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Abstract
Aim: We sought to understand how the individual and combined effects of multiple 
environmental change drivers differentially influence terrestrial nitrogen (N) concen‐
trations and N pools and whether the interactive effects of these drivers are mainly 
antagonistic, synergistic or additive.
Location: Worldwide.
Time period: Contemporary.
Major taxa studied: Plants, soil, and soil microbes in terrestrial ecosystems.
Methods: We synthesized data from manipulative field studies from 758 published 
articles to estimate the individual, combined and interactive effects of key environ‐
mental change drivers (elevated CO2, warming, N addition, phosphorus addition, in‐
creased rainfall and drought) on plant, soil, and soil microbe N concentrations and 
pools using meta‐analyses. We assessed the influences of moderator variables on 
these effects through structural equation modelling.
Results: We found that (a) N concentrations and N pools were significantly affected 
by the individual and combined effects of multiple drivers, with N addition (either 
alone or in combination with another driver) showing the strongest positive effects; 
(b) the individual and combined effects of these drivers differed significantly be‐
tween N concentrations and N pools in plants, but seldom in soils and microbes; (c) 
additive effects of driver pairs on N concentrations and pools were much more com‐
mon than synergistic or antagonistic effects across plants, soils and microbes; and (d) 
environmental and experimental factors were important moderators of the individ‐
ual, combined and interactive effects of these drivers on terrestrial N.
Main conclusions: Our results indicate that terrestrial N concentrations and N pools, 
especially those of plants, can be significantly affected by the individual and com‐
bined effects of environmental change drivers, with the interactive effects of these 
drivers being mostly additive. Our findings are important because they contribute to 
the development of models to better predict how altered N availability affects eco‐
system carbon cycling under future environmental changes.
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1  | INTRODUCTION

Human‐induced changes in the biogeochemical cycling of key nu‐
trient elements such as nitrogen (N) can strongly influence ecosys‐
tem structure and function (Gruber & Galloway, 2008). Changes in 
N availability can considerably affect multiple biological processes, 
including plant photosynthesis, symbiotic N fixation and microbial 
N mineralization, with potential consequences for terrestrial carbon 
(C) cycling and storage (Peñuelas et al., 2013; Vitousek, 2004; Yue et 
al., 2016). Enhanced N availability across terrestrial ecosystems has 
been found to occur with simultaneous alterations in other environ‐
mental change drivers, including elevated atmospheric CO2 (eCO2), 
warming, increased rainfall (rainfall+) and drought, which can have 
divergent effects (Galloway, 2005; Peñuelas et al., 2013; Sardans et 
al., 2017). For example, recent meta‐analyses reported that N en‐
richment can significantly increase plant and soil N concentrations 
(Lu et al., 2011), whereas eCO2 (Deng et al., 2015) and drought (He 
& Dijkstra, 2014) can have the opposite effect on plant N concentra‐
tions. Despite our growing understanding of the individual effects 
that different environmental change drivers may have on terrestrial 
N concentrations, few attempts have been made to address whether 
and how such individual effects on N concentrations (percentage of 
dry mass) and N pools (absolute mass per unit area) may differ sig‐
nificantly across different terrestrial compartments (i.e., plants, soils, 
and soil microbes). How these environmental change drivers interact 
to affect N concentrations and N pools in different terrestrial eco‐
system compartments also remains unclear.

Changes in N concentrations and N pools in response to environ‐
mental change drivers are likely to vary strongly among (and within) 
plants, soils, and microbial biomass (Lu et al., 2011; Sardans et al., 
2017). For example, the negative effect of eCO2 on plant N concen‐
tration (Cotrufo, Ineson, & Scott, 1998) does not necessarily indicate 
a reduction in the total amount of N in plants (i.e., the plant N pool) 
because eCO2 could simultaneously stimulate plant biomass produc‐
tion (Nowak, Ellsworth, & Smith, 2004). Likewise, the negative ef‐
fects of drought on plant N concentration can be reversed when plant 
biomass proportionally decreases more than plant N uptake under 
drought stress (He & Dijkstra, 2014). Human‐induced phosphorus (P) 
fertilization also significantly influences plant N concentration (Yuan 
& Chen, 2015), while N–P imbalances following repeated P fertiliza‐
tion can alter the functions of both natural and managed ecosystems 
(Peñuelas et al., 2013). These findings suggest the need to disen‐
tangle plant N concentration and N pool responses from different 
environmental change drivers. Soil or microbial N concentrations 
and pools also vary in response to environmental change drivers. 
For example, it has been shown that N fertilization can significantly 
influence soil bulk density by mediating the activities of soil fauna 

and microbes (Crill, Martikainen, Nykanen, & Silvola, 1994), and that 
the application of N alone or in combination with other nutrients 
(e.g., P) can affect soil N pools differently (Fornara, Banin, & Crawley, 
2013). Although previous synthesis studies (Bai et al., 2013; Lu et al., 
2011) have addressed the potential responses of terrestrial N pools 
to multiple drivers, these studies have not distinguished between N 
concentrations and N pools and have mainly focused on the effects 
of individual drivers.

