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CONSPECTUS: It is now well established that conical intersections play an essential role in nonadiabatic radiationless decay
where their double-cone topography causes them to act as efficient funnels channeling wave packets from the upper to the lower
adiabatic state. Until recently, little attention was paid to the effect of conical intersections on dynamics on the lower state,
particularly when the total energy involved is significantly below that of the conical intersection seam. This energetic deficiency
is routinely used as a sufficient condition to exclude consideration of excited states in ground state dynamics. In this account, we
show that, this energy criterion notwithstanding, energy inaccessible conical intersections can and do exert significant influence
on lower state dynamics. The origin of this influence is the geometric phase, a signature property of conical intersections, which
is the fact that the real-valued electronic wave function changes sign when transported along a loop containing a conical
intersection, making the wave function double-valued. This geometric phase is permitted by an often neglected property of the
real-valued adiabatic electronic wave function; namely, it is determined only up to an overall sign. Noting that in order to change
sign a normalized, continuous function must go through zero, for loops of ever decreasing radii, demonstrating the need for an
electronic degeneracy (intersection) to accompany the geometric phase. Since the total wave function must be single-valued a
compensating geometry dependent phase needs to be included in the total electronic-nuclear wave function. This Account
focuses on how this consequence of the geometric phase can modify nuclear dynamics energetically restricted to the lower state,
including tunneling dynamics, in directly measurable ways, including significantly altering tunneling lifetimes, thus confounding
the relation between measured lifetimes and barrier heights and widths, and/or completely changing product rotational
distributions.
Some progress has been made in understanding the origin of this effect. It has emerged that for a system where the lower
adiabatic potential energy surface exhibits a topography comprised of two saddle points separated by a high energy conical
intersection, the effect of the geometric phase can be quite significant. In this case topologically distinct paths through the two
adiabatic saddle points may lead to interference. This was pointed out by Mead and Truhlar almost 50 years ago and denoted
the Molecular Aharonov-Bohm effect. Still, the difficulty in anticipating a significant geometric phase effect in tunneling
dynamics due to energetically inaccessible conical intersections leads to the attribute insidious that appears in the title of this
Account. Since any theory is only as relevant as the prevalence of the systems it describes, we include in this Account examples
of real systems where these effects can be observed. The accuracy of the reviewed calculations is high since we use fully quantum
mechanical dynamics and construct the geometric phase using an accurate diabatic state fit of high quality ab initio data,
energies, energy gradients, and interstate couplings. It remains for future work to establish the prevalence of this phenomenon
and its deleterious effects on the conventional wisdom discussed in this work.

■ INTRODUCTION: ADIABATIC STATES

A cornerstone of modern theoretical chemistry is the
Born−Huang1 approximation, which separates the electronic
and nuclear motions based on their mass disparity. Since the
total Schrödinger equation

[ ̂ − ]Ψ =H Er R r R( , ) ( , ) 0N N
total total total

(1)

is rarely solvable for molecular systems, it is advantageous to

expand the total wave function in terms of products of adiabatic

(a) electronic and nuclear wave functions:
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∑Ψ = Φ Θ
=

r R r R R( , ) ( ; ) ( )N
n

N

n
a

N n
atotal

1

( )
,

( )
state

(2)

Here, r and R denote the electronic and nuclear coordinates,
respectively. n ∈ [1, Nstate] and N label electronic and ro-
vibrational states, respectively. The adiabatic electronic wave
functions are taken as the eigenfunctions of the electronic
Hamiltonian:

[ ̂ − ]Φ =H Er R R r R( ; ) ( ) ( ; ) 0e
n
a

n
a( ) ( )

(3)

in which the semicolon indicates that this equation is solved at
fixed nuclear geometries. The eigenvalues form the adiabatic
potential energy surfaces (PESs), which are (3Nnuc − 6)-
dimensional functions of the nuclear coordinates where Nnuc is
the number of atoms in the system.
While the Born−Oppenheimer Approximation (BOA), eq 2

with Nstate = 1, works well near the equilibrium geometry of the
ground electronic state, it is known to fail at or near electronic
degeneracies. This was realized in early days of quantum
mechanics by London.2 The most commonly encountered
degeneracy in polyatomic molecules is the conical intersection
(CI).3−6 This degeneracy, which is not a single isolated point
but spans a (3Nnuc − 8)-dimensional subspace or seam,
facilitates transitions between different electronic states, a
process known to manifest in many important reactions,
particularly when photoexcitation is involved.7−10 A complete
understanding of the nonadiabatic aspects of these processes has
not been achieved and indeed nonadiabatic interactions in
general remain a major frontier in physical chemistry.11−17 In
this Account we consider an often ignored class of nonadiabatic
processes for which the dynamics takes place on what appears to
be a single adiabatic state but for which nonadiabatic
interactions play a role. These processes, referred to as
nonadiabatic tunneling, are a type of tunneling for which
traditional single-state adiabatic models of tunneling fail.

