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The capacity of the biosphere to absorb carbon as the atmo-
spheric concentration of CO2 ([CO2]) increases is a crucial  
yet uncertain factor in climate science1. The fundamental 

physiology is simple; photosynthesis of most plants is not saturated 
at current [CO2], so increasing [CO2] should stimulate biomass  
production2. Additionally, increasing [CO2] reduces stomatal aper-
ture, increasing plant water-use efficiency and, by maintaining 
higher soil moisture storage, increasing productivity in water-lim-
ited ecosystems2. Together with other minor indirect effects, these 
two mechanisms produce the CO2 fertilization effect (CFE) on bio-
mass, defined as the elevated CO2 (eCO2)-driven increase in bio-
mass production as a percentage of that in control plots. However, 
models currently “disagree strongly”3 on the size of the positive 
CO2–productivity feedback, indicating that the processes driving 
eCO2 responses are not well characterized, leading to arguments 
regarding the strength of the CFE4,5. The CFE measured in experi-
ments that manipulate [CO2] varies substantially among studies6,7 
and is considerably lower in open-air experiments than expected 

from leaf-level and enclosure studies, even for crop plants8. Various 
factors have been proposed to influence the magnitude of the  
CFE6–10, but none have explained the large variation observed 
among experiments. Grasslands occupy over 29% of ice-free land 
and are consequently important components of the global carbon 
budget, so the large degree of unexplained variation (~300%10) in 
grassland biomass response to eCO2 limits our ability to estimate 
future carbon cycling.

Indirect effects caused by changes in plant water-use efficiency 
can have a pivotal, and sometimes dominant, influence on the over-
all biomass response to eCO2

2,9,11. These indirect effects probably 
relate to precipitation patterns and soil moisture conditions12 and 
might explain why the CFE responds strongly to precipitation at 
particular sites and why the mean CFE varies even among similar 
sites. Despite having a firm theoretical basis, attempts to use water 
availability to explain the CFE have yielded little success6,7,10, and 
individual studies have countered the theory13,14, suggesting the 
opposite: that water scarcity can partially limit the CFE. We propose 
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Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of 
carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water 
savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grass-
land biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, 
we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland 
experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring 
precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other 
times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of 
ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site 
dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality 
such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.
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that these apparent contradictions are caused by precipitation hav-
ing different effects on the CFE at different times of year15. Previous 
work has demonstrated that the seasonal balance of rainfall predicts 
the CFE at a single site15, so we suspected that a similar influence 
might extend across sites. Here, we test the hypothesis that differ-
ences in the mean CFE among sites are related to site differences in 
seasonal precipitation totals.

Experimental results
Using data from 19 grassland CO2 manipulation experiments and a 
total of 163 experimental years (Supplementary Table 1), we show that 
the differences among experiments in the mean CFE are explained 
extremely well by a stimulatory effect of precipitation in spring and a 
suppressive effect of precipitation at other times of the year (Fig. 1).  
The experiments were distributed throughout temperate zones  
in North America, Europe, Asia and Australasia, covering a wide 
range of grassland types and environmental factors (Supplementary 
Table 1). The mean (± s.e.m.) CFE of these experiments was 
9.0 ± 1.7% at an average enrichment level of 243 μmolCO2 mol−1 and 
an average ambient [CO2] of 375 μmol mol−1, but variation in CFE 
among the experiments was large, with the site-mean CFE ranging 
from −7.1% to +20.0% (Supplementary Table 1). We used simple 
and multiple regression analyses to determine whether variation in 
the mean CFE among sites was related to climatic and site factors. 
We tested the impact on the CFE of mean annual, autumn, winter, 
spring and summer precipitation over the study period at each site, 
with the seasons defined as being three calendar months in dura-
tion with 1 March being the first day of spring in the Northern 
Hemisphere and autumn in the Southern Hemisphere. We also 
tested the effects on the mean CFE of mean annual temperature, 
mean shoot nitrogen content, mean soil carbon-to-nitrogen ratio, 
mean annual aboveground biomass production, the proportion of 
C4 plants at each site, the CO2 enrichment level and the fumigation 
technique (chambers versus free-air CO2 enrichment (FACE) tech-
nology). Importantly, variation among experiments in the mean 
CFE was not explained by any of the tested site variables (Fig. 2), 
but 74.7% of the variation in the CFE among sites was explained 
by a two-factor model that incorporated mean spring precipita-
tion and the mean summed precipitation at other times of the year  
(that is ‘non-spring precipitation’: r2 = 0.747; F2,16 = 23.6; P < 0.00002; 
Supplementary Table 2). The site-mean CFE was enhanced by 
decreasing non-spring precipitation (P = 0.0002; Fig. 1), but the effect  
of low precipitation in spring was negative (that is, the opposite 