Multiple environmental change drivers likely act simultaneously 
and influence a wide range of ecological and biogeochemical pro‐
cesses (Reich et al., 2006; Yue, Fornara, Yang, Peng, Peng et al., 
2017); thus, the combined effects of multiple drivers on N cycling 
may be more important than the corresponding individual effects. 
For instance, a recent meta‐analysis (Li, Niu, & Yu, 2016) showed 
how the combined effect of N and P additions on plant N concen‐
tration tends to be higher than their individual effects. On the other 
hand, the positive effects of eCO2 or N addition on plant N concen‐
tration may be suppressed by the presence of another driver, such 
as drought (Delgado‐Baquerizo et al., 2013). Additionally, reductions 
in soil N concentrations under eCO2 can be nullified by simultane‐
ous warming (Hovenden et al., 2008). Although warming can signifi‐
cantly increase both plant and soil N pools (Bai et al., 2013), it can 
also promote drought stress, which makes predictions of the N pool 
response to warming more complex and uncertain.

Another important knowledge gap is whether the interaction 
between two drivers, which is defined here as interactive effects 
of environmental change drivers on terrestrial N concentrations 
and pools, is additive or non‐additive. Additive interactions occur 
when the combined effect of two or more drivers is equal to or 
not significantly different from the sum of the individual effects; 
otherwise, the interaction is either synergistic or antagonistic 
(Gurevitch, Morrison, & Hedges, 2000; Zhou et al., 2016). Both 
additive and non‐additive effects have been found in empirical 
and synthesis studies. For example, the interactive effects of 
eCO2 and warming on plant biomass were found to be non‐addi‐
tive in a grassland manipulation experiment (Mueller et al., 2016), 
which agrees with a meta‐analysis across different ecosystem 
types (Dieleman et al., 2012). However, findings from other re‐
cent syntheses showed how eCO2, warming, N addition, P addition 
and altered rainfall regimes generally result in additive interac‐
tions between individual drivers for plant N concentrations, plant 
C:N:P stoichiometry and terrestrial C and P pools (Yuan & Chen, 
2015; Yue, Fornara, Yang, Peng, Li et al., 2017; Yue, Fornara, Yang, 
Peng, Peng et al., 2017; Yue et al., 2018). These studies further 
suggested that the interactive effects of multiple environmental 
change drivers may vary substantially depending on the tested 
variables and combinations of drivers.
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Here, we first compiled data from 758 published articles re‐
porting field manipulative experiments in both natural and man‐
aged ecosystems and then adopted a meta‐analysis approach to 
explicitly compare effect sizes of individual, combined and inter‐
active effects of eCO2, warming, N addition, P addition, rainfall

+ 
and drought on plant N, soil N [including total N, inorganic N, am‐
monium (NH4

+) and nitrate (NO3
−)] and soil microbial biomass N 

(MBN) concentrations and pools. Finally, we used structural equa‐
tion models (SEMs) to assess the role of several environmental and 
experimental factors (i.e., moderator variables) in influencing the 
individual, combined and interactive effects of different environ‐
mental change drivers. The main objectives of this study were to 
(a) quantify the individual and combined effects of multiple drivers 
on N concentrations and pools in different ecosystem compart‐
ments (plants, soils, and microbial biomass), (b) assess whether the 
individual or combined effects of multiple drivers on N concen‐
trations and pools differ and (c) evaluate whether the interactive 
effects of these drivers on N concentrations or pools are additive.

2  | MATERIALS AND METHODS

2.1 | Data extraction and compilation

The Web of Science, PubMed and Google Scholar were used to search 
for peer‐reviewed journal articles published before 31 January 2018. 
We focused on field manipulative studies that included the key en‐
vironmental change drivers eCO2, warming, N addition, P addition, 
rainfall+ and drought as well as any combination of these six drivers. 
The criteria for inclusion in our database were as follows: (a) ma‐
nipulative experiments were conducted in the field to collect data 
regarding at least one of the studied drivers; (b) experimental and 
control plots were established within the same ecosystem and con‐
trasted in terms of only the target variable; (c) the magnitude of the 
treatment and the study duration were clearly recorded, and meas‐
urements of the variables in the experimental and control groups 
were performed at the same spatial and temporal scales; (d) the du‐
ration of the manipulative experiments was no less than one grow‐
ing season; and (e) the means, sample sizes and standard deviations 
(SDs) or standard errors (SEs) of the chosen variables were directly 
provided or could be estimated from the reported data.

Plant N concentrations at both the species and community lev‐
els were directly recorded from the primary studies, and N pools 
were either directly recorded or calculated as the product of N con‐
centration and plant biomass. Because most of the primary stud‐
ies reported data from only mineral soil layers, we considered only 
the mineral soil layer in this meta‐analysis. Data for soil and MBN 
concentrations were extracted from the primary studies, while N 
pools were directly extracted or determined based on the soil bulk 
density (if available), microbial biomass, and the corresponding N 
concentrations. In addition, plant biomass data at both the species 
and community levels were collected only when simultaneous data 
for N concentrations or pools were reported. When several mea‐
surements were taken at different times in a single primary study, 

we used values from the last measurement to meet the statistical 
assumption of independence among observations in the meta‐
analysis (Hedges, Gurevitch, & Curtis, 1999). Furthermore, as the 
observations from a single primary study representing different 
plant compartments, ecosystem types and/or climates may not be 
independent, we used mixed‐effects models and treated studies as 
random factors in the analysis (Koricheva, Gurevitch, & Mengersen, 
2013). Because the number of studies assessing the combined ef‐
fects of three or more drivers was too small for a meta‐analysis, we 
considered only driver pairs in this study. When the data in primary 
studies were presented graphically, the figures were digitized to ex‐
tract the numerical values using the free software EngaUge Digitizer, 
version 5.1 (Free Software Foundation, Inc., Boston, MA). Climate 
variables [i.e., mean annual temperature (MAT) and mean annual 
precipitation (MAP)] were obtained directly from the primary stud‐
ies or extracted from WorldClim version 2.0 (http://www.worldclim.
org) using location information in the cases in which these data had 
not been reported.

