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A B S T R A C T

In this Viewpoint issues in the construction and use of adiabatic and diabatic representations in describing spin-
conserving electronically nonadiabatic processes using the Born-Huang ansatz are reviewed and illustrated. We
address issues which limit the accuracy of commonly used approximate equations of motion. The following
caveats are discussed. (i) The use of adiabatic states for Nstate > 2 is complicated by the fact that if states (I, J)
and (J, K) have conical intersections then the derivative coupling f(a),I,J(R) may well be double-valued, rendering
it inappropriate for nuclear dynamics. (ii) In the nonadiabatic tunneling regime, nuclear motion can be restricted
to a single adiabatic potential energy surface on the basis of total energy. However, energetically inaccessible
conical intersections make it necessary to take into account the geometric phase and the induced vector potential
when formulating the nuclear Schrödinger equation. We review how a diabatization approach which takes
explicit account of the derivative couplings can be used to accurately include these factors. (iii) Finally, we
review how a commonly used class of two-state diabatizations based on smooth molecular properties can be
subject to ruinous singularities inherent in equations defining the diabatization.

In this Viewpoint issues in the construction and use of adiabatic and
diabatic representations in describing spin-conserving electronically
nonadiabatic processes are reviewed and illustrated. The issues dis-
cussed arise mostly, but not exclusively, from the existence of conical
intersections (CIs) and the singularities and geometric phase (GP) ef-
fects they induce. We begin this Viewpoint with a description of the GP
and of the adiabatic state nuclear Schrödinger equations that must be
solved to describe nonadiabatic dynamics in the Born-Huang ansatz [1].
In that ansatz, the total wave function is expanded as a sum of products
of nuclear and electronic wave functions. The electronic wave functions
satisfy an electronic Schrödinger equation. In this approach the picture
of molecular evolution on potential energy surfaces (PESs) connected
by nonadiabatic events is obtained.

1. The origin of the geometric phase

The adiabatic electronic wave functions satisfy the electronic
Schrödinger equation

=H Er R R r R[ ( ; ) ( )] ( ; ) 0e
J

a
J
a( ) ( ) (1.1)

In Eq. (1.1), r R( ; )J
a( ) are taken to be real-valued, r (R) denote the

electronic (3Natom nuclear) coordinates and H r R( ; )e is the electronic
Hamiltonian in the non-relativistic Coulomb approximation. Here, the
semicolon denotes the fact that the Hamiltonian is parametrically de-
pendent on nuclear coordinates, based on the assumption that elec-
tronic motion is significantly faster than nuclear motion [2]. According
to the GP theorem [3–5], the real-valued r R( ; )J

a( ) changes sign when
transported along a closed loop which contains an odd number of CIs.
This double-valued character is anathema and must be removed from
the total wave function, r R( , )T n, , by, for example, a geometry (R) and
state (J) dependent phase factor eiA R( )J( ) chosen so that the complex-
valued electronic wave function in [ ] in Eq. (1.2a) below is single-
valued as are the nuclear wave functions R( )J

a n( ), and hence the total
wave function can be written as

=
=

er R r R R( , ) [ ( ; ) ] ( )T n

J

N

J
a iA

J
a nR,

1

( ) ( ) ( ),
state

J( )

(1.2a)

Here, n indexes the nuclear states and we define

= exp iAr R R r R( ; ) ( ( )) ( ; )J
a J

J
a( ) ( ) ( ) (1.2b)

This GP, eiA R( )J( ) , is required regardless of the value of Nstate.
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2. The nuclear Schrödinger Equation: Adiabatic state descriptions

The total Hamiltonian can be written as

= +H T Hr R r R( , ) ( ; )N
e (2.1a)

where ħ=1 throughout and

=
=

T
M R
1

2N
i

N

i i1

3 2

2

atom

(2.1b)

is the nuclear kinetic energy operator. The form of the working nuclear
Schrödinger equation depends on the approximations employed.

2.1. Single adiabatic electronic state approximations

We begin with the single adiabatic state approximation

=r R r R R( , ) ( ; ) ( )K
T k

K
a

K
a k, ( ) ( ), (2.2)

In this approximation, nuclei move on a single adiabatic PES created by
the faster moving electrons, E R( )K

a( ) , the Kth eigenvalue of He.
In this Born-Oppenheimer approximation (BOA) [2], r R( ; )K

a( ) sa-
tisfies Eq. (1.1) and R( )K

a k( ), satisfies the electronic state dependent
nuclear Schrödinger equation

+ =T E ER R[ ( ) ] ( ) 0N K
a

K
k

K
a k( ) ( ), (2.3)

Eq. (2.3) ignores the R dependence of K
a( )(r;R) when differentiating.

When the R dependence of K
a( )(r;R) is included, we have the adiabatic

state approximation
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where
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the derivative coupling is defined as
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and
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For J=K,
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i
is the Diagonal Born-Oppenheimer Correc-

tion (DBOC) [6] and is singular at a CI.

2.2. Coupled adiabatic electronic states

2.2.1. Conical intersections absent
When Nstate > 1 and no CIs are present so the GP need not be

considered, the total wave function has the form

=
=
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( ) ( ),
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(2.6)

Projecting the total Schrödinger equation =H ET k T k k, , onto J
a( ) for

all J gives the system of Nstate coupled equations:
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Here

=E ER R( ) ( )K L
a

K L K
a

,
( )

,
( ) (2.7b)

and f(a) is a matrix in the state indices (J, K) and a vector in the co-
ordinate indices (i) [ fi

a J K( ), , ]. This form of the nuclear Schrödinger
equation, often without the DBOC term [7] is frequently used in surface
hopping [8] treatments of nuclear dynamics.