pattern (P < 0.00001; Fig. 1)). Thus, the mean CFE for a site was 
determined by the combination of the stimulatory effect of higher 
spring precipitation and the stimulatory effect of lower non-spring 
precipitation (Fig. 1). Considering the range of spring and non-
spring precipitation values, the influences of spring and non-spring 
precipitation on the CFE are relatively evenly balanced, such that 
their impacts tend to be similar in scale but opposite in influence.

Data from both of the experimental sites and a worldwide pre-
cipitation grid covering temperate grassland show that sites that are 
wetter in spring also tend to be wetter during the rest of the year 
(Fig. 3 and Supplementary Fig. 1); hence, the contrasting impact of 
precipitation in spring and non-spring periods constrains the CFE 
(Fig. 3). This offsetting influence of average spring versus average 
non-spring precipitation on the CFE explains why mean annual 
precipitation by itself is a very poor predictor of the CFE (Fig. 2; 
r2 = 0.02; P = 0.68) and why earlier analyses failed to discern any  
substantial effect of overall site wetness or dryness (usually described 
by annual metrics) on the degree of stimulation of biomass across 
sites with markedly different aridity levels. Importantly, none 
of the other potential predictor variables significantly improved  
the predictive capacity of the two-factor model (Supplementary 
Tables 2–4), nor were they strongly correlated with the two  
predictors (Supplementary Fig. 2), indicating that the observed  
relationship is unlikely to be mediated by these factors. This  
offsetting mechanism also explains why the CFE observed in field 
experiments is mostly lower than anticipated.

Certain site characteristics, such as the proportion of C4 species  
in a community16,17 and nitrogen availability18,19, can influence the 
CFE within a site, but our analysis indicates that these ecosystem 
traits, as well as factors such as mean annual temperature and  
the degree of CO2 enrichment, had little influence on differences 
in the CFE among grassland experiments. Furthermore, the fumi-
gation technique (chambered versus FACE experiments) had no 
significant impact on the CFE (Supplementary Fig. 3). We suggest 
that the amount and seasonal distribution of precipitation shape 
important, relatively stable community and ecosystem properties at 
a particular site, determining the site’s average or ‘inherent’ CFE. 
We believe such properties to be the result of long-term (multi-
year and evolutionary) processes, and their effects on the biomass  
CO2 response differ fundamentally from those of shorter-term 
physiological mechanisms.

First, a site that tends to have wet springs will have communi-
ties biologically equipped to take advantage of eCO2. Repeatedly, 
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Fig. 1 | Impact of seasonal precipitation on the CFE. Partial regression plots showing the influence on the CFE attributable to spring and non-spring 
precipitation across 19 grassland eCO2 experiments. Black lines show the modelled effects, with 95% confidence bands shown in red.
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experiments show that grasslands are more responsive to changes 
in spring precipitation than to changes at other times of the year20,21, 
so that spring precipitation is the best predictor of grassland pro-
ductivity22 and has a disproportionate influence on community 
properties key to ecosystem function23. Thus, the strong impact 
of spring precipitation on the CFE is probably mediated via posi-
tive relationships with plant species richness17,24,25, leaf-area index, 
meristem density26, microbial community function27 and ecosys-
tem resource availability, all of which boost the CFE. Additionally, 
the strong effect of spring precipitation is robust to variation in the 
definition of spring by about 20 d (Supplementary Fig. 4). The a 
priori definition of spring we used here (that is, ‘calendar spring’  
1 March to 31 May in the Northern Hemisphere, and 1 September 
to 30 November in the Southern Hemisphere) is at the early edge 
of that range, indicating the importance of including late-spring 
precipitation to explain variation in the CFE. This agrees with the 
fact that altering our definition of spring by advancing the com-
mencement date by only 10 d dramatically reduced our ability to 
explain the variation in CFE among sites, whereas delaying the 
commencement of spring by up to 20 d had little effect on the pre-
dictive power of spring precipitation (Supplementary Fig. 4). Such a 
strong effect of advancing the definition of spring onset by only 10 d 
is surprising since the season was defined to span three months, but 
it indicates the importance of capturing the amount of precipitation 
that falls within the entirety of the spring period. This suggests that  
the amount of precipitation that falls while the grassland is in its 
maximum growth period affects key properties of the community 
and/or ecosystem, as suggested elsewhere20–23. We also tested the 
effect of site-specific ‘growing season’ precipitation (Supplementary 
Table 1) using both broad and narrow definitions of the growing 