■ NUCLEAR DYNAMICS: BEYOND ADIABATIC
APPROXIMATION

The standard single-state BOA18 is obtained by inserting eq 2
with Nstate = 1, into eq 1 and using eq 3 which gives

∑ −∇ + + − Θ =
M

k E ER R
1

2
( ) ( ) ( ) 0

I I
I I I

n n
n
a

N N n
a2

,
, ( )

,
( )

(4)

where

= ⟨∇Φ |·∇Φ ⟩k r R r R( ; ) ( ; )I I
n n

I n
a

I n
a

r,
, ( ) ( )

(5)

is the diagonal Born−Oppenheimer correction (DBOC), and is
routinely neglected in the adiabatic approximation. In eq 4,

̂ = −∑ ∇T I M I
1

2
2

I
is the nuclear kinetic energy operator with MI

the mass of the Ith atom.
Geometric Phase: Global Influence

For polyatomic molecules, it is convenient to take the nuclear
wave functions (ΘN,n

(a)(R)) to be single-valued functions of R,
leaving the single or double valuedness to be decided by the
adiabatic electronic wave functions (Φn

(a)(r;R)). SinceΦn
(a)(r;R)

are real-valued, they are only determined up to a sign. Thus,
when Φn

(a) is transported along a closed loop, both ± Φn
(a) are

possible outcomes. As early as 1958, Longuet-Higgins identified

the sign change,Φn
(a) → −Φn

(a), along a closed loop encircling a
CI in Jahn−Teller systems, giving rise to double-valued
electronic wave functions.19 For Jahn−Teller systems, the
phase (eiπ = −1) is a consequence of the symmetry-required
CIs3−6 found at the high symmetry geometries. (Interestingly,
Teller proved the existence of symmetry-required CIs in these
systems in 1937,20 but it took 20 years for the sign issue to be
discovered.) This result is not limited to Jahn−Teller systems,
but is quite general, occurring for any system with a CI,
symmetry required or accidental. Furthermore, the size and
shape of the loop are irrelevant. What determines the phase at
the end of the loop is the number of CIs contained in the loop:
even numbers including 0, no sign change, odd numbers a sign
change. The phase is a consequence of the singular nature of a CI
and is often referred to as the geometric phase (GP),5,21,22 a
special case of the Berry’s phase.23 Because the total wave
function must be single-valued (how else could one describe
quantum interference), the double valuedness has to be
corrected by introducing a geometry-dependent phase into the
adiabatic electronic wave function.24 Alternatively the use of a
double-valued nuclear basis is possible in favorable high
symmetry cases.

■ GEOMETRIC PHASE: BEYOND CONICAL
INTERSECTIONS

The above discussion shows that eq 2 is only correct in the
absence of CIs, as is the case in diatomic molecules. For
polyatomic molecules, eq 2 must be replaced by

∑Ψ = Φ̃ Θ

Φ̃ = Φ
=

e

r R r R R

r R r R

( , ) ( ; ) ( )

( ; ) ( ; )

N
n

N

n
a

N n
a

n
a iA

n
aR

total

1

( )
,

( )

( ) ( ) ( )n

state

(6)

where the sole purpose of eiAn(R) is to make Φ̃ r R( ; )n
a( )

single-
valued. Note the single-valued electronic wave function remains
an eigenfunction of eq 3, but is now complex-valued.
Substituting eq 6 into eq 1 and using eq 3, we have the nuclear

Schrödinger equation:

∑ ∑

[ ̂ + − ]Θ

−
̃ ·∇ +

̃
Θ

=

′

′ ′

′

T E E

M

g

M

R R

f R R
R

( ) ( )

( ) ( )

2
( )

0

n
a

N N n
a

n I

I
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I

I

I I
n,n

I
N n
a

( ) total
,

( )

,
,

( )

(7)

The adiabatic states are coupled by the vector (f)̃ and scalar (g̃)
couplings:

̃ = ⟨Φ̃ |∇ |Φ̃ ⟩′
′f R r R r R( ) ( ; ) ( ; )I

n,n
n
a

I n
a

r
( ) ( )

(8)