2.2.2. Conical intersections present
When CIs exist, the GPmust be included, at least formally. Including the

GP in the wave function leads to a nuclear Schrödinger equation of the form
[9,10] [ I]
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where in Eq. (2.8)

= =A
R

A A A A p i
R

R R( ) ( ); ;j
I

j

I J I J I
j

j

( ) ( ) ( , ) ( ) ( )

(2.9)

and Ai
K( ) is the vector potential (VP) [4]. The nuclear Schrödinger equation

in Eqs. (2.8) and (2.9) can be used to determine how the GP impacts nuclear
motion in the adiabatic representation [7,9,11–13]. Indeed, recent studies
of the GP effects [10,14–23] in reactive systems treat it using variants of this
VP approach which was originally introduced by Mead and Truhlar [4].

2.2.3. Nstate = 1. The molecular Aharonov-Bohm effect limit
Of particular recent interest is the perhaps incongruous limit of Eq.

(2.8) when Nstate=1. This limit is valid as long as the state in question
is well separated from the remainder of the Hilbert space. Current in-
terest centers around the situation where the CI seam is energetically
inaccessible. The appellation Molecular Aharonov-Bohm (MAB) effect
limit was introduced by Mead and Truhlar [4,24] based on the con-
ceptual similarities between the AB effect, which describes the phase an
electron acquires in a vanishing magnetic field [25], and the GP in-
duced by a CI in the single adiabatic state representation. In this case
the nuclear Schrödinger equation becomes

+ + + =
= M
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A k E ER1
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(2.10)

Eq. (2.10) differs from the single adiabatic state nuclear Schrödinger
Eq. (2.4) by the VP Ai

I( ). This limit includes the “indirect effects” of the
CI, that is the effects required by single valuedness.

In Section 4, we explain how Ai
I( ) required for this limit can be

deduced from the derivative coupling with Nstate=2.

2.3. User's guide to the adiabatic state nuclear Schrödinger equation

In the previous Sections, four distinct nuclear Schrödinger equations
have been introduced. Eq. (2.3) which has a simple form of the kinetic
energy and Eq. (2.4) which includes the DBOC, have Nstate=1. Eq.
(2.7) is diagonal in the electronic energy and couples Nstate electronic
states through the derivative coupling and to a much smaller extent the
second derivative coupling. Since J

a( ) are real-valued, it assumes no CIs
are present, as is the case in diatomic molecules. Eq. (2.8) is the most
general adiabatic state nuclear Schrödinger equation including the
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effects of CIs and the induced GP. It however has significant technical
issues with both its formulation and solution. See below and Section
5.3. Eq. (2.10), originally introduced by Mead and Truhlar in the con-
text of the MAB effect [4,24] is the Nstate=1 form of Eq. (2.8). Recently
it has been found most useful in describing the effects of energetically
inaccessible CIs [10].

The VP in Eq. (2.9) is required regardless of whether or not the CI
seam giving rise to it is energetically accessible. The DBOC and VP are
both singular at the CI and the single electronic state nuclear Schrö-
dinger equation, Eq. (2.10), will have an extended node leading to the
CI [9,10,26]. This should be contrasted with the solution to Eq. (2.3)
usually used to describe standard single state dynamics which has no
such node [10]. Although this change in the nodal structure of the
nuclear wave function is dramatic, the DBOC and VP are infrequently
included in single state dynamics since their need is difficult to an-
ticipate and the VP is difficult to construct in the general case. In
Section 4, a method of constructing the VP based on ab initio wave
functions is reviewed [27].

3. Diabatic electronic states

This section introduces the diabatic representation of the electronic
states. A disadvantage of the diabatic representation is that it requires
at least two states even for a situation in which the single adiabatic state
approximation is expected to hold. More significant is the fact that it
cannot, except in a limited set of cases, be uniquely defined, with no
guarantee that distinct representations will yield the same nuclear dy-
namics.

3.1. Diabatic representations

The diabatic representation is a unitary transformation of the
adiabatic electronic states

=
=

r R U R r R( ; ) ( ) ( ; )d

K

N

K K
a( )

1
,

( )
state

(3.1a)

where to preserve the form of wave function in Eq. (2.6) we require

=
=

R U R R( ) ( ) ( )d

K

N

K K
a( )

1
,

† ( )
state

(3.1b)

If U is chosen such that

= <
R

I J Rr R r R( ; )| ( ; ) 0 for all ( ) and ,I
d

k
J
d

k
r

( ) ( )

(3.2)

then U satisfies the system of partial differential equations in the co-
ordinates (see Appendix A, Eq. (A.6))

+ =U R f R U R 0( ) ( ) ( )R (3.3)

where , , ...,R R RR
N atom1 2 3

and the nuclear Schrödinger in the dia-
batic basis is

+ =
= M R

EI U E U I1
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a d

1

3 2

2
1 ( ) ( )

atom

(3.4)

It is useful to recall the connections between Eqs. (3.2), (3.3), and
(3.4) and the adiabatic nuclear Schrödinger equations. These equations
are tied together by the curl condition which describes (see Appendix B)
when Eq. (3.3) has a solution in which case the kinetic energy is di-
agonal (Eq. (3.4)). The curl condition has been carefully studied
[28–30]. Eq. (3.3) only has a solution in general when there is one
internal coordinate, that is for diatomic molecules, or when the di-
mension of the electronic Hilbert space, Nes, is Nstate. Since in this case
Eq. (3.3) holds, we say f is removable, since there is no derivative
coupling in the diabatic representation.