season (see Methods for details), but this analysis explained far less 
of the variation in the CFE among sites than the spring versus non-
spring analysis. This is because definitions of growing seasons often 
extend far into the summer period, combining periods in which 
precipitation has opposing effects on the CFE (Fig. 1). In addition, 
we tested the effect of varying the duration of spring between one 
month and six months, but again, none of the models approached 
the ability of the spring versus non-spring model to describe  
the variation in the CFE. Thus, while the exact timing of the  
onset of warmer conditions conducive to active growth will vary 
from site to site and year to year, the traditional definition of the 
three-month spring period clearly captures the impact of precipita-
tion on important ecosystem properties that have real and measur-
able effects on productivity.

Second, a considerable proportion of the CFE is obtained from 
the anti-transpirant effects of eCO2, which are most pronounced 
in drier sites2,9,11. Therefore, a site that tends to be wet in seasons  
other than spring has limited opportunities for the benefits of the 
water-saving effects of eCO2 to be realized, simply because the 
soil in such sites will tend to be moist even when not exposed to 
eCO2. Thus, the CFE reduces as non-spring precipitation increases, 
exactly as predicted from theory2,9,11. The combination of these two 
factors determines the site’s inherent ability to respond to eCO2. 
Importantly, it is a site’s mean precipitation in the spring and non-
spring periods that determines the mean strength of the CFE. Long-
term precipitation averages have a far greater impact on crucial 
community and ecosystem properties, such as plant community 
composition, than shorter-term deviations from the average28, indi-
cating that ecosystem properties link the mean CFE with precipita-
tion, rather than the immediate effects of precipitation on carbon 
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Fig. 2 | The CFE across 19 temperate grassland experiments as a function of different potential drivers. Each point is the mean percentage stimulation 
of aboveground annual biomass production by eCO2 (the CFE) for a particular site. Relationships between each driver (mean annual precipitation 
(MAP); mean annual temperature (MAT); mean nitrogen content of aboveground biomass in control plots (shoot nitrogen); mean proportion of biomass 
contributed by C4 species (proportion C4); mean CO2 enrichment level (enrichment); and mean aboveground biomass of control plots (aboveground 
biomass)) and the CFE were analysed by simple regression, with associated r2 and P values shown in each panel (n = 19 independent experiments).
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assimilation rates. Thus, increasing spring precipitation increases a 
site’s tendency to possess community traits that boost the response 
to eCO2. Unravelling the mechanisms whereby this occurs should 
now become a key goal of global change ecology and will require 
concerted, global observational and experimental efforts. The 
fact that the models with the greatest ability to explain the varia-
tion among sites were those that included the entirety of the spring 
period suggests that processes occurring belowground before  
shoot emergence and those occurring during the early stages of  
biomass formation are key to understanding the mean CFE  
response of a system.