̃ = ⟨Φ̃ |∇ |Φ̃ ⟩′
′g R r R r R( ) ( ; ) ( ; )I I

n n
n
a

I n
a

r,
, ( ) 2 ( )

(9)

The above adiabatic representation can be formally used to
study nonadiabatic dynamics.
The single-state form of eq 7

∑ − ∇ + + + −

×Θ =

M
i k E EA R
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(10)

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.8b00571
Acc. Chem. Res. 2019, 52, 501−509

502

http://dx.doi.org/10.1021/acs.accounts.8b00571


describes adiabatic nuclear dynamics when the effect of
energetically inaccessible CIs must be considered. Taking

explicit account of the product form of Φ̃n
a( )

the complex
phase of ̃f In n, gives rise to a vector potential (VP) [∇IAn(R) =
AI
(n)(R)] while fI

n,n = 0. Equation 10 can be compared with eq 4,
but it has some major difficulties. First, adiabatic PESs are not
smooth at a CI seam; rather, there are cusps, which are very
difficult to represent with an analytic function.25 Furthermore,
the derivative coupling which couples adiabatic PESs, and the
DBOC which modifies PESs,26 become singular at the CI seam,
making numerical calculations very difficult.27 Despite these
complications, the adiabatic representation remains the
conceptual foundation for describing nonadiabatic chemical
transformations.

■ DIABATIC REPRESENTATION: DEFINING
CONDITIONS

To avoid these singularities in the adiabatic representation, a
diabatic representation is introduced.28 Diabatic wave functions
are defined as wave functions whose derivative couplings vanish.
If the adiabatic electronic energies are to be reproduced, the
diabatic wave functions must be obtained from the adiabatic
wave functions by the adiabatic to diabatic (AtD) trans-
formation5

∑Φ = Φ Ω
=

r R r R R( ; ) ( ; ) ( )m
d

n

N

n
a

n m
( )

1

( )
,

state

(11)

Ω, anNstate×Nstate unitary transformation, designed to eliminate
the derivative coupling, that is

⟨Φ |∇|Φ ⟩ =′r R r R( ; ) ( ; ) 0m
d

m
d

r
( ) ( )

(12)

Substituting eq 11 into eq 12 yields

∑ δ

Ω Ω Ω
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or

Ω∇ + Ω =F 0 (14)

where

= [ ] ∇ = [∇ ∇ ]′ ′ ′F R f R f R( ) ( ), ( ), ... , , ...k k k k k k,
1
,

2
,

1 2
(15)

Using Θ(d) = Ω†Θ(a), the total wave function in the diabatic
representation becomes

∑Ψ = Φ Θr R r R( , ) ( ) ( )N
m

m
d

N m
dtotal ( )
,

( )

(16)

and the diabatic state nuclear Schrödinger equation becomes

∑ε ε[ ̂ + − ]Θ + Θ
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′≠

′ ′T ER R R R( ) ( ) ( ) ( )
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Here εmm
e (R) and εm,m′

e (R) are the diagonal and off-diagonal
elements of the diabatic potential energy matrix (PEM). They,

unlike their adiabatic counterparts, are smooth functions of the
nuclear coordinates easily represented by analytic functions.
Since the diabatic functions are single-valued, the GP is absent
(implicitly included) in the diabatic representation, provided all
coupled adiabatic states have been included in Ω(R). The
diabatic representation is ideally suited for quantum dynamics.29

■ DIABATIC REPRESENTATION: CURL CONDITION
Equation 14 is a key result as it places limitations onΩ(R). The
elements of Ω(R) are functions of the internal coordinates. For
this to be true, the mixed second partial derivatives of each
Ωn,n’(R) must be equal. Equation 14 relates this curl
condition30,31 to the properties of F; F, which satisfies the curl
condition, are referred to as removable or curl free. For
polyatomic molecules, the curl condition shows that the mixed
second partial derivatives are equal, provided all electronic states
are included in the AtD transformation, an impossible
requirement for ab initio wave functions.30,31 As a result, except
for diatomic molecules, which have only one internal degree of
freedom, all diabatization schemes are approximate, thus
denoted as quasi-diabatic representations.32 However, all
electronic structure theories are based on the adiabatic
representation, since diabatizations are neither straightforward
to determine nor unique.