We have the following conundrum concerning the use of the Born-
Huang expansion to represent a nonadiabatic wave function based on
accurate ab initio solutions to Eq. (1.1). On the one hand, the DBOC
singularity at the CI requires the wave function to die off rapidly in the
vicinity of the CI for its matrix elements to be integrable [31,32]. De-
pending on the energy of the CI the matrix elements of the DBOC may
be infinite, precluding the determination of most or all of the eigen-
states in the adiabatic representation. On the other hand, the eigen-
states of Eq. (3.4) are comparatively easy to determine [33]. However,
in this case the adiabatic to diabatic states (AtD) transformation cannot
be done exactly owing to the failure of curl condition for ab initio wave
functions. Thus, solutions to Eq. (3.4) are an exact solution to an ap-
proximate problem owing to the absence of exact solutions to Eq. (3.3).
Solutions to Eq. (2.8) provide for approximate solutions to an “exact”
problem, since the DBOC singularities cannot be treated at total en-
ergies that are too high. Adiabatic state data result in an additional
issue for Nstate > 2, double-valued derivative couplings (see Section
5.3) [34]. However, in favorable circumstances (for Nstate=2), it is
possible to construct descriptions which approximate ab initio adiabatic
state data and for which the AtD transformation is exact. This issue is
discussed in Section 4, using a diabatization scheme discussed below.

3.2. Catalog of methods

The AtD transformation U is an essential tool in nonadiabatic dy-
namics. U is an Nstate×Nstate orthogonal (almost everywhere) trans-
formation, mapping the well-defined adiabatic states, solutions to Eq.
(1.1), into single-valued diabatic states, states for which the residual
derivative coupling, the derivative coupling in the diabatic re-
presentation, vanishes everywhere. If Nes, the dimension of the entire
electronic space, is equal to Nstate, this requirement is achievable [35].
However, for Nes > Nstate the residual derivative couplings cannot be
made to vanish exactly (i.e., the derivative couplings are non-re-
movable) [29,36]. It is this inability to eliminate the residual coupling,
that has led to the plethora of methods for determining quasi-diabatic
states, that is, states for which the residual couplings are small, but do
not vanish globally. Such methods include diabatizations based on
configuration uniformity [37–41], molecular properties [42,43], loca-
lized charges [44,45], least squares minimization of the residual cou-
plings [46,47], block diagonalization [48,49], the regularized diabatic
representation [50], global diabatization angle [51], and ansatz
[52,53].

The work reviewed here explicitly considers two kinds of diabati-
zation, the simultaneous diabatization-and-fit approach of Zhu and
Yarkony (ZY) [54] and the charge localization method known as Boys
Localization (BL) as described by Subotnik, Ratner, and their coworkers
[44,45]. The analysis of the BL method is generally applicable to
smooth molecular properties (Hermitian operator) based diabatizations
which include the D-Q and D-Q-Φ methods of Truhlar and coworkers
[55,56], and the diabatizations of Mulliken-Hush [43] and of Werner
and Meyer [42].

For the commonly encountered situation of 2 states, , the rotation
angle, (see Section 3.4) has the property that the defining equations for
exhibit singularities in a space of dimension Nint-2, (where Nint is the

number of internal coordinates), that is a space of the same dimension
as the seam of CIs, but distinct in form. In Section 5.1, we consider this
singular situation numerically.

3.3. A Derivative coupling based diabatization

The diabatization method of Zhu and Yarkony (ZY) [57,58] uses
energies, energy gradients, and energy difference scaled derivative
couplings to construct an Nstate×Nstate quasi-diabatic model Hamilto-
nian, Hd representing Nstate coupled adiabatic electronic states. Here,
the attribute quasi denotes the fact that the ab initio derivative coupling
being fit has a non-removable part. The Hd itself has no non-removable
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part and is in fact strictly diabatic as will be explained in Section 4. Hd

thus represents a removable approximation to the ab initio data. The
fact that the derivative coupling is explicitly included in the fit lends
credibility to its use in constructing the GP/VP, which is discussed in
Section 4.

3.3.1. Formulation
For Nstate adiabatic states each matrix element of the approximating

Nstate×Nstate diabatic Hamiltonian, Hd is expanded as a linear combi-
nation of symmetry adapted products of monomials with coefficients of
combination Vl so that is Hd has the form

=
=

V P gH q q B( ) [ ¯ ( )]d

l

N

l
u l v l l u l v l

1

[ ( ), ( )] ( ) ( ), ( )
cf

(3.5)

where q denote the 3Natom-6 internal coordinates, Bu,v is an
Nstate×Nstate symmetric matrix with a 1 in the (u,v) and (v,u) elements
and the remaining elements 0; P̄ is a standard group theoretical pro-
jection operator for the complete nuclear permutation inversion (CNPI)
group; and g(l)(q), 1≤ l ≤ Ncf, are the monomial basis functions of
nuclear coordinates, products of single coordinate functions, described
below with Ncf the total number of monomials. The constants Vl are
determined by the fitting procedure. Accompanying Hd is an electronic
Schrödinger equation

=EH q I q d q 0[ ( ) ( )] ( )d
J

a m J( ),( ) (3.6)

which determines the adiabatic energies EJ
a m( ),( )(q), energy gradients

EJ k
a m
,

( ),( )(q) E q( )R J
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k , and derivative couplings
f q( )a J K m( ), , ,( ) =d q d q( ) ( )J

q
K† . The AtD transformation is given by d(d)†,

where =d du I
d

u
I

,
( ) [57,58], that is

= =
= =

r q r q d q r q d q( , ) ( ; )( ) ( ) ( ; ) ( )u
d

J

N

J
a ab d

J u
J

N

J
a ab

u
J

1

,( ) ( )
,

†

1

,( )
state state

(3.7)

Here, the superscripts a, d, m and ab stand for adiabatic, diabatic,
model, and ab initio, respectively. For ease of reference, we define for
1≤ j≤Nint=3Natom–6, 1≤ n≤Npoint, and (x) = (ab) or (m)

=L Eq q( ) ( ),J J x n
J

a x n
0

, ,( ) ( ),( ) (3.8a)

=L Eq q( ) ( ),j
J J x n

j J
a x n, ,( ) ( ),( ) (3.8b)

=L q d q H d q( ) ( ) ( ),j
J K m n J n

j
d K n, ,( ) † (3.8c)
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J K ab n

K
a ab n

J
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j
a J K ab n, ,( ) ( ),( ) ( ),( ) ( ), , ,( )

(3.8d)

where f a J K ab( ), , ,( ) is the ab initio determined adiabatic derivative cou-
pling.