In short, we found that it is the tendency of a site to receive 
more or less precipitation than another site in spring or in the rest 
of the year, as indicated by the average values, that influences the 
site’s mean CFE, rather than a direct link between each precipita-
tion event and CO2-related growth stimulation. This is supported 
by the fact that interannual variation in the CFE within each site 
was poorly described by the combination of spring and non-spring 
precipitation (Supplementary Fig. 5). Within each site, the annual 
CFE can be affected by a variety of factors, including deviation from 
the climatic average, as well as lags and legacies of responses to 
treatments in previous years. For instance, a strong stimulation of 
biomass production in one year could deplete soil nutrient stocks, 
leading to suppressed responses in subsequent years29. Similarly, 
conditions that limit growth in one year could lead to the accumu-
lation of nutrients and strong growth responses in subsequent years. 
In both of these scenarios, the annual CFE values will be divorced 
from the contemporaneous precipitation since the CFE will  
be partly dependent on the climatic conditions of antecedent  
years, such as occurs with other ecosystem processes30–33. However, 
over longer periods, the site average CFE should tend towards the 

inherent CFE for that location, which is determined by the com-
bination of average values of spring and non-spring precipitation.

Geographical extrapolation
The ability to describe variation in the CFE among grassland sites 
allows us to project the potential CFE of a site from easily obtained 
climatic variables (Fig. 3), as is possible for annual net primary pro-
ductivity34,35. By doing this for temperate grasslands worldwide, we 
found that most grasslands occur in sites in which the combination 
of spring and non-spring precipitation leads to a low CFE (Fig. 3). 
Although there is substantial geographic variation in the potential 
CFE of temperate grasslands, the projected CFE is below 10% in large 
areas across all continents (Fig. 4), constrained by the seasonality of 
precipitation in those locations (Fig. 3). The average expected CFE 
of temperate grasslands from our projections is 6.0 ± 0.03%—one-
third lower than that observed in the experiments (Fig. 1) because 
of the global prevalence of temperate grasslands in sites with low 
spring precipitation but moderate precipitation at other times of the 
year (Fig. 3). Thus, predicting eCO2 effects on grassland biomass 
production by averaging experimental results without the geo-
graphical extrapolation would lead to an overestimation of the CFE.

Conclusions
Clearly, predicting carbon feedbacks to the atmosphere is a global 
research priority36, and the CFE is a dominant uncertainty in pro-
jecting biosphere feedback effects on the growth of atmospheric 
[CO2]. We show consistent, biome-wide interactions of the CFE 
with precipitation seasonality suggesting that the CFE in grasslands 
is likely to be less than would be predicted by models that do not 
accurately represent these counteracting influences of precipita-
tion at different times of the year3. Targeted experiments in under-
represented grassland areas—especially the neglected tropical areas 
and those predicted to have low CFE—would be an efficient way of 
refining and confirming our capacity to project the impact of eCO2 
on grasslands around the world. Together with a thorough exami-
nation of belowground biomass responses to eCO2 and how bio-
mass responses translate into ecosystem carbon balance, this will be  
the next important step in improving global predictions of carbon 
feedbacks from terrestrial ecosystems.

Methods
We collected annual aboveground biomass data from the 19 experiments listed 
in Supplementary Table 1, all of which were either open-top chamber or FACE 
experiments located outdoors with plants growing in the soil (that is, not in pots). 
We used all of the experiments for which annual aboveground biomass data were 
available either directly from the researchers or from published results. Where 
experiments included factors other than CO2 manipulation, such as warming or 
precipitation removal, we only used the control (ambient) levels of the other factors 
and therefore examined the CO2 response independent of other experimental 
factors, essentially treating each experiment as a single-factor experiment. The 
Swiss FACE experiment included differing levels of nutrient application as a 
treatment. We used data from the lower level of nutrient application, which was 
merely sufficient to replace the nutrients removed during regular biomass harvests. 
We first calculated the annual CFE as the difference in annual aboveground 
biomass production between eCO2 and control plots, expressed as a percentage  
of the biomass of the control plots. The difference in biomass between elevated  
and control plots was corrected for any pre-existing difference where these data 
were available. Most experiments harvested or measured aboveground biomass 
once per year, but where biomass was harvested more frequently, the individual 
harvest values were summed at the plot level to obtain the annual aboveground 
biomass values.