■ NUCLEAR DYNAMICS
The nuclear Schrödinger eqs 4 and 10 are central to this
Account. The difference between eqs 4 and 10 is the VP, AI

(n),
which is key to understanding the effects of energetically
inaccessible CIs. Here, we address the following fundamental
question: If the energy of a chemical reaction on a particular
adiabatic state is well below the energy of a CI between this and a
higher electronic state, can the dynamics of this reaction still be
treated with the adiabatic model? This question has been raised
before by Mead and Truhlar in the context of the H + H2
exchange reaction,24 in which the ground electronic state forms
a D3h CI with an excited state at 2.78 eV. Studies of this system
found that the GP effect canceled out at high collision
energies,33 but later work suggests a pronounced effect in cold
collisions.34More recently, a combined experimental-theoretical
study confirmed the GP effect in the differential cross section.35

As noted above, the GP induces the VP for the intersecting
adiabatic states. The molecular analog of the Aharonov-Bohm
effect,36 the molecular Aharonov-Bohm (MAB) effect,37

recognizes the fact that the acquired GP around a CI might
allow the reactive “trajectories” to interfere. Below, the insidious
but significant nature of the GP in unimolecular reactions is
illustrated, particularly in the tunneling regime.

■ NONADIABATIC TUNNELING
Tunneling is a commonly encountered quantum effect in which
quantum particles, such as electrons, penetrate classically
forbidden regions. Atomic tunneling is often considered within
the adiabatic approximation (i.e., eq 4)38 and the transmission
probability is largely determined by the height and width of the
adiabatic tunneling barrier. As a result, it is generally possible to
gain information about these barrier parameters by measuring
the tunneling probability. The tunneling probability also
depends on the mass of the tunneling particle, resulting in
measurable isotope effects.
Let us now consider the chemical transformation of a

molecule occurring via tunneling on an adiabatic state that
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forms a CI with a higher state. If tunneling occurs at energies that
are significantly below the minimum energy CI on the seam, it is
a common practice to resort to the single-state adiabatic
approximation, namely, BOA, completely ignoring the con-
tribution of the higher state(s).39−42 This treatment of tunneling
ignores the GP, which can lead to qualitatively incorrect results,
as discussed below.

Jahn−Teller Systems: Nodes Reveal Nonadiabatic Effects

In a bound Jahn−Teller system, it was recently shown that the
presence of a CI at a high symmetry point greatly retards the
tunneling through the pseudorotation barriers leading to
significantly slower tunneling than that obtained with a BOA
treatment.43,44 In addition, the tunneling wave packet develops a
unique nodal structure after passing through the CI, a signature
of the MAB effect, suggestive of destructive interference
between the two tunneling paths on opposite sides of the
CI.24,33,45−49 This is very different from adiabatic tunneling
where no such node can emerge.50 Our recent work further
demonstrated that the BOAmodel (eq 4) for such a system leads
to not only qualitatively incorrect wave functions (see Figure 1c)
but also wrong energies for the vibronic levels, even when these
states are significantly lower in energy than the CI.51 Using the
VP method,24 the GP-corrected single-state adiabatic model
recovers the correct eigen-energies and nodal structure of the
wave functions (Figure 1b), very similar to the exact result
(Figure 1a).51 These results underscore the importance of a GP
effect in adiabatic dynamics in the presence of a CI.

Dissociation: Constructive and Destructive Interferences

Similar phenomena exist in unimolecular dissociation where a
CI exists near the reaction path. It is clearly seen in Figure 2a,
where the adiabatic and diabatic PESs of a two-dimensional
(2D) model system are plotted, that the lower adiabatic PES has
two equivalent saddle points flanking a CI. To understand the
impact of the GP and DBOC, four models were established:52

Model I is a two-state diabatic model, which is considered exact;
Model II is a single-state adiabatic model including GP and
DBOC; Model III is a single-state adiabatic model with GP; and
Model IV is a single-state adiabatic model without either GP or
DBOC.
For the lowest vibronic resonance in Figure 2b (top panels), if

the two tunneling paths converge at y = 0 after passing through
the CI, they would carry exactly the same dynamical phase and
no interference would result. However, because of eiπ = −1 from
the GP for a closed path around the CI, the paths may interfere
destructively, as alluded to for the bound Jahn−Teller system. A
consequence of thisMAB effect is a node in the dissociative wave

function outside the CI (x > 0) at y = 0 where the destructive
interference takes place,24,43,53 as shown by the exact wave
function (Model I) in the same figure. This is in sharp contrast to
the adiabatic wave function (Model IV), which has no such
node. In the same panel, it is shown that the nodal structure in
the dissociative wave function can be recovered if the GP is
included with the VP (Models II and III). Thus, the DBOC
provides an effective potential barrier which retards tunneling,
while the GP slows down tunneling via destructive interfer-
ence.52

