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Globally consistent influences of seasonal
precipitation limit grassland biomass response to
elevated CO,

Mark J.Hovenden ®, Sebastian Leuzinger?, Paul C.D.Newton3, Andrew Fletcher?, Simone Fatichi®?4,
Andreas Liischer>%, Peter B.Reich’?, Louise C. Andresen®'°, Claus Beier", Dana M. Blumenthal®,
NonaR. Chiariello®, Jeffrey S. Dukes'*', Juliane Kellner®, Kirsten Hofmockel'®', Pascal A. Niklaus™,
JianSong', Shigiang Wan™, Aimée T. Classen? and J. Adam Langley?

Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of
carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water
savings, the CO, fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grass-
land biomass response to elevated CO, appear to be unrelated to annual precipitation, preventing useful generalizations. Here,
we show that, as predicted, the impact of elevated CO, on biomass production in 19 globally distributed temperate grassland
experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring
precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other
times, these effects of spring and non-spring precipitation on the CO, response offset each other, constraining the response of
ecosystem productivity to rising CO,. This explains why previous analyses were unable to discern a reliable trend between site
dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality

such that the stimulation of biomass by rising CO, could be substantially less than anticipated.

spheric concentration of CO, ([CO,]) increases is a crucial

yet uncertain factor in climate science'. The fundamental
physiology is simple; photosynthesis of most plants is not saturated
at current [CO,], so increasing [CO,] should stimulate biomass
production’. Additionally, increasing [CO,] reduces stomatal aper-
ture, increasing plant water-use efficiency and, by maintaining
higher soil moisture storage, increasing productivity in water-lim-
ited ecosystems”. Together with other minor indirect effects, these
two mechanisms produce the CO, fertilization effect (CFE) on bio-
mass, defined as the elevated CO, (eCO,)-driven increase in bio-
mass production as a percentage of that in control plots. However,
models currently “disagree strongly” on the size of the positive
CO,-productivity feedback, indicating that the processes driving
eCO, responses are not well characterized, leading to arguments
regarding the strength of the CFE**. The CFE measured in experi-
ments that manipulate [CO,] varies substantially among studies®’
and is considerably lower in open-air experiments than expected

_|_he capacity of the biosphere to absorb carbon as the atmo-

from leaf-level and enclosure studies, even for crop plants®. Various
factors have been proposed to influence the magnitude of the
CFE*", but none have explained the large variation observed
among experiments. Grasslands occupy over 29% of ice-free land
and are consequently important components of the global carbon
budget, so the large degree of unexplained variation (~300%") in
grassland biomass response to eCO, limits our ability to estimate
future carbon cycling.

Indirect effects caused by changes in plant water-use efficiency
can have a pivotal, and sometimes dominant, influence on the over-
all biomass response to eCO,>”!". These indirect effects probably
relate to precipitation patterns and soil moisture conditions'? and
might explain why the CFE responds strongly to precipitation at
particular sites and why the mean CFE varies even among similar
sites. Despite having a firm theoretical basis, attempts to use water
availability to explain the CFE have yielded little success®”'’, and
individual studies have countered the theory'>", suggesting the
opposite: that water scarcity can partially limit the CFE. We propose
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Fig. 1| Impact of seasonal precipitation on the CFE. Partial regression plots showing the influence on the CFE attributable to spring and non-spring
precipitation across 19 grassland eCO, experiments. Black lines show the modelled effects, with 95% confidence bands shown in red.

that these apparent contradictions are caused by precipitation hav-
ing different effects on the CFE at different times of year'". Previous
work has demonstrated that the seasonal balance of rainfall predicts
the CFE at a single site'”, so we suspected that a similar influence
might extend across sites. Here, we test the hypothesis that differ-
ences in the mean CFE among sites are related to site differences in
seasonal precipitation totals.

