META-ANALYSIS

Responses of nitrogen concentrations and pools to multiple environmental change drivers: A meta-analysis across terrestrial ecosystems

Kai Yue^{1,2,3}* | Yan Peng⁴* | Dario A. Fornara⁵ | Koenraad Van Meerbeek^{2,3,6} | Lars Vesterdal⁴ | Wangin Yang¹ | Changhui Peng⁷ | Bo Tan¹ | Wei Zhou⁸ | Zhenfeng Xu¹ | Xiangyin Ni¹ | Li Zhang¹ | Fuzhong Wu¹ | Jens-Christian Svenning^{2,3}

Correspondence

Fuzhong Wu, Long-term Research Station of Alpine Forest Ecosystems, Provincial Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China. Email: wufzchina@163.com

Funding information

National Natural Science Foundation of China, Grant/Award Number: 31500509, 31570445, 31622018, 31670526 and 31800373: VILLUM FONDEN, Grant/Award Number: grant 16549

Editor: Xiaofeng Xu

Aim: We sought to understand how the individual and combined effects of multiple environmental change drivers differentially influence terrestrial nitrogen (N) concentrations and N pools and whether the interactive effects of these drivers are mainly antagonistic, synergistic or additive.

Location: Worldwide.

Time period: Contemporary.

Major taxa studied: Plants, soil, and soil microbes in terrestrial ecosystems.

Methods: We synthesized data from manipulative field studies from 758 published articles to estimate the individual, combined and interactive effects of key environmental change drivers (elevated CO₂, warming, N addition, phosphorus addition, increased rainfall and drought) on plant, soil, and soil microbe N concentrations and pools using meta-analyses. We assessed the influences of moderator variables on these effects through structural equation modelling.

Results: We found that (a) N concentrations and N pools were significantly affected by the individual and combined effects of multiple drivers, with N addition (either alone or in combination with another driver) showing the strongest positive effects; (b) the individual and combined effects of these drivers differed significantly between N concentrations and N pools in plants, but seldom in soils and microbes; (c) additive effects of driver pairs on N concentrations and pools were much more common than synergistic or antagonistic effects across plants, soils and microbes; and (d) environmental and experimental factors were important moderators of the individual, combined and interactive effects of these drivers on terrestrial N.

Main conclusions: Our results indicate that terrestrial N concentrations and N pools, especially those of plants, can be significantly affected by the individual and combined effects of environmental change drivers, with the interactive effects of these drivers being mostly additive. Our findings are important because they contribute to the development of models to better predict how altered N availability affects ecosystem carbon cycling under future environmental changes.

Global Ecol Biogeogr. 2019;1-35.

¹Long-term Research Station of Alpine Forest Ecosystems, Provincial Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, China

²Center for Biodiversity Dynamics in a Changing Word (BIOCHANGE), Aarhus University, Aarhus C, Denmark

³Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark

⁴Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark

⁵Sustainable Agri-Food Sciences Division, Agri-Food & Biosciences Institute (AFBI), Belfast, United Kingdom

⁶Department of Earth and Environmental Sciences, KU Leuven (University of Leuven), Leuven, Belgium

⁷Department of Biological Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada

⁸College of Resources, Sichuan Agricultural University, Chengdu, China

Abstract

^{*}These authors contributed equally to the present work.

KEYWORDS

altered rainfall, combined effects, elevated CO₂, individual effects, interactive effects, nitrogen addition, phosphorus addition, warming

1 | INTRODUCTION

Human-induced changes in the biogeochemical cycling of key nutrient elements such as nitrogen (N) can strongly influence ecosystem structure and function (Gruber & Galloway, 2008). Changes in N availability can considerably affect multiple biological processes, including plant photosynthesis, symbiotic N fixation and microbial N mineralization, with potential consequences for terrestrial carbon (C) cycling and storage (Peñuelas et al., 2013; Vitousek, 2004; Yue et al., 2016). Enhanced N availability across terrestrial ecosystems has been found to occur with simultaneous alterations in other environmental change drivers, including elevated atmospheric CO₂ (eCO₂), warming, increased rainfall (rainfall⁺) and drought, which can have divergent effects (Galloway, 2005; Peñuelas et al., 2013; Sardans et al., 2017). For example, recent meta-analyses reported that N enrichment can significantly increase plant and soil N concentrations (Lu et al., 2011), whereas eCO₂ (Deng et al., 2015) and drought (He & Dijkstra, 2014) can have the opposite effect on plant N concentrations. Despite our growing understanding of the individual effects that different environmental change drivers may have on terrestrial N concentrations, few attempts have been made to address whether and how such individual effects on N concentrations (percentage of dry mass) and N pools (absolute mass per unit area) may differ significantly across different terrestrial compartments (i.e., plants, soils, and soil microbes). How these environmental change drivers interact to affect N concentrations and N pools in different terrestrial ecosystem compartments also remains unclear.

Changes in N concentrations and N pools in response to environmental change drivers are likely to vary strongly among (and within) plants, soils, and microbial biomass (Lu et al., 2011; Sardans et al., 2017). For example, the negative effect of eCO₂ on plant N concentration (Cotrufo, Ineson, & Scott, 1998) does not necessarily indicate a reduction in the total amount of N in plants (i.e., the plant N pool) because eCO₂ could simultaneously stimulate plant biomass production (Nowak, Ellsworth, & Smith, 2004). Likewise, the negative effects of drought on plant N concentration can be reversed when plant biomass proportionally decreases more than plant N uptake under drought stress (He & Dijkstra, 2014). Human-induced phosphorus (P) fertilization also significantly influences plant N concentration (Yuan & Chen, 2015), while N-P imbalances following repeated P fertilization can alter the functions of both natural and managed ecosystems (Peñuelas et al., 2013). These findings suggest the need to disentangle plant N concentration and N pool responses from different environmental change drivers. Soil or microbial N concentrations and pools also vary in response to environmental change drivers. For example, it has been shown that N fertilization can significantly influence soil bulk density by mediating the activities of soil fauna

and microbes (Crill, Martikainen, Nykanen, & Silvola, 1994), and that the application of N alone or in combination with other nutrients (e.g., P) can affect soil N pools differently (Fornara, Banin, & Crawley, 2013). Although previous synthesis studies (Bai et al., 2013; Lu et al., 2011) have addressed the potential responses of terrestrial N pools to multiple drivers, these studies have not distinguished between N concentrations and N pools and have mainly focused on the effects of individual drivers.

Multiple environmental change drivers likely act simultaneously and influence a wide range of ecological and biogeochemical processes (Reich et al., 2006; Yue, Fornara, Yang, Peng, Peng et al., 2017); thus, the combined effects of multiple drivers on N cycling may be more important than the corresponding individual effects. For instance, a recent meta-analysis (Li, Niu, & Yu, 2016) showed how the combined effect of N and P additions on plant N concentration tends to be higher than their individual effects. On the other hand, the positive effects of eCO2 or N addition on plant N concentration may be suppressed by the presence of another driver, such as drought (Delgado-Baguerizo et al., 2013), Additionally, reductions in soil N concentrations under eCO2 can be nullified by simultaneous warming (Hovenden et al., 2008). Although warming can significantly increase both plant and soil N pools (Bai et al., 2013), it can also promote drought stress, which makes predictions of the N pool response to warming more complex and uncertain.

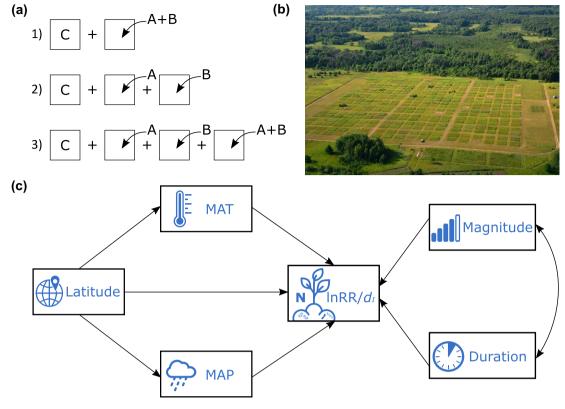
Another important knowledge gap is whether the interaction between two drivers, which is defined here as interactive effects of environmental change drivers on terrestrial N concentrations and pools, is additive or non-additive. Additive interactions occur when the combined effect of two or more drivers is equal to or not significantly different from the sum of the individual effects; otherwise, the interaction is either synergistic or antagonistic (Gurevitch, Morrison, & Hedges, 2000; Zhou et al., 2016). Both additive and non-additive effects have been found in empirical and synthesis studies. For example, the interactive effects of eCO₂ and warming on plant biomass were found to be non-additive in a grassland manipulation experiment (Mueller et al., 2016), which agrees with a meta-analysis across different ecosystem types (Dieleman et al., 2012). However, findings from other recent syntheses showed how eCO₂, warming, N addition, P addition and altered rainfall regimes generally result in additive interactions between individual drivers for plant N concentrations, plant C:N:P stoichiometry and terrestrial C and P pools (Yuan & Chen, 2015; Yue, Fornara, Yang, Peng, Li et al., 2017; Yue, Fornara, Yang, Peng, Peng et al., 2017; Yue et al., 2018). These studies further suggested that the interactive effects of multiple environmental change drivers may vary substantially depending on the tested variables and combinations of drivers.

Here, we first compiled data from 758 published articles reporting field manipulative experiments in both natural and managed ecosystems and then adopted a meta-analysis approach to explicitly compare effect sizes of individual, combined and interactive effects of eCO₂, warming, N addition, P addition, rainfall⁺ and drought on plant N, soil N [including total N, inorganic N, ammonium (NH₄⁺) and nitrate (NO₃⁻)] and soil microbial biomass N (MBN) concentrations and pools. Finally, we used structural equation models (SEMs) to assess the role of several environmental and experimental factors (i.e., moderator variables) in influencing the individual, combined and interactive effects of different environmental change drivers. The main objectives of this study were to (a) quantify the individual and combined effects of multiple drivers on N concentrations and pools in different ecosystem compartments (plants, soils, and microbial biomass), (b) assess whether the individual or combined effects of multiple drivers on N concentrations and pools differ and (c) evaluate whether the interactive effects of these drivers on N concentrations or pools are additive.

2 | MATERIALS AND METHODS

2.1 | Data extraction and compilation

The Web of Science, PubMed and Google Scholar were used to search for peer-reviewed journal articles published before 31 January 2018. We focused on field manipulative studies that included the key environmental change drivers eCO₂, warming, N addition, P addition, rainfall⁺ and drought as well as any combination of these six drivers. The criteria for inclusion in our database were as follows: (a) manipulative experiments were conducted in the field to collect data regarding at least one of the studied drivers; (b) experimental and control plots were established within the same ecosystem and contrasted in terms of only the target variable; (c) the magnitude of the treatment and the study duration were clearly recorded, and measurements of the variables in the experimental and control groups were performed at the same spatial and temporal scales; (d) the duration of the manipulative experiments was no less than one growing season; and (e) the means, sample sizes and standard deviations (SDs) or standard errors (SEs) of the chosen variables were directly provided or could be estimated from the reported data.


Plant N concentrations at both the species and community levels were directly recorded from the primary studies, and N pools were either directly recorded or calculated as the product of N concentration and plant biomass. Because most of the primary studies reported data from only mineral soil layers, we considered only the mineral soil layer in this meta-analysis. Data for soil and MBN concentrations were extracted from the primary studies, while N pools were directly extracted or determined based on the soil bulk density (if available), microbial biomass, and the corresponding N concentrations. In addition, plant biomass data at both the species and community levels were collected only when simultaneous data for N concentrations or pools were reported. When several measurements were taken at different times in a single primary study,

we used values from the last measurement to meet the statistical assumption of independence among observations in the metaanalysis (Hedges, Gurevitch, & Curtis, 1999). Furthermore, as the observations from a single primary study representing different plant compartments, ecosystem types and/or climates may not be independent, we used mixed-effects models and treated studies as random factors in the analysis (Koricheva, Gurevitch, & Mengersen, 2013). Because the number of studies assessing the combined effects of three or more drivers was too small for a meta-analysis, we considered only driver pairs in this study. When the data in primary studies were presented graphically, the figures were digitized to extract the numerical values using the free software Engauge Digitizer, version 5.1 (Free Software Foundation, Inc., Boston, MA). Climate variables [i.e., mean annual temperature (MAT) and mean annual precipitation (MAP)] were obtained directly from the primary studies or extracted from WorldClim version 2.0 (http://www.worldclim. org) using location information in the cases in which these data had not been reported.

After extraction, the data from 758 published articles (Appendix), representing 7,622 observations from all continents except Antarctica, were included in our database (see Supporting Information Table S1 and Figure S1). In this meta-analysis, we investigated the individual effects of each of the studied environmental change drivers, the combined effects of each driver pair (denoted driver 1 + driver 2) and the interactions between each driver pair (denoted driver 1 × driver 2, see Figure 1a,b). To calculate the first two types of effects, we used the natural-log response ratio (lnRR). We used InRR because it shows the least bias of the commonly used effect size metrics and its sampling distribution approximates normality (Hedges et al., 1999). In addition, as we want to know the proportional changes in the response variables relative to controls, InRR is easily interpretable. Interactive effects between two drivers could be calculated only from studies with a full factorial design (see Figure 1a). Given that few studies met this criterion, we used Hedges' d to assess interaction effects because it is an estimate of the standardized mean difference that is not biased by small sample sizes (Gurevitch & Hedges, 2001).

2.2 | Analysis of individual and combined effects

The effect of one environmental change driver or the combined effect of a driver pair was defined as the response of a variable (e.g., soil N concentration) in a treated sample compared with the value of that variable in the corresponding control (Yue, Fornara, Yang, Peng, Peng et al., 2017), and was described by lnRR (Hedges et al., 1999). The calculations of lnRR, the associated variance (ν_1) and weight (w_1) of each lnRR, and the weighted mean lnRR (lnRR $_{++}$) are described in detail in Supporting Information Text S1. The individual or combined effect was not significant (p < .05) if the 95% confidence interval (CI) of lnRR $_{++}$ overlapped with 0 (Rosenberg, Adams, & Gurevitch, 2000). We used the equation ($e^{lnRR}_{++} - 1$)×100% to calculate the net responses of N concentrations or pools to the individual or combined effects in terms of the mean percentage of change relative to the

FIGURE 1 (a) Three common experimental designs included in our database to study the effects of two environmental change drivers, A and B, with C being the control plot. Individual effects of drivers A and B were calculated based on data from study designs 2 and 3. The combined effects, A + B, were calculated based on data from designs 1 and 3, while the interactive effects, A × B, could be calculated from only study design 3 (i.e., A + B = A + B + A × B). (b) A real picture of the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. Several experiments at this research site examined the interactions between multiple environmental drivers (Photo credit: Jacob Miller, 2014, CC BY-SA 4.0). (c) An a priori conceptual structural equation model (SEM) depicting the influence of latitude, longitude, mean annual temperature (MAT), mean annual precipitation (MAP), driver magnitude, and study duration on the effect size [natural-log response ratio (lnRR) or interaction effect size (d_{ij})] of environmental change drivers on terrestrial N concentrations or pools. The same model was used for all tested drivers and driver pairs. Single-headed arrows indicate a hypothesized directional influence of one variable on another, double-headed arrows represent a correlation in which no direction is specified, and each rectangle indicates a measured variable entered in the model. Note that 'magnitude' was tested for only individual drivers and the combination N addition + P addition, in which case the ratio between the added N and P (N:P) was used

control value (%), and the effects were considered not significant at the p < .05 level if the 95% CI overlapped with 0. The $lnRR_{++}$ and associated 95% CI values were calculated using mixed-effect models in MetaWin 2.1 (Rosenberg et al., 2000).

Several environmental and experimental factors may influence the individual, combined and interactive effects on terrestrial N and were thus included in the meta-analysis as moderator variables (Koricheva et al., 2013). We categorized the constructed database into different subgroups according to ecosystem type (boreal forest, temperate forest, subtropical and tropical forest, grassland, wetland, tundra, shrubland, desert and cropland), plant functional type (woody and herbaceous), treatment magnitude, type of manipulative facility [open-top chamber (OTC), free-air $\rm CO_2$ enrichment and screen-aided $\rm CO_2$ control for e $\rm CO_2$; OTC and heater for warming], and fertilizer chemical form (NH₄NO₃, NH₄, NO₃, urea and mixture of NH₄NO₃ and urea) to assess the influence of these categorical moderator variables on effect size. The

effect of each categorical moderator on lnRR was evaluated by comparing the heterogeneity within (Q_w) and between (Q_b) moderator levels using mixed-effect models in MetaWin 2.1 (Borenstein, Hedges, Higgins, & Rothstein, 2009). To assess the influence of the continuous moderator variables latitude, MAT, MAP, treatment magnitude, and study duration, an a priori conceptual SEM (Figure 1c) was developed based on current ecological knowledge (Grace, 2006). This SEM was tested separately for each driver or driver pair. We examined the distributions of the endogenous and exogenous variables of the SEM analysis, tested their normality and transformed them when necessary. The covariance between duration and magnitude was included in the model. The analysis was conducted only when the number of data points was > 30, and we used a bootstrapping method for resampling based on 5,000 iterations when the number of data points was < 100 (Grace, 2006). The overall goodness-of-fit of the models was tested using the traditional χ^2 goodness-of-fit test and the root mean square

error of approximation index (Grace, 2006; Schermelleh-Engel, Moosbrugger, & Müller, 2003). The SEM analyses were performed with AMOS software version 22.0 (Amos Development Co., Chicago, IL).

2.3 | Analysis of interactive effects

To further assess whether interactive effects were additive, we employed Hedges' d according to established methods (Gurevitch et al., 2000). Accordingly, the interaction effect size (d_{i}) between drivers A and B was calculated by Equation 1:

$$d_{1} = \frac{(X_{AB} - X_{A}) - (X_{B} - X_{C})}{s} J(m)$$
 (1)

where X_C , X_A , X_B and X_{AB} are the means of a variable in the control, the treatment groups A and B, and their combination group (AB), respectively. The variables s and J(m) are the pooled SD and a correction term for small sample sizes, respectively, which were calculated by Equations and .

$$s = \sqrt{\frac{\left(n_{c} - 1\right)s_{c}^{2} + \left(n_{A} - 1\right)s_{A}^{2} + \left(n_{B} - 1\right)s_{B}^{2} + \left(n_{AB} - 1\right)s_{AB}^{2}}{n_{c} + n_{A} + n_{B} + n_{AB} - 4}}$$
(2)

$$J(m) = 1 - \frac{3}{4m - 1} \tag{3}$$

where $n_{\rm C}$, $n_{\rm A}$, $n_{\rm B}$ and $n_{\rm AB}$ are the corresponding sample sizes; $s_{\rm C}$, $s_{\rm A}$, $s_{\rm B}$ and $s_{\rm AB}$ are the SDs in the control and experimental groups of A, B and their combination (AB), respectively; and m is the degrees of freedom ($m=n_{\rm c}+n_{\rm A}+n_{\rm B}+n_{\rm AB}-4$). The variance in $d_{\rm I}$ (ν) was estimated by Equation 4:

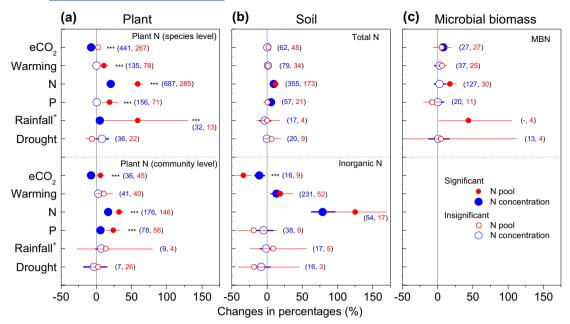
$$v = \frac{1}{n_c} + \frac{1}{n_A} + \frac{1}{n_B} + \frac{1}{n_{AB}} + \frac{d_I^2}{2(n_c + n_A + n_B + n_{AB})}$$
(4)

The weighted mean $d_1(d_{++})$ was calculated according to Equation 5:

$$d_{++} = \frac{\sum_{i=1}^{l} \sum_{j=1}^{k} w_{ij} d_{ij}}{\sum_{i=1}^{l} \sum_{i=1}^{k} w_{ii}}$$
 (5)

where I is the number of groups, k is the number of comparisons in the ith group, w is the study weight [which is also the reciprocal of the variances $(1/\nu)$] and d is the size of the individual effect. The 95% CI of d_{++} was calculated as $d_{++} \pm C_{\alpha/2} \times s(d_{++})$, where $C_{\alpha/2}$ is the two-tailed critical value of the standard normal distribution. When the number of data points was < 20, we used a bootstrapping method for resampling to obtain the 2.5% lowest and highest values as CIs based on 5,000 iterations (Janssens et al., 2010; Zhou et al., 2016). The interactions between two drivers were classified as additive, synergistic or antagonistic (Gurevitch et al., 2000; Zhou et al., 2016). An interactive effect was considered additive if the 95%

CI overlapped with 0. If the individual effects of driver pairs were either both negative or have opposite directions, the interactions whose total effects were less than 0 were synergistic, and those whose total effects were greater than 0 were antagonistic. When the individual effects were both positive, the interactions were interpreted conversely (i.e., those > 0 were synergistic, and those < 0 were antagonistic).


3 | RESULTS

3.1 | Individual effects of environmental change drivers on terrestrial N concentrations and pools

The responses of plant N concentrations and pools to individual drivers differed significantly (p < .001) at both species and community levels (Figure 2a). Specifically, eCO2 significantly decreased plant N concentrations by 7% at both species and community levels, but had no effect or a significantly positive (6%) effect on plant N pools at species and community levels. Warming significantly increased plant N pool at species level by an average of 11%, and N addition stimulated plant N concentrations and pools at both species and community levels. P addition significantly increased plant N concentration by 6% at the community level and plant N pools at species (19%) and community levels (24%). Rainfall⁺ showed significant effects on plant N concentration (5%) at the species level. Drought had no effect on plant N concentration or N pools. The responses of plant biomass to individual drivers were generally significantly correlated with the responses of the corresponding plant N pools at both species and community levels, but were not correlated with plant N concentration (Table 1). Soil N concentration significantly increased by 10 and 6% under N and P additions, respectively, while soil N pool was significantly enhanced only by N addition (12%, Figure 2b). The concentration and pool of soil inorganic nitrogen (SIN) significantly decreased by 11 and 34%, respectively, under eCO₂, but significantly increased by 14 and 19% under warming and by 79 and 125% under N addition. The SIN, soil NH_4^+ and soil NO₃ were rarely affected by the individual drivers (Supporting Information Figure S2). In addition, MBN concentration significantly increased by 8% under eCO2, while MBN pool increased by 17% under N addition.

3.2 | Combined and interactive effects of environmental change drivers on terrestrial N concentrations and pools

The combined effects of N addition + eCO $_2$, N addition + warming, N addition + P addition and N addition + rainfall⁺ significantly increased plant N concentration at species level by 4, 50, 13 and 29%, respectively. Their effects on the corresponding N pool were significantly higher, with increases of 44, 223, 89 and 226%, respectively (Figure 3a). In contrast, eCO $_2$ + warming significantly decreased plant N concentration at the species level by 10%, but had no effects

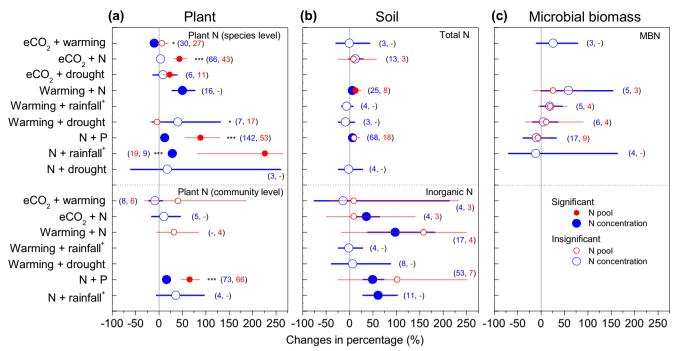
FIGURE 2 Individual effects of multiple environmental change drivers on terrestrial N concentrations and pools in (a) plants, (b) soils and (c) soil microbial biomass. The results are expressed as the percentage change relative to the control (%). Values indicate the means with 95% confidence intervals (CIs), and sample size numbers for N concentrations and pools are shown in parentheses. The effects of environmental change drivers are significant when the 95% CIs do not overlap with 0. The results are not presented when the sample size is < 3. Asterisks indicate significant (***p < .001) differences between the responses of N concentrations and pools to a specific driver. eCO₂ = elevated CO₂; N = nitrogen addition; P = phosphorus addition; rainfall* = increased rainfall; MBN = microbial biomass nitrogen

on plant N pool at the species level. Both plant N concentration and N pool at the community level were stimulated significantly by N addition + P addition, with an average increase of 16% and 66%, respectively. In addition, the responses of plant biomass and N pool to the combined effects of environmental change drivers showed significant positive correlations (Table 1).

There was no significant difference between N concentration and N pool in relation to the combined effects of environmental change drivers for soil or microbial biomass (Figure 3b). Soil total N concentration significantly increased by 6% under warming + N addition and N addition + P addition, while soil total N pool was significantly stimulated (12%) only by N addition + P addition. The combined drivers eCO_2 + N addition, warming + N addition, warming + drought and N addition + rainfall⁺ significantly increased SIN by 36%, 97%, 49% and 61%, respectively, but had no effect on SIN pool. Soil NO_3^- concentration and pool responded similarly to SIN, while NH_4^+ concentration was enhanced only by eCO_2 + N addition (+39%) or N addition + P addition (+45%) (Supporting Information Figure S3). However, neither the concentration nor the pool of MBN was affected by the combined effects (Figure 3c).

In terms of the interactive effects, additive effects on terrestrial N concentrations and pools were more frequently found than synergistic and antagonistic effects across all the driver pairs tested in our study (Figure 4). With the exception of an antagonistic effect of N addition × rainfall⁺, the interactive effects of other driver pairs on plant N concentration at the species level were all additive (Figure 4a). The mean interactive effect of N addition ×

P addition on plant N concentration at the community level was antagonistic, but their effect on plant N pool at both the species and community level was synergistic. All interactive effects on the concentrations and pools of soil total N and SIN were additive except for that of N addition \times P addition on SIN concentration, which was synergistic. Likewise, similar patterns were found for NH₄⁺ and NO₃⁻ (Supporting Information Figure S4), and the interactive effects of all driver pairs on MBN concentrations and pools were additive (Figure 4). Moreover, despite the observation of several overall non-additive interactive effects, the frequency distribution of interaction types indicates that additive interactions were substantially predominant across all the driver pairs (Figure 4).