3.3.2. Defining equations
With the residuals of the energies, energy gradients, and energy

difference scaled derivative couplings given respectively by

=P L Lq q q( ) ( ) ( ),J J n J J ab n J J m n
0

,
0

, ,( )
0

, ,( ) (3.9a)

=P L Lq q q( ) ( ) ( ),j
J J n
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J J ab n

j
J J m n, , ,( ) , ,( ) (3.9b)

=P L LR q q( ) ( ) ( ),j
J K n
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J K ab n

j
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the Vn are chosen to minimize

=
=
=

L P q( )
k N
n N

I J N

k
J K n

0,
1,

1

, 2

int
point

sttate (3.10)

The details of the generation of the fit points qn 1≤ n≤Npoint and the
solution of the least squares equations is discussed in Refs. [57,58].

3.4. Diabolical singular points

For two-state diabatizations using the BL or properties (Hermitian
operator) based diabatizations, care must be exercised to avoid diabo-
lical singular points (DSPs). As we discuss below, DSPs arise from sin-
gularities in the equations defining the AtD transformation. At these
points the derivative coupling is infinite although the adiabatic states
are well separated. DSPs have been analyzed in two recent publications
by Zhu and Yarkony [59,60]. There, it is pointed out that many of the
commonly used diabatization procedures suffer from ruinous singula-
rities inherent in the equations defining the procedures. A more recent
work [61] reports a procedure for locating DSPs and is summarized
here.

For two states, the AtD transformation is given by

=
cos sin
sin cos

r q
r q

q q
q q

r q
r q

( ; )
( ; )

( ) ( )
( ) ( )

( ; )
( ; )

d

d
I
a

J
a

( )

( )

( )

( )
(3.11a)

The rotation angle is obtained from

= =m n
d

mq q
q

tan ( ) ( )
( )

for 2 or 4.
(3.11b)

where n(q) and d(q) are the numerator and denominator respectively
used to define m qtan ( ) and depend on the method of diabatization.
Section 5 provides an example. From Eq. (3.11b), U( q( )) has the
property that the defining equation for exhibits singularities at the q
for which

= =n dq q( ) ( ) 0, (3.12)

in a space of dimension Nint-2. The key point here is that this diabolical
singularity, is not associated with a near degeneracy of the electronic
states and therefore its existence and effects, fallacious large derivative
couplings in the adiabatic representation[60] and discontinuities in the
diabatic representation [59], may be difficult to anticipate and remove
or move to a dynamically irrelevant region.

Since Eq. (3.12) defines a space of dimension Nint-2, we introduce
auxiliary conditions to define a unique solution in the space of internal
coordinates. In particular, we define Mc geometric conditions =K q( ) 0i
1≤ i ≤ Mc and require that E q( )I

a( ) be an extremum. This constrained
optimization is solved using the following, Lagrangian,

= + + +
=
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1 2
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where P= I or J. Optimizing LP with respect to q, 1, 2 and
i M(1 )i

c gives the following system of equations at second order:
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†
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where = ( , ..., )q q
†

Nint1
. Note the final three equations in Eq. (3.14)

are

= + =n n n nq q q q q q( )· ( ) ( ) ( )· 0 (3.15a)

+ =d dq q q( ) ( )· 0 (3.15b)

+ =K Kq q q( ) ( )· 0i i (3.15c)

which serve to locate a DSP and satisfy the geometric constraints and
thus are essential.

n and d are evaluated using divided difference differentiation
based on centered differences as are the first derivatives LP and second
derivatives of the Lagrangian

L L i j N1 ,i j P i j i P
int

,
2 (3.16)
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Both the first and diagonal second derivatives are accurate to order
O q( )i 2 using Nint centered differences around each qi. While the gra-
dients LP are required for the solution of Eq. (3.14), approximating the
matrix Li j P, by its diagonal elements, second derivatives with respect
to qi, is optional but was found to greatly facilitate optimization of EP.

4. Single-valued adiabatic representations based on accurate ab
initio data

In this section, we use a removable approximation to ab initio de-
termined derivative couplings to determine the geometry dependent
phase [exp(iA(K)(R))] introduced in Section 1 to make the total wave
function in the adiabatic representation single-valued [27]. This geo-
metry dependent phase, GP, also known as Berry’s phase [5], gives rise
to the VP, introduced in Section 2.2, Eq. (2.9). The GP is the sign change
incurred by a real-valued adiabatic electronic wave function trans-
ported continuously along a closed loop containing a CI. Determining a
coordinate system with which to define the loop and corresponding
adiabatic potentials is a key issue in treating this effect. Specialized
coordinate systems exist for X3 reactive systems [4,21,24,62–64] owing
to their high symmetry. For systems that lack symmetry accurate re-
presentations are more challenging. Here we review a recently in-
troduced approach [27] which can treat the general Nstate=2 case of
Eq. (2.8) and its Nstate=1 limit, Eq. (2.10).

This approach has allowed us to treat the insidious case (recently
reviewed [65]) referred to as nonadiabatic tunneling [10,66,67], an
example of the MAB effect. Nonadiabatic tunneling is a quantum effect
arising from interference among “trajectories” following the different
paths around an energetically inaccessible CI in route to dissociation.
The tunneling nuclear motion is restricted to a single Born-Oppen-
heimer PES, but, as it dissociates it can tunnel under either of two
equivalent saddle points, which flank the CI. The usual treatment based
on Born-Oppenheimer dynamics using Eq. (2.3), is flawed since it does
not account for the GP induced by the energetically inaccessible points
of CI.