Further evidence of GP-induced interference effects in
tunneling comes from vibrationally excited resonances. Our
2D calculations found that tunneling lifetimes of vibronic
resonances with odd quanta in the y coordinate (the coupling
mode) are shorter with the GP than those without.52 This
suggests that for these states the tunneling paths constructively
interfere outside the CI, due to the opposite phases already in
the initial wave functions. Indeed, the exact dissociative wave
function (Model I) for ny = 1 outside the CI possess no node at y
= 0, as shown in Figure 2b (middle panels). Removing the GP,
however, leads to reappearance of the node (Model IV). On the
other hand, excitation in the x direction (the tuning mode) leads
to no change in the nodal structure (bottom panels in Figure 2b
for nx = 1)
In such a case where nonadiabatic tunneling is operative, the

tunneling lifetime is dependent on the strength of the
nonadiabatic coupling in the off-diagonal element of the diabatic
PEM, rather than the height and widths of the adiabatic
barrier.52 Thus, in such cases, the tunneling lifetime cannot be used
to extract barrier information. We further note that GP could in
special cases completely quench tunneling.54,55

Nonadiabatic Tunneling: Phenol

The photodissociation of phenol (C6H5OH→ C6H5O+H)
56,57

provides an experimentally verifiable example of the MAB effect
and nonadiabatic tunneling. The system is prepared in its quasi-
bound S1 state leading to O−H bond cleavage through
tunneling.58 As shown in Figure 3, there are equivalent
nonplanar saddle points along two adiabatic tunneling paths,
resulting from a planar CI coupling the S1(

1ππ*) and S2(
1πσ*)

states in the Franck−Condon region.59−61 The g and h vectors12
of this CI are approximately aligned with the O−H dissociation
coordinate (R) and the out-of-plane torsional angle of OH (ϕ),
respectively. A reduced-dimensional quantum model for phenol
photodissociation was proposed, which includes R,ϕ, and θ (the
HOC bending angle).62,63 While the lifetimes calculated using a
four-state ab initio based diabatic PEM61 were found to be in

Figure 1.Moduli of the adiabatic wave functions (|Θ|) of the lowest-lying vibronic state in a two-dimensional Jahn−Teller system for (a) the two-state
diabatic model, (b) one-state adiabatic model with GP, and (c) one-state adiabatic model without GP. The adiabatic PESs are shown in (d).
Reproduced with permission from ref 51. Copyright 2017 American Physical Society.
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good accord with experimental data,39,64 the adiabatic counter-
part obtained with only the S1 adiabatic PES is 100 times
faster!62 This surprising overestimation of the tunneling lifetime
in BOA is readily understood as the absence of GP induced
destructive interference discussed above in the 2D case (Model
IV), thus yielding a much shorter tunneling lifetime. The
destructive interference is clearly illustrated by the node in the
dissociative wave function outside the CI.62,65,66

Constructing the Geometric Phase

The conceptually appealing adiabatic single-state treatment
requires the inclusion of the GP to make the electronic wave
function single-valued. This can be done with a VP, which is
relatively easy to define in a 2D space in which the CI is simply a
point.43,51 However, it is much more difficult to obtain an

accurate VP in a multidimensional space. Since the ab initio
determined derivative couplings are not removable, they cannot
be used to obtain the VP. Instead, a removable approximation of
the ab initio determined coupling is constructed and used to give
the VP.30,31 An additional complication is that the CI seam is in
general multidimensional, not restricted to a few internal
coordinates. This behavior of the CI seam presents a central
difficulty in the description of multidimensional nonadiabatic
(tunneling) dynamics with a GP-corrected single-state model.
A recent work proposed a new and general approach based on

an ab initio determined diabatic representation consisting of
only two electronic states, the state on which the tunneling
occurs and the upper state with which the CI seam is formed.67

In this case, we construct a two-adiabatic-state representation
using the line integral of the derivative coupling to construct the

Figure 2. (a) Contour plots of the diabatic PESs, coupling surface, and adiabatic PESs for a two-dimensional dissociative system with a CI. (b) Moduli
of the adiabatic dissociative wave functions (|Θ|) for the (nx, ny) = (0, 0) (upper panels), (0, 1) (middle panels), and (1, 0) (lower panels) states for
Models I, II, III, and IV. Reproduced with permission from ref 52. Copyright 2017 American Chemical Society.
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GP. In this case, by design, the derivative coupling is completely
removable, so that its line integral is path independent in the
simply connected domains that exclude the CI seam.29,30 Then
with the CIs included, the line integral of the derivative coupling
can be used to construct the complex-valued geometry-
dependent phase needed to completely eliminate the double-
valued character of the real-valued adiabatic electronic wave
function. As discussed following eq 10, this geometry-dependent
phase gives rise to a VP which, when included in the adiabatic
representation, accounts for the GP effect in a system with an
arbitrary locus of the CI seam and an arbitrary number of
internal coordinates. This approach enabled a three-dimensional
(3D) treatment of the tunneling facilitated dissociation of the S1
state of phenol, which is impacted by an accidentalCs symmetry-
allowed CI seam (Figure 4). Since the space is 3D and not the
simpler 2D case, the seam is a curve rather than a point. The