Experimental results

Using data from 19 grassland CO, manipulation experiments and a
total of 163 experimental years (Supplementary Table 1), we show that
the differences among experiments in the mean CFE are explained
extremely well by a stimulatory effect of precipitation in spring and a
suppressive effect of precipitation at other times of the year (Fig. 1).
The experiments were distributed throughout temperate zones
in North America, Europe, Asia and Australasia, covering a wide
range of grassland types and environmental factors (Supplementary
Table 1). The mean (+s.em.) CFE of these experiments was
9.0+ 1.7% at an average enrichment level of 243 pmolCO, mol™ and
an average ambient [CO,] of 375 umolmol~’, but variation in CFE
among the experiments was large, with the site-mean CFE ranging
from —7.1% to +20.0% (Supplementary Table 1). We used simple
and multiple regression analyses to determine whether variation in
the mean CFE among sites was related to climatic and site factors.
We tested the impact on the CFE of mean annual, autumn, winter,
spring and summer precipitation over the study period at each site,
with the seasons defined as being three calendar months in dura-
tion with 1 March being the first day of spring in the Northern
Hemisphere and autumn in the Southern Hemisphere. We also
tested the effects on the mean CFE of mean annual temperature,
mean shoot nitrogen content, mean soil carbon-to-nitrogen ratio,
mean annual aboveground biomass production, the proportion of
C, plants at each site, the CO, enrichment level and the fumigation
technique (chambers versus free-air CO, enrichment (FACE) tech-
nology). Importantly, variation among experiments in the mean
CFE was not explained by any of the tested site variables (Fig. 2),
but 74.7% of the variation in the CFE among sites was explained
by a two-factor model that incorporated mean spring precipita-
tion and the mean summed precipitation at other times of the year
(that is ‘non-spring precipitation’: 7 =0.747; F, ;= 23.6; P < 0.00002;
Supplementary Table 2). The site-mean CFE was enhanced by
decreasing non-spring precipitation (P=0.0002; Fig. 1), but the effect
of low precipitation in spring was negative (that is, the opposite
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pattern (P<0.00001; Fig. 1)). Thus, the mean CFE for a site was
determined by the combination of the stimulatory effect of higher
spring precipitation and the stimulatory effect of lower non-spring
precipitation (Fig. 1). Considering the range of spring and non-
spring precipitation values, the influences of spring and non-spring
precipitation on the CFE are relatively evenly balanced, such that
their impacts tend to be similar in scale but opposite in influence.

Data from both of the experimental sites and a worldwide pre-
cipitation grid covering temperate grassland show that sites that are
wetter in spring also tend to be wetter during the rest of the year
(Fig. 3 and Supplementary Fig. 1); hence, the contrasting impact of
precipitation in spring and non-spring periods constrains the CFE
(Fig. 3). This offsetting influence of average spring versus average
non-spring precipitation on the CFE explains why mean annual
precipitation by itself is a very poor predictor of the CFE (Fig. 2;
r*=0.02; P=0.68) and why earlier analyses failed to discern any
substantial effect of overall site wetness or dryness (usually described
by annual metrics) on the degree of stimulation of biomass across
sites with markedly different aridity levels. Importantly, none
of the other potential predictor variables significantly improved
the predictive capacity of the two-factor model (Supplementary
Tables 2-4), nor were they strongly correlated with the two
predictors (Supplementary Fig. 2), indicating that the observed
relationship is unlikely to be mediated by these factors. This
offsetting mechanism also explains why the CFE observed in field
experiments is mostly lower than anticipated.

Certain site characteristics, such as the proportion of C, species
in a community’®"” and nitrogen availability'®", can influence the
CFE within a site, but our analysis indicates that these ecosystem
traits, as well as factors such as mean annual temperature and
the degree of CO, enrichment, had little influence on differences
in the CFE among grassland experiments. Furthermore, the fumi-
gation technique (chambered versus FACE experiments) had no
significant impact on the CFE (Supplementary Fig. 3). We suggest
that the amount and seasonal distribution of precipitation shape
important, relatively stable community and ecosystem properties at
a particular site, determining the site’s average or ‘inherent’ CFE.
We believe such properties to be the result of long-term (multi-
year and evolutionary) processes, and their effects on the biomass
CO, response differ fundamentally from those of shorter-term
physiological mechanisms.