After extraction, the data from 758 published articles 
(Appendix), representing 7,622 observations from all continents 
except Antarctica, were included in our database (see Supporting 
Information Table S1 and Figure S1). In this meta‐analysis, we inves‐
tigated the individual effects of each of the studied environmental 
change drivers, the combined effects of each driver pair (denoted 
driver 1 + driver 2) and the interactions between each driver pair 
(denoted driver 1 × driver 2, see Figure 1a,b). To calculate the first 
two types of effects, we used the natural‐log response ratio (lnRR). 
We used lnRR because it shows the least bias of the commonly used 
effect size metrics and its sampling distribution approximates nor‐
mality (Hedges et al., 1999). In addition, as we want to know the 
proportional changes in the response variables relative to controls, 
lnRR is easily interpretable. Interactive effects between two driv‐
ers could be calculated only from studies with a full factorial design 
(see Figure 1a). Given that few studies met this criterion, we used 
Hedges’ d to assess interaction effects because it is an estimate of 
the standardized mean difference that is not biased by small sample 
sizes (Gurevitch & Hedges, 2001).

2.2 | Analysis of individual and combined effects

The effect of one environmental change driver or the combined ef‐
fect of a driver pair was defined as the response of a variable (e.g., 
soil N concentration) in a treated sample compared with the value of 
that variable in the corresponding control (Yue, Fornara, Yang, Peng, 
Peng et al., 2017), and was described by lnRR (Hedges et al., 1999). 
The calculations of lnRR, the associated variance (ν1) and weight (w1) 
of each lnRR, and the weighted mean lnRR (lnRR++) are described in 
detail in Supporting Information Text S1. The individual or combined 
effect was not significant (p < .05) if the 95% confidence interval (CI) 
of lnRR++ overlapped with 0 (Rosenberg, Adams, & Gurevitch, 2000). 
We used the equation 

(

elnRR++ −1
)

×100% to calculate the net re‐
sponses of N concentrations or pools to the individual or combined 
effects in terms of the mean percentage of change relative to the 

http://www.worldclim.org
http://www.worldclim.org
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control value (%), and the effects were considered not significant 
at the p < .05 level if the 95% CI overlapped with 0. The lnRR++ and 
associated 95% CI values were calculated using mixed‐effect models 
in MetaWin 2.1 (Rosenberg et al ., 2000).

Several environmental and experimental factors may influence 
the individual, combined and interactive effects on terrestrial N 
and were thus included in the meta‐analysis as moderator vari‐
ables (Koricheva et al., 2013). We categorized the constructed 
database into different subgroups according to ecosystem type 
(boreal forest, temperate forest, subtropical and tropical forest, 
grassland, wetland, tundra, shrubland, desert and cropland), plant 
functional type (woody and herbaceous), treatment magnitude, 
type of manipulative facility [open‐top chamber (OTC), free‐air 
CO2 enrichment and screen‐aided CO2 control for eCO2; OTC and 
heater for warming], and fertilizer chemical form (NH4NO3, NH4, 
NO3, urea and mixture of NH4NO3 and urea) to assess the influ‐
ence of these categorical moderator variables on effect size. The 

effect of each categorical moderator on lnRR was evaluated by 
comparing the heterogeneity within (Qw) and between (Qb) moder‐
ator levels using mixed‐effect models in MetaWin 2.1 (Borenstein, 
Hedges, Higgins, & Rothstein, 2009). To assess the influence of 
the continuous moderator variables latitude, MAT, MAP, treat‐
ment magnitude, and study duration, an a priori conceptual SEM 
(Figure 1c) was developed based on current ecological knowledge 
(Grace, 2006). This SEM was tested separately for each driver or 
driver pair. We examined the distributions of the endogenous and 
exogenous variables of the SEM analysis, tested their normality 
and transformed them when necessary. The covariance between 
duration and magnitude was included in the model. The analysis 
was conducted only when the number of data points was > 30, and 
we used a bootstrapping method for resampling based on 5,000 
iterations when the number of data points was < 100 (Grace, 
2006). The overall goodness‐of‐fit of the models was tested using 
the traditional χ2 goodness‐of‐fit test and the root mean square 