nodal structure of the GP-corrected ground-state vibronic wave
function is shown in Figure 4 to map out the CI seam (red
line).68 The dynamical mapping of the CI seam illustrated here
in 3D is expected to be present in higher-dimensional problems,
albeit with higher level of complexity. We emphasize here that
our method of introducing an ab initio based VP is completely
general and extendable arbitrary dimensions. However, the
efficiency of the dynamics method needs improvement in
handling the singularities at the CI.

Product State Distributions: Hydroxymethyl

Another example of the MAB/nonadiabatic tunneling effect
involves the overtone-induced tunneling dissociation of the
hydroxymethyl radical (CH2OH → H2CO+H) on its ground
electronic state.69 The complication here is a CI between the D0
and D1 states in the dissociation path, as shown in Figure 5. In a
previous theoretical simulation of the unimolecular reaction,
only the D0 PES was used,

40 and the GP effect and DBOC were
ignored. We undertook a quantum dynamical study70 of the
unimolecular reaction using a reduced-dimensional model
including the O−H (R) and C−O bonds, the C−O−H angle,
and the H−C−O−H torsional angle (ϕ),71 on the ab initio
based diabatic PEM.72,73 Interestingly, the overtone lifetimes
immediately above the dissociation limit were found to be
insensitive to the incorporation of the GP. A detailed analysis
revealed that the tunneling paths through the equivalent saddle
points on each side of the CI repel each other (see Figure 5), due
to the repulsive topography of the PES along ϕ. As a result, their
interference is quite weak. This case the GP has limited impact
on the tunneling lifetime in a unimolecular dissociation reaction,
attributable to an exit channel topography.
However, the GP still exerts an unmistakable influence on the

dissociation dynamics. In Figure 5b, two resonance wave
functions with and without the GP are displayed. The former has
a clear nodal structure in ϕ = 0 outside the CI (R > 3.55 bohr),
which is absent in the latter, although the wave functions have
relatively small amplitudes near ϕ = 0.70 This difference in the
wave function symmetry leads to a different product state
distribution.66 Indeed, the rotational state distribution of the
H2CO product is shown to possess different parities with and
without the GP. This predicted property can be verified, serving
as a signature of the GP effect.70

■ SUMMARY

To summarize, CIs are known to cause nonadiabatic transitions,
but their effects on adiabatic dynamics are often ignored. It is
shown in this Account that the presence of a CI in the
dissociation pathway of unimolecular reactions can have a
significant impact on the tunneling dynamics through the GP
effect induced by the CI. The GP introduces distinct topological
phases for different tunneling paths around the CI in a single-
state adiabatic treatment, thus enabling interference. This is a
manifestation of nonadiabatic tunneling,62 which refers to a
tunneling process which occurs on a single adiabatic state
connected to a higher state by an energetically inaccessible CI
seam. Nonadiabatic tunneling is fundamentally different from
adiabatic tunneling in that the excited state is tacitly involved,
even if the minimum energy CI is much higher in energy. This
involvement of the excited state is naturally included in a
multistate diabatic model, as the coupling term changes the
symmetry of the electronic wave functions along the dissociation
path. Adiabatically, this tacit involvement of the excited
electronic state can be included by a VP, which enables the

Figure 3. Schematic diagram for the paths in both adiabatic and
nonadiabatic tunneling in the photodissociation of phenol via its S1
state. Reproduced with permission from ref 29. Copyright 2016 Royal
Society of Chemistry.