3.3 | Influences of moderator variables

Moderator variables such as ecosystem type, experimental design factors (e.g., study duration, facility, treatment magnitude and fertilizer form), latitude and climate (i.e., MAT and MAP) all mediated the responses of terrestrial N concentrations and pools to individual, combined and interactive effects of the investigated drivers (Figure 5 and Supporting Information Figures S5–S13). For example, the individual effects of eCO $_2$ on plant N concentration ($Q_b = 15.25, p = .033$) and pool ($Q_b = 18.50, p = .010$) varied significantly with ecosystem type (Supporting Information Figure S5a) and were also significantly influenced by the magnitudes of eCO $_2$, MAP and study duration (Supporting Information Figure S13a). Likewise, the

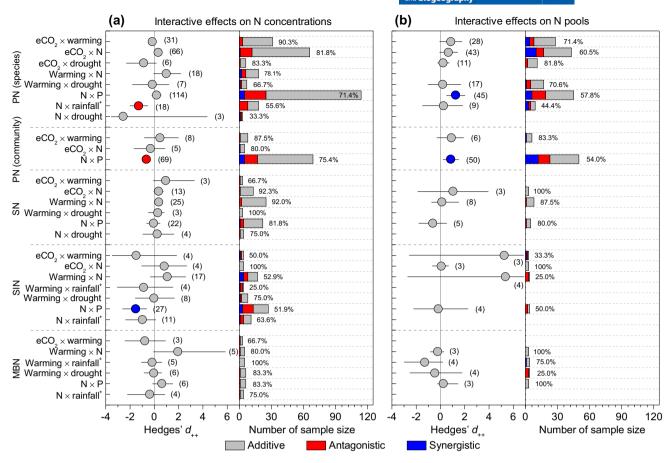
Pearson correlation coefficients (r) between the effect sizes of global change driver (natural-log response ratio, InRR) on plant biomass and terrestrial N concentrations (-C) and TABLE 1 pools (-P)

() () () ()										
Terrestrial N	eCO ₂	Warming	N addition	P addition	Rainfall ⁺	Drought	eCO ₂ + N	Д + Х	N + rainfall ⁺	eCO ₂ + warming
PN-C (species)	102 (136)	.152 (46)	.054 (203)	104 (51)	085 (11)	.184 (10)	.372 (15)	255 (25)	028 (9)	476 (13)
PN-P (species)		.801*** (43)	.925*** (216)	.942*** (45)	.907*** (11)	.697* (10)	.989*** (15)	.960***(35)	(6) *** 696.	(6) *609.
PN-C (community)	405 (11)	.002 (8)	254* (92)	064 (50)				130 (45)		
PN-P (community)	.971*** (15)	.843*** (15)	.608*** (93)	.873*** (44)		.880***(12)		.797*** (42)		
SN-C		<.001 (13)	099 (105)	042 (22)				216 (30)		
SN-P		.046 (30)	.078 (56)					036 (14)		
SIN-C		.227 (11)	.148 (59)	037 (23)				113 (27)		
SIN-P			.166 (27)							
NH ₄ +C		.385 (14)	.205 (205)	.130 (17)				192 (20)		
NH ₄ ⁺ -P		.617 (10)	(8) 609.					327 (9)		
NO ₃ -C		.444 (13)	058 (54)	061 (17)				318 (20)		
NO ₃ -P			.750 (8)					009 (9)		
MBN-C			654** (17)							
MBN-P		.155 (23)								

Note. PN = plant nitrogen; SN = soil total nitrogen; SIN = soil inorganic nitrogen; MBN = microbial biomass nitrogen; $eCO_2 = elevated$ eCO_2 ; rainfall* = increased rainfall. Values in parentheses indicate the sample size of observations. Correlation analysis was conducted only when the number of data points was > 8. Asterisks indicate significant (p < .05. "p < .01. "p < .001) correlations.

FIGURE 3 Combined effects of multiple environmental change drivers on terrestrial N concentrations and pools in (a) plants, (b) soils and (c) soil microbial biomass. The results are expressed as the percentage change relative to the control (%). Values indicate the means with 95% confidence intervals (Cls), and sample size numbers for N concentrations and pools are shown in parentheses. The effects of environmental change drivers are significant when the 95% Cls do not overlap with 0. The results are not presented when the sample size is < 3. Asterisks indicate significant (p < 0.05.**p < 0.01) differences between the responses of N concentrations and pools to a specific driver pair. eCO₂ = elevated CO₃; N = nitrogen addition; P = phosphorus addition; rainfall* = increased rainfall; MBN = microbial biomass nitrogen

combined effects of N addition + P addition on plant N concentration and pool significantly varied with ecosystem type (Supporting Information Figure S18c, d) and were significantly influenced by latitude, MAT and MAP in some cases (Figure 5a), although such impacts on N concentrations and pools vary with terrestrial compartment. The effect of $eCO_2 \times warming$ on plant N concentrations was significantly influenced by latitude and MAP, while N addition $\times P$ addition on plant N pools at both species and community levels were significantly modulated by experiment duration (Figure 5b).

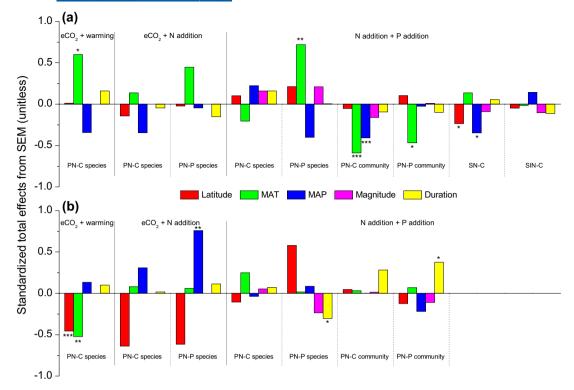

4 | DISCUSSION

Our results show how N concentrations and N pools in plants, soils, and microbial biomass are influenced by the individual and combined effects of different environmental change drivers. We found that N concentrations and N pools in plants show higher sensitivity to these driver effects than those in soils and in microbial biomass. The different responses between plant N concentrations and N pools to the individual or combined effects of multiple drivers suggest that mixing plant N concentration and N pool data can be problematic when plant N cycling is assessed under different environments. However, such a difference was seldom observed in soils or microbial biomass. In addition, our results show that the interactive effects of multiple drivers on N concentrations and N pools of plants, soils and

microbes are more likely to be additive. These novel findings contribute to improving our understanding of how terrestrial N cycling among plants, soils and microbes may shift under the simultaneous effects of multiple environmental change drivers.

4.1 | Differential individual effects of environmental change drivers on terrestrial N concentrations and pools

The magnitude and direction of environmental change effects on terrestrial N vary depending on the identity of the driver and the nature of the N concentration or pool (i.e., plants vs. soils vs. soil microbial biomass). For example, our results show how eCO2 significantly decreased plant N concentration at both species and community levels, but significantly increased plant N pool at the community level (Figure 2a). Net negative effects of eCO2 on plant N concentration may occur because of (a) dilution of N by increased photosynthetic assimilation of C; (b) lower transpiration-driven mass flow of N in soils due to decreased stomatal conductance under eCO₂; and (c) increased rates of N loss via volatilization and/or root exudation, which may further decrease tissue N concentration (Taub & Wang, 2008). The increase in plant N pools under eCO₂ could be related to eCO₂-induced increases in biological N fixation or increases in root growth for N uptake (Luo et al., 2004). Warming-induced net N accumulation in plants (i.e., plant N pool) may be attributed to enhanced


FIGURE 4 Interactive effects of multiple environmental change drivers on terrestrial (a) N concentrations and (b) N pools and the corresponding frequency distribution of interaction types among individual observations of driver pairs. Dots represent means with 95% confidence intervals (CIs), and sample size numbers are shown in parentheses. If the 95% CI overlapped with 0, the interactive effect was considered to be additive; otherwise, the interactive effect was synergistic or antagonistic. The results are not presented when the sample size is < 3. Because many studies reported only combined effects, sample sizes may be smaller than the corresponding ones in Figure 3. Values in percentages indicate the proportions of additive interactions among all the individual observations of a specific response variable. PN = plant nitrogen; SN = soil total nitrogen; SIN = soil inorganic nitrogen; MBN = microbial biomass nitrogen; eCO₂ = elevated CO₂; N = nitrogen addition; P = phosphorus addition; rainfall⁺ = increased rainfall

plant growth that is being stimulated by changes in soil N availability (Vitousek & Howarth, 1991) and in plant phenology (Luo, Sherry, Zhou, & Wan, 2009) under warming conditions. This idea was supported by our results showing that SIN concentration and pool significantly increased in the warming treatments (see Figure 2a).

Nitrogen addition generally showed positive effects on plant N concentrations and N pools (Figure 2a) and on soil N pools (Figure 2b). These findings agree with the results of previous meta-analyses, which showed that N addition had positive effects on plant N concentrations and N pools (Bai et al., 2013; Lu et al., 2011). The significant positive effects that P addition and rainfall had on plant N concentrations and pools (Figure 2a) may be attributed to the fact that both P and water availability are limiting factors for plant growth and N uptake (Li et al., 2016). In contrast, drought showed minimal effects on plant, soil and MBN concentrations and pools. MBN pools were significantly increased by eCO₂ (Figure 2c). Previous studies showed that soil microbial numbers, metabolic activity and biomass can be increased by eCO₂

(Sadowsky & Schortemeyer, 1997). Thus, this increase can be attributed to eCO_2 increasing the microbial utilization of soil organic matter (Carney, Hungate, Drake, & Megonigal, 2007) and N fixation ability through stimulating the activities of related enzymes (Cheng et al., 2011; He et al., 2010).

Our results show that the responses of plant N concentrations and N pools to the individual effects of multiple drivers can vary significantly (Figure 2a), suggesting that the effects on these two variables should be separately tested when plant N dynamics are assessed in future studies. We found that while the responses of plant biomass to these drivers were significantly correlated with the corresponding plant N pools, they were not related to plant N concentrations (Table 1). This phenomenon is likely to occur when one driver or driver pair increases plant biomass without changing N concentration, thus resulting in an increase in the N pool (Doiron, Gauthier, & Lévesque, 2014). Our evidence is that the responses of soil N and MBN to the individual drivers are weaker than plant N responses (Figure 2), which may partly occur because soil N pools

FIGURE 5 Standardized total effects (direct plus indirect effects) derived from structural equation models (SEMs) evaluating the influence of moderator variables (depicted in different colours) on (a) the combined effects (natural-log response ratio, lnRR) and (b) interactive effects (interaction effect size, d_1) of driver pairs on terrestrial N concentrations (-C) and pools (-P). Note that the magnitude of the tested driver pairs was assessed in only N and P combinations, where the ratio between the added N and P (N:P ratio) is used. Asterisks indicate significant (p < 0.05. p < 0.01) direct effects. See Supporting Information Table S2 for the goodness-of-fit tests of the SEMs, and Supporting Information Figure S13 for the results derived from the SEMs evaluating the influence of moderator variables on the individual effects. ecc_2 = elevated ecc_2 : PN = plant nitrogen; SN = soil total nitrogen; SIN = soil inorganic nitrogen; MAT = mean annual temperature; MAP = mean annual precipitation

are much larger than plant N pools (Nieder & Benbi, 2008) and thus expected to respond more slowly to environmental change. In addition, changes in soil N pools may also be difficult to detect because of the higher inherent variation in soil organic matter under environmental change.

4.2 | Combined effects and the interactions of driver pairs

Our results show that $eCO_2 + N$ addition, $eCO_2 + d$ rought and warming + N addition stimulated plant N concentrations and N pools at the species level (Figure 3a). The positive effects of $eCO_2 + N$ addition on plant N concentrations and N pools may be attributed to the fact that additional N input meets the increased plant N demand under eCO_2 (Reich, Hobbie, & Lee, 2014). The stimulating effects of $eCO_2 + d$ rought on plant N pools were mainly attributed to the net positive effect of eCO_2 because, as shown in our results, drought had no effect on plant N pools and the interactive effect of $eCO_2 \times d$ rought was additive.

Plant growth and plant biomass production in terrestrial ecosystems are primarily limited by N availability or are co-limited by P availability (Elser et al., 2007; Vitousek, Porder, Houlton, &

Chadwick, 2010). Larger inputs of one nutrient (either N or P) will stimulate plant growth but also lead to increased demand for the other nutrient. Thus, the simultaneous addition of N and P can significantly contribute to increasing plant N uptake rates, which can lead to increased N concentrations and N pools (Li et al., 2016). N addition × P addition on plant N pools was indeed synergistic at both species and community levels, albeit antagonistic for plant N concentrations at community level (Figure 4). N addition increases the demand for P by stimulating plant growth; thus, extra P addition could counterbalance this N-induced P limitation, allowing the full N fertilization effect to be expressed (You et al., 2018). In this case, the N addition effect could be larger in the combined treatment with P than in the N-only treatment, resulting in a synergistic N addition × P addition effect. However, the occurrence of such a synergistic effect is conditional, as the interactive effect was significantly influenced by experimental and environmental factors such as latitude and study duration (see Figure 5b). The full expression of the N addition effect with additional P input can be conditional because net N addition effects on plant N uptake are soil dependent and thus are influenced by multiple biogeochemical factors (Niu et al., 2016). When increases in plant biomass are larger than increases in N uptake, N addition × P addition effects on plant N concentration

could be antagonistic but could become synergistic for N pools as a result of increases in N mass. However, despite these non-additive effects, our results indicated that additive effects were much more common across individual observations and that the overall effect of N addition \times P addition on plant N concentrations at the species level was additive.

We found that N addition + rainfall* had significant positive effects on plant N concentrations and N pools at the species level (Figure 3a) and that the mean interactive effect of N addition × rainfall* on plant N concentrations was antagonistic (Figure 4). Water availability is an important factor regulating ecosystem primary production, and increased water input generally stimulates biomass production through increased uptake of limiting nutrients such as N (Li, Lin, Taube, Pan, & Dittert, 2011). However, although N addition can enhance plant N uptake, it can also decrease plant N use efficiency (Lü, Dijkstra, Kong, Wang, & Han, 2014); thus, the interaction of N with rainfall* can be antagonistic for plant N concentrations. Nevertheless, the additive interactions of N addition × rainfall* on plant N concentrations remained predominant at the species level.

Soil total N concentration was significantly enhanced by warming + N addition and N addition + P addition (Figure 3b). Although N addition alone significantly increased soil N concentration, further positive effects on soil total N occurred when the N fertilization effect (i.e., N-induced increases in plant N input to soils) was enhanced by warming or P addition (Bai et al., 2013). Because the SIN pool is smaller than the soil total N pool (Benbi & Richter, 2003), the variations in SIN can be more sensitive than the variations in the soil total N pool to environmental change drivers, as we found in this study (Figure 3b). Common additive interactions were also observed for soil total N and SIN, although we observed an overall synergistic effect of N addition × P addition on SIN concentration (Figure 4). N addition can increase phosphatase activity and thus soil P availability (Olander & Vitousek, 2000), but this N-induced potential increase in P availability is usually insufficient to balance the accompanying increased P limitation. Thus, the simultaneous addition of P and N would enhance SIN because P addition can also stimulate rates of N fixation and increase N availability (Crews, Farrington, & Vitousek, 2000). Hence, the synergistic effects of N addition × P addition on SIN concentration are not unrealistic. In addition, the overall synergistic effect on SIN could result from the large weight that individual synergistic observations may have relative to more common (> 50%) additive effects (Zhou et al., 2016). We observed similar patterns of additive interactive effects on MBN concentrations. However, in contrast to plant and soil N, soil MBN exhibited no significant response to the combined effects of driver pairs, which may be attributed to the small sample size that limited the breadth of our analysis (Loladze, 2014).

4.3 | Moderating effects of environmental and experimental factors

Moderator variables, such as environmental and experimental factors, which affect the individual effects of environmental change drivers on specific ecosystem properties, have been highlighted and discussed in previous studies (Bai et al., 2013; Li et al., 2016; Lu et al., 2011: Xia & Wan, 2008), Similarly, our results revealed that such moderator variables significantly influence the combined and interactive effects of driver pairs on plant and soil N concentrations and pools. For example, the combined effects of eCO₂ + N addition on plant N concentrations and pools significantly varied with ecosystem type, with significantly positive effects in grassland, but no effects in tropical forests. This difference may be because eCO2-induced nutrient limitations were related to not only N, but also other nutrients such as P (Winter, Garcia, Gottsberger, & Popp, 2001), whose availability is typically limited in tropical forests (Elser et al., 2007). The interactive effects of eCO₂ × N addition on plant N were also significantly affected by moderator variables such as latitude and MAP (Figure 5b). As discussed above, driver effects are expected to be environmentally dependent. Confirming this expectation, our results suggest that MAP influences the extent to which driver effects are expressed and modulates the interactive effects of driver pairs on N cycling. Likewise, we found that the effects of N addition + P addition and N addition × P addition on the concentrations and pools of plant and soil N were significantly modulated by latitude, MAT, MAP and experimental duration (Figure 5b and Supporting Information Figure S13). This relationship could be attributed to ecosystem N cycling differing along gradients generated by these environmental and experimental factors (Bai et al., 2013; Lu et al., 2011). Moreover, the effect size of N addition + P addition on soil NO₃ concentration was significantly positively correlated with the duration of the manipulation study (Supporting Information Figure S13), indicating that long studies are necessary to completely assess environmental change effects on terrestrial N pools.

4.4 | Uncertainty analysis and limitations

Although our meta-analysis provides new evidence of how the individual, combined and interactive effects of multiple environmental change drivers might influence terrestrial N concentrations and N pools, significant uncertainty still remains. First, primary studies assessing the effects of environmental changes on plants, soils and microbes are not abundant enough and unequally distributed geographically, thus limiting our ability to conduct a global analysis of N cycling among different ecosystem components. Evaluating combined effects is even more challenging because the small sample sizes of data for many driver pairs hampered our ability to quantify the nature of the interactions. Additionally, the lack of data for other driver pairs and potential combinations of three or more drivers reduced the breadth of our analysis. Second, published studies on global change effects on N dynamics are strongly biased towards the Northern Hemisphere (see Supporting Information Figure S1); thus, the database failed to represent ecosystem types equally at the global scale, especially savanna and tropical forest ecosystems. Third, in terms of statistics, the observation-weighted approach that we used here might overestimate the amount of additive interactions associated with large variance in some observations (Gurevitch et al., 2000; Zhou et al., 2016). Nevertheless, our statistical analysis showed that the average weights of the interaction (d_l) for significant results (synergistic and antagonistic effects) were similar to those for the non-significant interactions (additive effects) (see Supporting Information Table S3). This result suggests that overestimation of additive interactions should not be an issue (Zhou et al., 2016).

4.5 | Implications and perspectives

Our study shows how plant N concentrations and N pools were differently affected by the individual and combined effects of multiple environmental change drivers, indicating that merging these two N variables would potentially be misleading when assessing the response of plant N dynamics to environmental change. The weak responses of soil and microbial N concentrations and N pools (compared to plants) to both individual and combined effects of multiple drivers suggest that soils and soil microbes are less sensitive than plants to environmental change or that their responses are more difficult to detect. Most importantly, our study suggests that responses of N concentrations and N pools in different terrestrial compartments to the interactive effects of multiple drivers are more likely to be additive than synergistic or antagonistic. These common additive effects of driver pairs on N concentrations and pools should be incorporated into ecosystem models that aim to predict how altered N availability affects global C sinks. Future studies could address what underlying biogeochemical mechanisms enhance the stability of soils and soil microbes to environmental change. Finally, well-designed long-term experiments that simultaneously assess effects of multiple drivers on ecosystem compartments are urgently needed to better capture the dynamics of terrestrial N cycling and their consequences for terrestrial C storage under future environmental change scenarios.

ACKNOWLEDGMENTS

We are grateful to the corresponding editor and two anonymous referees for their insightful comments and very useful suggestions on the manuscript. We also would like to thank all scientists whose data and work were included in this study. This research was financially supported by J.-C.S.'s VILLUM Investigator project 'Biodiversity Dynamics in a Changing World' funded by VILLUM FONDEN (grant 16549) and the National Natural Science Foundation of China (grants 31800373, 31622018, 31670526, 31570445 and 31500509).

CONFLICT OF INTEREST

The authors declared no conflict of interest.

DATA ACCESSIBILITY

All the data used in the meta-analysis are included in the Supporting Information.

ORCID

Kai Yue https://orcid.org/0000-0002-7709-8523

Yan Peng https://orcid.org/0000-0001-7314-2016

Wanqin Yang https://orcid.org/0000-0002-7033-4773

Fuzhong Wu https://orcid.org/0000-0003-0411-5908

REFERENCES

- Bai, E., Li, S., Xu, W., Li, W., Dai, W., & Jiang, P. (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199(2), 441–451. https://doi.org/10.1111/nph.12252
- Benbi, D. K., & Richter, J. (2003). Nitrogen daynamics. In D. K. Benbi & R. Nieder (Eds.), *Handbook of processes and modeling in the soil-plant system* (pp. 409–481). New York, NY: Haworth.
- Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2009). *Introduction to meta-analysis*. Chichester, UK: John Wiley & Sons.
- Carney, K. M., Hungate, B. A., Drake, B. G., & Megonigal, J. P. (2007). Altered soil microbial community at elevated CO₂ leads to loss of soil carbon. Proceedings of the National Academy of Sciences USA, 104(12), 4990–4995. https://doi.org/10.1073/pnas.0610045104
- Cheng, L., Booker, F. L., Burkey, K. O., Tu, C., Shew, H. D., Rufty, T. W., ... Hu, S. (2011). Soil microbial responses to elevated ${\rm CO_2}$ and ${\rm O_3}$ in a nitrogen-aggrading agroecosystem. *PLoS ONE*, 6(6), e21377. https://doi.org/10.1371/journal.pone.0021377
- Cotrufo, M. F., Ineson, P., & Scott, A. (1998). Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Global Change Biology*, 4(1), 43–54. https://doi.org/10.1046/j.1365-2486.1998.00101.x
- Crews, T. E., Farrington, H., & Vitousek, P. M. (2000). Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of *Metrosideros polymorpha* with long-term ecosystem development in Hawaii. *Ecosystems*, 3(4), 386–395. https://doi.org/10.1007/s100210000034
- Crill, P., Martikainen, P., Nykanen, H., & Silvola, J. (1994). Temperature and N fertilization effects on methane oxidation in a drained peatland soil. *Soil Biology and Biochemistry*, 26(10), 1331–1339. https://doi.org/10.1016/0038-0717(94)90214-3
- Delgado-Baquerizo, M., Maestre, F. T., Gallardo, A., Bowker, M. A., Wallenstein, M. D., Quero, J. L., ... Soliveres, S. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. *Nature*, 502(7473), 672–676.
- Deng, Q., Hui, D., Luo, Y., Elser, J., Wang, Y.-P., Loladze, I., ... Dennis, S. (2015). Down-regulation of tissue N: P ratios in terrestrial plants by elevated CO₂. Ecology, 96(12), 3354–3362. https://doi. org/10.1890/15-0217.1
- Dieleman, W. I., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M. J., Larsen, K. S., ... Dukes, J. S. (2012). Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO₂ and temperature. Global Change Biology, 18(9), 2681–2693. https://doi.org/10.1111/j.1365-2486.2012.02745.x
- Doiron, M., Gauthier, G., & Lévesque, E. (2014). Effects of experimental warming on nitrogen concentration and biomass of forage plants for an arctic herbivore. *Journal of Ecology*, 102(2), 508–517. https://doi.org/10.1111/1365-2745.12213
- Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., ... Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. *Ecology Letters*, 10(12), 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x
- Fornara, D. A., Banin, L., & Crawley, M. J. (2013). Multi-nutrient vs. nitrogenonly effects on carbon sequestration in grassland soils. *Global Change Biology*, *19*(12), 3848–3857. https://doi.org/10.1111/gcb.12323

- Galloway, J. N. (2005). The global nitrogen cycle: Past, present and future. *Science in China Series C: Life Sciences*, 48(2), 669–678. https://doi.org/10.1007/BF03187108
- Grace, J. B. (2006). Structural equation modeling and natural systems. UK: Cambridge University Press.
- Gruber, N., & Galloway, J. N. (2008). An earth-system perspective of the global nitrogen cycle. *Nature*, 451(7176), 293–296.
- Gurevitch, J., & Hedges, L. V. (2001). Meta-analysis: Combining the results of independent experiments. In S. Scheiner & J. Gurevitch (Eds.), Design and analysis of ecological experiments (2nd ed., pp. 347–369). New York, NY: Oxford University Press.
- Gurevitch, J., Morrison, J. A., & Hedges, L. V. (2000). The interaction between competition and predation: A meta-analysis of field experiments. The American Naturalist, 155(4), 435–453.
- He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 204(4), 924–931. https://doi.org/10.1111/nph.12952
- He, Z., Xu, M., Deng, Y., Kang, S., Kellogg, L., Wu, L., ... Zhou, J. (2010). Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO₂. Ecology Letters, 13(5), 564–575. https://doi.org/10.1111/j.1461-0248.2010.01453.x
- Hedges,L.V.,Gurevitch,J.,&Curtis,P.S.(1999).Themeta-analysis of response ratios in experimental ecology. *Ecology*, 80(4), 1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
- Hovenden, M. J., Newton, P., Carran, R., Theobald, P., Wills, K., Vander Schoor, J., ... Osanai, Y. (2008). Warming prevents the elevated CO₂-induced reduction in available soil nitrogen in a temperate, perennial grassland. *Global Change Biology*, *14*(5), 1018–1024. https://doi.org/10.1111/j.1365-2486.2008.01558.x
- Janssens, I., Dieleman, W., Luyssaert, S., Subke, J.-A., Reichstein, M., Ceulemans, R., ... Matteucci, G. (2010). Reduction of forest soil respiration in response to nitrogen deposition. *Nature Geoscience*, 3(5), 315–322. https://doi.org/10.1038/ngeo844
- Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of metaanalysis in ecology and evolution. Princeton, NJ: Princeton University Press.
- Li, J., Lin, S., Taube, F., Pan, Q., & Dittert, K. (2011). Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. *Plant and Soil*, 340(1), 253–264. https://doi.org/10.1007/s11104-010-0612-y
- Li, Y., Niu, S., & Yu, G. (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 22(2), 934–943. https://doi.org/10.1111/gcb.13125
- Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated ${\rm CO}_2$ depletes minerals at the base of human nutrition. *Elife*, 3, e02245. https://doi.org/10.7554/eLife. 02245
- Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., ... Li, B. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 189(4), 1040–1050. https://doi. org/10.1111/j.1469-8137.2010.03563.x
- Lü, X., Dijkstra, F. A., Kong, D., Wang, Z., & Han, X. (2014). Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. *Scientific Reports*, 4, 4817. https://doi.org/10.1038/srep04817
- Luo, Y., Sherry, R., Zhou, X., & Wan, S. (2009). Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Global Change Biology: Bioenergy, 1(1), 62–74. https://doi.org/10.1111/j.1757-1707.2008.01005.x
- Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., ... Field, C. B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *BioScience*, 54(8), 731–739. https://doi.org/10.1641/0006-3568(2004) 054[0731:PNLOER]2.0.CO;2