First, a site that tends to have wet springs will have communi-
ties biologically equipped to take advantage of eCO,. Repeatedly,
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Fig. 2 | The CFE across 19 temperate grassland experiments as a function of different potential drivers. Each point is the mean percentage stimulation
of aboveground annual biomass production by eCO, (the CFE) for a particular site. Relationships between each driver (mean annual precipitation
(MAP); mean annual temperature (MAT); mean nitrogen content of aboveground biomass in control plots (shoot nitrogen); mean proportion of biomass
contributed by C, species (proportion C,); mean CO, enrichment level (enrichment); and mean aboveground biomass of control plots (aboveground
biomass)) and the CFE were analysed by simple regression, with associated r? and Pvalues shown in each panel (n=19 independent experiments).

experiments show that grasslands are more responsive to changes
in spring precipitation than to changes at other times of the year***!,
so that spring precipitation is the best predictor of grassland pro-
ductivity?? and has a disproportionate influence on community
properties key to ecosystem function®. Thus, the strong impact
of spring precipitation on the CFE is probably mediated via posi-
tive relationships with plant species richness'’***, leaf-area index,
meristem density”, microbial community function” and ecosys-
tem resource availability, all of which boost the CFE. Additionally,
the strong effect of spring precipitation is robust to variation in the
definition of spring by about 20d (Supplementary Fig. 4). The a
priori definition of spring we used here (that is, ‘calendar spring’
1 March to 31 May in the Northern Hemisphere, and 1 September
to 30 November in the Southern Hemisphere) is at the early edge
of that range, indicating the importance of including late-spring
precipitation to explain variation in the CFE. This agrees with the
fact that altering our definition of spring by advancing the com-
mencement date by only 10d dramatically reduced our ability to
explain the variation in CFE among sites, whereas delaying the
commencement of spring by up to 20d had little effect on the pre-
dictive power of spring precipitation (Supplementary Fig. 4). Such a
strong effect of advancing the definition of spring onset by only 10d
is surprising since the season was defined to span three months, but
it indicates the importance of capturing the amount of precipitation
that falls within the entirety of the spring period. This suggests that
the amount of precipitation that falls while the grassland is in its
maximum growth period affects key properties of the community
and/or ecosystem, as suggested elsewhere’*’. We also tested the
effect of site-specific ‘growing season’ precipitation (Supplementary
Table 1) using both broad and narrow definitions of the growing
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season (see Methods for details), but this analysis explained far less
of the variation in the CFE among sites than the spring versus non-
spring analysis. This is because definitions of growing seasons often
extend far into the summer period, combining periods in which
precipitation has opposing effects on the CFE (Fig. 1). In addition,
we tested the effect of varying the duration of spring between one
month and six months, but again, none of the models approached
the ability of the spring versus non-spring model to describe
the variation in the CFE. Thus, while the exact timing of the
onset of warmer conditions conducive to active growth will vary
from site to site and year to year, the traditional definition of the
three-month spring period clearly captures the impact of precipita-
tion on important ecosystem properties that have real and measur-
able effects on productivity.

Second, a considerable proportion of the CFE is obtained from
the anti-transpirant effects of eCO,, which are most pronounced
in drier sites*”'". Therefore, a site that tends to be wet in seasons
other than spring has limited opportunities for the benefits of the
water-saving effects of eCO, to be realized, simply because the
soil in such sites will tend to be moist even when not exposed to
eCO,. Thus, the CFE reduces as non-spring precipitation increases,
exactly as predicted from theory>*''. The combination of these two
factors determines the site’s inherent ability to respond to eCO,.
Importantly, it is a site’s mean precipitation in the spring and non-
spring periods that determines the mean strength of the CFE. Long-
term precipitation averages have a far greater impact on crucial
community and ecosystem properties, such as plant community
composition, than shorter-term deviations from the average®, indi-
cating that ecosystem properties link the mean CFE with precipita-
tion, rather than the immediate effects of precipitation on carbon
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Fig. 3 | Predicted CFE of aboveground biomass for given spring and
non-spring precipitation values. Predictions used the formula CFE (%)
=2.94+0.135 spring precipitation (mm) - 0.035 non-spring precipitation
(mm). The CFE is for a CO, enrichment of 243 pmol mol~" above an
ambient [CO,] of 375 pmol mol=". Suppression of biomass is shown as

red, while stimulation of biomass is shown as blue. Contours show the
probability density of particular combinations of spring and non-spring
precipitation for temperate grasslands worldwide, most of which lie within
a range in which the CFE is predicted to be low. The 19 experiments used in
this analysis (Brandbjerg, Denmark (BB); Cedar Creek, USA (CC); Duolun,
China (CN); Bavaria, Germany (GE); Giessen, Germany (Gl); Godollo,
Hungary (HU); Oak Park, Ireland (IR); Jasper Ridge FACE, USA (JF); Jasper
Ridge open-top chambers, USA (JO); Kansas, USA (KS); Nenzlingen,
Switzerland (NE); Bulls, New Zealand (NZ); Oak Ridge, USA (OR); Prairie
FACE, USA (PF); Prairie open-top chambers, USA (PO); SERC |, USA (S1);
SERCII, USA (52); Swiss FACE, Switzerland (SF); TasFACE, Australia (TA))
are plotted to show their combination of spring and

non-spring precipitation values.