Figure 4. CI seam (red curve) mapped out from the nodal structure of
the wave function of the lowest vibronic state in phenol photo-
dissociation in three coordinates. The seam is identified by zeros in the
wave function in the (R, φ) plane for distinct values of θ. Reproduced
with permission from ref 68. Copyright 2017 American Institute of
Physics.
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GP-induced interference on the lower adiabatic state. Such
interference can be either destructive or constructive. It can be
quite strong in some case, but weak in others. It can impact
experimentally measurable properties such as tunneling lifetimes
and product state distributions. A clear understanding of the
MAB effect requires of determination of an accurate global VP
and accurate quantum dynamics. The former can now be
achieved with our new method outlined here.
Importantly, the results presented here raise questions

concerning the validity of the BOA treatment of tunneling,
which is the standard paradigm in discussing molecular
spectroscopy and reaction dynamics, when a CI is present in
the reaction path. For such systems, the explicit inclusion of the
GP is required, even on the ground electronic state.
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Domcke, W.; Yarkony, D. R.; Köppel, H., Eds.; World Scientific:
Singapore, 2011.
(7) Bernardi, F.; Olivucci, M.; Robb, M. A. Potential energy surface
crossings in organic photochemistry. Chem. Soc. Rev. 1996, 25, 321−
328.
(8) Worth, G. A.; Cederbaum, L. S. Beyond Born-Oppenheimer:
Molecular dynamics through a conical intersection. Annu. Rev. Phys.
Chem. 2004, 55, 127−158.

Figure 5. (a) Adiabatic PESs of the two lowest electronic states of CH2OH as a function of the R and ϕ coordinates. (b) Moduli (left) and real parts
(right) of cross sections of 4D wave functions on the ground-state PES as a function of (R, ϕ) for two predissociative resonances, obtained from the
single-state adiabatic and two-state diabatic models. The CI position is marked by a white dot. Reproduced with permission from ref 70. Copyright
2018 American Chemical Society.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.8b00571
Acc. Chem. Res. 2019, 52, 501−509

507

mailto:hguo@unm.edu
mailto:yarkony@jhu.edu
http://orcid.org/0000-0001-9901-053X
http://orcid.org/0000-0002-5446-1350
http://dx.doi.org/10.1021/acs.accounts.8b00571


(9) Levine, B. G.; Martínez, T. J. Isomerization through conical
intersections. Annu. Rev. Phys. Chem. 2007, 58, 613−634.
(10) Matsika, S.; Krause, P. Nonadiabatic events and conical
intersections. Annu. Rev. Phys. Chem. 2011, 62, 621−643.
(11) Jasper, A. W.; Nangia, S.; Zhu, C.; Truhlar, D. G. Non-Born−
Oppenheimer molecular dynamics. Acc. Chem. Res. 2006, 39, 101−108.
(12) Yarkony, D. R. Nonadiabatic quantum chemistry - past, present
and future. Chem. Rev. 2012, 112, 481−498.
(13) Tully, J. C. Perspective: Nonadiabatic dynamics theory. J. Chem.
Phys. 2012, 137, 22A301.
(14) Subotnik, J. E.; Alguire, E. C.; Ou, Q.; Landry, B. R.; Fatehi, S.
The requisite electronic structure theory to describe photoexcited
nonadiabatic dynamics: Nonadiabatic derivative couplings and diabatic
electronic couplings. Acc. Chem. Res. 2015, 48, 1340−1350.
(15) Ryabinkin, I. G.; Joubert-Doriol, L.; Izmaylov, A. F. Geometric
phase effects in nonadiabatic dynamics near conical intersections. Acc.
Chem. Res. 2017, 50, 1785−1793.
(16) Curchod, B. F. E.; Martínez, T. J. Ab initio nonadiabatic quantum
molecular dynamics. Chem. Rev. 2018, 118, 3305−3336.
(17) Schuurman, M. S.; Stolow, A. Dynamics at conical intersections.
Annu. Rev. Phys. Chem. 2018, 69, 427−450.
(18) Born, M.; Oppenheimer, R. Quantum theory of molecules. Ann.
Phys. 1927, 389, 0457−0484.
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(53) Schön, J.; Köppel, H. Geometric phase effects and wave packet
dynamics on intersecting potential energy surfaces. J. Chem. Phys. 1995,
103, 9292−9303.
(54) Cederbaum, L. S.; Friedman, R. S.; Ryaboy, V. M.; Moiseyev, N.
Conical intersections and bound molecular states embedded in the
continuum. Phys. Rev. Lett. 2003, 90, 013001.
(55) Henshaw, S.; Izmaylov, A. F. Topological origins of bound states
in the continuum for systems with conical intersections. J. Phys. Chem.
Lett. 2018, 9, 146−149.
(56) Ashfold, M. N. R.; Cronin, B.; Devine, A. L.; Dixon, R. N.; Nix,
M. G. D. The role of πσ* excited states in the photodissociation of
heteroaromatic molecules. Science 2006, 312, 1637−1640.
(57) Ashfold, M. N. R.; Devine, A. L.; Dixon, R. N.; King, G. A.; Nix,
M. G. D.; Oliver, T. A. A. Exploring nuclear motion through conical