- Mueller, K. E., Blumenthal, D. M., Pendall, E., Carrillo, Y., Dijkstra, F. A., Williams, D. G., ... Morgan, J. A. (2016). Impacts of warming and elevated CO₂ on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. *Ecology Letters*, 19(8), 956–966. https://doi.org/10.1111/ele.12634
- Nieder, R., & Benbi, D. K. (2008). Carbon and nitrogen in the terrestrial environment. New York, NY: Springer Science & Business Media.
- Niu, S., Classen, A. T., Dukes, J. S., Kardol, P., Liu, L., Luo, Y., ... Templer, P. H. (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. *Ecology Letters*, 19(6), 697–709. https://doi. org/10.1111/ele.12591
- Nowak, R. S., Ellsworth, D. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO₂ Do photosynthetic and productivity data from FACE experiments support early predictions? *New Phytologist*, *162*(2), 253–280. https://doi.org/10.1111/j.1469-8137.2004.01033.x
- Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. *Biogeochemistry*, 49(2), 175–191. https://doi.org/10.1023/A:1006316117817
- Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L., ... Llusia, J. (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. *Nature Communications*, 4, 2934. https://doi.org/10.1038/ncomms3934
- Reich, P. B., Hobbie, S. E., & Lee, T. D. (2014). Plant growth enhancement by elevated CO₂ eliminated by joint water and nitrogen limitation. Nature Geoscience, 7, 920–924. https://doi.org/10.1038/ngeo2284
- Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., ... Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO₂. *Nature*, 440(7086), 922–925.
- Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). *MetaWin:* Statistical software for meta-analysis, version 2. Sunderland, MA: Sinauer Associates.
- Sadowsky, M., & Schortemeyer, M. (1997). Soil microbial responses to increased concentrations of atmospheric CO₂. *Global Change Biology*, 3(3), 217–224. https://doi.org/10.1046/j.1365-2486.1997.00078.x
- Sardans, J., Grau, O., Chen, H. Y., Janssens, I. A., Ciais, P., Piao, S., & Peñuelas, J. (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. *Global Change Biology*, 23(9), 3849–3856. https://doi.org/10.1111/gcb.13721
- Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. *Methods of Psychological Research Online*, 8(2), 23–74.
- Taub, D. R., & Wang, X. (2008). Why are nitrogen concentrations in plant tissues lower under elevated CO₂? A critical examination of the hypotheses. *Journal of Integrative Plant Biology*, *50*(11), 1365–1374. https://doi.org/10.1111/j.1744-7909.2008.00754.x
- Vitousek, P. (2004). Nutrient cycling and limitation: Hawai'i as a model system. NJ: Princeton University Press.
- Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: How can it occur? *Biogeochemistry*, 13(2), 87–115.
- Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. *Ecological Applications*, 20(1), 5–15. https://doi.org/10.1890/08-0127.1
- Winter, K., Garcia, M., Gottsberger, R., & Popp, M. (2001). Marked growth response of communities of two tropical tree species to elevated CO₂ when soil nutrient limitation is removed. *Flora*, 196(1), 47–58. https://doi.org/10.1016/S0367-2530(17)30011-7
- Xia, J., & Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. *New Phytologist*, 179(2), 428–439. https://doi.org/10.1111/j.1469-8137.2008.02488.x
- You, C., Wu, F., Yang, W., Xu, Z., Tan, B., Zhang, L., ... Fu, C. (2018). Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen

- deposition? Science of the Total Environment, 645, 733-742. https://doi.org/10.1016/j.scitotenv.2018.07.186
- Yuan, Z., & Chen, H. Y. (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. *Nature Climate Change*, 5(5), 465–469. https://doi.org/10.1038/nclimate2549
- Yue, K., Fornara, D. A., Yang, W., Peng, Y., Li, Z., Wu, F., & Peng, C. (2017). Effects of three global change drivers on terrestrial C:N: P stoichiometry: A global synthesis. Global Change Biology, 23(6), 2450–2463. https://doi.org/10.1111/gcb.13569
- Yue, K., Fornara, D. A., Yang, W., Peng, Y., Peng, C., Liu, Z., & Wu, F. (2017). Influence of multiple global change drivers on terrestrial carbon storage: Additive effects are common. *Ecology Letters*, 20(5), 663–672. https://doi.org/10.1111/ele.12767
- Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., & Wu, F. (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Scientific Reports, 6, 19895. https://doi.org/10.1038/ srep19895
- Yue, K., Yang, W., Peng, Y., Peng, C., Tan, B., Xu, Z., ... Wu, F. (2018). Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. *Science of the Total Environment*, 630, 181–188. https://doi.org/10.1016/j.scitotenv.2018.02.213
- Zhou, L., Zhou, X., Shao, J., Nie, Y., He, Y., Jiang, L., ... Hosseini Bai, S. (2016). Interactive effects of global change factors on soil respiration and its components: A meta-analysis. Global Change Biology, 22(9), 3157–3169. https://doi.org/10.1111/gcb.13253

BIOSKETCH

Kai Yue is an ecologist with interest in global change biology, forest ecology, and biogeochemistry. The focus of his current research is on understanding how global change will affect biodiversity and ecosystem functionality in terrestrial ecosystems.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Yue K, Peng Y, Fornara DA, et al. Responses of nitrogen concentrations and pools to multiple environmental change drivers: A meta-analysis across terrestrial ecosystems. *Global Ecol Biogeogr.* 2019;00:1–35. https://doi.org/10.1111/geb.12884

APPENDIX: LIST OF THE 758 PRIMARY ARTICLES FROM WHICH THE DATA WERE EXTRACTED FOR THIS META-ANALYSIS

- Aarnio, T., & Martikainen, P. (1995). Mineralization of C and N and nitrification in Scots pine forest soil treated with nitrogen fertilizers containing different proportions of urea and its slow-releasing derivative, ureaformaldehyde. Soil Biology and Biochemistry, 27(10), 1325–1331.
- Adachi, M., Hasegawa, T., Fukayama, H., Tokida, T., Sakai, H., Matsunami, T., . . . Okada, M. (2014). Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown

- under free-air CO_2 enrichment (FACE). Plant and Cell Physiology, 55(2), 370–380.
- Aerts, R. (2009). Nitrogen supply effects on leaf dynamics and nutrient input into the soil of plant species in a sub-arctic tundra ecosystem. *Polar Biology*, 32(2), 207–214.
- Aerts, R., & Berendse, F. (1988). The effect of increased nutrient availability on vegetation dynamics in wet heathlands. *Plant Ecology*, 76(1), 63–69.
- Aerts, R., De Caluwe, H., & Beltman, B. (2003). Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation? *Oikos*, 101(3), 489–498.
- Aerts, R., De Caluwe, H., & Beltman, B. (2003). Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. *Ecology*, 84(12), 3198–3208.
- Aerts, R., Wallen, B., & Malmer, N. (1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. *Journal of Ecology*, 80(1), 131–140.
- Aerts, R., Wallén, B., Malmer, N., & De Caluwe, H. (2001). Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. *Journal of Ecology*, 89(2), 292–299.
- Agrawal, M., & Deepak, S. S. (2003). Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO_2 and SO_2 , singly and in combination. *Environmental Pollution*, 121(2), 189–197.
- Agrell, J., Kopper, B., McDonald, E. P., & Lindroth, R. L. (2005). CO₂ and O₃ effects on host plant preferences of the forest tent caterpillar (*Malacosoma disstria*). Global Change Biology, 11(4), 588–599.
- Ai, Z.-M., Xue, S., Wang, G.-L., & Liu, G.-B. (2017). Responses of nonstructural carbohydrates and C: N: P stoichiometry of Bothriochloa ischaemum to nitrogen addition on the Loess Plateau, China. Journal of Plant Growth Regulation, 36(3), 714–722.
- Ainsworth, E. A., Davey, P. A., Hymus, G. J., Drake, B. G., & Long, S. P. (2002). Long-term response of photosynthesis to elevated carbon dioxide in a Florida scrub-oak ecosystem. *Ecological Applications*, 12(5), 1267-1275.
- Albaugh, T. J., Allen, H. L., & Fox, T. R. (2008). Nutrient use and uptake in *Pinus taeda. Tree Physiology*, 28(7), 1083–1098.
- Allard, V., Newton, P., Lieffering, M., Soussana, J., Carran, R., & Matthew, C. (2005). Increased quantity and quality of coarse soil organic matter fraction at elevated ${\rm CO}_2$ in a grazed grassland are a consequence of enhanced root growth rate and turnover. *Plant and Soil*, 276(1), 49–60.
- Allard, V., Newton, P. C., Lieffering, M., Soussana, J. F., Grieu, P., & Matthew, C. (2004). Elevated CO₂ effects on decomposition processes in a grazed grassland. Global Change Biology, 10(9), 1553–1564.
- Allard, V., Robin, C., Newton, P., Lieffering, M., & Soussana, J. (2006). Short and long-term effects of elevated CO₂ on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biology and Biochemistry, 38(6), 1178–1187.
- Allen, M. F., Allen, E. B., Lansing, J. L., Pregitzer, K. S., Hendrick, R. L., Ruess, R. W., & Collins, S. L. (2010). Responses to chronic N fertilization of ectomycorrhizal pinon but not arbuscular mycorrhizal juniper in a pinon-juniper woodland. *Journal of Arid Environments*, 74(10), 1170–1176.
- An, Y., Wan, S., Zhou, X., Subedar, A. A., Wallace, L. L., & Luo, Y. (2005). Plant nitrogen concentration, use efficiency, and contents in a tall-grass prairie ecosystem under experimental warming. *Global Change Biology*, 11(10), 1733–1744.
- Andersen, K. M., Corre, M. D., Turner, B. L., & Dalling, J. W. (2010). Plant-soil associations in a lower montane tropical forest: Physiological acclimation and herbivore-mediated responses to nitrogen addition. *Functional Ecology*, 24(6), 1171–1180.
- Andresen, L. C., Michelsen, A., Ambus, P., & Beier, C. (2010). Belowground heathland responses after 2 years of combined warming, elevated CO₂ and summer drought. *Biogeochemistry*, 101(1-3), 27-42.

- Andresen, L. C., Michelsen, A., Jonasson, S., Beier, C., & Ambus, P. (2009).
 Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO₂ and drought. Acta Oecologica, 35(6), 786-796.
- Anten, N. P., Hirose, T., Onoda, Y., Kinugasa, T., Kim, H. Y., Okada, M., & Kobayashi, K. (2004). Elevated ${\rm CO_2}$ and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytologist, 161(2), 459-471.
- Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J. C., Nogués, S., Araus, J. L., . . . Pérez, P. (2011). Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO₂? *Journal of Experimental Botany*, 62(11), 3957–3969.
- Aranjuelo, I., Ebbets, A. L., Evans, R. D., Tissue, D. T., Nogués, S., Van Gestel, N., . . . Nowak, R. S. (2011). Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO₂] in Mojave Desert shrubs. *Oecologia*, 167(2), 339–354.
- Arndal, M. F., Schmidt, I. K., Kongstad, J., Beier, C., & Michelsen, A. (2014). Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO₂ in a mixed heathland-grass ecosystem. Functional Plant Biology, 41(1), 1–10.
- Arnone, J. A., & Hirschel, G. (1997). Does fertilizer application alter the effects of elevated CO₂ on Carex leaf litter quality and in situ decomposition in an alpine grassland? *Acta Oecologica*, 18(3), 201–206.
- Awmack, C. S., Mondor, E. B., & Lindroth, R. L. (2007). Forest understory clover populations in enriched CO_2 and O_3 atmospheres: Interspecific, intraspecific, and indirect effects. *Environmental and Experimental Botany*, 59(3), 340–346.
- Bader, M., Hiltbrunner, E., & Körner, C. (2009). Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Functional Ecology, 23(5), 913–921.
- Bader, M. K.-F., Siegwolf, R., & Körner, C. (2010). Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO₂ enrichment. *Planta*, 232(5), 1115–1125.
- Baer, S. G., & Blair, J. M. (2008). Grassland establishment under varying resource availability: A test of positive and negative feedback. *Ecology*, 89(7), 1859–1871.
- Bai, X., Cheng, J., Zheng, S., Zan, S., & Bai, Y. (2014). Ecophysiological responses of *Leymus chinensis* to nitrogen and phosphorus additions in a typical steppe. *Chinese Journal of Plant Ecology*, 38(2), 103–115.
- Bai, Y., Wei, Z., Dai, J., Yan, R., Liu, W., & Wang, T. (2017). Responses of plant and soil C:N:P stoichiometry to fertilization in *Leymus chinensis* mowing meadow. *Ecology and Environmental Sciences*, 26(4), 620–627.
- Barger, N. N., D'Antonio, C. M., Ghneim, T., & Cuevas, E. (2003). Constraints to colonization and growth of the African grass, *Melinis minutiflora*, in a Venezuelan savanna. *Plant Ecology*, 167(1), 31–43.
- Barger, N. N., D'Antonio, C. M., Ghneim, T., Brink, K., & Cuevas, E. (2002). Nutrient limitation to primary productivity in a secondary savanna in Venezuela. *Biotropica*, 34(4), 493–501.
- Barnard, R., Le Roux, X., Hungate, B., Cleland, E., Blankinship, J., Barthes, L., & Leadley, P. (2006). Several components of global change alter nitrifying and denitrifying activities in an annual grassland. *Functional Ecology*, 20(4), 557–564.
- Barron-Gafford, G., Martens, D., Grieve, K., Biel, K., Kudeyarov, V., McLain, J. E., Murthy, R. (2005). Growth of Eastern Cottonwoods (*Populus deltoides*) in elevated [CO₂] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above-and belowground biomass production. *Global Change Biology*, 11(8), 1220–1233.
- Bartak, M., Raschi, A., & Tognetti, R. (1999). Photosynthetic characteristics of sun and shade leaves in the canopy of Arbutus unedo L. trees exposed to in situ long-term elevated CO₂. Photosynthetica, 37(1), 1–16.
- Basiliko, N., Khan, A., Prescott, C. E., Roy, R., & Grayston, S. J. (2009). Soil greenhouse gas and nutrient dynamics in fertilized western Canadian plantation forests. *Canadian Journal of Forest Research*, 39(6), 1220-1235.

- Bassin, S., Schalajda, J., Vogel, A., & Suter, M. (2012). Different types of sub-alpine grassland respond similarly to elevated nitrogen deposition in terms of productivity and sedge abundance. *Journal of Vegetation Science*, 23(6), 1024–1034.
- Bauer, G., Berntson, G., & Bazzaz, F. (2001). Regenerating temperate forests under elevated CO₂ and nitrogen deposition: Comparing biochemical and stomatal limitation of photosynthesis. *New Phytologist*, 152(2), 249–266.
- Bauhus, J., Aubin, I., Messier, C., & Connell, M. (2001). Composition, structure, light attenuation and nutrient content of the understorey vegetation in a Eucalyptus sieberi regrowth stand 6 years after thinning and fertilisation. Forest Ecology and Management, 144(1), 275-286.
- Bechtold, H., & Inouye, R. (2007). Distribution of carbon and nitrogen in sagebrush steppe after six years of nitrogen addition and shrub removal. *Journal of Arid Environments*, 71(1), 122–132.
- Belay-Tedla, A., Zhou, X., Su, B., Wan, S., & Luo, Y. (2009). Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. *Soil Biology and Biochemistry*, 41(1), 110–116.
- Benner, J. W., & Vitousek, P. M. (2007). Development of a diverse epiphyte community in response to phosphorus fertilization. *Ecology Letters*, 10(7), 628-636.
- Bennett, L. T., & Adams, M. A. (2001). Response of a perennial grassland to nitrogen and phosphorus additions in sub-tropical, semi-arid Australia. *Journal of Arid Environments*, 48(3), 289–308.
- Berendse, F., Van Breemen, N., Rydin, H., Buttler, A., Heijmans, M., Hoosbeek, M. R., . . . Vasander, H. (2001). Raised atmospheric CO₂ levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. *Global Change Biology*, 7(5), 591–598.
- Biasi, C., Meyer, H., Rusalimova, O., Hämmerle, R., Kaiser, C., Baranyi, C., . . . Richter, A. (2008). Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichenrich dwarf shrub tundra in Siberia. *Plant and Soil*, 307(1–2), 191–205.
- Biederbeck, V., Curtin, D., Bouman, O., Campbell, C., & Ukrainetz, H. (1996). Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. *Canadian Journal of Soil Science*, 76(1), 7–14.
- Billings, S., Schaeffer, S., & Evans, R. (2002). Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO₂. *Soil Biology and Biochemistry*, 34(11), 1777–1784.
- Blanes, M. C., Emmett, B. A., Viñegla, B., & Carreira, J. A. (2012). Alleviation of P limitation makes tree roots competitive for N against microbes in a N-saturated conifer forest: A test through P fertilization and 15 N labelling. Soil Biology and Biochemistry, 48, 51–59.
- Blanke, V., Bassin, S., Volk, M., & Fuhrer, J. (2012). Nitrogen deposition effects on subalpine grassland: The role of nutrient limitations and changes in mycorrhizal abundance. *Acta Oecologica*, 45, 57–65.
- Blum, H., Hendrey, G., & Nösberger, J. (1997). Effects of elevated CO₂, N fertilization, and cutting regime on the production and quality of Lolium perenne L. shoot necromass. Acta Oecologica, 18(3), 291–295.
- Blumenthal, D. M., Kray, J. A., Ortmans, W., Ziska, L. H., & Pendall, E. (2016). Cheatgrass is favored by warming but not CO₂ enrichment in a semi-arid grassland. *Global Change Biology*, 22(9), 3026–3038.
- Bobbink, R. (1991). Effects of nutrient enrichment in Dutch chalk grassland. *Journal of Applied Ecology*, 28–41.
- Boeye, D., Verhagen, B., Haesebroeck, V., & El-Kahloun, M. (1999). Phosphorus fertilization in a phosphorus-limited fen: Effects of timing. Applied Vegetation Science, 2(1), 71–78.
- Boeye, D., Verhagen, B., Van Haesebroeck, V., & Verheyen, R. F. (1997). Nutrient limitation in species-rich lowland fens. *Journal of Vegetation Science*, 8(3), 415–424.
- Bokhorst, S., Huiskes, A., Convey, P., & Aerts, R. (2007). Climate change effects on organic matter decomposition rates in ecosystems from

- the Maritime Antarctic and Falkland Islands. *Global Change Biology*, 13(12), 2642-2653.
- Bourgault, M., Brand, J., Tausz-Posch, S., Armstrong, R., O'Leary, G., Fitzgerald, G., & Tausz, M. (2017). Yield, growth and grain nitrogen response to elevated CO₂ in six lentil (*Lens culinaris*) cultivars grown under Free Air CO₂ Enrichment (FACE) in a semi-arid environment. *European Journal of Agronomy*, 87, 50–58.
- Bowman, W. D. (1994). Accumulation and use of nitrogen and phosphorus following fertilization in two alpine tundra communities. *Oikos*, 70(2), 261–270.
- Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? *Ecological Applications*, 16(3), 1183–1193.
- Bowman, W. D., Murgel, J., Blett, T., & Porter, E. (2012). Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. *Journal of Environmental Management*, 103, 165–171.
- Bowman, W. D., Theodose, T. A., & Fisk, M. C. (1995). Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: Implications for differential community response to environmental change. *Oecologia*, 101(2), 217–227.
- Bowman, W. D., Theodose, T. A., Schardt, J. C., & Conant, R. T. (1993). Constraints of nutrient availability on primary production in two alpine tundra communities. *Ecology*, 74(7), 2085–2097.
- Boyer, K. E., & Zedler, J. B. (1999). Nitrogen addition could shift plant community composition in a restored California salt marsh. *Restoration Ecology*, 7(1), 74–85.
- Bradley, K., Drijber, R. A., & Knops, J. (2006). Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. *Soil Biology and Biochemistry*, 38(7), 1583–1595.
- Brenner, R. E., Boone, R. D., & Ruess, R. W. (2005). Nitrogen additions to pristine, high-latitude, forest ecosystems: Consequences for soil nitrogen transformations and retention in mid and late succession. *Biogeochemistry*, 72(2), 257–282.
- Brinks, J. S., Lhotka, J. M., Barton, C. D., Warner, R. C., & Agouridis, C. T. (2011). Effects of fertilization and irrigation on American sycamore and black locust planted on a reclaimed surface mine in Appalachia. Forest Ecology and Management, 261(3), 640-648.
- Britton, A., Helliwell, R., Fisher, J., & Gibbs, S. (2008). Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland. *Environmental Pollution*, 156(2), 409–416.
- Brosi, G. B., McCulley, R. L., Bush, L. P., Nelson, J. A., Classen, A. T., & Norby, R. J. (2011). Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: Infection frequency and tissue chemistry. New Phytologist, 189(3), 797–805.
- Brown, A. L. P., Day, F. P., Hungate, B. A., Drake, B. G., & Hinkle, C. R. (2007). Root biomass and nutrient dynamics in a scrub-oak ecosystem under the influence of elevated atmospheric CO₂. *Plant and Soil*, 292(1–2), 219–232.
- Bubier, J. L., Smith, R., Juutinen, S., Moore, T. R., Minocha, R., Long, S., & Minocha, S. (2011). Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. *Oecologia*, 167(2), 355–368.
- Butterly, C. R., Armstrong, R., Chen, D., & Tang, C. (2015). Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO₂. *Plant and Soil*, *391*(1-2), 367–382.
- Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., . . . Xiong, Y. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO₂ and temperature in FACE experiments. *Global Change Biology*, 22(2), 856–874.
- Cai, J., Luo, W., Liu, H., Feng, X., Zhang, Y., Wang, R., . . . Jiang, Y. (2017). Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. *Atmospheric Environment*, 170, 312–318.

- Cai, M., & Meng, T. (2015). Effects of long-term different fertilizations on biomass and nutrient content of maize root. Chinese Journal of Applied Ecology, 26(8), 2387–2396.
- Cai, Y., Huang, Y., Zhang, T., Xiao, H., & Li, Y. (2013). Effects of simulated nitrogen deposition on the vertical distribution of soil nitrogen, carbon and microbial biomass in young Schima superb plantation. *Ecology and Environmental Sciences*, 22(5), 755–760.
- Campo, J., Solís, E., & Valencia, M. G. (2007). Litter N and P dynamics in two secondary tropical dry forests after relaxation of nutrient availability constraints. *Forest Ecology and Management*, 252(1), 33–40.
- Campol, J., & Dirzo, R. (2003). Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatán, Mexico. *Journal of Tropical Ecology*, 19, 525–530.
- Cantarel, A. A., Bloor, J. M., & Soussana, J. F. (2013). Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. *Journal of Vegetation Science*, 24(1), 113–126.
- Carnol, M., Hogenboom, L., Jach, M. E., Remacle, J., & Ceulemans, R. (2002). Elevated atmospheric CO_2 in open top chambers increases net nitrification and potential denitrification. *Global Change Biology*, 8(6), 590–598.
- Carpenter, A. T., Moore, J. C., Redente, E. F., & Stark, J. C. (1990). Plant community dynamics in a semi-arid ecosystem in relation to nutrient addition following a major disturbance. *Plant and Soil*, 126(1), 91–99.
- Carpenter-Boggs, L., Pikul, J. L., Vigil, M. F., & Riedell, W. E. (2000). Soil nitrogen mineralization influenced by crop rotation and nitrogen fertilization. Soil Science Society of America Journal, 64(6), 2038–2045.
- Cascio, M. L., Morillas, L., Ochoa-Hueso, R., Munzi, S., Roales, J., Hasselquist, N. J., . . . Mereu, S. (2017). Contrasting effects of nitrogen addition on soil respiration in two Mediterranean ecosystems. Environmental Science and Pollution Research, 24(34), 26160-26171.
- Černá, B., Rejmánková, E., Snyder, J. M., & Šantrůčková, H. (2009). Heterotrophic nitrogen fixation in oligotrophic tropical marshes: Changes after phosphorus addition. *Hydrobiologia*, 627(1), 55–65.
- Chang, R., Wang, G., Yang, Y., & Chen, X. (2017). Experimental warming increased soil nitrogen sink in the Tibetan permafrost. *Journal of Geophysical Research: Biogeosciences*, 122(7), 1870–1879.
- Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., & Laundre, J. A. (1995). Responses of arctic tundra to experimental and observed changes in climate. *Ecology*, 76(3), 694–711.
- Chen, C., Xu, Z., & Hughes, J. (2002). Effects of nitrogen fertilization on soil nitrogen pools and microbial properties in a hoop pine (*Araucaria cunninghamii*) plantation in southeast Queensland, Australia. *Biology and Fertility of Soils*, 36(4), 276–283.
- Chen, H., Gurmesa, G. A., Zhang, W., Zhu, X., Zheng, M., Mao, Q., . . . Mo, J. (2016). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. *Functional Ecology*, 30(2), 305–313.
- Chen, H., Rygiewicz, P., Johnson, M., Harmon, M., Tian, H., & Tang, J. (2008). Chemistry and long-term decomposition of roots of Douglasfir grown under elevated atmospheric carbon dioxide and warming conditions. *Journal of Environmental Quality*, 37(4), 1327–1336.
- Chen, H., Zhang, W., Gurmesa, G. A., Zhu, X., Li, D., & Mo, J. (2017). Phosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forests. *European Journal of Soil Science*, 68(4), 472–479.
- Chen, J., Carrillo, Y., Pendall, E., Dijkstra, F. A., Evans, R. D., Morgan, J. A., & Williams, D. G. (2015). Soil microbes compete strongly with plants for soil inorganic and amino acid nitrogen in a semiarid grassland exposed to elevated CO₂ and warming. *Ecosystems*, 18(5), 867–880.
- Chen, J.-B., Dong, C.-C., Yao, X.-D., & Wang, W. (2017). Effects of nitrogen addition on plant biomass and tissue elemental content in different degradation stages of temperate steppe in northern China. *Journal of Plant Ecology*, 11(5), 730–739.

- Chen, S., Bai, Y., Zhang, L., & Han, X. (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. *Environmental and Experimental Botany*, 53(1), 65–75.
- Chen, W., Kou, L., Jiang, L., Gao, W., Yang, H., Wang, H., & Jiang, S. (2017). Short-term responses of foliar multi-element stoichiometry and nutrient resorption of slash pine to N addition in subtropical China. Yingyong Shengtai Xuebao, 28(4), 1094–1102.
- Chen, X., Li, Z., Liu, M., & Jiang, C. (2013). Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China. Scientia Agricultura Sinica, 46(5), 950–960.
- Chen, X., Wang, G., Zhang, T., Mao, T., Wei, D., Hu, Z., & Song, C. (2017). Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmospheric Environment, 157, 111–124.
- Chen, X., Wang, G., Zhang, T., Mao, T., Wei, D., Song, C., . . . Huang, K. (2017). Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Science of The Total Environment, 601, 1389–1399.
- Chen, Z., Yin, H., Wei, Y., & Liu, Q. (2010). Short-term effects of night warming and nitrogen addition on soil available nitrogen and microbial properties in subalpine coniferous forest, Western Sichuan, China. Chinese Journal of Plant Ecology, 34(11), 1254–1264.
- Cheng, L., Booker, F. L., Burkey, K. O., Tu, C., Shew, H. D., Rufty, T. W., . . . Hu, S. (2011). Soil microbial responses to elevated CO_2 and O_3 in a nitrogen-aggrading agroecosystem. *PLoS ONE*, 6(6), e21377.
- Cheng, X., Luo, Y., Su, B., Zhou, X., Niu, S., Sherry, R., . . . Zhang, Q. (2010). Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agriculture, Ecosystems and Environment, 138(3), 206–213.
- Cheng, X., Luo, Y., Xu, X., Sherry, R., & Zhang, Q. (2011). Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. *Biogeosciences*, 8(6), 1487–1498.
- Choi, W.-J., Chang, S. X., Allen, H. L., Kelting, D. L., & Ro, H.-M. (2005). Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand. Forest Ecology and Management, 213(1), 90-101.
- Chu, C. C., Field, C. B., & Mooney, H. A. (1996). Effects of CO₂ and nutrient enrichment on tissue quality of two California annuals. *Oecologia*, 107(4), 433 Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand 440.
- Chu, H., Fujii, T., Morimoto, S., Lin, X., & Yagi, K. (2008). Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. *Soil Biology and Biochemistry*, 40(7), 1960–1963.
- Churchland, C., Mayo-Bruinsma, L., Ronson, A., & Grogan, P. (2010). Soil microbial and plant community responses to single large carbon and nitrogen additions in low arctic tundra. *Plant and Soil*, 334(1–2), 409–421.
- Clark, C. M., Hobbie, S. E., Venterea, R., & Tilman, D. (2009). Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. *Global Change Biology*, 15(7), 1755–1766.
- Cleveland, C. C., Wieder, W. R., Reed, S. C., & Townsend, A. R. (2010). Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. *Ecology*, 91(8), 2313–2323.
- Corbin, J. D., Avis, P. G., & Wilbur, R. B. (2003). The role of phosphorus availability in the response of soil nitrogen cycling, understory vegetation and arbuscular mycorrhizal inoculum potential to elevated nitrogen inputs. Water, Air, and Soil Pollution, 147(1-4), 141-162.
- Cordell, S., Goldstein, G., Meinzer, F., & Vitousek, P. (2001a). Morphological and physiological adjustment to N and P fertilization in nutrient-limited *Metrosideros polymorpha* canopy trees in Hawaii. *Tree Physiology*, 21(1), 43–50.