The determination of A(K)(R), for use in Eqs. (2.8) or (2.10) follows
from the fact that the line integral of the derivative coupling along an
infinitesimal loop equals π when the loop contains a CI and the wave
function changes sign after traversing that loop. The line integral is 0
when the loop does not contain a CI. Since =e 1i and =e 1i0 the
infinitesimal circulation (line integral along an infinitesimal closed loop

df R R( )·a I J w( ), , ,( ) ) constitutes the geometry dependent phase needed
to make the electronic wave function singled-valued. Thus defining,

=A dR f R R( ) ( )·K a I J w

R

R
( ) ( ), , ,( ),

0 (4.1)

where for K= I or J and w= ab for ab initio or m for model,
exp iAr R R( ; ) [ ( )]K

a w K( ),( ) ( ) is single-valued provided the path remains
infinitesimally close to the CI. It is necessary to extend this result to
arbitrary paths. The result comes from an unexpected source, the AtD
transformation. For Nstate=2 using Eq. (3.11a), Eq. (4.2) becomes

=R f R( ) ( )a I J w( ), , ,( ) (4.2)

where for w=m or ab and is defined in Eq. (3.11a). Eq. (4.2) can be
used in two ways. With w= ab, the ab initio derivative couple defines

. Since the ab initio derivative coupling is not curl free, see Appendix
B, Eq. (4.2) has no solution. However, if is taken from the model
Hamiltonian Hd the derivative coupling f(a),I,J,(m)(R) defined in this way
is conservative also termed removable [29], since the AtD transfor-
mation eliminates (removes) it. Thus, the derivative coupling is re-
movable provided defines f. From an alternative perspective,
f(a),I,J,(m)(R) is a removable approximation to the non-removable
f(a),I,J, (ab)(R).

Using Eq. (4.2) and a standard result for line integrals from vector
calculus, we demonstrate the path independence of the line integral in
Eq. (4.2), for paths that remain in the simply connected domain that
excludes the CIs. Multiplying both sides of Eq. (4.2) by Rd i, summing
on i, and integrating from R0 to R gives

=
= =

[ ] [ ]f R dR R dR( )· ( )·
i

N

i
a I J w

i i
i

N

i i i
R

R

R

R

1

3
( ), , ,( )

1

3atom atom

0 0 (4.3a)

Using t to parametrize the path, and recognizing that the right-hand
side is an exact differential gives

= = =
= t

dt d
dt

t dt tR R R R R[ ( )· ] ( ( )) ( ( )) ( (0))
i

N

i
i

t

R

R

1

3

0

atom

0

(4.3b)

Thus, if satisfies Eq. (4.2), then the line integral of the derivative
coupling, the left-hand side of Eq. (4.3a) depends only on its end points,

not its path. The converse is also true. Thus ( )exp i df R R( · )a I J w

R

R
( ), , ,( )

0
,

Eq. (4.1), is path independent if and only if f(a),I,J,(m) is defined by an Eq.
(4.2). Here the singularities have been removed. The contributions from
the singularities (CIs) are −1 if the infinitesimal loop contains a CI and
1 otherwise. These observations are demonstrated numerically in
Section 5.

5. Constructing the nuclear Schrödinger equation: Caveats

5.1. Diabolical singular points: Properties and loci

The existence of DSPs can invalidate a specific diabatization. Thus,
it is essential to be able determine the loci of DSPs before using that
diabatization. Here we review the determination of the location and the
properties of DSPs using data for 1,21A states of NH3 [60] and its me-
thyl substituted analogue methylamine CH3NH2 [61] each reported
previously. The diabatization used is the BL approach [44]. This dia-
batization introduced by Subotnik, Ratner, and coworkers is defined in
terms of matrix elements of the three components of the dipole operator
µ = µ µ µ( , , )x y z as follows

= µO q r q r q( ) ( ; )| | ( ; )I J I
a

J
a

r,
( ) ( ) (5.1a)

=G q O q O q¯ ( ) ( ) ( )I J I I J J, , , (5.1b)

Then since

=
O G

O O G G
tan4

2 · ¯
· ¯ · ¯

I J I J

I J I J I J I J

, ,

, , , , (5.1c)

= =n dq G q O q q O O G G( ) 2 ¯ ( )· ( ) ( ) · ¯ · ¯I J I J I J I J I J I J, , , , , , (5.1d)

for I = 11A and J=21A. Here OI,J and ḠI,J are 3-component vectors.
The pathologies associated with DSPs are illustrated in Fig. 1 which

is relevant to the photodissociation reaction:
NH3(X 1A)+ hv→NH3(A1A)→NH2(X 2A)+H
Fig. 1 plots ||f(a),1,2,x)|| along a path leading from the D3h minimum

of the 21A state to the minimum energy CI of the 1,21A states of NH3.
The x=BL determined norm is given by the gray line in Fig. 1. From
this figure it is seen that the singularity in the ab initio determined
derivative coupling (red circles, x= ab initio) is well reproduced near
the CI at R (NeH)=∼3.6 a0, by the BL diabatization as expected.
However, the BL determined derivative coupling presents a second
singularity of ||f(a),1,2,(BL)|| near R=2.4 a0 where ||f(a),1,2,(ab)|| is small,
that is where the adiabatic states are well separated energetically. This
is a diabolical singularity.

The remainder of the discussion in this section deals with locating
the DSPs and for that reason we turn to the photodissociation of
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methylamine:
CH3NH2(X 1A)+ hv→CH3NH2(A1A)→ CH3NH(X 2A)
+ H ; NH2(X 2A)+ CH3(X 2A)

which has many more internal degrees of freedom. Illustrative of what
can be done, Table 1 reports E1, E2, L|| ||p , |n|, and |d| for two solutions
of Eq. (3.14) with Mc=0 and P=1, 2 obtained using the Hessian
approximation in Eq. (3.16).