F I G U R E  1   (a) Three common experimental designs included in our database to study the effects of two environmental change drivers, 
A and B, with C being the control plot. Individual effects of drivers A and B were calculated based on data from study designs 2 and 3. 
The combined effects, A + B, were calculated based on data from designs 1 and 3, while the interactive effects, A × B, could be calculated 
from only study design 3 (i.e., A + B = A + B + A × B). (b) A real picture of the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. 
Several experiments at this research site examined the interactions between multiple environmental drivers (Photo credit: Jacob Miller, 
2014, CC BY‐SA 4.0). (c) An a priori conceptual structural equation model (SEM) depicting the influence of latitude, longitude, mean annual 
temperature (MAT), mean annual precipitation (MAP), driver magnitude, and study duration on the effect size [natural‐log response ratio 
(lnRR) or interaction effect size (dI)] of environmental change drivers on terrestrial N concentrations or pools. The same model was used for 
all tested drivers and driver pairs. Single‐headed arrows indicate a hypothesized directional influence of one variable on another, double‐
headed arrows represent a correlation in which no direction is specified, and each rectangle indicates a measured variable entered in the 
model. Note that ‘magnitude’ was tested for only individual drivers and the combination N addition + P addition, in which case the ratio 
between the added N and P (N:P) was used

(a)

(c)

(b)
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error of approximation index (Grace, 2006; Schermelleh‐Engel, 
Moosbrugger, & Müller, 2003). The SEM analyses were per‐
formed with amos software version 22.0 (Amos Development Co., 
Chicago, IL).

2.3 | Analysis of interactive effects

To further assess whether interactive effects were additive, we em‐
ployed Hedges’ d according to established methods (Gurevitch et al., 
2000). Accordingly, the interaction effect size (dI) between drivers A 
and B was calculated by Equation 1:

where XC, XA, XB and XAB are the means of a variable in the control, 
the treatment groups A and B, and their combination group (AB), 
respectively. The variables s and J(m) are the pooled SD and a correc‐
tion term for small sample sizes, respectively, which were calculated 
by Equations  and .

where nC, nA, nB and nAB are the corresponding sample sizes; sC, sA, 
sB and sAB are the SDs in the control and experimental groups of A, 
B and their combination (AB), respectively; and m is the degrees of 
freedom (m = nc + nA + nB + nAB − 4). The variance in dI (ν) was esti‐
mated by Equation 4:

The weighted mean dI (d++) was calculated according to Equation 5:

where l is the number of groups, k is the number of comparisons 
in the ith group, w is the study weight [which is also the recipro‐
cal of the variances (1/ν)] and d is the size of the individual effect. 
The 95% CI of d++ was calculated as d++ ± Cα/2 × s(d++), where Cα/2 
is the two‐tailed critical value of the standard normal distribution. 
When the number of data points was < 20, we used a bootstrapping 
method for resampling to obtain the 2.5% lowest and highest values 
as CIs based on 5,000 iterations (Janssens et al., 2010; Zhou et al., 
2016). The interactions between two drivers were classified as ad‐
ditive, synergistic or antagonistic (Gurevitch et al., 2000; Zhou et 
al., 2016). An interactive effect was considered additive if the 95% 

CI overlapped with 0. If the individual effects of driver pairs were 
either both negative or have opposite directions, the interactions 
whose total effects were less than 0 were synergistic, and those 
whose total effects were greater than 0 were antagonistic. When 
the individual effects were both positive, the interactions were in‐
terpreted conversely (i.e., those > 0 were synergistic, and those < 0 
were antagonistic).

3  | RESULTS

3.1 | Individual effects of environmental change 
drivers on terrestrial N concentrations and pools

The responses of plant N concentrations and pools to individ‐
ual drivers differed significantly (p < .001) at both species and 
community levels (Figure 2a). Specifically, eCO2 significantly 
decreased plant N concentrations by 7% at both species and com‐
munity levels, but had no effect or a significantly positive (6%) 
effect on plant N pools at species and community levels. Warming 
significantly increased plant N pool at species level by an aver‐
age of 11%, and N addition stimulated plant N concentrations and 
pools at both species and community levels. P addition signifi‐
cantly increased plant N concentration by 6% at the community 
level and plant N pools at species (19%) and community levels 
(24%). Rainfall+ showed significant effects on plant N concentra‐
tion (5%) at the species level. Drought had no effect on plant N 
concentration or N pools. The responses of plant biomass to in‐
dividual drivers were generally significantly correlated with the 
responses of the corresponding plant N pools at both species and 
community levels, but were not correlated with plant N concen‐
tration (Table 1). Soil N concentration significantly increased by 
10 and 6% under N and P additions, respectively, while soil N pool 
was significantly enhanced only by N addition (12%, Figure 2b). 
The concentration and pool of soil inorganic nitrogen (SIN) sig‐
nificantly decreased by 11 and 34%, respectively, under eCO2, 
but significantly increased by 14 and 19% under warming and 
by 79 and 125% under N addition. The SIN, soil NH4

+ and soil 
NO3

– were rarely affected by the individual drivers (Supporting 
Information Figure S2). In addition, MBN concentration signifi‐
cantly increased by 8% under eCO2, while MBN pool increased by 
17% under N addition.

3.2 | Combined and interactive effects of  
environmental change drivers on terrestrial N 
concentrations and pools

The combined effects of N addition + eCO2, N addition + warming, 
N addition + P addition and N addition + rainfall+ significantly in‐
creased plant N concentration at species level by 4, 50, 13 and 29%, 
respectively. Their effects on the corresponding N pool were signifi‐
cantly higher, with increases of 44, 223, 89 and 226%, respectively 
(Figure 3a). In contrast, eCO2 + warming significantly decreased 
plant N concentration at the species level by 10%, but had no effects 

(1)dI=
(XAB−XA)− (XB−XC)

s
J (m)
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on plant N pool at the species level. Both plant N concentration and 
N pool at the community level were stimulated significantly by N 
addition + P addition, with an average increase of 16% and 66%, re‐
spectively. In addition, the responses of plant biomass and N pool 
to the combined effects of environmental change drivers showed 
significant positive correlations (Table 1).