- Cordell, S., Goldstein, G., Meinzer, F., & Vitousek, P. (2001b). Regulation of leaf life-span and nutrient-use efficiency of *Metrosideros poly-morpha* trees at two extremes of a long chronosequence in Hawaii. *Oecologia*, 127(2), 198–206.
- Cornelissen, T., Stiling, P., & Drake, B. (2004). Elevated CO₂ decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. *Global Change Biology*, 10(1), 27–36.
- Corrales, A., Turner, B. L., Tedersoo, L., Anslan, S., & Dalling, J. W. (2017). Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. *Fungal Ecology*, 27, 14–23.
- Corre, M. D., Beese, F. O., & Brumme, R. (2003). Soil nitrogen cycle in high nitrogen deposition forest: Changes under nitrogen saturation and liming. *Ecological Applications*, 13(2), 287–298.
- Cotrufo, M. F., Drake, B., & Ehleringer, J. R. (2005). Palatability trials on hardwood leaf litter grown under elevated CO_2 : A stable carbon isotope study. Soil Biology and Biochemistry, 37(6), 1105–1112.
- Couture, J. J., Meehan, T. D., & Lindroth, R. L. (2012). Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. *Oecologia*, 168(3), 863-876.
- Crous, K. Y., Reich, P. B., Hunter, M. D., & Ellsworth, D. S. (2010). Maintenance of leaf N controls the photosynthetic CO₂ response of grassland species exposed to 9 years of free-air CO₂ enrichment. *Global Change Biology*, 16(7), 2076–2088.
- Crous, K. Y., Wallin, G., Atkin, O. K., Uddling, J., & Af Ekenstam, A. (2017). Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in *Eucalyptus globulus*. Tree Physiology, 37(8), 1069–1083.
- Cuevas-Reyes, P., De Oliveira-Ker, F. T., Fernandes, G. W., & Bustamante, M. (2011). Abundance of gall-inducing insect species in sclerophyllous savanna: Understanding the importance of soil fertility using an experimental approach. *Journal of Tropical Ecology*, 27(6), 631–640.
- Cui, J., Wang, J., Xu, J., Xu, C., & Xu, X. (2017). Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition. *Journal of Soils and Sediments*, 17(8), 2156–2164.
- Cui, Q., Lü, X.-T., Wang, Q.-B., & Han, X.-G. (2010). Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. *Plant and Soil*, 334(1-2), 209-219.
- Cui, X., Yue, P., Gong, Y., Li, K., Tan, D., Goulding, K., & Liu, X. (2017). Impacts of water and nitrogen addition on nitrogen recovery in Haloxylon ammodendron dominated desert ecosystems. Science of the Total Environment. 601, 1280–1288.
- Currey, P. M., Johnson, D., Sheppard, L. J., Leith, I. D., Toberman, H., Van Der Wal, R., . . . Artz, R. R. (2010). Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland. *Global Change Biology*, 16(8), 2307–2321.
- Curtis, P. S., Vogel, C. S., Wang, X., Pregitzer, K. S., Zak, D. R., Lussenhop, J., . . . Teeri, J. A. (2000). Gas exchange, leaf nitrogen, and growth efficiency of *Populus tremuloides* in a CO₂-enriched atmosphere. *Ecological Applications*, 10(1), 3–17.
- Cusack, D. F., Silver, W. L., Torn, M. S., & McDowell, W. H. (2011). Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests. *Biogeochemistry*, 104(1–3), 203–225.
- Cusack, D. F., Torn, M. S., McDowell, W. H., & Silver, W. L. (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. *Global Change Biology*, 16(9), 2555–2572.
- D'Antonio, C. M., & Mack, M. C. (2006). Nutrient limitation in a fire-derived, nitrogen-rich Hawaiian grassland. *Biotropica*, 38(4), 458–467.
- Darby, F. A., & Turner, R. E. (2008). Below-and aboveground biomass of Spartina alterniflora: Response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts, 31(2), 326-334.
- Davidson, E. A., Reis de Carvalho, C. J., Vieira, I. C., Figueiredo, R. D. O., Moutinho, P., Yoko Ishida, F., . . . Kalif, K. (2004). Nitrogen and

- phosphorus limitation of biomass growth in a tropical secondary forest. *Ecological Applications*. 14(sp4), 150–163.
- Davis, M. R., Allen, R. B., & Clinton, P. W. (2004). The influence of N addition on nutrient content, leaf carbon isotope ratio, and productivity in a Nothofagus forest during stand development. Canadian Journal of Forest Research, 34(10), 2037–2048.
- Dawes, M. A., Hagedorn, F., Handa, I. T., Streit, K., Ekblad, A., Rixen, C., . . . Hättenschwiler, S. (2013). An alpine treeline in a carbon dioxide-rich world: Synthesis of a nine-year free-air carbon dioxide enrichment study. *Oecologia*, 171(3), 623–637.
- Dawes, M. A., Schleppi, P., Hättenschwiler, S., Rixen, C., & Hagedorn, F. (2017). Soil warming opens the nitrogen cycle at the alpine treeline. *Global Change Biology*, 23(1), 421–434.
- Day, T. A., Ruhland, C. T., & Xiong, F. S. (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. *Global Change Biology*, 14(8), 1827–1843.
- De Dato, G., Pellizzaro, G., Cesaraccio, C., Sirca, C., De Angelis, P., Duce, P., . . . Scarascia-Mugnozza, G. (2008). Effects of warmer and drier climate conditions on plant composition and biomass production in a Mediterranean shrubland community. *i Forest Biogeosciences and Forestry*, 1(1), 39–48.
- De Graaff, M.-A., Schadt, C. W., Rula, K., Six, J., Schweitzer, J. A., & Classen, A. T. (2011). Elevated CO_2 and plant species diversity interact to slow root decomposition. Soil Biology and Biochemistry, 43(11), 2347–2354.
- De Graaff, M.-A., van Kessel, C., & Six, J. (2008). The impact of long-term elevated ${\rm CO_2}$ on C and N retention in stable SOM pools. *Plant and Soil*, 303(1–2), 311–321.
- De Graaff, M. A., Six, J., Harris, D., Blum, H., & Van Kessel, C. (2004). Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO₂: Impact on C cycling and modeling. *Global Change Biology*, 10(11), 1922–1935.
- DeMarco, J., Mack, M. C., Bret-Harte, M. S., Burton, M., & Shaver, G. R. (2014). Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. *Ecosphere*, 5(6), 1–22.
- Dermody, O., O'Neill, B. F., Zangerl, A. R., Berenbaum, M. R., & DeLucia, E. H. (2008). Effects of elevated CO₂ and O₃ on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interactions, 2(3), 125-135.
- Diekow, J., Mielniczuk, J., Knicker, H., Bayer, C., Dick, D. P., & Kögel-Knabner, I. (2005). Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil and Tillage Research, 81(1), 87–95.
- Dighton, J., Tuininga, A. R., Gray, D. M., Huskins, R. E., & Belton, T. (2004). Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizae. Forest Ecology and Management, 201(1), 131–144.
- Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Pendall, E., Carrillo, Y., & Follett, R. F. (2010). Contrasting effects of elevated CO₂ and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 187(2), 426-437.
- Dijkstra, F. A., Hobbie, S. E., & Reich, P. B. (2006). Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Science Society of America Journal, 70(3), 770–777.
- Dijkstra, F. A., Hobbie, S. E., Reich, P. B., & Knops, J. M. (2005). Divergent effects of elevated CO₂, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. *Plant and Soil*, 272(1), 41–52.
- Dijkstra, P., Schapendonk, A., Groenwold, K., Jansen, M., & Van De Geijn, S. C. (1999). Seasonal changes in the response of winter wheat to elevated atmospheric CO₂ concentration grown in Open-Top Chambers and field tracking enclosures. Global Change Biology, 5(5), 563–576.

- Ding, W., Cai, Y., Cai, Z., Yagi, K., & Zheng, X. (2007). Soil respiration under maize crops: Effects of water, temperature, and nitrogen fertilization. *Soil Science Society of America Journal*, 71(3), 944–951.
- Ding, W., Cai, Z., & Tsuruta, H. (2004). Cultivation, nitrogen fertilization, and set-aside effects on methane uptake in a drained marsh soil in Northeast China. *Global Change Biology*, 10(10), 1801-1809.
- Ding, W., Yu, H., Cai, Z., Han, F., & Xu, Z. (2010). Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. *Geoderma*, 155(3), 381–389.
- Doiron, M., Gauthier, G., & Lévesque, E. (2014). Effects of experimental warming on nitrogen concentration and biomass of forage plants for an arctic herbivore. *Journal of Ecology*, 102(2), 508–517.
- Dordas, C. (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source–sink relations. *European Journal of Agronomy*, 30(2), 129–139.
- Dreesen, F. E., De Boeck, H. J., Janssens, I. A., & Nijs, I. (2012). Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. *Environmental and Experimental Botany*, 79, 21–30.
- Duren, I. v., Pegtel, D., Aerts, B., & Inberg, J. (1997). Nutrient supply in undrained and drained Calthion meadows. *Journal of Vegetation Science*, 8(6), 829–838.
- Eberhardt, T. L., Labbé, N., So, C.-L., Kim, K., Reed, K. G., Leduc, D. J., & Warren, J. M. (2015). Effects of long-term elevated CO₂ treatment on the inner and outer bark chemistry of sweetgum (*Liquidambar styraciflua* L.) trees. Trees, 29(6), 1735–1747.
- Eguchi, N., Karatsu, K., Ueda, T., Funada, R., Takagi, K., Hiura, T., . . . Koike, T. (2008). Photosynthetic responses of birch and alder saplings grown in a free air CO₂ enrichment system in northern Japan. Trees, 22(4), 437–447.
- El-Haris, M., Cochran, V., Elliott, L., & Bezdicek, D. (1983). Effect of tillage, cropping, and fertilizer management on soil nitrogen mineralization potential. *Soil Science Society of America Journal*, 47(6), 1157–1161.
- Eller, A. S., McGuire, K. L., & Sparks, J. P. (2011). Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above-and belowground nitrogen sources. *Tree Physiology*, 31(4), 391–401.
- Elvir, J. A., Wiersma, G. B., Day, M. E., Greenwood, M. S., & Fernandez, I. J. (2006). Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine. Forest Ecology and Management, 221(1), 207-214.
- Erbs, M., Manderscheid, R., Hüther, L., Schenderlein, A., Wieser, H., Dänicke, S., & Weigel, H.-J. (2015). Free-air CO₂ enrichment modifies maize quality only under drought stress. Agronomy for Sustainable Development, 35(1), 203-212.
- Ercoli, L., Mariotti, M., Masoni, A., & Bonari, E. (1999). Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. *Field Crops Research*, 63(1), 3–11.
- Evans, R., Koyama, A., Sonderegger, D., Charlet, T., Newingham, B., Fenstermaker, L., . . . Smith, S. (2014). Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO₂. Nature Climate Change, 4(5), 394–397.
- Evans, S. E., & Burke, I. C. (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. *Ecosystems*, 16(1), 20–33.
- Falk, K., Friedrich, U., von Oheimb, G., Mischke, K., Merkle, K., Meyer, H., & Härdtle, W. (2010). Molinia caerulea responses to N and P fertilisation in a dry heathland ecosystem (NW-Germany). Plant Ecology, 209(1), 47–56.
- Fan, H., Yuan, Y., Wang, Q., Li, Y., & Huang, R. (2007). Effects of nitrogen deposition on soil organic carbon and total nitrogen beneath Chinese fir plantations. *Journal of Fujian College of Forestry*, 27(1), 1–6.

- Fang, C., Ye, J.-S., Gong, Y., Pei, J., Yuan, Z., Xie, C., . . . Yu, Y. (2017). Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. Science of the Total Environment, 590, 729–738.
- Fang, H.-J., Yu, G.-R., Cheng, S.-L., Mo, J.-M., Yan, J.-H., & Li, S. (2009). 13C abundance, water-soluble and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. *Plant and Soil*, 320(1-2), 243-254.
- Fang, Q., Yu, Q., Wang, E., Chen, Y., Zhang, G., Wang, J., & Li, L. (2006). Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. *Plant and Soil*, 284(1), 335–350.
- Fang, X., Zhou, G., Li, Y., Liu, S., Chu, G., Xu, Z., & Liu, J. (2016). Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest. *Biology* and Fertility of Soils, 52(3), 353–365.
- Fang, Y., Xun, F., Bai, W., Zhang, W., & Li, L. (2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. *PLoS ONE*, 7(10), e47369.
- Feller, I. C., Lovelock, C. E., & McKee, K. L. (2007). Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems, 10(3), 347–359.
- Feller, I. C., Lovelock, C. E., & Piou, C. (2009). Growth and nutrient conservation in *Rhizophora mangle* in response to fertilization along latitudinal and tidal gradients. *Smithsonian Contributions to the Marine Sciences*, 38, 345–358.
- Feller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. *Oecologia*, 134(3), 405-414
- Feng, L., Tong, C., Shi, H., Wu, J., Chen, A., & Zhou, P. (2011). Effects of different nitrogen, phosphorous, and potassium fertilization modes on carbon and nitrogen accumulation and allocation in rice plant. Chinese Journal of Applied Ecology, 22(10), 2615–2621.
- Ferreira, V., Goncalves, A. L., Godbold, D. L., & Canhoto, C. (2010). Effect of increased atmospheric CO₂ on the performance of an aquatic detritivore through changes in water temperature and litter quality. *Global Change Biology*, *16*(12), 3284–3296.
- Fetcher, N., Haines, B. L., Cordero, R. A., Lodge, D. J., Walker, L. R., Fernandez, D. S., & Lawrence, W. T. (1996). Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. *Journal of Ecology*, 84(3), 331–341.
- Field, C. D., Evans, C. D., Dise, N. B., Hall, J. R., & Caporn, S. J. (2017). Long-term nitrogen deposition increases heathland carbon sequestration. Science of the Total Environment, 592, 426-435.
- Finzi, A. C., Moore, D. J., DeLucia, E. H., Lichter, J., Hofmockel, K. S., Jackson, R. B., . . . Oren, R. (2006). Progressive nitrogen limitation of ecosystem processes under elevated CO₂ in a warm-temperate forest. *Ecology*, 87(1), 15–25.
- Fisk, M., Santangelo, S., & Minick, K. (2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. *Soil Biology and Biochemistry*, 81, 212–218.
- Fisk, M. C., & Schmidt, S. K. (1996). Microbial responses to nitrogen additions in alpine tundra soil. *Soil Biology and Biochemistry*, 28(6), 751-755.
- Flury, S., & Gessner, M. O. (2014). Effects of experimental warming and nitrogen enrichment on leaf and litter chemistry of a wetland grass, *Phragmites australis. Basic and Applied Ecology*, 15(3), 219–228.
- Fornara, D. A., & Tilman, D. (2012). Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. *Ecology*, 93(9), 2030–2036.

- Forsum, Å., Dahlman, L., Näsholm, T., & Nordin, A. (2006). Nitrogen utilization by *Hylocomium splendens* in a boreal forest fertilization experiment. *Functional Ecology*, 20(3), 421–426.
- Fraterrigo, J. M., Pearson, S. M., & Turner, M. G. (2009). The response of understory herbaceous plants to nitrogen fertilization in forests of different land-use history. Forest Ecology and Management, 257(10), 2182–2188
- Frederiksen, H. B., Rønn, R., & Christensen, S. (2001). Effect of elevated atmospheric CO₂ and vegetation type on microbiota associated with decomposing straw. *Global Change Biology*, 7(3), 313–321.
- Frost, J. W., Schleicher, T., & Craft, C. (2009). Effects of nitrogen and phosphorus additions on primary production and invertebrate densities in a Georgia (USA) tidal freshwater marsh. *Wetlands*, *29*(1), 196-203.
- Fu, W., Zhang, X., Zhao, J., Du, S., & Hou, M. (2017). Effects of experimental warming on soil respiration during growing period in cropland in the black soil region of northeast China. *Chinese Journal of Ecology*, 36(3), 601–608.
- Fuchslueger, L., Bahn, M., Hasibeder, R., Kienzl, S., Fritz, K., Schmitt, M., . . . Richter, A. (2016). Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. *Journal of Ecology*, 104(5), 1453–1465.
- Gahrooee, F. R. (1998). Impacts of elevated atmospheric ${\rm CO}_2$ on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. *Global Change Biology*, 4(6), 667–677.
- Gallo, M., Lauber, C., Cabaniss, S., Waldrop, M., Sinsabaugh, R., & Zak, D. R. (2005). Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Global Change Biology, 11(9), 1514-1521.
- García-Palacios, P., Querejeta, J. I., Maestre, F. T., Escudero, A., & Valladares, F. (2012). Impact of simulated changes in rainfall regime and nutrient deposition on the relative dominance and isotopic composition of ruderal plants in anthropogenic grasslands. *Plant and Soil*, 352(1–2), 303–319.
- Garten, C. T., Brice, D. J., Castro, H. F., Graham, R. L., Mayes, M. A., Phillips, J. R., . . . Tyler, D. D. (2011). Response of "Alamo" switchgrass tissue chemistry and biomass to nitrogen fertilization in West Tennessee, USA. Agriculture, Ecosystems and Environment, 140(1), 289-297.
- Ge, X., Zeng, L., Xiao, W., Huang, Z., & Zhou, B. (2017). Relationship between leaf litter decomposition and soil C, N, stoichiometry in different-aged *Pinus massioniana* stands exposed to simulated nitrogen deposition. *Acta Ecologica Sinica*, 37(4), 1147–1158.
- Geng, J., Cheng, S., Fang, H., Yu, G., Li, X., Si, G., ... Yu, G. (2017). Soil nitrate accumulation explains the nonlinear responses of soil CO₂ and CH₄ fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest. *Ecological Indicators*, 79, 28–36.
- $\label{eq:Geng,S.,Chen,Z.,Han,S.,Wang,F.,&Zhang,J. (2017). Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N_2O emissions from a temperate forest soil. \textit{Scientific Reports, 7, 43329}.$
- Gerdol, R., Bragazza, L., & Brancaleoni, L. (2008). Heatwave 2003: High summer temperature, rather than experimental fertilization, affects vegetation and CO₂ exchange in an alpine bog. New Phytologist, 179(1), 142-154.
- Gill, R. A., Anderson, L. J., Polley, H. W., Johnson, H. B., & Jackson, R. B. (2006). Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO₂. Ecology, 87(1), 41–52.
- Gleeson, S. K., & Good, R. E. (2003). Root allocation and multiple nutrient limitation in the New Jersey Pinelands. *Ecology Letters*, 6(3), 220–227.
- Gnankambary, Z., Ilstedt, U., Nyberg, G., Hien, V., & Malmer, A. (2008). Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: The effects of tree canopy and fertilization. Soil Biology and Biochemistry, 40(2), 350–359.

- Gong, S., Zhang, T., Guo, R., Cao, H., Shi, L., Guo, J., & Sun, W. (2015). Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe. Soil Research, 53(3), 242–252.
- Goverde, M., Erhardt, A., & Niklaus, P. (2002). In situ development of a satyrid butterfly on calcareous grassland exposed to elevated carbon dioxide. *Ecology*, 83(5), 1399–1411.
- Graham, S. L., Hunt, J. E., Millard, P., McSeveny, T., Tylianakis, J. M., & Whitehead, D. (2014). Effects of soil warming and nitrogen addition on soil respiration in a New Zealand tussock grassland. *PLoS ONE*, 9(3), e91204.
- Granath, G., Wiedermann, M. M., & Strengbom, J. (2009). Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum. Oecologia, 161(3), 481–490.
- Griepentrog, M., Eglinton, T. I., Hagedorn, F., Schmidt, M. W., & Wiesenberg, G. L. (2015). Interactive effects of elevated CO₂ and nitrogen deposition on fatty acid molecular and isotope composition of above-and belowground tree biomass and forest soil fractions. Global Change Biology, 21(1), 473–486.
- Griffin, K., Tissue, D., Turnbull, M., & Whitehead, D. (2000). The onset of photosynthetic acclimation to elevated CO₂ partial pressure in fieldgrown Pinus radiata D. Don. after 4 years. Plant, Cell and Environment, 23(10), 1089–1098.
- Grogan, P., & Chapin, F. (2000). Nitrogen limitation of production in a Californian annual grassland: The contribution of arbuscular mycorrhizae. Biogeochemistry, 49(1), 37–51.
- Grogan, P., & Chapin, F. III (2000). Initial effects of experimental warming on above-and belowground components of net ecosystem ${\rm CO_2}$ exchange in arctic tundra. *Oecologia*, 125(4), 512–520.
- Grulke, N., Dobrowolski, W., Mingus, P., & Fenn, M. (2005). California black oak response to nitrogen amendment at a high O₃, nitrogen-saturated site. *Environmental Pollution*, 137(3), 536–545.
- Grünzweig, J. M., & Körner, C. (2001). Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO₂. *Oecologia*, 128(2), 251–262.
- Gundale, M. J., Deluca, T. H., & Nordin, A. (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17(8), 2743–2753.
- Guo, Q., Hu, Z., Li, S., Yu, G., Sun, X., Li, L., . . . Bai, W. (2016). Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland. *Scientific Reports*. 6, 26901.
- Gurlevik, N., Kelting, D. L., & Allen, H. L. (2004). Nitrogen mineralization following vegetation control and fertilization in a 14-year-old loblolly pine plantation. Soil Science Society of America Journal, 68(1), 272–281.
- Güsewell, S., Koerselman, W., & Verhoeven, J. T. (2002). Time-dependent effects of fertilization on plant biomass in floating fens. *Journal of Vegetation Science*, 13(5), 705–718.
- Güsewell, S., Koerselman, W., & Verhoeven, J. T. (2003). Biomass N: P ratios as indicators of nutrient limitation for plant populations in wetlands. *Ecological Applications*, 13(2), 372–384.
- Haag, R. W. (1974). Nutrient limitations to plant production in two tundra communities. *Canadian Journal of Botany*, *52*(1), 103–116.
- Hagedorn, F., Kammer, A., Schmidt, M. W., & Goodale, C. L. (2012). Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil. Global Change Biology, 18(4), 1412–1427.
- Hall, M. C., Stiling, P., Moon, D. C., Drake, B. G., & Hunter, M. D. (2006). Elevated CO_2 increases the long-term decomposition rate of *Quercus myrtifolia* leaf litter. *Global Change Biology*, 12(3), 568–577.
- Hamilton, J. G., Dermody, O., Aldea, M., Zangerl, A. R., Rogers, A., Berenbaum, M. R., & Delucia, E. H. (2005). Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. *Environmental Entomology*, 34(2), 479–485.

- Hamilton, J. G., Zangerl, A. R., Berenbaum, M. R., Pippen, J., Aldea, M., & DeLucia, E. H. (2004). Insect herbivory in an intact forest understory under experimental CO₂ enrichment. *Oecologia*, 138(4), 566–573.
- Han, Q., Kabeya, D., & Hoch, G. (2011). Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of ${\rm CO_2}$ enrichment. Annals of Botany, 107(8), 1405–1411.
- Handa, I. T., Hagedorn, F., & Hättenschwiler, S. (2008). No stimulation in root production in response to 4 years of in situ CO_2 enrichment at the Swiss treeline. *Functional Ecology*, 22(2), 348–358.
- Harrington, R. A., Fownes, J. H., & Vitousek, P. M. (2001). Production and resource use efficiencies in N-and P-limited tropical forests: A comparison of responses to long-term fertilization. *Ecosystems*, 4(7), 646–657.
- Hartmann, A. A., & Niklaus, P. A. (2012). Effects of simulated drought and nitrogen fertilizer on plant productivity and nitrous oxide (N₂O) emissions of two pastures. *Plant and Soil*, 361(1–2), 411–426.
- Hattas, D., Stock, W., Mabusela, W., & Green, I. (2005). Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO₂ concentrations. *Global and Planetary Change*, 47(2), 181–192.
- Hättenschwiler, S., & Bretscher, D. (2001). Isopod effects on decomposition of litter produced under elevated CO₂, N deposition and different soil types. *Global Change Biology*, 7(5), 565–579.
- Hättenschwiler, S., Handa, I. T., Egli, L., Asshoff, R., Ammann, W., & Körner, C. (2002). Atmospheric CO₂ enrichment of alpine treeline conifers. New Phytologist, 156(3), 363–375.
- Hättenschwiler, S., & Schafellner, C. (2004). Gypsy moth feeding in the canopy of a CO₂-enriched mature forest. *Global Change Biology*, 10(11), 1899–1908.
- Hättenschwiler, S., Schweingruber, F., & Körner, C. (1996). Tree ring responses to elevated CO₂ and increased N deposition in *Picea abies*. *Plant, Cell and Environment*, 19(12), 1369–1378.
- Haubensak, K. A., & D'Antonio, C. M. (2011). The importance of nitrogen-fixation for an invader of a coastal California grassland. *Biological Invasions*, 13(6), 1275–1282.
- Haugwitz, M. S., Bergmark, L., Priemé, A., Christensen, S., Beier, C., & Michelsen, A. (2014). Soil microorganisms respond to five years of climate change manipulations and elevated atmospheric CO₂ in a temperate heath ecosystem. *Plant and Soil*, 374(1-2), 211-222.
- He, D., Xiang, X., He, J.-S., Wang, C., Cao, G., Adams, J., & Chu, H. (2016). Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. *Biology and Fertility of Soils*, 52(8), 1059–1072.
- He, Z., Xiong, J., Kent, A. D., Deng, Y., Xue, K., Wang, G., . . . Zhou, J. (2014). Distinct responses of soil microbial communities to elevated CO₂ and O₃ in a soybean agro-ecosystem. *The ISME Journal*, 8(3), 714–726.
- Heijmans, M. M., Berendse, F., Arp, W. J., Masselink, A. K., Klees, H., De Visser, W., & Van Breemen, N. (2001). Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. *Journal of Ecology*, 89(2), 268–279.
- Heijmans, M. M., Klees, H., De Visser, W., & Berendse, F. (2002a). Effects of Increased nitrogen deposition on the distribution of nitrogen between Sphagnum and vascular plants. *Ecosystems*, 5(5), 500–508.
- Heijmans, M. M., Klees, H., de Visser, W., & Berendse, F. (2002b).Response of a Sphagnum bog plant community to elevated CO₂ and N supply. *Plant Ecology*, 162(1), 123–134.
- Heng, T., Wu, J., Xie, S., & Wu, M. (2011). The responses of soil C and N, microbial biomass C or N under alpine meadow of Qinghai-Tibet Plateau to the change of temperature and precipitation. *Chinese Agricultural Science Bulletin*, 27(3), 425–430.
- Herbert, D. A., & Fownes, J. H. (1995). Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. *Biogeochemistry*, 29(3), 223–235.