The solution DSP(1) uses P=1, that is, the ground state energy is
minimized subject to the constraints. The solution DSP(2) uses P=2.
The iterative sequence for converging Eq. (3.14) for DSP(2) is reported
in Table 2.

Note that at the starting point n and d are zero initially but L|| ||2 is
large. Correcting L2 causes n and d to deviate from zero but this is
temporary and by iteration 4 convergence is approximately monotonic.

From Table 1, it is seen that following a vertical excitation from the
equilibrium structure on the 11A state, 11Aeq, the point DSP(2) [DSP(1)]
is [is almost] energetically accessible on 21A PES. In this regard note
that the energy of DSP(2) falls into the first UV absorption band of
methylamine [68]. The preceding observation demonstrates the im-
portance of knowing both the energy and location of the seam of DSPs.

Once low energies DSPs have been located the diabatization scheme can
be modified if needed.

5.2. Constructing accurate vector potentials: The 2,31A states of phenol

The two state representations discussed in Section 4 have several
significant uses. As discussed in that section the removable adiabatic
derivative couplings can be used to determine the GP/VP needed to
make the corresponding adiabatic electronic wave functions single-va-
lued. Consequently they can be, and have been, used to study non-
adiabatic tunneling in the one state limit using Eq. (2.10) [69]. Further
since the two state representation is a rigorously removable approx-
imation it is unitarily equivalent to the diabatic representation except at
the singular points (CIs). Therefore, nonadiabatic tunneling can be
studied in the “exact” two state diabatic representation using Eq. (3.4).
Comparing the two results provides insights into the mechanism of
nonadiabatic tunneling. These descriptions can also be used to study the
limitations of the one state adiabatic representation, Eq. (2.10) and the
relations between the two state adiabatic and diabatic representations.
Finally, since the diabatic representation is built from accurate ab initio
data, energies, energy gradients and derivative couplings, it can be
validated by comparison with experiments.

Recently, there has been considerable theoretical work on tunneling
in phenol photodissociation [10,66,69–76]. Of particular relevance
here are studies of nonadiabatic tunneling which suggest that including
the MAB effect can change the predicted tunneling dissociation rate by
well over an order of magnitude [10,66]. Furthermore, the MAB effect
can lead to different product state distributions from those predicted by
a single adiabatic state approximation [67].

There has been limited consideration of the MAB effect on classi-
cally allowed or tunneling reaction dynamics in real systems owing to
technical issues: the lack of a computationally useful general formula-
tion of the MAB Hamiltonian and a method of dealing with the singular
terms in the MAB Hamiltonian. The methodology reviewed here ad-
dresses the first hurdle, namely the ab initio determination of the phase
factor used to render the total wave function single-valued. This is ac-
complished in two steps. First the ZY diabatization is used to construct a
removable approximation to ab initio data including adiabatic deriva-
tive couplings. This removable derivative coupling is then used as in
Eqs. (2.9) and (4.1) to construct the GP needed to make an adiabatic
electronic wave function single-valued.

The nuclear dynamics issues are associated with the convergence of
integrals involving the DBOC. In general, the higher the total energy the
more problematic the convergence of the DBOC integrals. Since in
nonadiabatic tunneling the CI is energetically inaccessible, that is its
energy is well above that of the total energy, it is a particularly favor-
able situation for our strategy.

Here, we review the numerical issues associated with the electronic
structure aspects of this strategy. The electronic structure data we use is
taken from a full 33-dimensional ab initio treatment of phenol photo-
dissociation through its excited S1 state:

C6H5OH(S0)+ hv→C6H5OH(S1,S2)→C6H5O+H

based on a ZY diabatization [54]. This nonadiabatic process has been
the subject of much recent interest [77]. As seen in Fig. 2, there is a low-
lying S1-S2 CI and two, symmetrically displaced, lower-energy adiabatic
saddle points on S1. This is the archetypical topography for non-
adiabatic tunneling in dissociative dynamics on S1 [66].

Two directly comparable coupled diabatic state representations are
employed: a four-diabatic-state representation of (S0, S1, S2, S3), Hd,(4),
based on the original ab initio data and a two-diabatic-state re-
presentation of (S1, S2) Hd,(2) deduced from Hd,(4) adiabatic data. S1 and
S2 are states 1 and 2 from Hd,(2) while they are states 2 and 3 from
Hd,(4). The principal issue is that according to Appendix B, f a S S m( ), , ,( 4)1 2

obtained from Hd,(4) are non-removable while f a S S m( ), , ,( 2)1 2 obtained from
Hd,(2) are removable. Our analysis will consider the following points: (a)

Fig. 1. Comparison of the norm of the derivative coupling obtained using BL
approach diagonalization (gray line) with the exact ab initio determined ||f(a)||
(red open circles) along a path leading from the D3h minimum for the 21A state
to the minimum energy CI of the 1,21A states of NH3. Also reported is an es-
timate of ||f(d)|| (blue triangles). From Ref. [60] with permission from the
American Chemical Society.

Table 1
Energies at DSPs and equilibrium geometries. Norms of right hand side of Eq.
(3.14), L , |d|, and |n|, a.b× 10c written as a.b(c).