There was no significant difference between N concentration 
and N pool in relation to the combined effects of environmental 
change drivers for soil or microbial biomass (Figure 3b). Soil total 
N concentration significantly increased by 6% under warming + N 
addition and N addition + P addition, while soil total N pool was 
significantly stimulated (12%) only by N addition + P addition. The 
combined drivers eCO2 + N addition, warming + N addition, warm‐
ing + drought and N addition + rainfall+ significantly increased SIN 
by 36%, 97%, 49% and 61%, respectively, but had no effect on SIN 
pool. Soil NO3

– concentration and pool responded similarly to SIN, 
while NH4

+ concentration was enhanced only by eCO2 + N addition 
(+39%) or N addition + P addition (+45%) (Supporting Information 
Figure S3). However, neither the concentration nor the pool of MBN 
was affected by the combined effects (Figure 3c).

In terms of the interactive effects, additive effects on ter‐
restrial N concentrations and pools were more frequently found 
than synergistic and antagonistic effects across all the driver pairs 
tested in our study (Figure 4). With the exception of an antagonis‐
tic effect of N addition × rainfall+, the interactive effects of other 
driver pairs on plant N concentration at the species level were all 
additive (Figure 4a). The mean interactive effect of N addition × 

P addition on plant N concentration at the community level was 
antagonistic, but their effect on plant N pool at both the species 
and community level was synergistic. All interactive effects on 
the concentrations and pools of soil total N and SIN were additive 
except for that of N addition × P addition on SIN concentration, 
which was synergistic. Likewise, similar patterns were found for 
NH4

+ and NO3
− (Supporting Information Figure S4), and the in‐

teractive effects of all driver pairs on MBN concentrations and 
pools were additive (Figure 4). Moreover, despite the observation 
of several overall non‐additive interactive effects, the frequency 
distribution of interaction types indicates that additive interac‐
tions were substantially predominant across all the driver pairs 
(Figure 4).

3.3 | Influences of moderator variables

Moderator variables such as ecosystem type, experimental design 
factors (e.g., study duration, facility, treatment magnitude and fer‐
tilizer form), latitude and climate (i.e., MAT and MAP) all mediated 
the responses of terrestrial N concentrations and pools to indi‐
vidual, combined and interactive effects of the investigated drivers 
(Figure 5 and Supporting Information Figures S5–S13). For exam‐
ple, the individual effects of eCO2 on plant N concentration (Qb = 
15.25, p = .033) and pool (Qb = 18.50, p = .010) varied significantly 
with ecosystem type (Supporting Information Figure S5a) and were 
also significantly influenced by the magnitudes of eCO2, MAP and 
study duration (Supporting Information Figure S13a). Likewise, the 

F I G U R E  2   Individual effects of multiple environmental change drivers on terrestrial N concentrations and pools in (a) plants, (b) soils and 
(c) soil microbial biomass. The results are expressed as the percentage change relative to the control (%). Values indicate the means with 95% 
confidence intervals (CIs), and sample size numbers for N concentrations and pools are shown in parentheses. The effects of environmental 
change drivers are significant when the 95% CIs do not overlap with 0. The results are not presented when the sample size is < 3. Asterisks 
indicate significant (***p < .001) differences between the responses of N concentrations and pools to a specific driver. eCO2 = elevated CO2; 
N = nitrogen addition; P = phosphorus addition; rainfall+ = increased rainfall; MBN = microbial biomass nitrogen
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combined effects of N addition + P addition on plant N concentra‐
tion and pool significantly varied with ecosystem type (Supporting 
Information Figure S18c, d) and were significantly influenced by 
latitude, MAT and MAP in some cases (Figure 5a), although such im‐
pacts on N concentrations and pools vary with terrestrial compart‐
ment. The effect of eCO2 × warming on plant N concentrations was 
significantly influenced by latitude and MAP, while N addition × P 
addition on plant N pools at both species and community levels were 
significantly modulated by experiment duration (Figure 5b).

4  | DISCUSSION

Our results show how N concentrations and N pools in plants, soils, 
and microbial biomass are influenced by the individual and combined 
effects of different environmental change drivers. We found that N 
concentrations and N pools in plants show higher sensitivity to these 
driver effects than those in soils and in microbial biomass. The dif‐
ferent responses between plant N concentrations and N pools to the 
individual or combined effects of multiple drivers suggest that mix‐
ing plant N concentration and N pool data can be problematic when 
plant N cycling is assessed under different environments. However, 
such a difference was seldom observed in soils or microbial bio‐
mass. In addition, our results show that the interactive effects of 
multiple drivers on N concentrations and N pools of plants, soils and 

microbes are more likely to be additive. These novel findings con‐
tribute to improving our understanding of how terrestrial N cycling 
among plants, soils and microbes may shift under the simultaneous 
effects of multiple environmental change drivers.