- Herbert, D. A., Fownes, J. H., & Vitousek, P. M. (1999). Hurricane damage to a Hawaiian forest: Nutrient supply rate affects resistance and resilience. *Ecology*, 80(3), 908–920.
- Herrick, J., & Thomas, R. (2001). No photosynthetic down-regulation in sweetgum trees (*Liquidambar styraciflua* L.) after three years of CO₂ enrichment at the Duke Forest FACE experiment. *Plant, Cell and Environment*, 24(1), 53-64.
- Herrick, J. D., & Thomas, R. B. (1999). Effects of ${\rm CO}_2$ enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (*Liquidambar styraciflua*) in a forest ecosystem. *Tree Physiology*, 19(12), 779–786.
- Herrick, J. D., & Thomas, R. B. (2003). Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (*Liquidambar styraciflua*) grown in elevated and ambient carbon dioxide concentrations. *Tree Physiology*, 23(2), 109–118.
- Heskel, M. A., Anderson, O. R., Atkin, O. K., Turnbull, M. H., & Griffin, K. L. (2012). Leaf-and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species. *American Journal of Botany*, 99(10), 1702–1714.
- Hinojosa, M. B., Parra, A., Ramírez, D. A., Carreira, J. A., García-Ruiz, R., & Moreno, J. M. (2012). Effects of drought on soil phosphorus availability and fluxes in a burned Mediterranean shrubland. *Geoderma*, 191, 61-69.
- Hobbie, S. E., & Chapin, F. S. (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO₂ flux to experimental warming. *Ecology*, 79(5), 1526–1544.
- Hobbie, S. E., Gough, L., & Shaver, G. R. (2005). Species compositional differences on different-aged glacial landscapes drive contrasting responses of tundra to nutrient addition. *Journal of Ecology*, 93(4), 770–782.
- Hobbie, S. E., & Vitousek, P. M. (2000). Nutrient limitation of decomposition in Hawaiian forests. *Ecology*, 81(7), 1867–1877.
- Hoegberg, P., Fan, H., Quist, M., Binkley, D., & Tamm, C. O. (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. *Global Change Biology*, 12(3), 489–499.
- Hogan, E., Minnullina, G., Sheppard, L., Leith, I., & Crittenden, P. (2010).
 Response of phosphomonoesterase activity in the lichen *Cladonia portentosa* to nitrogen and phosphorus enrichment in a field manipulation experiment. *New Phytologist*, 186(4), 926–933.
- Holub, P., & Záhora, J. (2008). Effects of nitrogen addition on nitrogen mineralization and nutrient content of expanding *Calamagrostis* epigejos in the Podyji National Park, Czech Republic. *Journal of Plant* Nutrition and Soil Science, 171(5), 795–803.
- Hoosbeek, M., Lukac, M., Velthorst, E., Smith, A., & Godbold, D. (2011). Free atmospheric CO_2 enrichment increased above ground biomass but did not affect symbiotic N_2 -fixation and soil carbon dynamics in a mixed deciduous stand in Wales. *Biogeosciences*, 8(2), 353–364.
- Hoosbeek, M. R. (2016). Elevated ${\rm CO}_2$ increased phosphorous loss from decomposing litter and soil organic matter at two FACE experiments with trees. *Biogeochemistry*, 127(1), 89–97.
- Hoosbeek, M. R., & Scarascia-Mugnozza, G. E. (2009). Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO₂ enrichment (FACE): Final results of POP-EuroFACE compared to other forest FACE experiments. *Ecosystems*, 12(2), 220–239.
- Hoosbeek, M. R., Vos, J. M., Meinders, M. B., Velthorst, E. J., & Scarascia-Mugnozza, G. E. (2007). Free atmospheric CO₂ enrichment (FACE) increased respiration and humification in the mineral soil of a poplar plantation. *Geoderma*, 138(3), 204–212.
- Hossain, A., Raison, R., & Khanna, P. (1995). Effects of fertilizer application and fire regime on soil microbial biomass carbon and nitrogen, and nitrogen mineralization in an Australian subalpine eucalypt forest. Biology and Fertility of Soils, 19(2), 246–252.

- Housman, D., Killingbeck, K., Evans, R. D., Charlet, T., & Smith, S. (2012).
 Foliar nutrient resorption in two Mojave Desert shrubs exposed to Free-Air CO₂ Enrichment (FACE). Journal of Arid Environments, 78, 26–32.
- Hovenden, M. J., Newton, P., Carran, R. A., Theobald, P., Wills, K. E., Vander Schoor, J. K., . . . Osanai, Y. (2008). Warming prevents the elevated CO₂-induced reduction in available soil nitrogen in a temperate, perennial grassland. *Global Change Biology*, 14(5), 1018–1024.
- Hu, B., Simon, J., Günthardt-Goerg, M. S., Arend, M., Kuster, T. M., & Rennenberg, H. (2015). Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type. PLoS ONE, 10(5), e0126701.
- Hu, M., Wilson, B. J., Sun, Z., Ren, P., & Tong, C. (2017). Effects of the addition of nitrogen and sulfate on $\mathrm{CH_4}$ and $\mathrm{CO_2}$ emissions, soil, and pore water chemistry in a high marsh of the Min River estuary in southeastern China. Science of The Total Environment, 579, 292–304.
- Hu, S., Chapin, F. III, Firestone, M., Field, C., & Chiariello, N. (2001). Nitrogen limitation of microbial decomposition in a grassland under elevated CO₂. Nature, 409(6817), 188–191.
- Hu, Y.-L., Zeng, D.-H., Liu, Y.-X., Zhang, Y.-L., Chen, Z.-H., & Wang, Z.-Q. (2010). Responses of soil chemical and biological properties to nitrogen addition in a Dahurian larch plantation in Northeast China. *Plant and Soil*, 333(1-2), 81-92.
- Hu, Z., Zhu, C., Chen, X., Bonkowski, M., Griffiths, B., Chen, F., . . . Liu, M. (2017). Responses of rice paddy micro-food webs to elevated CO₂ are modulated by nitrogen fertilization and crop cultivars. Soil Biology Biochemistry, 114, 104–113.
- Huang, G., Li, L., Su, Y.-G., & Li, Y. (2018). Differential seasonal effects of water addition and nitrogen fertilization on microbial biomass and diversity in a temperate desert. *Catena*, 161, 27–36.
- Huang, J.-Y., Zhu, X.-G., Yuan, Z.-Y., Song, S.-H., Li, X., & Li, L.-H. (2008). Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. *Plant and Soil*, 306(1–2), 149–158.
- Huang, J., Hu, B., Qi, K., Chen, W., Pang, X., Bao, W., & Tian, G. (2016). Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. European Journal of Soil Biology, 72, 35–41.
- Huang, L., Liang, Z., Suarez, D., Wang, Z., Wang, M., Yang, H., & Liu, M. (2016). Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. *The Journal of Agricultural Science*, 154(4), 632–646.
- Huang, L., Ren, Q., Sun, Y., Ye, L., Cao, H., & Ge, F. (2012). Lower incidence and severity of tomato virus in elevated CO₂ is accompanied by modulated plant induced defence in tomato. *Plant Biology*, 14(6), 905–913.
- Huang, W., Zhou, G., Liu, J., Zhang, D., Xu, Z., & Liu, S. (2012). Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems. *Environmental Pollution*, 168, 113–120.
- Huang, Z., Clinton, P. W., Baisden, W. T., & Davis, M. R. (2011). Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. *Soil Biology and Biochemistry*, 43(2), 302–307.
- Hungate, B. A., Canadell, J., & Chapin, F. S. (1996). Plant species mediate changes in soil microbial N in response to elevated CO₂. Ecology, 77(8), 2505–2515.
- Hungate, B. A., Dijkstra, P., Johnson, D., Hinkle, C. R., & Drake, B. (1999). Elevated ${\rm CO}_2$ increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. *Global Change Biology*, 5(7), 781–789.
- Hungate, B. A., Dijkstra, P., Wu, Z., Duval, B. D., Day, F. P., Johnson, D. W., Garland, J. L. (2013). Cumulative response of ecosystem carbon

- and nitrogen stocks to chronic CO_2 exposure in a subtropical oak woodland. New Phytologist, 200(3), 753–766.
- Hungate, B. A., Hart, S. C., Selmants, P. C., Boyle, S. I., & Gehring, C. A. (2007). Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests. *Ecological Applications*, 17(5), 1352–1365.
- Hungate, B. A., Johnson, D. W., Dijkstra, P., Hymus, G., Stiling, P., Megonigal, J. P., . . . Li, J. (2006). Nitrogen cycling during seven years of atmospheric CO₂ enrichment in a scrub oak woodland. *Ecology*, 87(1), 26-40.
- Hwangbo, J. K., Seel, W. E., & Woodin, S. J. (2003). Short-term exposure to elevated atmospheric CO_2 benefits the growth of a facultative annual root hemiparasite, *Rhinanthus minor* (L.), more than that of its host, *Poa pratensis* (L.). *Journal of Experimental Botany*, 54(389), 1951–1955.
- Ibrahim, M. H., Jaafar, H. Z., Rahmat, A., & Rahman, Z. A. (2010). The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in *Labisia pumila* Benth. under high CO₂ and nitrogen fertilization. *Molecules*, 16(1), 162–174.
- Inauen, N., Körner, C., & Hiltbrunner, E. (2012). No growth stimulation by CO₂ enrichment in alpine glacier forefield plants. Global Change Biology, 18(3), 985-999.
- Inglett, P., Reddy, K., Newman, S., & Lorenzen, B. (2007). Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited wetland. *Oecologia*, 153(1), 99–109.
- Iversen, C. M., Bridgham, S. D., & Kellogg, L. E. (2010). Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. *Ecology*, 91(3), 693–707.
- Iversen, C. M., Keller, J. K., Garten, C. T., & Norby, R. J. (2012). Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO₂-enrichment. Global Change Biology, 18(5), 1684–1697.
- Jach, M., Laureysens, I., & Ceulemans, R. (2000). Above-and below-ground production of young Scots pine (*Pinus sylvestris* L.) trees after three years of growth in the field under elevated CO₂. Annals of Botany, 85(6), 789–798.
- Jackson, R., Luo, Y., Cardon, Z., Sala, O., Field, C., & Mooney, H. (1995). Photosynthesis, growth and density for the dominant species in a CO₂-enriched grassland. *Journal of Biogeography*, 2(2/3), 221–225.
- Jackson, R., & Reynolds, H. (1996). Nitrate and ammonium uptake for single-and mixed-species communities grown at elevated CO₂. Oecologia, 105(1), 74–80.
- Jagadamma, S., Lal, R., Hoeft, R. G., Nafziger, E. D., & Adee, E. A. (2007). Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil and Tillage Research, 95(1), 348–356.
- Jastrow, J., Miller, R., & Owensby, C. (2000). Long-term effects of elevated atmospheric CO₂ on below-ground biomass and transformations to soil organic matter in grassland. *Plant and Soil*, 224(1), 85–97.
- Jastrow, J. D., Michael Miller, R., Matamala, R., Norby, R. J., Boutton, T. W., Rice, C. W., & Owensby, C. E. (2005). Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology, 11(12), 2057–2064
- Ji, L. Z., An, L. L., & Wang, X. W. (2011). Growth responses of gypsy moth larvae to elevated $\rm CO_2$: The influence of methods of insect rearing. Insect Science, 18(4), 409–418.
- Jia, S., Wang, Z., Li, X., Zhang, X., & Mclaughlin, N. B. (2011). Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in *Larix gmelinii* and *Fraxinus mandshurica*. Tree Physiology, 31(7), 718–726.
- Jiang, X., Hu, Y., Han, J., & Zhou, Y. (2014). Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants. Chinese Journal of Plant Ecology, 38(9), 941–948.

- Jing, X., Yang, X., Ren, F., Zhou, H., Zhu, B., & He, J.-S. (2016). Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. *Applied Soil Ecology*, 107, 205–213.
- Johansson, M. (2000). The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization of *Calluna vulgaris* (L.) Hull from a Danish heathland. *Oecologia*, 123(3), 418–424.
- Johansson, O., Olofsson, J., Giesler, R., & Palmqvist, K. (2011). Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytologist, 191(3), 795–805.
- Johnson, D., Cheng, W., & Ball, J. (2000). Effects of [CO₂] and nitrogen fertilization on soils planted with ponderosa pine. *Plant and Soil*, 224(1), 99-113.
- Johnson, D., Hoylman, A., Ball, J., & Walker, R. (2006). Ponderosa pine responses to elevated ${\rm CO_2}$ and nitrogen fertilization. *Biogeochemistry*, 77(2), 157–175.
- Johnson, D., Hungate, B., Dijkstra, P., Hymus, G., & Drake, B. (2001). Effects of elevated carbon dioxide on soils in a Florida scrub oak ecosystem. *Journal of Environmental Quality*, 30(2), 501–507.
- Johnson, D., Leake, J., & Lee, J. (1999). The effects of quantity and duration of simulated pollutant nitrogen deposition on root-surface phosphatase activities in calcareous and acid grasslands: A bioassay approach. New Phytologist, 141(3), 433–442.
- Johnson, D., Leake, J., & Read, D. (2005). Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. *Plant and Soil*, 271(1), 157–164.
- Johnson, D. W., Ball, J. T., & Walker, R. F. (1997). Effects of CO₂ and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. *Plant and Soil*, 190(1), 29–40.
- Johnson, D. W., Todd, D., & Hanson, P. J. (2008). Effects of throughfall manipulation on soil nutrient status: Results of 12 years of sustained wet and dry treatments. Global Change Biology, 14(7), 1661–1675.
- Jongen, M., Jones, M., Hebeisen, T., Blum, H., & Hendrey, G. (1995). The effects of elevated CO₂ concentrations on the root growth of *Lolium* perenne and *Trifolium repens* grown in a FACE system. Global Change Biology, 1(5), 361–371.
- Jónsdóttir, I. S., Khitun, O., & Stenström, A. (2005). Biomass and nutrient responses of a clonal tundra sedge to climate warming. *Botany*, 83(12), 1608–1621.
- Joseph, G., & Henry, H. A. (2009). Retention of surface nitrate additions in a temperate old field: Implications for atmospheric nitrogen deposition over winter and plant nitrogen availability. *Plant and Soil*, 319(1–2). 209–218.
- Judd, T. S., Bennett, L. T., Weston, C. J., Attiwill, P. M., & Whiteman, P. H. (1996). The response of growth and foliar nutrients to fertilizers in young *Eucalyptus globulus* (Labill.) plantations in Gippsland, southeastern Australia. *Forest Ecology and Management*, 82(1), 87-101.
- Jung, J. Y., & Lal, R. (2011). Impacts of nitrogen fertilization on biomass production of switchgrass (*Panicum virgatum L.*) and changes in soil organic carbon in Ohio. *Geoderma*, 166(1), 145–152.
- Karbin, S., Hagedorn, F., Dawes, M., & Niklaus, P. (2015). Treeline soil warming does not affect soil methane fluxes and the spatial microdistribution of methanotrophic bacteria. Soil Biology and Biochemistry, 86. 164-171.
- Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., & Holopainen, T. (2006). Chemical composition and decomposition of silver birch leaf litter produced under elevated CO₂ and O₃. Plant and Soil, 282(1), 261–280.
- Kätterer, T., Andrén, O., & Pettersson, R. (1998). Growth and nitrogen dynamics of reed canarygrass (*Phalaris arundinacea* L.) subjected to daily fertilization and irrigation in the field. *Field Crops Research*, 55(1–2), 153–164.
- Keeler, B. L., Hobbie, S. E., & Kellogg, L. E. (2009). Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and

- grassland sites: Implications for litter and soil organic matter decomposition. *Ecosystems*. 12(1), 1–15.
- Keller, J. K., Bridgham, S. D., Chapin, C. T., & Iversen, C. M. (2005). Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biology and Biochemistry, 37(6), 1197–1204.
- Ket, W. A., Schubauer-Berigan, J. P., & Craft, C. B. (2011). Effects of five years of nitrogen and phosphorus additions on a *Zizaniopsis miliacea* tidal freshwater marsh. *Aquatic Botany*, 95(1), 17–23.
- Khalili, B., Ogunseitan, O. A., Goulden, M. L., & Allison, S. D. (2016). Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland. *Applied Soil Ecology*, 107, 144–153.
- Kim, H.-Y., Lim, S.-S., Kwak, J.-H., Lee, D.-S., Lee, S.-M., Ro, H.-M., & Choi, W.-J. (2011). Dry matter and nitrogen accumulation and partitioning in rice (*Oryza sativa* L.) exposed to experimental warming with elevated CO₂. *Plant and Soil*, 342(1-2), 59-71.
- King, J., Mosier, A., Morgan, J., LeCain, D., Milchunas, D., & Parton, W. (2004). Plant nitrogen dynamics in shortgrass steppe under elevated atmospheric carbon dioxide. *Ecosystems*, 7(2), 147–160.
- Kinugasa, T., Hikosaka, K., & Hirose, T. (2003). Reproductive allocation of an annual, *Xanthium canadense*, at an elevated carbon dioxide concentration. *Oecologia*, 137(1), 1–9.
- Kishchuk, B. E., Weetman, G. F., Brockley, R. P., & Prescott, C. E. (2002). Fourteen-year growth response of young lodgepole pine to repeated fertilization. *Canadian Journal of Forest Research*, 32(1), 153–160.
- Klein, J. A., Harte, J., & Zhao, X.-Q. (2007). Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. *Ecological Applications*, 17(2), 541–557.
- Klus, D. J., Kalisz, S., Curtis, P. S., Teeri, J. A., & Tonsor, S. J. (2001). Family-and population-level responses to atmospheric CO₂ concentration: Gas exchange and the allocation of C, N, and biomass in *Plantago lanceolata* (Plantaginaceae). American Journal of Botany, 88(6), 1080–1087.
- Knepp, R. G., Hamilton, J. G., Mohan, J. E., Zangerl, A. R., Berenbaum, M. R., & DeLucia, E. H. (2005). Elevated CO₂ reduces leaf damage by insect herbivores in a forest community. New Phytologist, 167(1), 207–218
- Knepp, R. G., Hamilton, J. G., Zangerl, A. R., Berenbaum, M. R., & DeLucia, E. H. (2007). Foliage of oaks grown under elevated CO_2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environmental Entomology, 36(3), 609–617.
- Knops, J. M., Naeem, S., & Reich, P. (2007). The impact of elevated CO₂, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. *Global Change Biology*, 13(9), 1960–1971.
- Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H., & Wright, S. J. (2009). Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Global Change Biology, 15(8), 2049–2066.
- Koopmans, C., Tietema, A., & Boxman, A. (1996). The fate of ¹⁵N enriched throughfall in two coniferous forest stands at different nitrogen deposition levels. *Biogeochemistry*, 34(1), 19–44.
- Kornfeld, A., Heskel, M., Atkin, O. K., Gough, L., Griffin, K. L., Horton, T. W., & Turnbull, M. H. (2013). Respiratory flexibility and efficiency are affected by simulated global change in Arctic plants. New Phytologist, 197(4), 1161–1172.
- Kostiainen, K., Kaakinen, S., Saranpää, P., Sigurdsson, B. D., Linder, S., & Vapaavuori, E. (2004). Effect of elevated $[{\rm CO}_2]$ on stem wood properties of mature Norway spruce grown at different soil nutrient availability. Global Change Biology, 10(9), 1526–1538.
- Kostiainen, K., Kaakinen, S., Saranpää, P., Sigurdsson, B. D., Lundqvist, S. O., Linder, S., & Vapaavuori, E. (2009). Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated [CO₂] and temperature. Global Change Biology, 15(2), 368–379.
- Kou, L., Chen, W., Jiang, L., Dai, X., Fu, X., Wang, H., & Li, S. (2018). Simulated nitrogen deposition affects stoichiometry of multiple

- elements in resource-acquiring plant organs in a seasonally dry subtropical forest. Science of The Total Environment, 624, 611–620.
- Kou, L., Wang, H., Gao, W., Chen, W., Yang, H., & Li, S. (2017). Nitrogen addition regulates tradeoff between root capture and foliar resorption of nitrogen and phosphorus in a subtropical pine plantation. *Trees*, 31(1), 77–91.
- Kozovits, A., Bustamante, M., Garofalo, C., Bucci, S., Franco, A., Goldstein, G., & Meinzer, F. (2007). Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. *Functional Ecology*, 21(6), 1034–1043.
- Kubiske, M. E., Zak, D. R., Pregitzer, K. S., & Takeuchi, Y. (2002). Photosynthetic acclimation of overstory *Populus tremuloides* and understory *Acer saccharum* to elevated atmospheric CO₂ concentration: Interactions with shade and soil nitrogen. *Tree Physiology*, 22(5), 321–329.
- Kuster, T., Schleppi, P., Hu, B., Schulin, R., & Günthardt-Goerg, M. (2013). Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils. *Plant Biology*, 15(s1), 220-229.
- Lagomarsino, A., De Angelis, P., Moscatelli, M. C., & Grego, S. (2009). The influence of temperature and labile C substrates on heterotrophic respiration in response to elevated CO₂ and nitrogen fertilization. *Plant and Soil*, 317(1–2), 223–234.
- Lagomarsino, A., Moscatelli, M., Hoosbeek, M., De Angelis, P., & Grego, S. (2008). Assessment of soil nitrogen and phosphorous availability under elevated CO₂ and N-fertilization in a short rotation poplar plantation. *Plant and Soil*, 308(1–2), 131–147.
- Laitinen, K., Luomala, E.-M., Kellomäki, S., & Vapaavuori, E. (2000). Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO₂. *Tree Physiology*, 20(13), 881–892.
- Lam, S. K., Chen, D., Norton, R., & Armstrong, R. (2012). Nitrogen demand and the recovery of 15N-labelled fertilizer in wheat grown under elevated carbon dioxide in southern Australia. Nutrient Cycling in Agroecosystems, 92(2), 133–144.
- Lam, S. K., Hao, X., Lin, E., Han, X., Norton, R., Mosier, A. R., . . . Chen, D. (2012). Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China. *Biology and Fertility of Soils*, 48(5), 603–606.
- Larsen, K. S., Andresen, L. C., Beier, C., Jonasson, S., Albert, K. R., Ambus, P., . . . Holmstrup, M. (2011). Reduced N cycling in response to elevated CO₂, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology, 17(5), 1884–1899.
- Lawrence, D. (2001). Nitrogen and phosphorus enhance growth and luxury consumption of four secondary forest tree species in Borneo. *Journal of Tropical Ecology*, 17(6), 859–869.
- Lecain, D. R., Morgan, J. A., Mosier, A. R., & Nelson, J. A. (2003). Soil and plant water relations determine photosynthetic responses of C³ and C⁴ grasses in a semi-arid ecosystem under elevated CO₂. Annals of Botany, 92(1), 41–52.
- Lee, K.-S., & Dunton, K. (1999). Influence of sediment nitrogen-availability on carbon and nitrogen dynamics in the seagrass *Thalassia testudinum*. *Marine Biology*, 134(2), 217–226.
- Lee, T. D., Barrott, S. H., & Reich, P. B. (2011). Photosynthetic responses of 13 grassland species across 11 years of free-air CO₂ enrichment is modest, consistent and independent of N supply. Global Change Biology, 17(9), 2893–2904.
- Lee, T. D., Reich, P. B., & Tjoelker, M. G. (2003). Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. *Oecologia*, 137(1), 22–31.
- Lee, T. D., Tjoelker, M. G., Ellsworth, D. S., & Reich, P. B. (2001). Leaf gas exchange responses of 13 prairie grassland species to elevated ${\rm CO_2}$ and increased nitrogen supply. New Phytologist, 150(2), 405–418.

- Lei, Y. B., Feng, Y. L., Zheng, Y. L., Wang, R. F., De Gong, H., & Zhang, Y. P. (2011). Innate and evolutionarily increased advantages of invasive Eupatorium adenophorum over native E. japonicum under ambient and doubled atmospheric CO₂ concentrations. Biological Invasions, 13(12), 2703–2714.
- León-Sánchez, L., Nicolás, E., Nortes, P. A., Maestre, F. T., & Querejeta, J. I. (2016). Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub. *Ecology and Evolution*, 6(9), 2725–2738.
- Li, H., Xu, F., Lin, Y., & Luan, X. (2012). Effects of N, P and K fertilization on soil enzyme activities and soil fertility in montane Jujube forest of hilly loess region. Agricultural Research in the Arid Areas, 30(4), 53–59.
- Li, J., Li, Z., Wang, F., Zou, B., Chen, Y., Zhao, J., . . . Xia, H. (2015). Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. *Biology and Fertility of Soils*, 51(2), 207–215.
- Li, J. H., Dijkstra, P., Hymus, G., Wheeler, R., Piastuch, W., Hinkle, C., & Drake, B. (2000). Leaf senescence of *Quercus myrtifolia* as affected by long-term CO₂ enrichment in its native environment. *Global Change Biology*, 6(7), 727–733.
- Li, J. H., Yang, Y. J., Li, B. W., Li, W. J., Wang, G., & Knops, J. M. (2014). Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau. PLoS ONE, 9(7), e103266.
- Li, L., Zeng, D., Mao, R., & Yu, Z. (2012). Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant, Soil and Environment, 58(10), 446–451
- Li, Q., Bai, H., Liang, W., Xia, J., Wan, S., & van der Putten, W. H. (2013). Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe. PLoS ONE, 8(3), e60441.
- Li, Y., Dong, T., Duan, B., & Zhang, Y. (2015). Physiological responses of *Abies faxoniana* populations from different elevations to increased CO₂ and N application. *Acta Physiologiae Plantarum*, 37(1), 1724.
- Li, Y., Zhang, Y., Zhang, X., Korpelainen, H., Berninger, F., & Li, C. (2013). Effects of elevated CO₂ and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. Physiologia Plantarum, 148(2), 261–272.
- Li, Y.-j., Zhao, W.-q., Zhang, Z.-l., Li, D.-d., Zhao, C.-z., & Liu, Q. (2016). Effects of experimental warming on soil microbial communities in two contrasting subalpine forest ecosystems, eastern Tibetan Plateau, China. *Journal of Mountain Science*, 13(8), 1442–1452.
- Liang, Y., Cao, X., Zhang, W., Zhang, Y., Li, W., Gao, Q., . . . Li, Y. (2017). Effects of simulated nitrogen deposition on greenhouse gas emission from alpine meadows in northern Tibet. Acta Ecologica Sinica, 37(2), 485–494.
- Lichter, J., Barron, S. H., Bevacqua, C. E., Finzi, A. C., Irving, K. F., Stemmler, E. A., & Schlesinger, W. H. (2005). Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO₂ enrichment. *Ecology*, 86(7), 1835–1847.
- Liebig, M., Varvel, G. E., Doran, J. W., & Wienhold, B. J. (2002). Crop sequence and nitrogen fertilization effects on soil properties in the western corn belt. Soil Science Society of America Journal, 66(2), 596-601.
- Limpens, J., Berendse, F., & Klees, H. (2003). N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. *New Phytologist*, 157(2), 339–347.
- Limpens, J., Berendse, F., & Klees, H. (2004). How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. *Ecosystems*, 7(8), 793–804.
- Limpens, J., Tomassen, H. B., & Berendse, F. (2003). Expansion of *Sphagnum fallax* in bogs: Striking the balance between N and P availability. *Journal of Bryology*, 25(2), 83–90.