assimilation rates. Thus, increasing spring precipitation increases a
site’s tendency to possess community traits that boost the response
to eCO,. Unravelling the mechanisms whereby this occurs should
now become a key goal of global change ecology and will require
concerted, global observational and experimental efforts. The
fact that the models with the greatest ability to explain the varia-
tion among sites were those that included the entirety of the spring
period suggests that processes occurring belowground before
shoot emergence and those occurring during the early stages of
biomass formation are key to understanding the mean CFE
response of a system.

In short, we found that it is the tendency of a site to receive
more or less precipitation than another site in spring or in the rest
of the year, as indicated by the average values, that influences the
site’s mean CFE, rather than a direct link between each precipita-
tion event and CO,-related growth stimulation. This is supported
by the fact that interannual variation in the CFE within each site
was poorly described by the combination of spring and non-spring
precipitation (Supplementary Fig. 5). Within each site, the annual
CFE can be affected by a variety of factors, including deviation from
the climatic average, as well as lags and legacies of responses to
treatments in previous years. For instance, a strong stimulation of
biomass production in one year could deplete soil nutrient stocks,
leading to suppressed responses in subsequent years®. Similarly,
conditions that limit growth in one year could lead to the accumu-
lation of nutrients and strong growth responses in subsequent years.
In both of these scenarios, the annual CFE values will be divorced
from the contemporaneous precipitation since the CFE will
be partly dependent on the climatic conditions of antecedent
years, such as occurs with other ecosystem processes’-**. However,
over longer periods, the site average CFE should tend towards the
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inherent CFE for that location, which is determined by the com-
bination of average values of spring and non-spring precipitation.

Geographical extrapolation

The ability to describe variation in the CFE among grassland sites
allows us to project the potential CFE of a site from easily obtained
climatic variables (Fig. 3), as is possible for annual net primary pro-
ductivity’**. By doing this for temperate grasslands worldwide, we
found that most grasslands occur in sites in which the combination
of spring and non-spring precipitation leads to a low CFE (Fig. 3).
Although there is substantial geographic variation in the potential
CFE of temperate grasslands, the projected CFE is below 10% in large
areas across all continents (Fig. 4), constrained by the seasonality of
precipitation in those locations (Fig. 3). The average expected CFE
of temperate grasslands from our projections is 6.0 +0.03%—one-
third lower than that observed in the experiments (Fig. 1) because
of the global prevalence of temperate grasslands in sites with low
spring precipitation but moderate precipitation at other times of the
year (Fig. 3). Thus, predicting eCO, effects on grassland biomass
production by averaging experimental results without the geo-
graphical extrapolation would lead to an overestimation of the CFE.

Conclusions

Clearly, predicting carbon feedbacks to the atmosphere is a global
research priority™, and the CFE is a dominant uncertainty in pro-
jecting biosphere feedback effects on the growth of atmospheric
[CO,]. We show consistent, biome-wide interactions of the CFE
with precipitation seasonality suggesting that the CFE in grasslands
is likely to be less than would be predicted by models that do not
accurately represent these counteracting influences of precipita-
tion at different times of the year®. Targeted experiments in under-
represented grassland areas—especially the neglected tropical areas
and those predicted to have low CFE—would be an efficient way of
refining and confirming our capacity to project the impact of eCO,
on grasslands around the world. Together with a thorough exami-
nation of belowground biomass responses to eCO, and how bio-
mass responses translate into ecosystem carbon balance, this will be
the next important step in improving global predictions of carbon
feedbacks from terrestrial ecosystems.