4.1 | Differential individual effects of  
environmental change drivers on terrestrial N 
concentrations and pools

The magnitude and direction of environmental change effects on 
terrestrial N vary depending on the identity of the driver and the 
nature of the N concentration or pool (i.e., plants vs. soils vs. soil 
microbial biomass). For example, our results show how eCO2 signifi‐
cantly decreased plant N concentration at both species and commu‐
nity levels, but significantly increased plant N pool at the community 
level (Figure 2a). Net negative effects of eCO2 on plant N concentra‐
tion may occur because of (a) dilution of N by increased photosyn‐
thetic assimilation of C; (b) lower transpiration‐driven mass flow of 
N in soils due to decreased stomatal conductance under eCO2; and 
(c) increased rates of N loss via volatilization and/or root exudation, 
which may further decrease tissue N concentration (Taub & Wang, 
2008). The increase in plant N pools under eCO2 could be related to 
eCO2‐induced increases in biological N fixation or increases in root 
growth for N uptake (Luo et al., 2004). Warming‐induced net N accu‐
mulation in plants (i.e., plant N pool) may be attributed to enhanced 

F I G U R E  3  Combined effects of multiple environmental change drivers on terrestrial N concentrations and pools in (a) plants, (b) soils and 
(c) soil microbial biomass. The results are expressed as the percentage change relative to the control (%). Values indicate the means with 95% 
confidence intervals (CIs), and sample size numbers for N concentrations and pools are shown in parentheses. The effects of environmental 
change drivers are significant when the 95% CIs do not overlap with 0. The results are not presented when the sample size is < 3. Asterisks 
indicate significant (*p < .05.***p < .001) differences between the responses of N concentrations and pools to a specific driver pair. eCO2 = 
elevated CO2; N = nitrogen addition; P = phosphorus addition; rainfall

+ = increased rainfall; MBN = microbial biomass nitrogen
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plant growth that is being stimulated by changes in soil N availabil‐
ity (Vitousek & Howarth, 1991) and in plant phenology (Luo, Sherry, 
Zhou, & Wan, 2009) under warming conditions. This idea was sup‐
ported by our results showing that SIN concentration and pool sig‐
nificantly increased in the warming treatments (see Figure 2a).

Nitrogen addition generally showed positive effects on plant 
N concentrations and N pools (Figure 2a) and on soil N pools 
(Figure 2b). These findings agree with the results of previous 
meta‐analyses, which showed that N addition had positive effects 
on plant N concentrations and N pools (Bai et al., 2013; Lu et al., 
2011). The significant positive effects that P addition and rainfall+ 
had on plant N concentrations and pools (Figure 2a) may be at‐
tributed to the fact that both P and water availability are limiting 
factors for plant growth and N uptake (Li et al., 2016). In contrast, 
drought showed minimal effects on plant, soil and MBN concen‐
trations and pools. MBN pools were significantly increased by 
eCO2 (Figure 2c). Previous studies showed that soil microbial num‐
bers, metabolic activity and biomass can be increased by eCO2 

(Sadowsky & Schortemeyer, 1997). Thus, this increase can be at‐
tributed to eCO2 increasing the microbial utilization of soil organic 
matter (Carney, Hungate, Drake, & Megonigal, 2007) and N fixa‐
tion ability through stimulating the activities of related enzymes 
(Cheng et al., 2011; He et al., 2010).

Our results show that the responses of plant N concentrations 
and N pools to the individual effects of multiple drivers can vary 
significantly (Figure 2a), suggesting that the effects on these two 
variables should be separately tested when plant N dynamics are 
assessed in future studies. We found that while the responses of 
plant biomass to these drivers were significantly correlated with 
the corresponding plant N pools, they were not related to plant N 
concentrations (Table 1). This phenomenon is likely to occur when 
one driver or driver pair increases plant biomass without changing 
N concentration, thus resulting in an increase in the N pool (Doiron, 
Gauthier, & Lévesque, 2014). Our evidence is that the responses of 
soil N and MBN to the individual drivers are weaker than plant N 
responses (Figure 2), which may partly occur because soil N pools 

F I G U R E  4   Interactive effects of multiple environmental change drivers on terrestrial (a) N concentrations and (b) N pools and the 
corresponding frequency distribution of interaction types among individual observations of driver pairs. Dots represent means with 95% 
confidence intervals (CIs), and sample size numbers are shown in parentheses. If the 95% CI overlapped with 0, the interactive effect was 
considered to be additive; otherwise, the interactive effect was synergistic or antagonistic. The results are not presented when the sample 
size is < 3. Because many studies reported only combined effects, sample sizes may be smaller than the corresponding ones in Figure 3. 
Values in percentages indicate the proportions of additive interactions among all the individual observations of a specific response variable. 
PN = plant nitrogen; SN = soil total nitrogen; SIN = soil inorganic nitrogen; MBN = microbial biomass nitrogen; eCO2 = elevated CO2; N = 
nitrogen addition; P = phosphorus addition; rainfall+ = increased rainfall
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are much larger than plant N pools (Nieder & Benbi, 2008) and thus 
expected to respond more slowly to environmental change. In addi‐
tion, changes in soil N pools may also be difficult to detect because 
of the higher inherent variation in soil organic matter under environ‐
mental change.

