traits associated with the fast–slow 
leaf economics spectrum (hereafter ‘fast–slow functional diversity’) as either 
abundance-weighted functional dispersion or functional richness to represent 
complementarity among co-occurring species and volume of trait space, 
respectively, using the ‘FD’ package90. Results for both measures of fast–slow 
functional diversity were qualitatively similar. Therefore, we present results 
for functional dispersion in the main text and for functional richness in 
Supplementary Information. Functional composition and functional diversity were 
calculated annually for each plot and then averaged across years.

Phylogenetic diversity. We used the molecular phylogeny from previous 
publications91,92 as a backbone to build a phylogeny of all species within the 
experiments, conservatively binding species into the backbone using dating 
information from congeners in the tree (using congeneric.merge93). We then 
calculated abundance-weighted phylogenetic diversity as mean nearest taxon 
distance (MNTD94) and mean pairwise distance (MPD) annually for each plot 
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and then calculated the average across years. MNTD has captured competitive 
differences among species in previous studies95 and the sharing of specialized 
pathogens tends to be confined to closely related species45,46. MNTD, therefore, 
is a good metric to test our hypotheses about the mechanisms that explain 
variation in species asynchrony and ecosystem stability. Furthermore, there was 
a strong, positive correlation between MPD and plant species richness (r =  0.86; 
Supplementary Appendix 2). We therefore present results for MNTD in the main 
text and for MPD in Supplementary Information.

Climate. As empirical and theoretical studies have shown strong impacts of mean 
and inter-annual variation in water availability on productivity in grasslands67,69,70, 
we included site-level climate data to explain across-site variation in ecosystem 
stability and species asynchrony. To capture the joint effects96 of precipitation 
and temperature on experimental plant communities during each study, we 
calculated a water availability index as the ratio of annual precipitation to potential 
evapotranspiration97 using data from CRU TS 4.0.198 (Supplementary Table 4). For 
each study, we calculated the mean and the standard deviation of water availability.

Data analysis. To explore bivariate relationships between each of our hypothesized 
drivers and ecosystem stability, we fitted separate linear mixed-effects models 
(independently of SEMs) that tested for the effects of plant species richness, 
phylogenetic diversity, fast–slow functional diversity, the community-weighted 
mean of fast–slow traits and species asynchrony on ecosystem stability. Multiple 
random effect structures were tested for each model, first using a basic structure 
defined by the experimental design of all studies where study was treated as a 
random intercept and species richness as a random slope. We also tested for 
interactions of predictor variables with plant species richness and included them 
as random slopes when supported by model selection. We used AICc to select 
the most parsimonious random effects structure. AICc is a second-order bias 
correction to Akaike’s information criterion for small sample sizes99. Models were 
fitted using the ‘nlme’ package and model assumptions were checked by visually 
inspecting residual plots for homogeneity and quantile-quantile plots for normality. 
Intra-class correlation (ICC) was calculated to compare variability within a study to 
variability across studies.

Because many studies collected data for less than four years, we also tested 
whether our results differed between short- and long-term studies. We did so by 
adding a two-way interaction between a predictor variable and study duration 
and study duration as a main effect to the models in Supplementary Table 1, 
where study duration was a binary variable with a value of one for studies that 
collected data for more than four years and a value of zero for all other studies. 
For all models, we found similar results between short- and long-term studies, 
as interactions between each facet of biodiversity and study duration were not 
statistically significant (Supplementary Table 3).

To test the relative importance of the different mechanisms represented by 
the community-weighted mean of fast–slow traits, fast–slow functional diversity, 
phylogenetic diversity, climate and asynchrony in driving temporal stability, we 
fitted piecewise structural equation models100 (SEM) using ‘piecewiseSEM’. Testing 
for relationships with resistance and resilience (as in a previous study21) was not 
possible because of the unequal distribution of extreme climate events across sites, 
which prevented fitting a general SEM. We formulated a hypothetical causal model 
(Supplementary Fig. 1) based on a priori knowledge of grassland ecosystems and 
used this to test the fit of the model to the data. We also included direct paths 
from species richness, fast–slow functional diversity and phylogenetic diversity 
to ecosystem stability to represent biological drivers that influence ecosystem 
stability, for example via complementarity effects on the temporal mean of biomass 
production24,53. Finally, we included direct paths from mean and inter-annual 
variation in water availability to ecosystem stability. We included direct paths 
from species richness to fast–slow functional diversity and phylogenetic diversity 
because variation in these variables can be directly attributed to the experimental 
manipulation of species richness in all studies33.

All initial models contained partial bivariate correlations between fast–slow 
functional diversity and phylogenetic diversity35. Additional partial bivariate 
correlations were added to the initial model if they significantly improved model 
fit using modification indices (P <  0.05). To test the sensitivity of our model to 
functional and phylogenetic diversity indices, the duration of the time series and 
the choice of traits, we fitted additional models for each combination of functional 
and phylogenetic diversity indices, using only data from long-term experiments 
(> 4 years), and for each functional trait separately. Finally, we fit another SEM to 
see if stabilizing effects on biomass production operated via the two components 
of the invariability measure, mean and standard deviation of biomass production 
(Supplementary Fig. 2). In this model, we added direct paths from species richness, 
phylogenetic diversity, fast–slow functional diversity and species asynchrony to 
the mean and standard deviation of biomass and from mean water availability to 
mean biomass and from inter-annual variation in water availability to standard 
deviation of biomass production. Model fit was assessed using Fisher’s C statistic 
(P >  0.10). SEMs were fit using linear mixed-effects models where study was 
treated as a random factor and species richness as a random slope. Random effect 
structures allowed the intercepts and slopes to vary among studies. In all analyses, 
plant species richness, ecosystem stability and mean water availability were log2 

transformed to meet normality assumptions. Model assumptions of normality 
were inspected visually. As many of the variables included in our SEM were 
correlated (see Supplementary Appendix 2), we estimated variance inflation. This 
demonstrated that multi-collinearity did not affect parameter estimates (VIF <  3). 
All analyses were performed using R 3.4.4101.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. R code of all analyses is available via GitHub (https://github.
com/idiv-biodiversity/StabilityII).

Data availability. Data supporting the findings of this study are available from the 
corresponding author upon request.
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