Methods

We collected annual aboveground biomass data from the 19 experiments listed

in Supplementary Table 1, all of which were either open-top chamber or FACE
experiments located outdoors with plants growing in the soil (that is, not in pots).
We used all of the experiments for which annual aboveground biomass data were
available either directly from the researchers or from published results. Where
experiments included factors other than CO, manipulation, such as warming or
precipitation removal, we only used the control (ambient) levels of the other factors
and therefore examined the CO, response independent of other experimental
factors, essentially treating each experiment as a single-factor experiment. The
Swiss FACE experiment included differing levels of nutrient application as a
treatment. We used data from the lower level of nutrient application, which was
merely sufficient to replace the nutrients removed during regular biomass harvests.
We first calculated the annual CFE as the difference in annual aboveground
biomass production between eCO, and control plots, expressed as a percentage
of the biomass of the control plots. The difference in biomass between elevated
and control plots was corrected for any pre-existing difference where these data
were available. Most experiments harvested or measured aboveground biomass
once per year, but where biomass was harvested more frequently, the individual
harvest values were summed at the plot level to obtain the annual aboveground
biomass values.

Daily precipitation was obtained from each site individually using data
collected on site with automatic weather stations (most sites) or from a nearby
meteorological weather station (Kansas and Hungary). In both instances,
the weather station was within ~2.5km of the experimental site. At the Swiss
FACE site, the locally collected precipitation data contained short gaps in the
record, amounting to ~5% of the total record, so we used data from the nearest
meteorological weather station to interpolate the missing values. We used the daily
precipitation data to calculate seasonal precipitation totals for each year at each
site. The seasons were defined to commence on 1 March (spring in the Northern
Hemisphere, and autumn in the Southern Hemisphere), 1 June (summer in the
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Fig. 4 | Modelled CFE in temperate grasslands. a, Modelled CFE for temperate grasslands, using the formula CFE (%) =2.94 + 0.135 spring precipitation
(mm) - 0.035 non-spring precipitation (mm), for a CO, enrichment of 243 pmol mol~" above an ambient [CO,] of 375 pmol mol=". The grey areas fall
outside the precipitation limits of this analysis. White areas are not temperate zones or not grasslands. The dashed grey lines indicate the Arctic and
Antarctic circles as well as the Tropics of Cancer and Capricorn. b, Frequency distribution of modelled CFEs in global temperate grassland sites within

the precipitation range used to construct the model. ¢, Frequency distributions of modelled CFEs for Europe, Asia, North America and the Southern
Hemisphere. The mean CFEs (+s.e.m.) are 5.9 + 0.03% for Europe (n=14,604 grid squares), 4.1+ 0.05 for Asia (n=24,944 grid squares), 8.9 + 0.05% for
North America (n=13,764 grid squares) and 7.5 + 0.05% for the Southern Hemisphere (n=9,027 grid squares).

Northern Hemisphere, and winter in the Southern Hemisphere), 1 September
(autumn in the Northern Hemisphere, and spring in the Southern Hemisphere)
and 1 December (winter in the Northern Hemisphere, and summer in the
Southern Hemisphere). The seasonal precipitation total was defined as the sum of
daily precipitation over the season in each year, and this value was then averaged
over all years for which the experiment ran. Annual precipitation was defined

as the sum of autumn, winter, spring and summer precipitation totals, with the
year commencing on 1 September in the Northern Hemisphere and 1 March in
the Southern Hemisphere. The year was defined this way so that it was the year
preceding the biomass harvest, which normally occurred in late summer or very
early autumn. The seasonal and annual precipitation totals were calculated in the
same manner for all experiments.

The characteristics of each experiment to be used as potential drivers of the
CFE were supplied by the experimental team from each site or obtained from
published values for each experiment. Mean CO, enrichment was obtained from
annual enrichment values, using annual CO, values for elevated and ambient/
control plots, then averaged for each site over all years of each experiment. Mean
site aboveground biomass production was calculated as the annual aboveground
biomass produced in ambient/control plots of each experiment, averaged over all
years of the experiment. The proportion of C, plants at each site was calculated
as the aboveground biomass contribution of C, plants as a proportion of the total
aboveground biomass in control plots in each experiment, averaged over all years
of the experiment. Mean shoot nitrogen was calculated as the mean percentage
of nitrogen of aboveground biomass in control plots for each experiment, again
averaged over all years for which data were available. Site fertility was also
calculated as the total soil nitrogen content and soil carbon-to-nitrogen ratio, but
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each of these variables had a discontinuous distribution and were thought not to be
the most reliable predictors of fertility given that some of the sites were located on
organic-rich soils. Nonetheless, each of these fertility indicators was used in turn
in the below analyses, with negligible effects on the analysis outcome, thus shoot
nitrogen was selected for the final analyses.