- Lindroth, R. L., Kopper, B. J., Parsons, W. F., Bockheim, J. G., Karnosky, D. F., Hendrey, G. R., . . . Sober, J. (2001). Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (*Populus tremuloides*) and paper birch (*Betula papyrifera*). Environmental Pollution, 115(3), 395–404.
- Litaor, M., Seastedt, T., & Sackett, L. (2008). Nutrient status in alpine soils of the Colorado Front Range using the nitrogen/phosphorus ratio index. Soil Science Society of America Journal, 72(6), 1628–1636.
- Liu, A., Hamel, C., Spedding, T., Zhang, T.-Q., Mongeau, R., Lamarre, G. R., & Tremblay, G. (2008). Soil microbial carbon and phosphorus as influenced by phosphorus fertilization and tillage in a maize-soybean rotation in south-western Quebec. *Canadian Journal of Soil Science*, 88(1), 21–30.
- Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., . . . Fan, T. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. *Geoderma*, 158(3), 173–180.
- Liu, J., Fang, X., Deng, Q., Han, T., Huang, W., & Li, Y. (2015). ${\rm CO_2}$ enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems. *Scientific Reports*, 5, 7952.
- Liu, J., Zhang, D., Zhou, G., & Duan, H. (2012). Changes in leaf nutrient traits and photosynthesis of four tree species: Effects of elevated [CO₂], N fertilization and canopy positions. *Journal of Plant Ecology*, 5(4), 376–390.
- Liu, J., Zhou, G., Xu, Z., Duan, H., Li, Y., & Zhang, D. (2011). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. *Journal of Soils and Sediments*, 11(7), 1155–1164.
- Liu, J. X., Zhou, G. Y., Zhang, D. Q., Xu, Z. H., Duan, H. L., Deng, Q., & Zhao, L. (2010). Carbon dynamics in subtropical forest soil: Effects of atmospheric carbon dioxide enrichment and nitrogen addition. *Journal of Soils and Sediments*, 10(4), 730–738.
- Liu, L., Hu, C., Yang, P., Ju, Z., Olesen, J. E., & Tang, J. (2016). Experimental warming-driven soil drying reduced N₂O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009–2014. Agriculture, Ecosystems and Environment, 219, 71–82.
- Liu, L., King, J. S., Booker, F. L., Giardina, C. P., Lee Allen, H., & Hu, S. (2009). Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO₂: A microcosm study. Global Change Biology, 15(2), 441–453.
- Liu, L., King, J. S., & Giardina, C. P. (2005). Effects of elevated concentrations of atmospheric CO_2 and tropospheric O_3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology, 25(12), 1511–1522.
- Liu, L., King, J. S., & Giardina, C. P. (2007). Effects of elevated atmospheric CO_2 and tropospheric O_3 on nutrient dynamics: Decomposition of leaf litter in trembling aspen and paper birch communities. *Plant and Soil*, 299(1–2), 65–82.
- Liu, Q., Yin, H., Chen, J., Zhao, C., Cheng, X., Wei, Y., & Lin, B. (2011). Belowground responses of *Picea asperata* seedlings to warming and nitrogen fertilization in the eastern Tibetan Plateau. *Ecological Research*, 26(3), 637-648.
- Liu, W., Liu, B., Wang, J., & Lei, C. (2010). Responses of soil microbial communities to moss cover and nitrogen addition. Acta Ecologica Sinica, 30(7), 1691–1698.
- Liu, W., Wang, L., Fu, R., Zhou, S., Liu, L., Wu, X., & Huang, C. (2017). Effects of precipitation increase on soil respiration of a *Pinus yunna-nensis* plantation in a dry river valley area. *Acta Ecologica Sinica*, 37(5), 1391–1400.
- Liu, W., Xu, W., Han, Y., Wang, C., & Wan, S. (2007). Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. *Biology and Fertility of Soils*, 44(2), 259–268.

- Liu, W., Zhang, Z., & Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. *Global Change Biology*, *15*(1), 184–195.
- Liu, X., Yang, Z., Lin, C., Giardina, C. P., Xiong, D., Lin, W., . . . Xie, J. (2017).
 Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation? Agricultural and Forest Meteorology, 246. 78–85.
- Liu, Y., Shi, G., Mao, L., Cheng, G., Jiang, S., Ma, X., . . . Feng, H. (2012). Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 194(2), 523–535.
- Liu, Z., Lin, W., Yang, Z., Lin, T., Liu, X., Chen, Y., & Yang, Y. (2017). Effects of soil warming and nitrogen deposition on available nitrogen in a young Cunninghamia lanceolata stand in mid-subtropical China Acta Ecologica Sinica, 37(1), 44–53.
- Loaiza, V., Jonas, J. L., & Joern, A. (2011). Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland. *Insect Science*, 18(5), 533–540.
- Lovelock, C. E., & Feller, I. C. (2003). Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. *Oecologia*, 134(4), 455–462.
- Lovelock, C. E., Ruess, R. W., & Feller, I. C. (2006). Fine root respiration in the mangrove *Rhizophora mangle* over variation in forest stature and nutrient availability. *Tree Physiology*, 26(12), 1601–1606.
- Lovelock, C. E., Winter, K., Mersits, R., & Popp, M. (1998). Responses of communities of tropical tree species to elevated ${\rm CO_2}$ in a forest clearing. *Oecologia*, 116(1), 207–218.
- Lovett, G. M., Arthur, M. A., Weathers, K. C., Fitzhugh, R. D., & Templer, P. H. (2013). Nitrogen addition increases carbon storage in soils, but not in trees, in an eastern US deciduous forest. *Ecosystems*, 16(6), 980–1001
- Lovett, G. M., & Goodale, C. L. (2011). A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. *Ecosystems*, 14(4), 615–631.
- Lu, X., Gilliam, F. S., Yu, G., Li, L., Mao, Q., Chen, H., & Mo, J. (2013). Longterm nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem. *Biogeosciences*, 10(6), 3931–3941.
- Ludwig, F., Kroon, H., Prins, H. H., & Berendse, F. (2001). Effects of nutrients and shade on tree-grass interactions in an East African savanna. *Journal of Vegetation Science*, 12(4), 579–588.
- Luo, Q., Gong, J., Zhai, Z., Pan, Y., Liu, M., Xu, S., . . . Baoyin, T.-T. (2016). The responses of soil respiration to nitrogen addition in a temperate grassland in northern China. Science of the Total Environment, 569, 1466–1477.
- Luo, Z.-B., Calfapietra, C., Scarascia-Mugnozza, G., Liberloo, M., & Polle, A. (2008). Carbon-based secondary metabolites and internal nitrogen pools in *Populus nigra* under Free Air CO₂ Enrichment (FACE) and nitrogen fertilisation. *Plant and Soil*, 304(1-2), 45–57.
- Luo, Z. B., & Polle, A. (2009). Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO₂ atmosphere. *Global Change Biology*, 15(1), 38–47.
- Luomala, E. M., Laitinen, K., Kellomäki, S., & Vapaavuori, E. (2003). Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO₂ and elevated temperature. *Plant, Cell and Environment, 26*(5), 645–660.
- Lü, X.-T., Cui, Q., Wang, Q.-B., & Han, X.-G. (2011). Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. *Ecological Engineering*, 37(3), 534–538.
- Lü, X.-T., & Han, X.-G. (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327(1–2), 481–491.
- Lü, X.-T., Kong, D.-L., Pan, Q.-M., Simmons, M. E., & Han, X.-G. (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. *Oecologia*, 168(2), 301–310.

- Lv, F., Xue, S., Wang, G., & Jing, H. (2016). Effects of N addition on soil enzyme activities and microbial biomass beneath *Pinus labuliformis* seedlings *Chinese Journal of Ecology*, 35(2), 338–345.
- Lv, F., Xue, S., Wang, G., & Zhang, C. (2017). Nitrogen addition shifts the microbial community in the rhizosphere of *Pinus tabuliformis* in Northwestern China. *PLoS ONE*, 12(2), e0172382.
- Ma, H. L., Zhu, J. G., Xie, Z. B., Liu, G., & Zeng, Q. (2009). Effects of increased residue biomass under elevated CO₂ on carbon and nitrogen in soil aggregate size classes (rice-wheat rotation system, China). Canadian Journal of Soil Science, 89(5), 567–577.
- Ma, L.-N., Lü, X.-T., Liu, Y., Guo, J.-X., Zhang, N.-Y., Yang, J.-Q., & Wang, R.-Z. (2011). The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China. PLoS ONE, 6(11), e27645.
- Ma, L., Guo, C., Xin, X., Yuan, S., & Wang, R. (2013). Effects of below-ground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe. *Biogeosciences*, 10(11), 7361-7372.
- Ma, S., Zhu, X., Zhang, J., Zhang, L., Che, R., Wang, F., . . . Cui, X. (2015). Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow. *Ecology and Evolution*, 5(18), 3995–4005.
- Ma, W., Jiang, S., Assemien, F., Qin, M., Ma, B., Xie, Z., . . . Ma, X. (2016). Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biology and Biochemistry, 101, 195–206.
- Mack, M. C., Schuur, E. A., Bret-Harte, M. S., Shaver, G. R., & Chapin, F. S. III (2004). Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. *Nature*, 431(7007), 440.
- Magill, A. H., Aber, J. D., Berntson, G. M., McDowell, W. H., Nadelhoffer, K. J., Melillo, J. M., & Steudler, P. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. *Ecosystems*, 3(3), 238–253.
- Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M. E., McDowell, W. H., . . . Steudler, P. (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196(1), 7-28.
- Magill, A. H., Downs, M. R., Nadelhoffer, K. J., Hallett, R. A., & Aber, J. D. (1996). Forest ecosystem response to four years of chronic nitrate and sulfate additions at Bear Brooks Watershed, Maine, USA. Forest Ecology and Management, 84(1–3), 29–37.
- Malhi, S., Nyborg, M., Harapiak, J., Heier, K., & Flore, N. (1997). Increasing organic C and N in soil under bromegrass with long-term N fertilization. *Nutrient Cycling in Agroecosystems*, 49(1), 255–260.
- Malmer, N., Albinsson, C., Svensson, B. M., & Wallén, B. (2003). Interferences between Sphagnum and vascular plants: Effects on plant community structure and peat formation. Oikos, 100(3), 469-482.
- Mandal, A., Patra, A., Singh, D., Swarup, A., Purakayastha, T., & Masto, R. (2009). Effects of long-term organic and chemical fertilization on N and P in wheat plants and in soil during crop growth. Agrochimica, 53(2), 79–91.
- Manna, M., Swarup, A., Wanjari, R., Mishra, B., & Shahi, D. (2007). Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil and Tillage Research, 94(2), 397–409.
- Manna, M., Swarup, A., Wanjari, R., Singh, Y., Ghosh, P., Singh, K., . . . Saha, M. (2006). Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization. Soil Science Society of America Journal, 70(1), 121–129.
- Manninen, O., Stark, S., Kytöviita, M. M., & Tolvanen, A. (2011). Individual and combined effects of disturbance and N addition on understorey vegetation in a subarctic mountain birch forest. *Journal of Vegetation Science*, 22(2), 262–272.
- Mansfield, J. L., Curtis, P. S., Zak, D. R., & Pregitzer, K. S. (1999). Genotypic variation for condensed tannin production in trembling aspen

- (Populus tremuloides, Salicaceae) under elevated CO₂ and in high-and low-fertility soil. American Journal of Botany, 86(8), 1154–1159.
- Mao, Q., Lu, X., Wang, C., Zhou, K., Mo, J., & Management. (2017). Responses of understory plant physiological traits to a decade of nitrogen addition in a tropical reforested ecosystem. Forest Ecology, 401, 65–74.
- Mao, R., Chen, H.-M., Zhang, X.-H., Shi, F.-X., & Song, C.-C. (2016). Effects of P addition on plant C: N: P stoichiometry in an N-limited temperate wetland of Northeast China. Science of the Total Environment, 559, 1-6.
- Marhan, S., Demin, D., Erbs, M., Kuzyakov, Y., Fangmeier, A., & Kandeler, E. (2008). Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO₂ atmosphere. Agriculture, Ecosystems and Environment, 123(1), 63–68.
- Marissink, M., Pettersson, R., & Sindhøj, E. (2002). Above-ground plant production under elevated carbon dioxide in a Swedish semi-natural grassland. *Agriculture, Ecosystems and Environment*, 93(1), 107–120.
- Markewitz, D., Figueiredo, R. d. O., de Carvalho, C. J. R., & Davidson, E. A. (2012). Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. *Biology and Fertility of Soils*, 48(6), 665–678.
- Matamala, R., & Drake, B. G. (1999). The influence of atmospheric ${\rm CO_2}$ enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay. *Plant and Soil*, 210(1), 93–101.
- Matias, L., Castro, J., & Zamora, R. (2011). Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Global Change Biology, 17(4), 1646–1657.
- Matson, P. A., Gower, S. T., Volkmann, C., Billow, C., & Grier, C. C. (1992).Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest: Effects of fertilization, irrigation and carbon addition. *Biogeochemistry*, 18(2), 101–117.
- Matsushima, M., & Chang, S. X. (2006). Vector analysis of understory competition, N fertilization, and litter layer removal effects on white spruce growth and nutrition in a 13-year-old plantation. Forest Ecology and Management, 236(2), 332–341.
- Matsushima, M., & Chang, S. X. (2007). Effects of understory removal, N fertilization, and litter layer removal on soil N cycling in a 13-year-old white spruce plantation infested with Canada bluejoint grass. *Plant and Soil*, 292(1-2), 243-258.
- Mayor, J. R., Wright, S. J., Schuur, E. A., Brooks, M. E., & Turner, B. L. (2014). Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. *Biogeochemistry*, 119(1-3), 293-306.
- McAndrew, D., & Malhi, S. (1992). Long-term N fertilization of a solonetzic soil: Effects on chemical and biological properties. Soil Biology and Biochemistry, 24(7), 619–623.
- McDaniel, M., Kaye, J., Kaye, M., & Bruns, M. (2014). Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest. *Oecologia*, 174(4), 1437–1448.
- McMaster, G., Jow, W., & Kummerow, J. (1982). Response of Adenostoma fasciculatum and Ceanothus greggii chaparral to nutrient additions. Journal of Ecology, 745-756.
- McNulty, S., & Aber, J. (1993). Effects of chronic nitrogen additions on nitrogen cycling in a high-elevation spruce-fir stand. *Canadian Journal of Forest Research*, 23(7), 1252–1263.
- McNulty, S. G., Aber, J. D., & Newman, S. D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. *Forest Ecology and Management*, 84(1–3), 109–121.
- McNulty, S. G., Boggs, J., Aber, J. D., Rustad, L., & Magill, A. (2005). Red spruce ecosystem level changes following 14 years of chronic N fertilization. Forest Ecology and Management, 219(2), 279–291.
- Meier, I. C., Pritchard, S. G., Brzostek, E. R., McCormack, M. L., & Phillips, R. P. (2015). The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂. New Phytologist, 205(3), 1164–1174.

- Mendoza, R., Bailleres, M., García, I., & Ruiz, O. (2016). Phosphorus fertilization of a grass-legume mixture: Effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganisms. *Journal of Plant Nutrition*, 39(5), 691–701.
- Miesel, J. R., Jach-Smith, L. C., Renz, M. J., & Jackson, R. D. (2017). Distribution of switchgrass (*Panicum virgatum* L.) aboveground biomass in response to nitrogen addition and across harvest dates. Biomass and Bioenergy, 100, 74–83.
- Mikan, C. J., Zak, D. R., Kubiske, M. E., & Pregitzer, K. S. (2000). Combined effects of atmospheric CO₂ and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. *Oecologia*, 124(3), 432–445.
- Milchunas, D., Mosier, A., Morgan, J., LeCain, D., King, J., & Nelson, J. (2005). Root production and tissue quality in a shortgrass steppe exposed to elevated CO₂: Using a new ingrowth method. *Plant and Soil*, 268(1), 111–122.
- Miller, M., & Dick, R. P. (1995). Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems. *Applied Soil Ecology*, 2(4), 253–261.
- Millett, J., Godbold, D., Smith, A. R., & Grant, H. (2012). N_2 fixation and cycling in *Alnus glutinosa*, *Betula pendula* and *Fagus sylvatica* woodland exposed to free air CO_2 enrichment. *Oecologia*, 169(2), 541–552.
- Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., . . . Hou, Z. (2016). Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. *Acta Agriculturae Scandinavica*, *Section B—Soil and Plant Science*, 66(2), 117–126.
- Mirmanto, E., Proctor, J., Green, J., & Nagy, L. (1999). Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 354(1391), 1825–1829.
- Mitchell, R., Sutton, M., Truscott, A. M., Leith, I., Cape, J., Pitcairn, C., & Van Dijk, N. (2004). Growth and tissue nitrogen of epiphytic Atlantic bryophytes: Effects of increased and decreased atmospheric N deposition. Functional Ecology, 18(3), 322–329.
- Mo, J., Fang, Y., Lin, E., & Li, Y. (2006). Soil N₂O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Chinese Journal of Ecology, 30(6), 901–910.
- Mo, J., Li, D., & Gundersen, P. (2008). Seedling growth response of two tropical tree species to nitrogen deposition in southern China. European Journal of Forest Research, 127(4), 275–283.
- Moinet, G. Y., Cieraad, E., Turnbull, M. H., & Whitehead, D. (2017). Effects of irrigation and addition of nitrogen fertiliser on net ecosystem carbon balance for a grassland. Science of the Total Environment, 579, 1715–1725.
- Monti, A., & Zegada-Lizarazu, W. (2016). Sixteen-year biomass yield and soil carbon storage of giant reed (*Arundo donax* L.) grown under variable nitrogen fertilization rates. *BioEnergy Research*, 9(1), 248-256.
- Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A., Heriyanto, J., . . . Kuwashima, K. (2013). Soil greenhouse gas fluxes and C stocks as affected by phosphorus addition in a newly established Acacia mangium plantation in Indonesia. Forest Ecology and Management, 310, 643–651.
- Moscatelli, M., Fonck, M., Angelis, P., Larbi, H., Macuz, A., Rambelli, A., & Grego, S. (2001). Mediterranean natural forest living at elevated carbon dioxide: Soil biological properties and plant biomass growth. *Soil Use and Management*, 17(3), 195–202.
- Moscatelli, M., Lagomarsino, A., De Angelis, P., & Grego, S. (2008). Short-and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. Forest Ecology and Management, 255(3), 447–454.
- Mouro-Pereira, J., Alves, B. G., Bacelar, E., Cunha, J. B., Couro, J., & Correia, C. (2009). Effects of elevated CO₂ on grapevine (*Vitis vinifera* L.): Physiological and yield attributes. *Vitis*, 48(4), 159–165.

- Mueller, K. E., Blumenthal, D. M., Pendall, E., Carrillo, Y., Dijkstra, F. A., Williams, D. G., . . . Morgan, J. A. (2016). Impacts of warming and elevated CO₂ on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. *Ecology Letters*, 19(8), 956–966.
- Munir, T. M., Khadka, B., Xu, B., & Strack, M. (2017). Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. *Ecohydrology*, 10(8), e1893.
- Muntifering, R., Chappelka, A., Lin, J., Karnosky, D., & Somers, G. (2006). Chemical composition and digestibility of *Trifolium* exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system. *Functional Ecology*, 20(2), 269–275.
- Na, L., Genxu, W., Yan, Y., Yongheng, G., & Guangsheng, L. (2011). Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Biochemistry, 43(5), 942–953.
- Nadelhoffer, K., Johnson, L., Laundre, J., Giblin, A., & Shaver, G. (2002). Fine root production and nutrient content in wet and moist arctic tundras as influenced by chronic fertilization. *Plant and Soil*, 242(1), 107–113.
- Nadelhoffer, K. J., Downs, M. R., & Fry, B. (1999). Sinks for ¹⁵N-enriched additions to an oak forest and a red pine plantation. *Ecological Applications*, 9(1), 72–86.
- Nagel, J. M., Huxman, T. E., Griffin, K. L., & Smith, S. D. (2004). CO₂ enrichment reduces the energetic cost of biomass construction in an invasive desert grass. *Ecology*, 85(1), 100–106.
- Nakamura, M., Nakaji, T., Muller, O., & Hiura, T. (2015). Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil-freezing area. Oikos, 124(8), 1071–1077.
- Näsholm, T. (1994). Removal of nitrogen during needle senescence in Scots pine (*Pinus sylvestris* L.). *Oecologia*, 99(3), 290–296.
- Natali, S. M., Sañudo-Wilhelmy, S. A., & Lerdau, M. T. (2009). Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests. *Plant and Soil*, 314(1–2), 197–210.
- Natali, S. M., Schuur, E. A., & Rubin, R. L. (2012). Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. *Journal of Ecology*, 100(2), 488–498.
- Natali, S. M., Schuur, E. A., Trucco, C., Hicks, C. E., Crummer, K. G., & Baron, A. F. (2011). Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. *Global Change Biology*, 17(3), 1394–1407.
- Neff, J. C., Townsend, A. R., Gleixner, G., & Lehman, S. J. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. *Nature*, 419(6910), 915.
- Neilsen, W., Pataczek, W., Lynch, T., & Pyrke, R. (1992). Growth response of *Pinus radiata* to multiple applications of nitrogen fertilizer and evaluation of the quantity of added nitrogen remaining in the forest system. *Plant and Soil*, 144(2), 207–217.
- Newman, S., McCormick, P. V., Miao, S. L., Laing, J. A., Kennedy, W. C., & O'dell, M. B. (2004). The effect of phosphorus enrichment on the nutrient status of a northern Everglades slough. Wetlands Ecology and Management, 12(2), 63–79.
- Newton, P. C., Lieffering, M., Bowatte, W. S. D., Brock, S. C., Hunt, C. L., Theobald, P. W., & Ross, D. J. (2010). The rate of progression and stability of progressive nitrogen limitation at elevated atmospheric CO₂ in a grazed grassland over 11 years of Free Air CO₂ enrichment. Plant and Soil, 336(1-2), 433-441.
- Ni, K., Ding, W., Cai, Z., Wang, Y., Zhang, X., & Zhou, B. (2012). Soil carbon dioxide emission from intensively cultivated black soil in Northeast China: nitrogen fertilization effect. *Journal of Soils and Sediments*, 12(7), 1007–1018.
- Niinemets, Ü., & Kull, K. (2005). Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. *Acta Oecologica*, 28(3), 345–356.

- Niklaus, P. A., & Körner, C. (2004). Synthesis of a six-year study of calcareous grassland responses to in situ CO₂ enrichment. *Ecological Monographs*, 74(3), 491-511.
- Niklaus, P. A., Leadley, P. W., Stöcklin, J., & Körner, C. (1998). Nutrient relations in calcareous grassland under elevated CO₂. *Oecologia*, 116(1), 67–75.
- Niu, S., Sherry, R. A., Zhou, X., Wan, S., & Luo, Y. (2010). Nitrogen regulation of the climate-carbon feedback: Evidence from a long-term global change experiment. *Ecology*, 91(11), 3261–3273.
- Noh, N.-J., Kuribayashi, M., Saitoh, T. M., Nakaji, T., Nakamura, M., Hiura, T., & Muraoka, H. (2016). Responses of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest. *Ecosystems*, 19(3), 504-520.
- Norby, R. J., & Iversen, C. M. (2006). Nitrogen uptake, distribution, turnover, and efficiency of use in a CO₂-enriched sweetgum forest. *Ecology*, 87(1), 5–14.
- Norby, R. J., Long, T. M., Hartz-Rubin, J. S., & O'Neill, E. G. (2000). Nitrogen resorption in senescing tree leaves in a warmer, CO₂-enriched atmosphere. *Plant and Soil*, 224(1), 15–29.
- Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO₂ enhancement of forest productivity constrained by limited nitrogen availability. *Proceedings of the National Academy of Sciences USA*, 107(45), 19368–19373.
- Nordin, A., Strengbom, J., & Ericson, L. (2006). Responses to ammonium and nitrate additions by boreal plants and their natural enemies. *Environmental Pollution*, 141(1), 167–174.
- Nybakken, L., Sandvik, S. M., & Klanderud, K. (2011). Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine plants and lichens. *Environmental and Experimental Botany*, 72(3), 368–376.
- Nziguheba, G., Merckx, R., & Palm, C. A. (2005). Carbon and nitrogen dynamics in a phosphorus-deficient soil amended with organic residues and fertilizers in western Kenya. *Biology and Fertility of Soils*, 41(4), 240–248.
- Ochoa-Hueso, R., Bell, M. D., & Manrique, E. (2014). Impacts of increased nitrogen deposition and altered precipitation regimes on soil fertility and functioning in semiarid Mediterranean shrublands. *Journal of Arid Environments*, 104, 106-115.
- Olsrud, M., Carlsson, B. Å., Svensson, B. M., Michelsen, A., & Melillo, J. M. (2010). Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO₂ and warming in a subarctic birch forest understory. Global Change Biology, 16(6), 1820–1829.
- Olsrud, M., Melillo, J., Christensen, T., Michelsen, A., Wallander, H., & Olsson, P. A. (2004). Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytologist, 162(2), 459-469.
- Olszyk, D., Johnson, M., Phillips, D., Seidler, R., Tingey, D., & Watrud, L. (2001). Interactive effects of ${\rm CO_2}$ and ${\rm O_3}$ on a ponderosa pine plant/litter/soil mesocosm. *Environmental Pollution*, 115(3), 447–462.
- Osanai, Y., Janes, J. K., Newton, P. C., & Hovenden, M. J. (2015). Warming and elevated CO_2 combine to increase microbial mineralisation of soil organic matter. *Soil Biology and Biochemistry*, 85, 110–118.
- Owensby, C., Coyne, P., & Auen, L. (1993). Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. *Plant, Cell and Environment*, 16(7), 843–850.
- Ozolinčius, R., Stakėnas, V., Varnagirytė-Kabašinskienė, I., & Buožytė, R. (2009). Artificial drought in Scots pine stands: Effects on soil, ground vegetation and tree condition. Annales Botanici Fennici, 46(4), 299–307.
- Pakeman, R., & Lee, J. (1991). The ecology of the strandline annuals Cakile maritima and Salsola kali. II. The role of nitrogen in controlling plant performance. Journal of Ecology, 79(1), 155–165.