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.8b00571
Acc. Chem. Res. 2019, 52, 501−509

508

http://dx.doi.org/10.1021/acs.accounts.8b00571


intersections in the UV photodissociation of phenols and thiophenol.
Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12701−12706.
(58) Sobolewski, A. L.; Domcke, W. Photoinduced electron and
proton transfer in phenol and its clusters with water and ammonia. J.
Phys. Chem. A 2001, 105, 9275−9283.
(59) Vieuxmaire, O. P. J.; Lan, Z.; Sobolewski, A. L.; Domcke, W. Ab
initio characterization of the conical intersections involved in the
photochemistry of phenol. J. Chem. Phys. 2008, 129, 224307.
(60) Yang, K. R.; Xu, X.; Zheng, J. J.; Truhlar, D. G. Full-dimensional
potentials and state couplings and multidimensional tunneling
calculations for the photodissociation of phenol. Chem. Sci. 2014, 5,
4661−4580.
(61) Zhu, X.; Malbon, C. L.; Yarkony, D. R. An improved quasi-
diabatic representation of the 1, 2, 31A coupled adiabatic potential
energy surfaces of phenol in the full 33 internal coordinates. J. Chem.
Phys. 2016, 144, 124312.
(62) Xie, C.; Ma, J.; Zhu, X.; Yarkony, D. R.; Xie, D.; Guo, H.
Nonadiabatic tunneling in photodissociation of phenol. J. Am. Chem.
Soc. 2016, 138, 7828−7831.
(63) Xie, C.; Guo, H. Photodissociation of phenol via nonadiabatic
tunneling: Comparison of two ab initio based potential energy surfaces.
Chem. Phys. Lett. 2017, 683, 222−227.
(64) Roberts, G. M.; Chatterley, A. S.; Young, J. D.; Stavros, V. G.
Direct observation of hydrogen tunneling dynamics in photoexcited
phenol. J. Phys. Chem. Lett. 2012, 3, 348−352.
(65) Lan, Z.; Domcke, W.; Vallet, V.; Sobolewski, A. L.; Mahapatra, S.
Time-dependent quantum wave-packet description of the 1πσ*
photochemistry of phenol. J. Chem. Phys. 2005, 122, 224315.
(66) Nix, M. G. D.; Devine, A. L.; Dixon, R. N.; Ashfold, M. N. R.
Observation of geometric phase effect induced photodissociation
dynamics in phenol. Chem. Phys. Lett. 2008, 463, 305−308.
(67) Malbon, C. L.; Zhu, X.; Guo, H.; Yarkony, D. R. On the
incorporation of the geometric phase in general single potential energy
surface dynamics: A removable approximation to ab initio data. J. Chem.
Phys. 2016, 145, 234111.
(68) Xie, C.; Malbon, C. L.; Yarkony, D. R.; Guo, H. Dynamic
mapping of conical intersection seams: A general method for
incorporating the geometric phase in adiabatic dynamics in polyatomic
systems. J. Chem. Phys. 2017, 147, 044109.
(69) Ryazanov, M.; Rodrigo, C.; Reisler, H. Overtone-induced
dissociation and isomerization dynamics of the hydroxymethyl radical
(CH2OH and CD2OH). II. Velocity map imaging studies. J. Chem.
Phys. 2012, 136, 084305.
(70) Xie, C.; Malbon, C. L.; Yarkony, D. R.; Xie, D.; Guo, H.
Signatures of a conical intersection in adiabatic dissociation on the
ground electronic state. J. Am. Chem. Soc. 2018, 140, 1986−1989.
(71) Xie, C.; Malbon, C.; Yarkony, D. R.; Guo, H. Nonadiabatic
photodissociation dynamics of the hydroxymethyl radical via the
22A(3s) Rydberg state: A four-dimensional quantum study. J. Chem.
Phys. 2017, 146, 224306.
(72) Malbon, C. L.; Yarkony, D. R. On the nonadiabatic photo-
dissociation of the hydroxymethyl radical from the 22A State. Surface
hopping simulations based on a full nine dimensional representation of
the 1,2,32A potential energy surfaces coupled by conical intersections. J.
Phys. Chem. A 2015, 119, 7498−7509.
(73) Malbon, C. L.; Yarkony, D. R. Multistate, multichannel coupled
diabatic state representations of adiabatic states coupled by conical
intersections. CH2OH photodissociation. J. Chem. Phys. 2017, 146,
134302.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.8b00571
Acc. Chem. Res. 2019, 52, 501−509

509

http://dx.doi.org/10.1021/acs.accounts.8b00571