Relationships between the CFE and potential drivers were determined by multiple
regression analyses using R”. Beginning with all possible combinations of the five
precipitation metrics (annual, autumn, winter, spring and summer precipitation
totals) and the other six potential drivers (mean annual temperature, mean shoot
nitrogen, mean annual aboveground biomass production, proportion of C,, mean
CO, enrichment and fumigation technique), we ranked the resultant models using
the Akaike information criterion corrected for finite sample size (AIC,), using the
MuMIN package of R*. Model competitiveness was determined by observation of
the difference in AIC, between each model and the lowest value of AIC. obtained
(AAIC,). Models were ranked in ascending AAIC, value, and a distinction between
competitive and non-competitive models was made by observing any obvious
breaks in the sequence of ascending AAIC.. A single two-factor model containing
annual and spring precipitation totals was clearly superior to other models and
had a 15% probability of being the best model among all possible models, with the
next most competitive model only having a 7% probability of being the best model
(Supplementary Table 2), so no coefficient averaging was necessary. This model
had an 7 value of 0.75 (P < 0.00002), but because spring and annual precipitation
were significantly correlated (r*=0.88), we replaced the annual precipitation term
with non-spring precipitation (that is, the total precipitation in seasons other than
spring), which was less strongly correlated with spring precipitation (r*=0.78). We
also calculated the variance inflation factor (VIF) as an additional test of collinearity.
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This was 2.6 for the spring +non-spring precipitation model—approximately half
that for the spring +annual precipitation model (VIF=4.5), indicating that the
model incorporating non-spring precipitation had a substantially lower impact from
collinearity, and far below 5 (the VIF value generally believed to cause concern™).
However, collinearity can influence interpretation of a multiple regression relationship
and affect predictions using a model containing collinear predictor variables.
Therefore, we first tested whether the strength of the regression was influenced by
the incorporation of both spring and non-spring precipitation by regressing non-
spring precipitation against spring precipitation, calculating the residuals between
the non-spring values and the regression line and using these residual values in the
model instead, following the method of Harrell”. This has the advantage of retaining
the information contained in the predictor variable, but removing any collinearity
between it (non-spring precipitation) and the remaining term (spring precipitation;
r<0.01). This model had an identical 7* value (0.747; P<0.00002) to that of the
original model containing spring and non-spring precipitation, indicating that the
original model is robust and, importantly, its interpretation is not subject to error
from collinearity. Second, collinearity can inflate the errors involved in making
predictions, but only if predictions involve predictor variables that are not similarly
correlated”’. Thus, predictions using the model containing spring and non-spring
precipitation would be unreliable if spring and non-spring precipitation were not
correlated in the dataset used for predictions. Therefore, we tested the relationship
between spring and non-spring precipitation using the entire gridded dataset of
mean spring and non-spring precipitation for all temperate grasslands globally
(Supplementary Fig. 1). The relationship between spring and non-spring precipitation
was almost identical in the global temperate grassland dataset (regression
coefficient=0.27+0.1) as in the dataset used to construct the model (regression
coefficient=0.28 +0.05). Since collinearity does not affect predictions made using
new data that have the same degree of collinearity as the original data®, we are
confident that the predictions using this model are robust and appropriate.

Therefore, we examined the influence of spring and non-spring precipitation
on the CFE by multiple linear regression, also testing for an interaction between
spring and non-spring precipitation on the CFE, which was found to be non-
significant (P=0.24). Furthermore, we tested the relationship between mean CFE
and all combinations between spring and non-spring precipitation and the other
six potential, non-precipitation predictors (mean annual temperature, mean shoot
nitrogen, proportion of C,, mean CO, enrichment and fumigation technique;
Supplementary Table 3) using the same methods as above. Finally, we used a
hierarchical approach, adding each of the non-precipitation predictors in turn to
the two-factor model and testing whether this led to a significant improvement in
model performance using analysis of variance (Supplementary Table 4). We also
tested the performance of the seven-term model containing all of these predictors
(Supplementary Table 4). None of the resultant three-factor models significantly
improved the model performance, nor did the seven-term model (Supplementary
Table 4); thus, the most parsimonious model under all of the tests remained the
two-factor model. Partial regression analysis was used to determine the effects,
with 95% confidence limits, of spring and non-spring precipitation totals on the
mean site CFE using the effects package in R*".