4.2 | Combined effects and the interactions of 
driver pairs

Our results show that eCO2 + N addition, eCO2 + drought and warm‐
ing + N addition stimulated plant N concentrations and N pools at 
the species level (Figure 3a). The positive effects of eCO2 + N ad‐
dition on plant N concentrations and N pools may be attributed to 
the fact that additional N input meets the increased plant N demand 
under eCO2 (Reich, Hobbie, & Lee, 2014). The stimulating effects of 
eCO2 + drought on plant N pools were mainly attributed to the net 
positive effect of eCO2 because, as shown in our results, drought 
had no effect on plant N pools and the interactive effect of eCO2 × 
drought was additive.

Plant growth and plant biomass production in terrestrial eco‐
systems are primarily limited by N availability or are co‐limited 
by P availability (Elser et al., 2007; Vitousek, Porder, Houlton, & 

Chadwick, 2010). Larger inputs of one nutrient (either N or P) will 
stimulate plant growth but also lead to increased demand for the 
other nutrient. Thus, the simultaneous addition of N and P can sig‐
nificantly contribute to increasing plant N uptake rates, which can 
lead to increased N concentrations and N pools (Li et al., 2016). N 
addition × P addition on plant N pools was indeed synergistic at 
both species and community levels, albeit antagonistic for plant N 
concentrations at community level (Figure 4). N addition increases 
the demand for P by stimulating plant growth; thus, extra P addi‐
tion could counterbalance this N‐induced P limitation, allowing the 
full N fertilization effect to be expressed (You et al., 2018). In this 
case, the N addition effect could be larger in the combined treat‐
ment with P than in the N‐only treatment, resulting in a synergistic 
N addition × P addition effect. However, the occurrence of such a 
synergistic effect is conditional, as the interactive effect was signifi‐
cantly influenced by experimental and environmental factors such 
as latitude and study duration (see Figure 5b). The full expression 
of the N addition effect with additional P input can be conditional 
because net N addition effects on plant N uptake are soil dependent 
and thus are influenced by multiple biogeochemical factors (Niu et 
al., 2016). When increases in plant biomass are larger than increases 
in N uptake, N addition × P addition effects on plant N concentration 

F I G U R E  5  Standardized total effects (direct plus indirect effects) derived from structural equation models (SEMs) evaluating the 
influence of moderator variables (depicted in different colours) on (a) the combined effects (natural‐log response ratio, lnRR) and (b) 
interactive effects (interaction effect size, dI) of driver pairs on terrestrial N concentrations (‐C) and pools (‐P). Note that the magnitude of 
the tested driver pairs was assessed in only N and P combinations, where the ratio between the added N and P (N:P ratio) is used. Asterisks 
indicate significant (*p < .05. **p < .01. ***p < .001) direct effects. See Supporting Information Table S2 for the goodness‐of‐fit tests of the 
SEMs, and Supporting Information Figure S13 for the results derived from the SEMs evaluating the influence of moderator variables on the 
individual effects. eCO2 = elevated CO2; PN = plant nitrogen; SN = soil total nitrogen; SIN = soil inorganic nitrogen; MAT = mean annual 
temperature; MAP = mean annual precipitation
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could be antagonistic but could become synergistic for N pools as a 
result of increases in N mass. However, despite these non‐additive 
effects, our results indicated that additive effects were much more 
common across individual observations and that the overall effect 
of N addition × P addition on plant N concentrations at the species 
level was additive.

We found that N addition + rainfall+ had significant positive 
effects on plant N concentrations and N pools at the species level 
(Figure 3a) and that the mean interactive effect of N addition × rain‐
fall+ on plant N concentrations was antagonistic (Figure 4). Water 
availability is an important factor regulating ecosystem primary 
production, and increased water input generally stimulates biomass 
production through increased uptake of limiting nutrients such as N 
(Li, Lin, Taube, Pan, & Dittert, 2011). However, although N addition 
can enhance plant N uptake, it can also decrease plant N use effi‐
ciency (Lü, Dijkstra, Kong, Wang, & Han, 2014); thus, the interaction 
of N with rainfall+ can be antagonistic for plant N concentrations. 
Nevertheless, the additive interactions of N addition × rainfall+ on 
plant N concentrations remained predominant at the species level.

Soil total N concentration was significantly enhanced by warm‐
ing + N addition and N addition + P addition (Figure 3b). Although N 
addition alone significantly increased soil N concentration, further 
positive effects on soil total N occurred when the N fertilization 
effect (i.e., N‐induced increases in plant N input to soils) was en‐
hanced by warming or P addition (Bai et al., 2013). Because the SIN 
pool is smaller than the soil total N pool (Benbi & Richter, 2003), 
the variations in SIN can be more sensitive than the variations in 
the soil total N pool to environmental change drivers, as we found 
in this study (Figure 3b). Common additive interactions were also 
observed for soil total N and SIN, although we observed an overall 
synergistic effect of N addition × P addition on SIN concentration 
(Figure 4). N addition can increase phosphatase activity and thus soil 
P availability (Olander & Vitousek, 2000), but this N‐induced poten‐
tial increase in P availability is usually insufficient to balance the ac‐
companying increased P limitation. Thus, the simultaneous addition 
of P and N would enhance SIN because P addition can also stimulate 
rates of N fixation and increase N availability (Crews, Farrington, & 
Vitousek, 2000). Hence, the synergistic effects of N addition × P 
addition on SIN concentration are not unrealistic. In addition, the 
overall synergistic effect on SIN could result from the large weight 
that individual synergistic observations may have relative to more 
common (> 50%) additive effects (Zhou et al., 2016). We observed 
similar patterns of additive interactive effects on MBN concentra‐
tions. However, in contrast to plant and soil N, soil MBN exhibited no 
significant response to the combined effects of driver pairs, which 
may be attributed to the small sample size that limited the breadth 
of our analysis (Loladze, 2014).