DSP(1) DSP(2) 11Aeq 21Aeq

E1 7752 10,199 0 2991
E2 49,058 47,590 48,747 43,589
|| L|| 0.90(−2) 0.012
|d| 0.880(−5) 0.116(−5)
|n| 0.119(−5) 0.493(−7)

Table 2
Convergence of Eq. (3.14). DSP(2) Search. a.b×10c written as a.b(c).

n d ||L2|| E1 E2

0 0.806(−7) −0.220(−6) 2.102 28951.5 60230.9
1 −0.242(−5) 0.480(−1) 0.824 16345.6 53668.7
2 0.134(−3) 0.182(−1) 0.623 9904.7 47884.1
3 0.172(−4) 0.586(−1) 0.347 9764.3 47551.2
4 −0.173(−5) 0.344(−1) 0.118 9071.2 46948.3
5 −0.183(−5) 0.344(−2) 0.061 10089.7 47545.0
6 0.427(−4) 0.136(−3) 0.034 10209.9 47602.1
7 −0.228(−6) 0.927(−5) 0.022 10207.1 47589.7
8 0.493(−7) 0.116(−5) 0.012 10199.6 47589.8
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the size and kind of error in the circulation of the Hd,(w) (w=2,4) de-
termined derivative coupling f R( )a S S mw( ), , ,( )1 2 along a circle in the g-h
plane centered at O = (x0, y0, z0), with radius r;

=C w r dO f R R( , , ) ( )·a S S mw( ), , ,( )1 2 (5.2)

(b) the accuracy of the numerical quadratures and how the numerical
errors compare to the errors attributable to non-removability; and (c)
how seam curvature which is omitted in simplified models of the GP
effect is described. We note that the overall sign of the reported cir-
culations depends on the sign of the initial f R( )a S S mx( ), , ,( )1 2 . Since this
sign is irrelevant in the present context we only use it to improve the
clarity of the figures that follow. Three classes of figures/paths are re-
viewed: (a) circles with the minimum energy S1-S2 CI at the origin
(Fig. 3); (b) circles with the origin displaced (Fig. 4) and (c) figures
describing seam curvature (Fig. 5).

(a) Path 1=Circles centered at the origin
Fig. 3 juxtaposes the Hd,(2) and Hd,(4) determined energies and deri-

vative couplings at the indicated r. Note the good agreement between the
Hd,(4) and Hd,(2) determined energies for r=0.2 and 0.5. The results for
r= 0.2 are typical of the r < 0.2. results. For C(2, (0,0,0), r) the integral
consists of two identical halves which add to give π exact to 8 decimal
places. This indicates the quality of f ( , )a S S m( ), , ,( 2)1 2 and that a single CI
(at the origin) is enclosed in the loop. The accuracy of these circulations

strongly supports the utility of this approach. For C(4,(0,0,0), r≤0.2),
the contribution of the non-removable part of f ( , )a S S m( ), , ,( 4),1 2 is quite
small and although it does increase with increasing r, probably could be
tolerated in numerical calculations. For the larger radius, r= 0.5, C(4,
(0,0,0), r=0.5), differs significantly from π, suggesting a large non-
removable part. However, this is contraindicated by satisfactory agree-
ment of f ( , )a S S mx( ), , ,( ),1 2 , for x=2 and x=4 evinced in Fig. 3b. Section
5.3 explains this ruinous discrepancy.

(b) Path 2=Circles centered away from the origin
For the frequently used linear vibronic coupling model [78], the CI

seam is a single (generalized) single straight line. However, when
quadratic terms are included, additional seams of CIs can exist which
intersect the g-h planes [79,80]. To consider this situation, the center of
the circle is repositioned so that the CIs do not occur at the circle's
center. This can give rise to the type of circulation illustrated in
Fig. 4(b–c), which consider Hd,(2) and Hd,(4) determined circulations for
loops pictured in Fig. (4a). In these figures the origin is not a CI. The CI
is located at the intersection of the vertical and horizontal lines. Thus,
for w=2, C(w,(ts,ts,0),r)= 0 for r< t 2s (Fig. (4b)) and C(w,
(ts,ts,0),r)= π for r> t 2s (Fig. (4c)). The derivative couplings change
rapidly in the vicinity of the CI indicating the need for care in carrying
out integrals involving the derivative coupling.

(c) Path 3= Seam curvature
Up to this point, we have considered single points of CIs without

regard to their connectivity. Seam curvature, the fact that for z≠0 CIs
do not occur at (x,y)= (0,0), is illustrated in Fig. 5. Plate (5a) shows the
Hd,(2) and Hd,(4) determined seams, the black lines, determined as a
function of R(CO)∼ z2,. Loops used to evaluate circulations C(w,
(0,0,z2),r) are shown for fixed values of z in planes parallel to the g-h
plane for z=0. Near z=0 C(w,(0,0,z2),r)= π for all r used as the CI at
(x,y,z) is close to (0,0,z). However, as |z| increases the = +x y( )2 2 1/2

for which the CI is first enclosed increases. For r< , C(w,
(0,0,z2),r)= 0 since no CI is contained in the loop. Increasing r even-
tually encloses the CI and C(w,(0,0,z2),r) becomes π. Here, it is im-
portant to note that the only computed values of C(2,(0,0,z2),r) are 0 or
π. Similar, but not identical, results are obtained for w= 4, indicating
that the non-removable contribution is small.

The 2-state diabatic Hamiltonian was used in a three-dimensional
quantum dynamics study and it was shown that the wave function node
closely tracks the CI seam, illustrating the dynamic mapping of the CI
[69].

Fig. 2. S1 and S2 PES and their CI for phenol photodissociation,
C6H5OH+ hv→C6H5O+H. Reproduced from Ref. [33] with permission from
the PCCP Owner Societies.