Additionally, we tested the impact of precipitation in and out of the growing
season, as opposed to in and out of spring, using a two-factor model and growing
season dates estimated for each site individually. We used both broad and narrow
definitions of growing season as either the period encompassing non-trivial
aboveground growth (broad) or the period of maximum aboveground biomass
production (narrow). The variation among sites in the mean CFE was very
poorly explained by the combination of growing season and non-growing season
precipitation, whether the broad (r*=0.06; F, ,,=0.5; P=0.6) or narrow (r*=0.08;
F,,,=0.7; P=0.5) definition of growing season was used. Furthermore, neither
growing season (broad definition: 2=0.04; F, ;,=0.7; P=0.4; narrow definition:
r*=0.05; F,,,=0.8; P=0.4) nor non-growing season precipitation (broad
definition: #=0.02; F,,,=0.4; P=0.5; narrow definition: *=0.04; F,,,=0.7;
P=0.4) was correlated with the annual CFE of a site, nor was the proportion of
precipitation received during the growing season (broad definition: *=0.003;

F, ;;=0.05; P=0.8; narrow definition: 7=0.04; F, ,=0.07; P=0.8). Hence,
variation in the CFE among sites was not related to growing season precipitation.

We tested the impact of varying the definition of spring by either advancing
or delaying the commencement date from 1 March/September by 10, 20, 30 or
45d and testing the impact this alteration had on the performance of the
two-factor spring versus non-spring model. The duration of the spring period
was maintained at 90 d for all comparisons. Since precipitation data were only
available as monthly values for 3 of the 19 experiments, the spring adjustment
analysis was done using the remaining 16 sites. Advancing the definition of
spring substantially reduced the two-factor model’s ability to explain variation
among sites in the mean CFE (Supplementary Fig. 4). In contrast, delaying the
definition of spring by up to 20d had little impact on model performance, but
longer delays caused it to decline (Supplementary Fig. 4). Therefore, we maintained
our definition of spring as commencing on 1 March (Northern Hemisphere) or
1 September (Southern Hemisphere).

Data conformed to the assumptions of the statistical tests involved, as tested by
investigation of residuals, leverage and normality, as well as using Box-Cox plots
using the MASS package in R*. The only exception was mean annual biomass

172

production of control plots, in which the single data point from the site in Ireland
exerted excessive leverage on the relationship with the CFE. Therefore, this single
data point was removed from subsequent analyses.

We conducted mapping and spatial analyses in ArcMap 10.3 and ESRI,
USA. The 8km Advanced Very High Resolution Radiometer global land-
cover classification® product provided moderate oversampling of land-cover
classification for wooded grasslands, grasslands and croplands that we determined
to be representative of the model target. We added land-cover class, spring and
non-spring precipitation to CFE modelled values using the Sample and Spatial
Join (nearest geodesic) tools, respectively. Spring and non-spring precipitation
values were calculated from a 10 min grid of monthly precipitation values obtained
from the Climatic Research Unit at the University of East Anglia CRU CL version
2.0 database, which is available (http://www.cru.uea.ac.uk/data) under the Open
Database License. These values were used to calculate the local CFE from the
spring 4+ non-spring multiple regression model. We mapped all CFE values for
locations meeting model parameters for climate zone and land cover. We visualized
the limits of model precipitation parameters by interpolating total precipitation
data (ordinary kriging) and classifying the resulting raster with masks applied to
tropic and polar zones. Calculations using the geographically projected values
of the CFE only included those sites that fell within the range of spring and
non-spring precipitation values observed at the experimental sites.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data generated or analysed during this study are included in this published
article (and its Supplementary Information files) with the exception of the gridded
geographic information system data, which are available from https://crudata.
uea.ac.uk/cru/data/hrg/tmc/ (precipitation data) and http://glcf.umd.edu/data/
landcover/data.shtml (land-cover data).
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