- Pampolina, N., Dell, B., & Malajczuk, N. (2002). Dynamics of ectomycorrhizal fungi in an *Eucalyptus globulus* plantation: Effect of phosphorus fertilization. *Forest Ecology and Management*, 158(1), 291–304.
- Pan, X., Lin, B., & Liu, Q. (2008). Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China. Chinese Journal of Applied Ecology, 19(8), 1637–1643.
- Parker, J. L., Fernandez, I. J., Rustad, L. E., & Norton, S. A. (2001). Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Science Society of America Journal, 65(4), 1248–1255.
- Pasquini, S., & Santiago, L. (2012). Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. *Oecologia*, 168(2), 311–319
- Pastore, M. A., Megonigal, J. P., & Langley, J. A. (2016). Elevated CO₂ promotes long-term nitrogen accumulation only in combination with nitrogen addition. *Global Change Biology*, 22(1), 391–403.
- Patil, R. H., Laegdsmand, M., Olesen, J. E., & Porter, J. R. (2010). Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems and Environment, 139(1), 195–205.
- Pearce, I. S., & van der Wal, R. (2002). Effects of nitrogen deposition on growth and survival of montane *Racomitrium lanuginosum* heath. *Biological Conservation*, 104(1), 83–89.
- Peng, A., Wang, G., Yang, Y., Xiao, Y., Zhang, L., & Yang, Y. (2017). Effects of experimental warming on the growth and stoichiometrical characteristics of two dominant species in alpine meadow of the Tibetan Plateau. Acta Ecologica Sinica, 37(12), 4118–4127.
- Peng, Y., Chen, G., Chen, G., Li, S., Peng, T., Qiu, X., . . . Hu, H. (2017). Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem. *Scientific Reports*, 7(1), 2783.
- Peralta, A. L., & Wander, M. M. (2008). Soil organic matter dynamics under soybean exposed to elevated [CO₂]. *Plant and Soil*, 303(1–2), 69–81.
- Peters, H. A., Hsu, G., Cleland, E. E., Chiariello, N. R., Mooney, H. A., & Field, C. B. (2007). Responses of temporal distribution of gastropods to individual and combined effects of elevated CO₂ and N deposition in annual grassland. *Acta Oecologica*, 31(3), 343–352.
- Phillips, C. L., Murphey, V., Lajtha, K., & Gregg, J. W. (2016). Asymmetric and symmetric warming increases turnover of litter and unprotected soil C in grassland mesocosms. *Biogeochemistry*, 128(1-2), 217-231.
- Phuyal, M., Artz, R. R., Sheppard, L., Leith, I. D., & Johnson, D. (2008). Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. *Plant Ecology*, 196(1), 111–121.
- Porteaus, F., Hill, J., Ball, A., Pinter, P., Kimball, B., Wall, G., . . . Leavitt, S. (2009). Effect of Free Air Carbon dioxide Enrichment (FACE) on the chemical composition and nutritive value of wheat grain and straw. *Animal Feed Science and Technology*, 149(3), 322–332.
- Pregitzer, K. S., Burton, A. J., Zak, D. R., & Talhelm, A. F. (2008). Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. *Global Change Biology*, 14(1), 142–153.
- Pregitzer, K. S., Zak, D. R., Curtis, P. S., Kubiske, M. E., Teeri, J. A., & Vogel, C. S. (1995). Atmospheric CO₂, soil nitrogen and turnover of fine roots. New Phytologist, 129(4), 579–585.
- Pregitzer, K. S., Zak, D. R., Maziasz, J., DeForest, J., Curtis, P. S., & Lussenhop, J. (2000). Interactive effects of atmospheric CO₂ and soil-N availability on fine roots of *Populus tremuloides*. *Ecological Applications*, 10(1), 18–33.
- Prior, S., Torbert, H., Runion, G., Rogers, H., & Kimball, B. (2008). Free-air CO₂ enrichment of sorghum: Soil carbon and nitrogen dynamics. *Journal of Environmental Quality*, *37*(3), 753–758.
- Prystupa, P., Savin, R., & Slafer, G. A. (2004). Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N× P fertilization in barley. *Field Crops Research*, 90(2), 245–254.
- Pujol Pereira, E. I., Chung, H., Scow, K., & Six, J. (2013). Microbial communities and soil structure are affected by reduced precipitation,

- but not by elevated carbon dioxide. Soil Science Society of America Journal, 77(2), 482–488.
- Qi, Y., Mulder, J., Duan, L., & Huang, Y. (2015). Short-term effects of simulating nitrogen deposition on soil organic carbon in a *Stipa krylovii* steppe. *Acta Ecologica Sinica*, 35(4), 1104–1113.
- Raich, J. W., Russell, A. E., Crews, T. E., Farrington, H., & Vitousek, P. M. (1996). Both nitrogen and phosphorus limit plant production on young Hawaiian lava flows. *Biogeochemistry*, 32(1), 1–14.
- Rainey, S. M., Nadelhoffer, K. J., Silver, W. L., & Downs, M. R. (1999). Effects of chronic nitrogen additions on understory species in a red pine plantation. *Ecological Applications*, 9(3), 949–957.
- Rämö, K., Kanerva, T., Nikula, S., Ojanperä, K., & Manninen, S. (2006). Influences of elevated ozone and carbon dioxide in growth responses of lowland hay meadow mesocosms. *Environmental Pollution*, 144(1), 101–111.
- Rejmánková, E. (2001). Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America. *Plant and Soil*, 236(1), 33–53.
- Rejmánková, E., Macek, P., & Epps, K. (2008). Wetland ecosystem changes after three years of phosphorus addition. *Wetlands*, 28(4), 914–927.
- Rejmánková, E., & Snyder, J. M. (2008). Emergent macrophytes in phosphorus limited marshes: Do phosphorus usage strategies change after nutrient addition? *Plant and Soil*, 313(1–2), 141–153.
- Ren, H., Xu, Z., Huang, J., Clark, C., Chen, S., & Han, X. (2010). Nitrogen and water addition reduce leaf longevity of steppe species. *Annals of Botany*, 107(1), 145–155.
- Ren, H., Xu, Z., Isbell, F., Huang, J., Han, X., Wan, S., . . . Jiang, Y. (2017). Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. *Ecological Monographs*, 87(3), 457–469.
- Rey, A., & Jarvis, P. (1998). Long-term photosynthetic acclimation to increased atmospheric CO₂ concentration in young birch (*Betula pendula*) trees. *Tree Physiology*, 18(7), 441–450.
- Riikonen, J., Kontunen-Soppela, S., Ossipov, V., Tervahauta, A., Tuomainen, M., Oksanen, E., . . . Kivimäenpää, M. (2012). Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration. *Tree Physiology*, 32(9), 1102–1112.
- Rinnan, R., Michelsen, A., Bååth, E., & Jonasson, S. (2007). Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. *Soil Biology and Biochemistry*, 39(12), 3014–3023.
- Rinnan, R., Michelsen, A., & Jonasson, S. (2008). Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Applied Soil Ecology, 39(3), 271–281.
- Rinnan, R., Rinnan, Å., Faubert, P., Tiiva, P., Holopainen, J. K., & Michelsen, A. (2011). Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs. *Environmental and Experimental Botany*, 72(3), 377–386.
- Roberntz, P., & Stockfors, J. (1998). Effects of elevated CO₂ concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. *Tree Physiology*, 18(4), 233–241.
- Robroek, B. J., Adema, E. B., Venterink, H. O., Leonardson, L., & Wassen, M. J. (2009). How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in *Phalaris arundinacea*. *Science of the Total Environment*, 407(7), 2342–2348.
- Ros, M., Klammer, S., Knapp, B., Aichberger, K., & Insam, H. (2006). Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use and Management, 22(2), 209–218.

- Ross, D., Newton, P., & Tate, K. (2004). Elevated [CO₂] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. *Plant and Soil*, 260(1), 183–196.
- Ross, D., Tate, K., & Newton, P. (1995). Elevated ${\rm CO_2}$ and temperature effects on soil carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept soil. *Plant and Soil*, 176(1), 37–49.
- Ross, D. J., Grayston, S. J., & Whitehead, D. (2006). Changes in soil carbon and nitrogen properties and microbial communities in relation to growth of *Pinus radiata* and *Nothofagus fusca* trees after 6 years at ambient and elevated atmospheric CO₂. *Global Change Biology*, 12(9), 1690–1706.
- Roth, S., Lindroth, R. L., Volin, J., & Kruger, E. (1998). Enriched atmospheric CO₂ and defoliation: Effects on tree chemistry and insect performance. Global Change Biology, 4(4), 419–430.
- Rousk, J., Frey, S. D., & Bååth, E. (2012). Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biology, 18(10), 3252–3258.
- Rui, Y., Wang, S., Xu, Z., Wang, Y., Chen, C., Zhou, X., . . . Lin, Q. (2011). Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. *Journal of Soils and Sediments*, 11(6), 903–914.
- Russell, A. E., Laird, D., & Mallarino, A. P. (2006). Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols. *Soil Science Society of America Journal*, 70(1), 249–255.
- Sager, E., & Hutchinson, T. (2006). Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions. Tree Physiology, 26(10), 1351–1361.
- Sager, E. P., & Hutchinson, T. (2005). The effects of UV-B, nitrogen fertilization, and springtime warming on sugar maple seedlings and the soil chemistry of two central Ontario forests. Canadian Journal of Forest Research, 35(10), 2432–2446.
- Sainju, U., Singh, B., & Whitehead, W. (2000). Cover crops and nitrogen fertilization effects on soil carbon and nitrogen and tomato yield. Canadian Journal of Soil Science, 80(3), 523-532.
- Sainju, U., Singh, B., & Whitehead, W. (2001). Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. *Scientia Horticulturae*, 91(3), 201–214.
- Sanders, N. J., Belote, R. T., & Weltzin, J. F. (2004). Multitrophic effects of elevated atmospheric CO₂ on understory plant and arthropod communities. *Environmental Entomology*, 33(6), 1609–1616.
- Sanz-sáez, Á., Heath, K. D., Burke, P. V., & Ainsworth, E. A. (2015). Inoculation with an enhanced N₂-fixing *Bradyrhizobium japonicum* strain (USDA110) does not alter soybean (*Glycine max Merr.*) response to elevated [CO₂]. *Plant, Cell and Environment*, 38(12), 2589–2602.
- Sardans, J., & Penuelas, J. (2008). Drought changes nutrient sources, content and stoichiometry in the bryophyte *Hypnum cupressiforme* Hedw. growing in a Mediterranean forest. *Journal of Bryology*, 30(1), 59–65.
- Sardans, J., & Peñuelas, J. (2010). Soil enzyme activity in a Mediterranean forest after six years of drought. Soil Science Society of America Journal, 74(3), 838–851.
- Sardans, J., Peñuelas, J., & Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39(2), 223–235.
- Sardans, J., Peñuelas, J., & Ogaya, R. (2008). Drought-induced changes in C and N stoichiometry in a *Quercus ilex* Mediterranean forest. *Forest Science*, 54(5), 513–522.
- Sardans, J., Peñuuelas, J., Estiarte, M., & Prieto, P. (2008). Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology, 14(10), 2304–2316.
- Sarmiento, G., Da Silva, M. P., Naranjo, M. E., & Pinillos, M. (2006). Nitrogen and phosphorus as limiting factors for growth and primary

- production in a flooded savanna in the Venezuelan Llanos. *Journal of Tropical Ecology*, 22(2), 203–212.
- Schaberg, P. G., Perkins, T. D., & McNulty, S. G. (1997). Effects of chronic low-level N additions on foliar elemental concentrations, morphology, and gas exchange of mature montane red spruce. *Canadian Journal of Forest Research*, 27(10), 1622–1629.
- Schaeffer, S., Billings, S., & Evans, R. (2003). Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. *Oecologia*, 134(4), 547–553.
- Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W., & Wanek, W. (2015). Microbial physiology and soil CO₂ efflux after 9 years of soil warming in a temperate forest-no indications for thermal adaptations. Global Change Biology, 21(11), 4265-4277.
- Schortemeyer, M., Dijkstra, P., Johnson, D. W., & Drake, B. G. (2000). Effects of elevated atmospheric CO₂ concentration on C and N pools and rhizosphere processes in a Florida scrub oak community. Global Change Biology, 6(4), 383–391.
- Schuldt, B., Leuschner, C., Horna, V., Moser, G., Köhler, M., Van Straaten, O., & Barus, H. (2011). Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. *Biogeosciences*, 8(8), 2179–2194.
- Schuster, M. J., Smith, N. G., & Dukes, J. S. (2016). Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics. Biogeochemistry, 129(3), 389–400.
- Schäppi, B., & Körner, C. (1997). In situ effects of elevated ${\rm CO_2}$ on the carbon and nitrogen status of alpine plants. Functional Ecology, 11(3), 290–299.
- Shaver, G. R., Bret-Harte, M. S., Jones, M. H., Johnstone, J., Gough, L., Laundre, J., & Chapin, F. S. (2001). Species composition interacts with fertilizer to control long-term change in tundra productivity. *Ecology*, 82(11), 3163–3181.
- Shaver, G. R., Johnson, L., Cades, D., Murray, G., Laundre, J., Rastetter, E., . . . Giblin, A. (1998). Biomass and CO₂ flux in wet sedge tundras: Responses to nutrients, temperature, and light. *Ecological Monographs*, 68(1), 75–97.
- Shen, R., Xu, M., Chi, Y., Yu, S., & Wan, S. (2014). Soil microbial responses to experimental warming and nitrogen addition in a temperate steppe of northern China. *Pedosphere*, 24(4), 427–436.
- Shi, C., Silva, L. C. R., Zhang, H., Zheng, Q., Xiao, B., Wu, N., & Sun, G. (2015). Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agricultural and Forest Meteorology, 200, 21–29.
- Shi, F., Chen, H., Chen, H., Wu, Y., & Wu, N. (2012). The combined effects of warming and drying suppress CO₂ and N₂O emission rates in an alpine meadow of the eastern Tibetan Plateau. *Ecological Research*, 27(4), 725–733.
- Shi, Y., Lalande, R., Ziadi, N., Sheng, M., & Hu, Z. (2012). An assessment of the soil microbial status after 17 years of tillage and mineral P fertilization management. Applied Soil Ecology, 62, 14–23.
- Shi, Y., Ziadi, N., Messiga, A. J., Lalande, R., & Hu, Z. (2013). Changes in soil phosphorus fractions for a long-term corn-soybean rotation with tillage and phosphorus fertilization. Soil Science Society of America Journal, 77(4), 1402–1412.
- Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K., & Hasegawa, T. (2008). Genotypic variation in rice yield enhancement by elevated ${\rm CO_2}$ relates to growth before heading, and not to maturity group. *Journal of Experimental Botany*, 60(2), 523–532.
- Shinano, T., Yamamoto, T., Tawaraya, K., Tadokoro, M., Koike, T., & Osaki, M. (2007). Effects of elevated atmospheric CO₂ concentration on the nutrient uptake characteristics of Japanese larch (*Larix kaempferi*). Tree Physiology, 27(1), 97–104.

- Siemann, E., Rogers, W. E., & Grace, J. B. (2007). Effects of nutrient loading and extreme rainfall events on coastal tallgrass prairies: Invasion intensity, vegetation responses, and carbon and nitrogen distribution. *Global Change Biology*, 13(10), 2184–2192.
- Sifola, M., & Postiglione, L. (2003). The effect of nitrogen fertilization on nitrogen use efficiency of irrigated and non-irrigated tobacco (*Nicotiana tabacum* L.). *Plant and Soil*, 252(2), 313–323.
- Singh, A., & Agrawal, M. (2015). Effects of ambient and elevated CO_2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of *Catharanthus roseus* (L.) G Don. grown under three different soil N levels. *Environmental Science and Pollution Research*, 22(5), 3936–3946.
- Sinsabaugh, R. L., Belnap, J., Rudgers, J., Kuske, C. R., Martinez, N., & Sandquist, D. (2015). Soil microbial responses to nitrogen addition in arid ecosystems. Frontiers in Microbiology, 6, 819.
- Sjögersten, S., van der Wal, R., & Woodin, S. J. (2012). Impacts of grazing and climate warming on C pools and decomposition rates in Arctic environments. *Ecosystems*, 15(3), 349–362.
- Smith, A. R., Lukac, M., Hood, R., Healey, J. R., Miglietta, F., & Godbold, D. L. (2013). Elevated ${\rm CO_2}$ enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytologist, 198(1), 156–168.
- Smolander, A., Barnette, L., Kitunen, V., & Lumme, I. (2005). N and C transformations in long-term N-fertilized forest soils in response to seasonal drought. *Applied Soil Ecology*, 29(3), 225–235.
- Smolander, A., Kurka, A., Kitunen, V., & Mälkönen, E. (1994). Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N-and P-fertilized Norway spruce stands. Soil Biology and Biochemistry, 26(8), 957–962.
- Solís, E., & Campo, J. (2004). Soil N and P dynamics in two secondary tropical dry forests after fertilization. Forest Ecology and Management, 195(3), 409-418.
- Son, Y. (2002). Effects of nitrogen fertilization on foliar nutrient dynamics in ginkgo seedlings. *Journal of Plant Nutrition*, 25(1), 93–102.
- Son, Y., Lee, I. K., & Ryu, S. R. (2000). Nitrogen and phosphorus dynamics in foliage and twig of pitch pine and Japanese larch plantations in relation to fertilization. *Journal of Plant Nutrition*, 23(5), 697–710.
- Song, B., Niu, S., Zhang, Z., Yang, H., Li, L., & Wan, S. (2012). Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. *PLoS ONE*, 7(3), e33217.
- Song, L., Bao, X., Liu, X., Zhang, Y., Christie, P., Fangmeier, A., & Zhang, F. (2011). Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. *Biogeosciences*, 8(8), 2341–2350.
- Song, L., Tian, P., Zhang, J., & Jin, G. (2017). Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Science of The Total Environment, 609, 1303–1311.
- Song, Y., Song, C., Li, Y., Hou, C., Yang, G., & Zhu, X. (2013a). Short-term effect of nitrogen addition on litter and soil properties in *Calamagrostis angustifolia* freshwater marshes of Northeast China. *Wetlands*, 33(3), 505–513.
- Song, Y., Song, C., Li, Y., Hou, C., Yang, G., & Zhu, X. (2013b). Short-term effects of nitrogen addition and vegetation removal on soil chemical and biological properties in a freshwater marsh in Sanjiang Plain, Northeast China. Catena, 104, 265–271.
- Sorensen, P. L., Lett, S., & Michelsen, A. (2012). Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition. *Plant Ecology*, 213(4), 695–706.
- Sorensen, P. L., & Michelsen, A. (2011). Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Global Change Biology, 17(1), 528-537.
- Sorensen, P. L., Michelsen, A., & Jonasson, S. (2008). Nitrogen uptake during one year in subarctic plant functional groups and in

- microbes after long-term warming and fertilization. *Ecosystems*, 11(8), 1223–1233.
- Soudzilovskaia, N., Onipchenko, V., Cornelissen, J. H. C., & Aerts, R. (2005). Biomass production, N: P ratio and nutrient limitation in a Caucasian alpine tundra plant community. *Journal of Vegetation Science*, 16(4), 399–406.
- Southon, G. E., Green, E. R., Jones, A. G., Barker, C. G., & Power, S. A. (2012). Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath. *Global Change Biology*, 18(9), 2824–2837.
- Springer, C. J., & Thomas, R. B. (2007). Photosynthetic responses of forest understory tree species to long-term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. *Tree Physiology*, 27(1), 25–32.
- Srinivasa Rao, M., Manimanjari, D., Vanaja, M., Rama Rao, C., Srinivas, K., Rao, V., . . . Jay, R. (2012). Impact of elevated CO_2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science, 12(1), 103.
- Srinivasan, M. P., Gleeson, S. K., & Arthur, M. A. (2012). Short-term impacts of nitrogen fertilization on a montane grassland ecosystem in a South Asian biodiversity hotspot. *Plant Ecology and Diversity*, 5(3), 289–299.
- Stevens, C. J., Mountford, J. O., Gowing, D. J., & Bardgett, R. D. (2012). Differences in yield, Ellenberg N value, tissue chemistry and soil chemistry 15 years after the cessation of nitrogen addition. *Plant and Soil*, 357(1–2), 309–319.
- Stiles, W. A., Rowe, E. C., & Dennis, P. (2017). Long-term nitrogen and phosphorus enrichment alters vegetation species composition and reduces carbon storage in upland soil. Science of the Total Environment, 593, 688–694.
- Stiling, P., Moon, D. C., Hunter, M. D., Colson, J., Rossi, A. M., Hymus, G. J., & Drake, B. G. (2003). Elevated CO₂ lowers relative and absolute herbivore density across all species of a scrub-oak forest. *Oecologia*, 134(1), 82–87.
- Strengbom, J., Näsholm, T., & Ericson, L. (2004). Light, not nitrogen, limits growth of the grass *Deschampsia flexuosa* in boreal forests. *Canadian Journal of Botany*, 82(4), 430–435.
- Strengbom, J., & Reich, P. B. (2006). Elevated [CO₂] and increased N supply reduce leaf disease and related photosynthetic impacts on *Solidago rigida*. *Oecologia*, 149(3), 519–525.
- Stroia, C., Morel, C., & Jouany, C. (2011). Nitrogen fertilization effects on grassland soil acidification: Consequences on diffusive phosphorus ions. *Soil Science Society of America Journal*, 75(1), 112–120.
- Su, J. Q., Ding, L. J., Xue, K., Yao, H. Y., Quensen, J., Bai, S. J., . . . Tiedje, J. M. (2015). Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. *Molecular Ecology*, 24(1), 136–150.
- Su, Y., Liu, H., Zheng, Z., Lin, L., Li, B., & Wang, X. (2016). Effects of N and P addition on soil available nitrogen and pH in a subtropical forest *Chinese Journal of Ecology*, 35(9), 2279–2285.
- Sui, Y., Gao, J., Liu, C., Zhang, W., Lan, Y., Li, S., . . . Tang, L. (2016). Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Science of the Total Environment, 544, 203–210.
- Su, Y.-Z., Wang, F., Suo, D.-R., Zhang, Z.-H., & Du, M.-W. (2006). Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutrient Cycling in Agroecosystems, 75(1-3), 285-295.
- Su, Y. G., Huang, G., Lin, Y. J., & Zhang, Y. M. (2016). No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. *Catena*, 142, 126–133.
- Sullivan, P. F., Sommerkorn, M., Rueth, H. M., Nadelhoffer, K. J., Shaver, G. R., & Welker, J. M. (2007). Climate and species affect fine root

- production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska, Oecologia, 153(3), 643–652.
- Sun, J., Peng, B., Li, W., Qu, G., Dai, W., Dai, G., . . . Bai, E. (2016). Effects of nitrogen addition on potential soil nitrogen-cycling processes in a temperate forest ecosystem. *Soil Science*, 181(1), 29–38.
- Sun, X.-L., Zhao, J., You, Y.-M., & Sun, O. J. (2016). Soil microbial responses to forest floor litter manipulation and nitrogen addition in a mixed-wood forest of northern China. Scientific Reports, 6, 19536.
- Sun, Y., Su, J., & Ge, F. (2010). Elevated CO₂ reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agriculture, Ecosystems and Environment, 135(1), 140–147.
- Sun, Y.-F., Shen, J.-P., Zhang, C.-J., Zhang, L.-M., Bai, W.-M., Fang, Y., & He, J.-Z. (2018). Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. *Journal of Soils and Sediments*, 18(3), 762–774.
- Sun, Y. C., Feng, L., Gao, F., & Ge, F. (2011). Effects of elevated CO_2 and plant genotype on interactions among cotton, aphids and parasitoids. *Insect Science*, 18(4), 451–461.
- Sunoj, V. J., Kumar, S. N., Muralikrishna, K., & Padmanabhan, S. (2015). Enzyme activities and nutrient status in Coconut (*Cocos nucifera* L.) seedling rhizosphere soil after exposure to elevated CO₂ and temperature. *Journal of the Indian Society of Soil Science*, 63(2), 191–199.
- Takahashi, S., & Anwar, M. R. (2007). Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. *Field Crops Research*, 101(2), 160–171.
- Talhelm, A., Pregitzer, K., & Burton, A. (2011). No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. *Ecological Applications*, 21(7), 2413–2424.
- Temperton, V., Grayston, S., Jackson, G., Barton, C., Millard, P., & Jarvis, P. (2003). Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiology, 23(15), 1051–1059.
- Thilakarathne, C. L., Tausz-Posch, S., Cane, K., Norton, R. M., Fitzgerald, G. J., Tausz, M., & Seneweera, S. (2015). Intraspecific variation in leaf growth of wheat (*Triticum aestivum*) under Australian Grain Free Air CO₂ Enrichment (AGFACE): Is it regulated through carbon and/or nitrogen supply? *Functional Plant Biology*, 42(3), 299–308.
- Thomas, V., Braun, S., & Flückiger, W. (2005). Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (*Picea abies*). *Environmental Pollution*, 137(3), 507–516.
- Tian, D., Jiang, L., Ma, S., Fang, W., Schmid, B., Xu, L., ... Jing, X. (2017).
 Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Science of The Total Environment, 607, 1367–1375.
- Tian, J., Wei, K., Condron, L. M., Chen, Z., Xu, Z., & Chen, L. (2016). Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semiarid grassland soils. *Biology and Fertility of Soils*, 52(5), 675–683.
- Tischer, A., Werisch, M., Döbbelin, F., Camenzind, T., Rillig, M. C., Potthast, K., & Hamer, U. (2015). Above- and belowground linkages of a nitrogen and phosphorus co-limited tropical mountain pasture system-responses to nutrient enrichment. *Plant and Soil*, 391(1-2), 333-352.
- Tissue, D. T., Lewis, J. D., Wullschleger, S. D., Amthor, J. S., Griffin, K. L., & Anderson, O. R. (2002). Leaf respiration at different canopy positions in sweetgum (*Liquidambar styraciflua*) grown in ambient and elevated concentrations of carbon dioxide in the field. *Tree Physiology*, 22(15–16), 1157–1166.
- Tognetti, R., & Johnson, J. D. (1999). Responses of growth, nitrogen and carbon partitioning to elevated atmospheric CO₂ concentration in live oak (*Quercus virginiana* Mill.) seedlings in relation to nutrient supply. *Annals of Forest Science*, 56(2), 91–105.
- Tomassen, H., Smolders, A. J., Lamers, L. P., & Roelofs, J. G. (2003). Stimulated growth of *Betula pubescens* and *Molinia caerulea* on

- ombrotrophic bogs: Role of high levels of atmospheric nitrogen deposition. *Journal of Ecology*, 91(3), 357–370.
- Tomassen, H., Smolders, A. J., Limpens, J., Lamers, L. P., & Roelofs, J.
 G. (2004). Expansion of invasive species on ombrotrophic bogs:
 Desiccation or high N deposition? *Journal of Applied Ecology*, 41(1), 139–150
- Torbert, H., Prior, S., Rogers, H., & Runion, G. (2004). Elevated atmospheric CO₂ effects on N fertilization in grain sorghum and soybean. *Field Crops Research*, 88(1), 57–67.
- Torn, M. S., Vitousek, P. M., & Trumbore, S. E. (2005). The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. *Ecosystems*, 8(4), 352–372.
- Tripathi, S., Kushwaha, C., & Singh, K. (2008). Tropical forest and savanna ecosystems show differential impact of N and P additions on soil organic matter and aggregate structure. *Global Change Biology*, 14(11), 2572–2581.
- Tripler, C., Canham, C., Inouye, R., & Schnurr, J. (2002). Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. *Oecologia*, 133(4), 517–524.
- Tu, C., Booker, F. L., Burkey, K. O., & Hu, S. (2009). Elevated atmospheric carbon dioxide and O_3 differentially alter nitrogen acquisition in peanut. *Crop Science*, 49(5), 1827–1836.
- Tu, L.-H., Hu, T.-X., Zhang, J., Li, R.-H., Dai, H.-Z., & Luo, S.-H. (2011). Short-term simulated nitrogen deposition increases carbon sequestration in a *Pleioblastus amarus* plantation. *Plant and Soil*, 340(1-2), 383-396.
- Tu, L.-h., Hu, T.-x., Zhang, J., Li, X.-w., Hu, H.-l., Liu, L., & Xiao, Y.-l. (2013). Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biology and Biochemistry, 58, 255–264.
- Tu, L., Dai, H., Hu, T., Zhang, J., & Luo, S.-H. (2011). Effects of simulated nitrogen deposition on soil respiration in a Bambusa pervariabilis × Dendrocala mopsi plantation in rainy area of West China. Chinese Journal of Applied Ecology, 22(04), 829–836.
- Tu, L., Hu, T., Zhang, J., Li, R., He, Y., Tian, X., . . . Jing, J. (2010). Effects of simulated nitrogen deposition on soil respiration in a Neosinocalamus affinis plantation in rainy area of West China. Chinese Journal of Applied Ecology, 30(9), 2286–2294.
- Turner, C., & Knapp, A. (1996). Responses of a $\rm C_4$ grass and three $\rm C_3$ forbs to variation in nitrogen and light in tallgrass prairie. *Ecology*, 77(6), 1738–1749.
- Turner, C. L., Blair, J. M., Schartz, R. J., & Neel, J. C. (1997). Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie. *Ecology*, 78(6), 1832–1843.
- Turner, M. M., & Henry, H. A. (2010). Net nitrogen mineralization and leaching in response to warming and nitrogen deposition in a temperate old field: The importance of winter temperature. *Oecologia*, 162(1), 227–236.
- van de Weg, M. J., Shaver, G. R., & Salmon, V. G. (2013). Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic. *Plant Ecology*, 214(10), 1273–1286.
- Van den Driessche, R., Rude, W., & Martens, L. (2003). Effect of fertilization and irrigation on growth of aspen (*Populus tremuloides Michx.*) seedlings over three seasons. Forest Ecology and Management, 186(1), 381–389
- van der Hoek, D., van Mierlo, A. J. E. M., & van Groenendael, J. M. (2004). Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. *Journal of Vegetation Science*, 15(3), 389–396.
- van der Waal, C., de Kroon, H., Heitkönig, I., Skidmore, A. K., van Langevelde, F., de Boer, W. F., . . . Kohi, E. M. (2011). Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna. *Journal of Ecology*, 99(5), 1124–1133.