Fig. 3. Derivative couplings and circulations (upper panels), S1 and S2 energies (lower panels). Solid lines: Hd,(2), dashed lines: Hd,(4) determined quantities. From Ref.
[27] with permission of AIP.
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5.3. Linked conical intersections

This concluding section addresses the treatment of nonadiabatic
dynamics in the coupled adiabatic state representation for more than
two states. To treat more than two electronic states, it is seen from Eq.
(2.8) that the derivative couplings f R( )a J K x( ), , ,( ) (x=m or ab) will be
required. Consider, by way of example, the four coupled-adiabatic-state
description of phenol based on Hd,(4) described in Section 5.2. The line
integrals discussed in Section 5.2 reveal the issue. For origin centered
circulations of f R( )a m( ),2,3,( 4) based on Hd,(4), the non-removable con-
tribution increases with increasing r. This reflects an increase in the
derivative coupling between states 3 and 4 as their separation de-
creases. When states 3 and 4 intersect conically for r=∼0.26 the
circulation changes abruptly and dramatically. The existence of a CI of
states 3 and 4 for r=∼0.26 renders =f ( 0.3, )a m( ),2,3,( 4) double-va-
lued, since now state 3 does not change sign on traversing the loop but
state 2 does. For r > 0.58 a second 3–4 CI exists. So for loops with
r > 0.58 state 2 (3) is transported along a loop containing 1 (3) CIs.
Thus, both states change sign and =f ( 0.59, )a m( ),2,3,( 4) is single-va-
lued. The situation is reflected in the circulations reported in Table 3,
for a series of starting angles, = , and r=0.25, 0.30 and 0.59. For
r=0.3 (actually any r with 0.26 < r < 0.59 will work) the circula-
tion is starting point, choice of , dependent.

These results are completely consistent with the formal analysis in
Ref. [34], by Han and Yarkony (HY). CIs of states 2,3 and 3,4 are re-
ferred to as linked CIs by HY. HY show that for linked CIs of states I, J,
K, the I, J circulation depends on the starting point. Further the circu-
lation from 0 to 4π is zero rather than twice the integral from 0 to 2π as
would be expected. This pathology is not evident from a single con-
struction of the circulation. However, the starting point dependence of

the circulation (requiring two evaluations of the circulation) or in-
tegrating to 4π can be used to detect this situation.

When this arrangement of CIs exists, since f a I J( ), , will be double-va-
lued, there is no consistent way to formulate Eqs. (2.7) or (2.8), i.e., use
the coupled adiabatic state representation.

6. Summary

In this Viewpoint issues in the construction and use of adiabatic and
diabatic representations in nonadiabatic electronic structure/dynamics
are described. Three fundamental issues are reviewed.

(i) The construction of the AtD transformation based on re-
presentations of smooth molecular properties, (more generally a vector
of Hermitian operators) can be compromised by the existence of dia-
bolical singular points a space of dimension Nint −2 where the AtD
transformation is singular. The space of diabolical singular points has
the same dimension as the seam of conical intersection, but is different.
This singularity produces fallacious singularities in the derivative cou-
pling. A procedure is reviewed in Section 3.4 and illustrated in Section
5.1 that can locate energetically relevant singularities in the AtD
transformation. In future work the prevalence of these fallacious sin-
gularities will be accessed and extensions to Nstate > 2 developed.

The remaining two topics deal with properties of the derivative
couplings, fI,J(R).

(ii) As reviewed in Sections 4 and 5.2, for Nstate= 2 the fI,J(R) ob-
tained from an (accurate) diabatization (for example a ZY diabatization
of accurate ab initio data) enable the construction of a rigorous vibronic
wave function based on adiabatic electronic states which properly ac-
counts for the GP. This formulation introduces a rigorous VP into the
nuclear Schrödinger equation making this adiabatic states based

Fig. 4. (a) Loops used in panel (b) (inner) and (c) (outer) respectively. Panels (b) and (c) derivative couplings and circulations (upper panels), S1 and S2 energies
(lower panels). Solid lines Hd,(2), dashed lines Hd,(4) determined quantities. From Ref. [27] with permission of AIP.
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nuclear Schrödinger equation, when solvable, rigorously equivalent to
the results in the diabatic representation.

(iii) The fI,J(R) arise naturally as coupling the adiabatic electronic
states in nonadiabatic dynamics. When Nstate≥ 3 (states denoted I, J, K,
…) fI,J(R) and fJ,K(R), can become linked, that is paths exist which
contain a CI of states (I,J) and of states (J,K). In this case fI,J(R) and
fJ,K(R) become double valued and are not suitable for nuclear dynamics
since specifying R should yield a unique value for fI,J(R). The starting
point dependence of the circulation of fI,J(R) demonstrated in Section
5.3 was suggested as a way to determine the existence of this problem.
In future work the magnitude of this problem, which complicates the
use of the adiabatic representation, will be studied.
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Fig. 5. Seam curvature. (a) Loops in the g-h plane displaced along a zi-axis demonstrating the effect of seam curvature along the zi direction on the circulation. Panels
(b) and (c) respectively for z=−0.2, r=0.005 and 0.015. Derivative couplings and circulations found in upper panels, S1 and S2 energies in lower panels. Solid lines
Hd,(2), dashed lines Hd,(4) determined quantities. From Ref. [27] with permission of AIP.

Table 3
C r0(4, (0, 0, ), ) as a function of for three values of r.

C r0(4, (0, 0, ), )

(deg) r=0.25 r=0.3 r=0.59

0 3.13654714 3.06439078 2.85767507
30 3.13654714 3.07245028 2.85767507
60 3.13654714 2.96704120 2.85767507
90 3.13654714 −1.60163491 2.85767507
120 3.13654714 −0.15961872 2.85767507
150 3.13654714 −0.05023925 2.85767507
180 3.13654714 0.00000000 2.85767507
210 3.13654714 0.05023925 2.85767507
240 3.13654714 0.15961872 2.85767507
270 3.13654714 1.60163491 2.85767507
300 3.13654714 −2.96704120 2.85767507
330 3.13654714 −3.07245028 2.85767507
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Appendix A. Adiabatic to diabatic states (AtD) transformation

The off-diagonal derivative couplings in the diabatic representation are defined to be 0, that is
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Then, multiplying both sides by UL, and summing on α gives
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So
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Appendix B. The curl condition [29,36]

Starting from Eq. (A.6) and defining p= Rp and q= Rq
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then factoring out U from the right, Eq. (B.4) in matrix form is

= +
q p

f f f f f f Up q p q q p
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So the mixed partial derivatives are equal, provided Nstate=Nes since
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