Daily precipitation was obtained from each site individually using data 
collected on site with automatic weather stations (most sites) or from a nearby 
meteorological weather station (Kansas and Hungary). In both instances, 
the weather station was within ~2.5 km of the experimental site. At the Swiss 
FACE site, the locally collected precipitation data contained short gaps in the 
record, amounting to ~5% of the total record, so we used data from the nearest 
meteorological weather station to interpolate the missing values. We used the daily 
precipitation data to calculate seasonal precipitation totals for each year at each 
site. The seasons were defined to commence on 1 March (spring in the Northern 
Hemisphere, and autumn in the Southern Hemisphere), 1 June (summer in the 
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Fig. 3 | Predicted CFE of aboveground biomass for given spring and  
non-spring precipitation values. Predictions used the formula CFE (%)  
= 2.94 + 0.135 spring precipitation (mm) – 0.035 non-spring precipitation 
(mm). The CFE is for a CO2 enrichment of 243 μmol mol−1 above an 
ambient [CO2] of 375 μmol mol−1. Suppression of biomass is shown as 
red, while stimulation of biomass is shown as blue. Contours show the 
probability density of particular combinations of spring and non-spring 
precipitation for temperate grasslands worldwide, most of which lie within 
a range in which the CFE is predicted to be low. The 19 experiments used in 
this analysis (Brandbjerg, Denmark (BB); Cedar Creek, USA (CC); Duolun, 
China (CN); Bavaria, Germany (GE); Giessen, Germany (GI); Godollo, 
Hungary (HU); Oak Park, Ireland (IR); Jasper Ridge FACE, USA (JF); Jasper 
Ridge open-top chambers, USA (JO); Kansas, USA (KS); Nenzlingen, 
Switzerland (NE); Bulls, New Zealand (NZ); Oak Ridge, USA (OR); Prairie 
FACE, USA (PF); Prairie open-top chambers, USA (PO); SERC I, USA (S1); 
SERCII, USA (S2); Swiss FACE, Switzerland (SF); TasFACE, Australia (TA)) 
are plotted to show their combination of spring and  
non-spring precipitation values.
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Northern Hemisphere, and winter in the Southern Hemisphere), 1 September 
(autumn in the Northern Hemisphere, and spring in the Southern Hemisphere) 
and 1 December (winter in the Northern Hemisphere, and summer in the 
Southern Hemisphere). The seasonal precipitation total was defined as the sum of 
daily precipitation over the season in each year, and this value was then averaged 
over all years for which the experiment ran. Annual precipitation was defined 
as the sum of autumn, winter, spring and summer precipitation totals, with the 
year commencing on 1 September in the Northern Hemisphere and 1 March in 
the Southern Hemisphere. The year was defined this way so that it was the year 
preceding the biomass harvest, which normally occurred in late summer or very 
early autumn. The seasonal and annual precipitation totals were calculated in the 
same manner for all experiments.

The characteristics of each experiment to be used as potential drivers of the 
CFE were supplied by the experimental team from each site or obtained from 
published values for each experiment. Mean CO2 enrichment was obtained from 
annual enrichment values, using annual CO2 values for elevated and ambient/
control plots, then averaged for each site over all years of each experiment. Mean 
site aboveground biomass production was calculated as the annual aboveground 
biomass produced in ambient/control plots of each experiment, averaged over all 
years of the experiment. The proportion of C4 plants at each site was calculated 
as the aboveground biomass contribution of C4 plants as a proportion of the total 
aboveground biomass in control plots in each experiment, averaged over all years 
of the experiment. Mean shoot nitrogen was calculated as the mean percentage 
of nitrogen of aboveground biomass in control plots for each experiment, again 
averaged over all years for which data were available. Site fertility was also 
calculated as the total soil nitrogen content and soil carbon-to-nitrogen ratio, but 

each of these variables had a discontinuous distribution and were thought not to be 
the most reliable predictors of fertility given that some of the sites were located on 
organic-rich soils. Nonetheless, each of these fertility indicators was used in turn 
in the below analyses, with negligible effects on the analysis outcome, thus shoot 
nitrogen was selected for the final analyses.