- Van Duren, I., Boeye, D., & Grootjans, A. (1997). Nutrient limitations in an extant and drained poor fen: Implications for restoration. *Plant Ecology*, 133(1), 91–100.
- van Groenigen, K.-J., Gorissen, A., Six, J., Harris, D., Kuikman, P. J., van Groenigen, J. W., & van Kessel, C. (2005). Decomposition of ¹⁴C-labeled roots in a pasture soil exposed to 10 years of elevated CO₂. Soil Biology and Biochemistry, 37(3), 497–506.
- Van Heerwaarden, L., Toet, S., & Aerts, R. (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. *Journal of Ecology*, 91(6), 1060–1070.
- van Huysen, T. L., Perakis, S. S., & Harmon, M. E. (2016). Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. *Plant and Soil*, 406(1-2), 1-14.
- van Kessel, C., Boots, B., De Graaff, M. A., Harris, D., Blum, H., & Six, J. (2006). Total soil C and N sequestration in a grassland following 10 years of free air CO₂ enrichment. *Global Change Biology*, 12(11), 2187–2199.
- Verhoeven, J., Beltman, B., Dorland, E., Robat, S., & Bobbink, R. (2011). Differential effects of ammonium and nitrate deposition on fen phanerogams and bryophytes. Applied Vegetation Science, 14(2), 149–157.
- Verhoeven, J., & Schmitz, M. (1991). Control of plant growth by nitrogen and phosphorus in mesotrophic fens. *Biogeochemistry*, 12(2), 135–148.
- Vestgarden, L. S., Nilsen, P., & Abrahamsen, G. (2004). Nitrogen cycling in *Pinus sylvestris* stands exposed to different nitrogen inputs. *Scandinavian Journal of Forest Research*, 19(1), 38–47.
- Veteli, T., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H., & Tahvanainen, J. (2002). Effects of elevated CO₂ and temperature on plant growth and herbivore defensive chemistry. *Global Change Biology*, 8(12), 1240–1252
- Vigue, L. M., & Lindroth, R. L. (2010). Effects of genotype, elevated CO₂ and elevated O₃ on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance. Agricultural and Forest Entomology, 12(3), 267–276.
- Vitousek, P. M. (1998). Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian *Metrosideros polymorpha*. *Ecosystems*, 1(4), 401–407.
- Vitousek, P. M., & Farrington, H. (1997). Nutrient limitation and soil development: Experimental test of a biogeochemical theory. *Biogeochemistry*, 37(1), 63–75.
- Vitousek, P. M., Walker, L. R., Whiteaker, L. D., & Matson, P. A. (1993). Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. *Biogeochemistry*, 23(3), 197–215.
- Voge, C. S., & Curtis, P. S. (1995). Leaf gas exchange and nitrogen dynamics of N₂-fixing, field-grown Alnus glutinosa under elevated atmospheric CO₂. Global Change Biology, 1(1), 55–61.
- Vogel, C. S., Curtis, P. S., & Thomas, R. B. (1997). Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecology, 130(1), 63–70.
- Voisin, A.-S., Salon, C., Munier-Jolain, N. G., & Ney, B. (2002). Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (*Pisum sativum L.*). Plant and Soil, 242(2), 251–262.
- von Oheimb, G., Power, S. A., Falk, K., Friedrich, U., Mohamed, A., Krug, A., . . . Härdtle, W. (2010). N: P ratio and the nature of nutrient limitation in Calluna-dominated heathlands. *Ecosystems*, 13(2), 317–327.
- Walker, R., Johnson, D., Geisinger, D., & Ball, J. (2000). Growth, nutrition, and water relations of ponderosa pine in a field soil as influenced by long-term exposure to elevated atmospheric CO₂. Forest Ecology and Management, 137(1), 1–11.
- Wallenstein, M. D., McNulty, S., Fernandez, I. J., Boggs, J., & Schlesinger, W. H. (2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 222(1), 459–468.

- Wan, S., Norby, R. J., Pregitzer, K. S., Ledford, J., & O'Neill, E. G. (2004).
 CO₂ enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162(2), 437–446.
- Wang, C., Yang, X., & Xu, K. (2018). Effect of chronic nitrogen fertilization on soil CO₂ flux in a temperate forest in North China: A 5-year nitrogen addition experiment. *Journal of Soils Sediments*, 18(2), 506–516.
- Wang, D., He, H., Gao, Q., Zhao, C., Zhao, W., Yin, C., . . . Sun, D. (2017). Effects of short-term N addition on plant biomass allocation and C and N pools of the *Sibiraea angustata* scrub ecosystem. *European Journal of Soil Science*, 68(2), 212–220.
- Wang, F., Li, J., Wang, X., Zhang, W., Zou, B., Neher, D. A., & Li, Z. (2014). Nitrogen and phosphorus addition impact soil N₂O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615.
- Wang, G., Liu, F., & Xue, S. (2017). Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings. *Plant and Soil*, 418(1-2), 177–189.
- Wang, G., Xue, S., Liu, F., & Liu, G. (2017). Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of *Bothriochloa ischaemum*. *Plant and Soil*, 415(1–2), 423–434.
- Wang, J., Duan, B., & Zhang, Y. (2012). Effects of experimental warming on growth, biomass allocation, and needle chemistry of *Abies faxoniana* in even-aged monospecific stands. *Plant Ecology*, 213(1), 47–55.
- Wang, L., D'Odorico, P., O'Halloran, L. R., Caylor, K., & Macko, S. (2010). Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas. *Plant and Soil*, 328(1–2), 95–108.
- Wang, M., Larmola, T., Murphy, M. T., Moore, T. R., & Bubier, J. L. (2016). Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. *Plant and Soil*, 400(1-2), 403-416.
- Wang, M., Shi, S., Lin, F., Hao, Z., Jiang, P., & Dai, G. (2012). Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (*Fraxinus mandshurica*) seedlings in northeastern China. *PLoS ONE*, 7(2), e30754.
- Wang, Q., Wang, S., & Liu, Y. (2008). Responses to N and P fertilization in a young *Eucalyptus dunnii* plantation: Microbial properties, enzyme activities and dissolved organic matter. *Applied Soil Ecology*, 40(3), 484–490.
- Wang, Q., Zhang, W., Sun, T., Chen, L., Pang, X., Wang, Y., & Xiao, F. (2017).
 N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young *Cunninghamia lanceolata* forest. Agricultural and Forest Meteorology, 232, 66–73.
- Wang, Q.-S.-Y., Zheng, C.-Y., Zhang, X.-Y., Zeng, F.-X., & Xing, J. (2016). Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi. Chinese Journal of Plant Ecology, 40(11), 1124–1135.
- Wang, X., Dong, S., Gao, Q., Zhou, H., Liu, S., Su, X., & Li, Y. (2014). Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. *Soil Biology and Biochemistry*, 76, 140–142.
- Wang, X., Fujita, S., Nakaji, T., Watanabe, M., Satoh, F., & Koike, T. (2016). Fine root turnover of Japanese white birch (*Betula platyphylla* var. japonica) grown under elevated CO₂ in northern Japan. *Trees*, 30(2), 363–374.
- Wang, X., Zhou, Y., Jiang, X., & Han, S. (2014). Effects of warming on soil microbial community structure in Changbai Mountain Tundra. Acta Ecologica Sinica, 34(20), 5706–5713.
- Wang, Z., Silva, L. C., Sun, G., Luo, P., Mou, C., & Horwath, W. R. (2015). Quantifying the impact of drought on soil-plant interactions: A seasonal analysis of biotic and abiotic controls of carbon and nutrient dynamics in high-altitudinal grasslands. *Plant and Soil*, 389(1-2), 59-71.
- Warren, C. R., McGrath, J. F., & Adams, M. A. (2005). Differential effects of N, P and K on photosynthesis and partitioning of N in *Pinus pinaster* needles. *Annals of Forest Science*, 62(1), 1–8.

- Weedon, J. T., Kowalchuk, G. A., Aerts, R., Van Hal, J., Van Logtestijn, R., Taş, N., . . . van Bodegom, P. M. (2012). Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. *Global Change Biology*, 18(1), 138–150.
- Welker, J., Fahnestock, J., Sullivan, P., & Chimner, R. (2005). Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. *Oikos*, 109(1), 167–177.
- Welker, J. M., Fahnestock, J. T., Henry, G. H., O'Dea, K. W., & Chimner, R. A. (2004). CO₂ exchange in three Canadian high arctic ecosystems: Response to long-term experimental warming. Global Change Biology, 10(12), 1981–1995.
- Wicklein, H. F., Ollinger, S. V., Martin, M. E., Hollinger, D. Y., Lepine, L. C., Day, M. C., . . . Norby, R. J. (2012). Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO₂. *Oecologia*, 169(4), 915–925.
- Wienand, K. T., & Stock, W. D. (1995). Long-term phosphorus fertilization effects on the litter dynamics of an age sequence of *Pinus elliottii* plantations in the southern Cape of South Africa. *Forest Ecology and Management*, 75(1), 135–146.
- Will, R. E., Markewitz, D., Hendrick, R. L., Meason, D. F., Crocker, T. R., & Borders, B. E. (2006). Nitrogen and phosphorus dynamics for 13year-old loblolly pine stands receiving complete competition control and annual N fertilizer. Forest Ecology and Management, 227(1), 155–168.
- Williams, M. A., Rice, C. W., & Owensby, C. E. (2000). Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO₂ for 8 years. Plant and Soil, 227(1–2), 127–137.
- Xia, M., Talhelm, A. F., & Pregitzer, K. S. (2017). Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition. Soil Biology and Biochemistry, 112, 24-34.
- Xiang, Y., Huang, C., Hu, T., Tu, L., Yang, W., Li, H., & Hu, C. (2014). Response of soil respiration to simulated nitrogen deposition in an Eucalyptus grandis plantation in the rainy area of western China. Scientia Silvae Sinicae, 50(1), 21–26.
- Xiao, L., Liu, G., Li, P., & Xue, S. (2017). Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in *Bothriochloa ischaemum* than elevated CO₂. *Plant Growth Regulation*, 83(2), 325–334.
- Xie, H., Liu, K., Sun, D., Wang, Z., Lu, X., & He, K. (2015). A field experiment with elevated atmospheric CO₂-mediated changes to C₄ cropherbivore interactions. Scientific Reports, 5, 13923.
- Xiong, P., Xu, Z., Lin, B., & Liu, Q. (2010). Short-term response of winter soil respiration to simulated warming in a *Pinus armandii* plantation in the upper reaches of the Minjiang River, China. *Chinese Journal of Ecology*, 34(12), 1369–1376.
- Xiong, Q., Pan, K., Zhang, L., Wang, Y., Li, W., He, X., & Luo, H. (2016). Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau, southwestern China. Applied Soil Ecology, 101, 72–83.
- Xu, F., Hu, G., & Sha, L. (2014). The effects of nitrogen and phosphorus fertilizers on soil respiration, soil microbial biomass carbon and soil nutrients of rubber plantation in Xishuangbanna, SW China. Shan Di Xue Bao, 32(2), 179–186.
- Xu, K., CM, W., Zhang, Y., Yang, X., & Liu, W. (2016). Effects of simulated atmospheric nitrogen deposition on soil microbial community structure in a temperate forest *Chinese Journal of Ecology*, 35(10), 2676–2683.
- Xu, Y., Yu, W., Ma, Q., & Zhou, H. (2010). Effects of fertilization system on the fertility and microbial activity of aquic brown soil: A long-term field experiment. Chinese Journal of Ecology, 29(6), 1135–1142.
- Xu, Z., Wan, C., Xiong, P., Tang, Z., Hu, R., Cao, G., & Liu, Q. (2010). Initial responses of soil CO₂ efflux and C, N pools to experimental warming

- in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. *Plant and Soil*, 336(1–2), 183–195.
- Xu, Z., Yin, H., Xiong, P., Wan, C., & Liu, Q. (2012). Short-term responses of *Picea asperata* seedlings of different ages grown in two contrasting forest ecosystems to experimental warming. *Environmental and Experimental Botany*, 77, 1–11.
- Xue, J., Mo, J., Li, J., & Li, D. (2007). The short-term response of soil microorganism number to simulated nitrogen deposition. *Guihaia*, 27(2), 174–179
- Yan, C., Ma, H., Gao, R., Yin, Y., & Chen, S. (2012). Effects of simulated nitrogen deposition on soluble nitrogen in subtropical forest soils. Research of Environmental Sciences, 25(6), 678–684.
- Yan, D., Wang, D., & Yang, L. (2007). Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biology and Fertility of Soils, 44(1), 93–101.
- Yan, G., Chen, F., Zhang, X., Wang, J., Han, S., Xing, Y., & Wang, Q. (2017). Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. *Geoderma*, 303, 178–187.
- Yan, H., Zhong, W., Li, Z., & Cai, Z. (2008). Effects of long-term fertilization on phospholipid fatty acids and enzyme activities in paddy red soil. Chinese Journal of Applied Ecology, 19(1), 71–75.
- Yang, C., Ouyang, Z., & Dong, Y. (2005). Organic carbon fractions and aggregate stability in aquatic soil under different fertilization. *Chinese Journal of Ecology*, 24(8), 887–892.
- Yang, K., Zhu, J., Gu, J., Yu, L., & Wang, Z. (2015). Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation. Annals of Forest Science, 72(4), 435–442.
- Yang, S., Xu, Z., Wang, R., Zhang, Y., Yao, F., Zhang, Y., . . . Li, H. (2017). Variations in soil microbial community composition and enzymatic activities in response to increased N deposition and precipitation in Inner Mongolian grassland. *Applied Soil Ecology*, 119, 275–285.
- Yang, X., Wang, C., & Xu, K. (2017). Response of soil CH4 fluxes to stimulated nitrogen deposition in a temperate deciduous forest in northern China: A 5-year nitrogen addition experiment. European Journal of Soil Biology, 82, 43–49.
- Yang, Y., Guo, J., Wang, G., Yang, L., & Yang, Y. (2012). Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of *Abies fabri* seedlings in eastern Tibetan Plateau. *New Forests*, 43(4), 505–518.
- Yang, Y., Wang, G., Klanderud, K., & Yang, L. (2011). Responses in leaf functional traits and resource allocation of a dominant alpine sedge (*Kobresia pygmaea*) to climate warming in the Qinghai-Tibetan Plateau permafrost region. *Plant and Soil*, 349(1–2), 377–387.
- Yang, Y., Wang, G., Yang, L., & Guo, J. (2013). Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in *Abies fabri* in eastern Tibetan Plateau. *Journal of Plant Growth Regulation*, 32(2), 298–306.
- Yang, Y., Yao, Y., & Zhang, X. (2010). Comparison of growth and physiological responses to severe drought between two altitudinal *Hippophae rhamnoides* populations. *Silva Fennica*, 44(4), 603–614.
- Yang, Y., Zhou, H., Yao, B., Wang, W., Dong, S., Yu, X., . . . Zhang, H. (2015). Effects of long-term simulated warming on soil physicochemical properties and plant chemical components of *Kobresia humilis* meadow *Chinese Journal of Ecology*, 34(3), 781–789.
- Ye, L., Fu, X., & Ge, F. (2010). Elevated CO₂ alleviates damage from Potato virus Y infection in tobacco plants. *Plant Science*, 179(3), 219–224.
- Yin, H., Chen, Z., & Liu, Q. (2012). Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 50, 77–84.
- Yin, H., Xu, Z., Chen, Z., Wei, Y., & Liu, Q. (2012). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. *Applied Soil Ecology*, 59, 60–67.
- Ylänne, H., Stark, S., & Tolvanen, A. (2015). Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: Evidence from 19 years of warming and

- simulated herbivory in the subarctic tundra. *Global Change Biology*, 21(10), 3696–3711.
- Yu, C.-Q., Shen, Z.-X., Zhang, X.-Z., Sun, W., & Fu, G. (2014). Response of soil C and N, dissolved organic C and N, and inorganic N to shortterm experimental warming in an alpine meadow on the Tibetan Plateau. The Scientific World Journal, 2014, 152576.
- Yu, L., Wang, Y., Zhang, X., Dörsch, P., & Mulder, J. (2017). Phosphorus addition mitigates N₂O and CH₄ emissions in N-saturated subtropical forest, SW China. *Biogeosciences*, 14(12), 3097–3109.
- Zak, D. R., Holmes, W. E., Burton, A. J., Pregitzer, K. S., & Talhelm, A. F. (2008). Simulated atmospheric NO₃-deposition increases soil organic matter by slowing decomposition. *Ecological Applications*, 18(8), 2016–2027.
- Zak, D. R., Holmes, W. E., Finzi, A. C., Norby, R. J., & Schlesinger, W. H. (2003). Soil nitrogen cycling under elevated CO₂: A synthesis of forest FACE experiments. *Ecological Applications*, 13(6), 1508–1514.
- Zak, D. R., Holmes, W. E., & Pregitzer, K. S. (2007). Atmospheric CO_2 and O_3 alter the flow of ^{15}N in developing forest ecosystems. *Ecology*, 88(10), 2630–2639.
- Zak, D. R., Pregitzer, K. S., Curtis, P. S., & Holmes, W. E. (2000). Atmospheric CO₂ and the composition and function of soil microbial communities. *Ecological Applications*, 10(1), 47–59.
- Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R., & Randlett, D. L. (1993). Elevated atmospheric CO₂ and feedback between carbon and nitrogen cycles. *Plant and Soil*, 151(1), 105–117.
- Zang, Y., Hao, M., Zhang, L., & Zhang, H. (2015). Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 35(5), 1445–1451.
- Zeglin, L. H., Stursova, M., Sinsabaugh, R. L., & Collins, S. L. (2007). Microbial responses to nitrogen addition in three contrasting grass-land ecosystems. *Oecologia*, 154(2), 349–359.
- Zeng, D.-H., Li, L.-J., Fahey, T. J., Yu, Z.-Y., Fan, Z.-P., & Chen, F.-S. (2010). Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. *Biogeochemistry*, *98*(1–3), 185–193.
- Zeng, Q., Liu, B., Gilna, B., Zhang, Y., Zhu, C., Ma, H., . . . Zhu, J. (2011). Elevated CO_2 effects on nutrient competition between a C_3 crop (Oryza sativa L.) and a C_4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems, 89(1), 93–104.
- Zhai, Z., Gong, J., Luo, Q., Pan, Y., Baoyin, T.-t., Xu, S., . . . Yang, L. (2017). Effects of nitrogen addition on photosynthetic characteristics of *Leymus chinensis* in the temperate grassland of Inner Mongolia, China. *Chinese Journal of Plant Ecology*, 41(2), 196–208.
- Zhan, S., Wang, Y., Zhu, Z., Li, W., & Bai, Y. (2017). Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. *Environmental and Experimental Botany*, 134, 21–32.
- Zhang, B., Chen, S., Zhang, J., He, X., Liu, W., Zhao, Q., . . . Tian, C. (2015). Depth-related responses of soil microbial communities to experimental warming in an alpine meadow on the Qinghai-Tibet Plateau. *European Journal of Soil Science*, 66(3), 496–504.
- Zhang, C., Zhang, W., Ruan, H., Xu, C., & Cao, G. (2015). Effects of elevated nitrogen deposition on microbial community structure in poplar plantation. *Chinese Journal of Ecology*, 34(2), 360–366.
- Zhang, G., Chen, Z., Zhang, A., Chen, L., & Wu, Z. (2014). Influence of climate warming and nitrogen deposition on soil phosphorus composition and phosphorus availability in a temperate grassland, China. *Journal of Arid Land*, 6(2), 156–163.
- Zhang, J., Ai, Z., Liang, C., Wang, G., & Xue, S. (2017). Response of soil microbial communities and nitrogen thresholds of *Bothriochloa* ischaemum to short-term nitrogen addition on the Loess Plateau. Geoderma, 308, 112-119.
- Zhang, J., Ni, H., Wang, J., Yuan, L., & Wang, H. (2013). Effects of simulated nitrogen deposition and elevated CO₂ concentration on soil

- organic carbon and nitrogen of *Deyeuxia angustifolia* community on the Sanjiang Plain. *Earth and Environment*, 41(3), 216–225.
- Zhang, K., Shi, Y., Jing, X., He, J.-S., Sun, R., Yang, Y., . . . Chu, H. (2016). Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Frontiers in Microbiology, 7, 1032.
- Zhang, L., Wu, D., Shi, H., Zhang, C., Zhan, X., & Zhou, S. (2011). Effects of elevated CO_2 and N addition on growth and N_2 fixation of a legume subshrub (*Caragana microphylla* Lam.) in temperate grassland in China. *PLoS ONE*, 6(10), e26842.
- Zhang, N., Guo, R., Song, P., Guo, J., & Gao, Y. (2013). Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China. *Soil Biology and Biochemistry*, *65*, 96–104.
- Zhang, Q., Xie, J., Lyu, M., Xiong, D., Wang, J., Chen, Y., . . . Yang, Y. (2017). Short-term effects of soil warming and nitrogen addition on the N:P stoichiometry of *Cunninghamia lanceolata* in subtropical regions. *Plant and Soil*, 411(1–2), 395–407.
- Zhang, R., Wu, J., Li, Q., Hänninen, H., Peng, C., Yao, H., . . . Ying, Y. (2017). Nitrogen deposition enhances photosynthesis in moso bamboo but increases susceptibility to other stress factors. Frontiers in Plant Science, 8, 1975.
- Zhang, T., Yang, S., Guo, R., & Guo, J. (2016). Warming and nitrogen addition alter photosynthetic pigments, sugars and nutrients in a temperate meadow ecosystem. *PLoS ONE*, 11(5), e0155375.
- Zhang, X., Mao, R., Song, C., Song, Y., & Finnegan, P. M. (2017). Nitrogen addition in a freshwater marsh alters the quality of senesced leaves, promoting decay rates and changing nutrient dynamics during the standing-dead phase. *Plant and Soil*, 417(1–2), 511–521.
- Zhang, Y., Chen, H., Bai, S. H., Menke, C., Zhang, M., & Xu, Z. (2017). Interactive effects of biochar addition and elevated carbon dioxide concentration on soil carbon and nitrogen pools in mine spoil. *Journal* of Soils and Sediments, 17(10), 2400–2409.
- Zhang, Y., Wang, C., Xu, K., & Yang, X. (2017). Effects of simulated nitrogen deposition on soil enzyme activities in a temperate forest *Acta Ecologica Sinica*, 37(6), 1956–1965.
- Zhang, Z., Qiao, M., Li, D., Yin, H., & Liu, Q. (2016). Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? *European Journal of Soil Biology*, 74, 60–68.
- Zhao, C., & Liu, Q. (2012). Effects of soil warming and nitrogen fertilization on leaf physiology of *Pinus tabulaeformis* seedlings. *Acta Physiologiae Plantarum*, 34(5), 1837–1846.
- Zhao, C., Zhu, L., Liang, J., Yin, H., Yin, C., Li, D., . . . Liu, Q. (2014). Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in eastern Tibetan Plateau, China. *Plant and Soil*, 382(1–2), 189–201.
- Zhao, G., Liu, J., Wang, Y., & Dou, J. (2009). Effects of elevated CO₂ on soil organic carbon and nitrogen of wetlands in Sanjiang Plain. Bulletin of Soil and Water Conservation, 31(2), 6–9.
- Zhao, Y., Zhang, C., Zhao, H., & Xu, X. (2013). Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broadleaved forest. *Chinese Journal of Ecology*, 32(7), 1690–1697.
- Zhao, Z., Dong, S., Jiang, X., Liu, S., Ji, H., Li, Y., . . . Sha, W. (2017). Effects of warming and nitrogen deposition on ${\rm CH_4}$, ${\rm CO_2}$ and ${\rm N_2O}$ emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Science of the Total Environment, 592, 565–572.
- Zheng, J., Han, S., Wang, Y., Zhang, C., & Li, M. (2010). Composition and function of microbial communities during the early decomposition stages of foliar litter exposed to elevated CO₂ concentrations. European Journal of Soil Science, 61(6), 914–925.
- Zheng, M., Huang, J., Chen, H., Wang, H., & Mo, J. (2015). Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China. European Journal of Soil Biology, 68, 77–84.

- Zheng, M., Zhang, W., Luo, Y., Mori, T., Mao, Q., Wang, S., . . . Mo, J. (2017). Different responses of asymbiotic nitrogen fixation to nitrogen addition between disturbed and rehabilitated subtropical forests. *Science of The Total Environment*, 601, 1505–1512.
- Zhong, S., Liang, W., Yilai, L., Qi, L., & Jianguo, Z. (2009). Four years of free-air CO₂ enrichment enhance soil C concentrations in a Chinese wheat field. *Journal of Environmental Sciences*, 21(9), 1221–1224.
- Zhou, S., Zou, P., Xiao, Y., Xiang, Y., Han, B., Tang, J., . . . Huang, C. (2017). Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the rain area of west China Chinese Journal of Applied Ecology, 28(1), 12–18.
- Zhou, X., Chen, C., Wang, Y., Smaill, S., & Clinton, P. (2013). Warming rather than increased precipitation increases soil recalcitrant organic carbon in a semiarid grassland after 6 years of treatments. *PLoS ONE*, 8(1), e53761.
- Zhou, X., Chen, C., Wang, Y., Xu, Z., Duan, J., Hao, Y., & Smaill, S. (2013). Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. *Geoderma*, 206, 24–31.
- Zhou, X., Chen, C., Wang, Y., Xu, Z., Han, H., Li, L., & Wan, S. (2013). Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of the Total Environment, 444, 552–558.
- Zhou, X., Chen, C., Wang, Y., Xu, Z., Hu, Z., Cui, X., & Hao, Y. (2012). Effects of warming and increased precipitation on soil carbon mineralization in an Inner Mongolian grassland after 6 years of treatments. *Biology and Fertility of Soils*, 48(7), 859–866.
- Zhou, X., Zhang, Y., & Downing, A. (2012). Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from

- the Gurbantunggut Desert, northwestern China. Soil Biology and Biochemistry, 47, 67–77.
- Zhou, Y., Tang, J., Melillo, J. M., Butler, S., & Mohan, J. E. (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. *Tree Physiology*, 31(7), 707–717.
- Zhu, J., Kang, F., Chen, J., Cheng, X., & Han, H. (2017). Effect of nitrogen addition on soil respiration in a larch plantation. *Polish Journal of Environmental Studies*, 26(3), 1403–1412.
- Zhu, M., Zhang, Z., Yu, J., Wu, L., Han, G., Yang, L., . . . Wang, G. (2013). Effect of nitrogen deposition on soil respiration in *Phragmites australis* wetland in the Yellow River Delta, China. *Chinese Journal of Plant Ecology*, 37(6), 517–529.
- Zhu, T., Cheng, J., Fang, H., Yu, G., Zheng, J., & Li, Y. (2011). Early responses of soil CO₂ emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau. Acta Ecologica Sinica, 31(10), 2687–2696.
- Zogg, G. P., Zak, D. R., Burton, A. J., & Pregitzer, K. S. (1996). Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. *Tree Physiology*, *16*(8), 719–725.
- Zong, N., Shi, P., Chai, X., Jiang, J., Zhang, X., & Song, M. (2017). Responses of ecosystem respiration to nitrogen enrichment and clipping mediated by soil acidification in an alpine meadow. *Pedobiologia*, 60, 1-10.
- Zong, N., Shi, P., Jiang, J., Song, M., Xiong, D., Ma, W., . . . Shen, Z. (2013). Responses of ecosystem CO₂ fluxes to short-term experimental warming and nitrogen enrichment in an alpine meadow, Northern Tibet Plateau. *The Scientific World Journal*, 2013, 415318.
- Øien, D.-I. (2004). Nutrient limitation in boreal rich-fen vegetation: A fertilization experiment. *Applied Vegetation Science*, 7(1), 119–132.