4.3 | Moderating effects of environmental and 
experimental factors

Moderator variables, such as environmental and experimental fac‐
tors, which affect the individual effects of environmental change 

drivers on specific ecosystem properties, have been highlighted and 
discussed in previous studies (Bai et al., 2013; Li et al., 2016; Lu et 
al., 2011; Xia & Wan, 2008). Similarly, our results revealed that such 
moderator variables significantly influence the combined and inter‐
active effects of driver pairs on plant and soil N concentrations and 
pools. For example, the combined effects of eCO2 + N addition on 
plant N concentrations and pools significantly varied with ecosystem 
type, with significantly positive effects in grassland, but no effects in 
tropical forests. This difference may be because eCO2‐induced nu‐
trient limitations were related to not only N, but also other nutrients 
such as P (Winter, Garcia, Gottsberger, & Popp, 2001), whose avail‐
ability is typically limited in tropical forests (Elser et al., 2007). The 
interactive effects of eCO2 × N addition on plant N were also sig‐
nificantly affected by moderator variables such as latitude and MAP 
(Figure 5b). As discussed above, driver effects are expected to be en‐
vironmentally dependent. Confirming this expectation, our results 
suggest that MAP influences the extent to which driver effects are 
expressed and modulates the interactive effects of driver pairs on N 
cycling. Likewise, we found that the effects of N addition + P addi‐
tion and N addition × P addition on the concentrations and pools of 
plant and soil N were significantly modulated by latitude, MAT, MAP 
and experimental duration (Figure 5b and Supporting Information 
Figure S13). This relationship could be attributed to ecosystem N 
cycling differing along gradients generated by these environmental 
and experimental factors (Bai et al., 2013; Lu et al., 2011). Moreover, 
the effect size of N addition + P addition on soil NO3

– concentra‐
tion was significantly positively correlated with the duration of the 
manipulation study (Supporting Information Figure S13), indicating 
that long studies are necessary to completely assess environmental 
change effects on terrestrial N pools.

4.4 | Uncertainty analysis and limitations

Although our meta‐analysis provides new evidence of how the in‐
dividual, combined and interactive effects of multiple environmen‐
tal change drivers might influence terrestrial N concentrations and 
N pools, significant uncertainty still remains. First, primary studies 
assessing the effects of environmental changes on plants, soils and 
microbes are not abundant enough and unequally distributed geo‐
graphically, thus limiting our ability to conduct a global analysis of 
N cycling among different ecosystem components. Evaluating com‐
bined effects is even more challenging because the small sample 
sizes of data for many driver pairs hampered our ability to quantify 
the nature of the interactions. Additionally, the lack of data for other 
driver pairs and potential combinations of three or more drivers 
reduced the breadth of our analysis. Second, published studies on 
global change effects on N dynamics are strongly biased towards 
the Northern Hemisphere (see Supporting Information Figure S1); 
thus, the database failed to represent ecosystem types equally at 
the global scale, especially savanna and tropical forest ecosystems. 
Third, in terms of statistics, the observation‐weighted approach that 
we used here might overestimate the amount of additive interac‐
tions associated with large variance in some observations (Gurevitch 
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et al., 2000; Zhou et al., 2016). Nevertheless, our statistical analysis 
showed that the average weights of the interaction (dI) for significant 
results (synergistic and antagonistic effects) were similar to those 
for the non‐significant interactions (additive effects) (see Supporting 
Information Table S3). This result suggests that overestimation of 
additive interactions should not be an issue (Zhou et al., 2016).

4.5 | Implications and perspectives

Our study shows how plant N concentrations and N pools were dif‐
ferently affected by the individual and combined effects of multiple 
environmental change drivers, indicating that merging these two 
N variables would potentially be misleading when assessing the 
response of plant N dynamics to environmental change. The weak 
responses of soil and microbial N concentrations and N pools (com‐
pared to plants) to both individual and combined effects of multiple 
drivers suggest that soils and soil microbes are less sensitive than 
plants to environmental change or that their responses are more dif‐
ficult to detect. Most importantly, our study suggests that responses 
of N concentrations and N pools in different terrestrial compart‐
ments to the interactive effects of multiple drivers are more likely 
to be additive than synergistic or antagonistic. These common addi‐
tive effects of driver pairs on N concentrations and pools should be 
incorporated into ecosystem models that aim to predict how altered 
N availability affects global C sinks. Future studies could address 
what underlying biogeochemical mechanisms enhance the stability 
of soils and soil microbes to environmental change. Finally, well‐de‐
signed long‐term experiments that simultaneously assess effects of 
multiple drivers on ecosystem compartments are urgently needed to 
better capture the dynamics of terrestrial N cycling and their conse‐
quences for terrestrial C storage under future environmental change 
scenarios.
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