Relationships between the CFE and potential drivers were determined by multiple 
regression analyses using R37. Beginning with all possible combinations of the five 
precipitation metrics (annual, autumn, winter, spring and summer precipitation 
totals) and the other six potential drivers (mean annual temperature, mean shoot 
nitrogen, mean annual aboveground biomass production, proportion of C4, mean 
CO2 enrichment and fumigation technique), we ranked the resultant models using 
the Akaike information criterion corrected for finite sample size (AICc), using the 
MuMIN package of R38. Model competitiveness was determined by observation of 
the difference in AICc between each model and the lowest value of AICc obtained 
(ΔAICc). Models were ranked in ascending ΔAICc value, and a distinction between 
competitive and non-competitive models was made by observing any obvious 
breaks in the sequence of ascending ΔAICc. A single two-factor model containing 
annual and spring precipitation totals was clearly superior to other models and 
had a 15% probability of being the best model among all possible models, with the 
next most competitive model only having a 7% probability of being the best model 
(Supplementary Table 2), so no coefficient averaging was necessary. This model 
had an r2 value of 0.75 (P < 0.00002), but because spring and annual precipitation 
were significantly correlated (r2 = 0.88), we replaced the annual precipitation term 
with non-spring precipitation (that is, the total precipitation in seasons other than 
spring), which was less strongly correlated with spring precipitation (r2 = 0.78). We 
also calculated the variance inflation factor (VIF) as an additional test of collinearity. 
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This was 2.6 for the spring + non-spring precipitation model—approximately half 
that for the spring + annual precipitation model (VIF = 4.5), indicating that the 
model incorporating non-spring precipitation had a substantially lower impact from 
collinearity, and far below 5 (the VIF value generally believed to cause concern39). 
However, collinearity can influence interpretation of a multiple regression relationship 
and affect predictions using a model containing collinear predictor variables. 
Therefore, we first tested whether the strength of the regression was influenced by 
the incorporation of both spring and non-spring precipitation by regressing non-
spring precipitation against spring precipitation, calculating the residuals between 
the non-spring values and the regression line and using these residual values in the 
model instead, following the method of Harrell40. This has the advantage of retaining 
the information contained in the predictor variable, but removing any collinearity 
between it (non-spring precipitation) and the remaining term (spring precipitation; 
r2 < 0.01). This model had an identical r2 value (0.747; P < 0.00002) to that of the 
original model containing spring and non-spring precipitation, indicating that the 
original model is robust and, importantly, its interpretation is not subject to error 
from collinearity. Second, collinearity can inflate the errors involved in making 
predictions, but only if predictions involve predictor variables that are not similarly 
correlated40. Thus, predictions using the model containing spring and non-spring 
precipitation would be unreliable if spring and non-spring precipitation were not 
correlated in the dataset used for predictions. Therefore, we tested the relationship 
between spring and non-spring precipitation using the entire gridded dataset of 
mean spring and non-spring precipitation for all temperate grasslands globally 
(Supplementary Fig. 1). The relationship between spring and non-spring precipitation 
was almost identical in the global temperate grassland dataset (regression 
coefficient = 0.27 ± 0.1) as in the dataset used to construct the model (regression 
coefficient = 0.28 ± 0.05). Since collinearity does not affect predictions made using 
new data that have the same degree of collinearity as the original data40, we are 
confident that the predictions using this model are robust and appropriate.

Therefore, we examined the influence of spring and non-spring precipitation 
on the CFE by multiple linear regression, also testing for an interaction between 
spring and non-spring precipitation on the CFE, which was found to be non-
significant (P = 0.24). Furthermore, we tested the relationship between mean CFE 
and all combinations between spring and non-spring precipitation and the other 
six potential, non-precipitation predictors (mean annual temperature, mean shoot 
nitrogen, proportion of C4, mean CO2 enrichment and fumigation technique; 
Supplementary Table 3) using the same methods as above. Finally, we used a 
hierarchical approach, adding each of the non-precipitation predictors in turn to 
the two-factor model and testing whether this led to a significant improvement in 
model performance using analysis of variance (Supplementary Table 4). We also 
tested the performance of the seven-term model containing all of these predictors 
(Supplementary Table 4). None of the resultant three-factor models significantly 
improved the model performance, nor did the seven-term model (Supplementary 
Table 4); thus, the most parsimonious model under all of the tests remained the 
two-factor model. Partial regression analysis was used to determine the effects, 
with 95% confidence limits, of spring and non-spring precipitation totals on the 
mean site CFE using the effects package in R41.

Additionally, we tested the impact of precipitation in and out of the growing 
season, as opposed to in and out of spring, using a two-factor model and growing 
season dates estimated for each site individually. We used both broad and narrow 
definitions of growing season as either the period encompassing non-trivial 
aboveground growth (broad) or the period of maximum aboveground biomass 
production (narrow). The variation among sites in the mean CFE was very 
poorly explained by the combination of growing season and non-growing season 
precipitation, whether the broad (r2 = 0.06; F2,16 = 0.5; P = 0.6) or narrow (r2 = 0.08; 
F2,16 = 0.7; P = 0.5) definition of growing season was used. Furthermore, neither 
growing season (broad definition: r2 = 0.04; F1,17 = 0.7; P = 0.4; narrow definition: 
r2 = 0.05; F1,17 = 0.8; P = 0.4) nor non-growing season precipitation (broad 
definition: r2 = 0.02; F1,17 = 0.4; P = 0.5; narrow definition: r2 = 0.04; F1,17 = 0.7; 
P = 0.4) was correlated with the annual CFE of a site, nor was the proportion of 
precipitation received during the growing season (broad definition: r2 = 0.003; 
F1,17 = 0.05; P = 0.8; narrow definition: r2 = 0.04; F1,17 = 0.07; P = 0.8). Hence, 
variation in the CFE among sites was not related to growing season precipitation.

We tested the impact of varying the definition of spring by either advancing  
or delaying the commencement date from 1 March/September by 10, 20, 30 or  
45 d and testing the impact this alteration had on the performance of the  
two-factor spring versus non-spring model. The duration of the spring period  
was maintained at 90 d for all comparisons. Since precipitation data were only 
available as monthly values for 3 of the 19 experiments, the spring adjustment 
analysis was done using the remaining 16 sites. Advancing the definition of  
spring substantially reduced the two-factor model’s ability to explain variation 
among sites in the mean CFE (Supplementary Fig. 4). In contrast, delaying the 
definition of spring by up to 20 d had little impact on model performance, but 
longer delays caused it to decline (Supplementary Fig. 4). Therefore, we maintained 
our definition of spring as commencing on 1 March (Northern Hemisphere) or  
1 September (Southern Hemisphere).

Data conformed to the assumptions of the statistical tests involved, as tested by 
investigation of residuals, leverage and normality, as well as using Box-Cox plots 
using the MASS package in R42. The only exception was mean annual biomass 

production of control plots, in which the single data point from the site in Ireland 
exerted excessive leverage on the relationship with the CFE. Therefore, this single 
data point was removed from subsequent analyses.

We conducted mapping and spatial analyses in ArcMap 10.3 and ESRI, 
USA. The 8 km Advanced Very High Resolution Radiometer global land-
cover classification43 product provided moderate oversampling of land-cover 
classification for wooded grasslands, grasslands and croplands that we determined 
to be representative of the model target. We added land-cover class, spring and 
non-spring precipitation to CFE modelled values using the Sample and Spatial 
Join (nearest geodesic) tools, respectively. Spring and non-spring precipitation 
values were calculated from a 10 min grid of monthly precipitation values obtained 
from the Climatic Research Unit at the University of East Anglia CRU CL version 
2.0 database, which is available (http://www.cru.uea.ac.uk/data) under the Open 
Database License. These values were used to calculate the local CFE from the 
spring + non-spring multiple regression model. We mapped all CFE values for 
locations meeting model parameters for climate zone and land cover. We visualized 
the limits of model precipitation parameters by interpolating total precipitation 
data (ordinary kriging) and classifying the resulting raster with masks applied to 
tropic and polar zones. Calculations using the geographically projected values  
of the CFE only included those sites that fell within the range of spring and  
non-spring precipitation values observed at the experimental sites.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this published 
article (and its Supplementary Information files) with the exception of the gridded 
geographic information system data, which are available from https://crudata.
uea.ac.uk/cru/data/hrg/tmc/ (precipitation data) and http://glcf.umd.edu/data/
landcover/data.shtml (land-cover data).
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