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The Suslin hypothesis states that there are no nonseparable 
complete dense linear orderings without endpoints which have 
the countable chain condition. ZF + AD+ + V = L(P(R))
proves the Suslin hypothesis. In particular, if L(R) |= AD, 
then L(R) satisfies the Suslin hypothesis, which answers a 
question of Foreman.
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1. Introduction

Cantor had shown that R with its usual ordering is the unique complete dense sep-
arable linear ordering without endpoints up to isomorphism. A linear ordering has the 
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countable chain condition if there are no uncountable sets of disjoint nonempty open in-
tervals. Every separable linear ordering has the countable chain condition. Suslin asked 
if R is the unique (up to order isomorphism) complete dense linear ordering without end-
points that satisfies the countable chain condition. This question has come to be known 
as the Suslin problem. The study of the Suslin problem under the axiom of choice, AC, 
has led to a number of developments in set theory such as in constructibility and iterated 
forcing.

A Suslin line is a complete dense linear ordering without endpoints which has the 
countable chain condition but is not separable. The existence of a Suslin line gives a 
negative answer to the Suslin problem. The Suslin hypothesis, SH, is the statement that 
there are no Suslin lines.

The Suslin problem can not be resolved under ZFC. However, [4] showed that no linear 
ordering which comes from a Δ1

1 prelinear ordering on R can be a counterexample to 
the Suslin problem. This suggests that no linear ordering which comes from a definable 
prelinear ordering on R should be a Suslin line. Since the determinacy axiom AD+

implies that every set of reals is definable in a very absolute sense, ZF + AD+ is a 
natural setting to ask the question of whether any definable prelinear ordering on R
can induce a Suslin line. This paper will show under AD+ that no linear ordering which 
comes from any prelinear ordering on R is a Suslin line. Assuming the universe satisfies 
ZF + AD+ + V = L(P(R)) (which are known as natural models of AD+), the paper will 
show that there are no Suslin lines at all. In particular, the most natural model of 
determinacy L(R) |= AD will always satisfy SH, which answers a question of Foreman [2]. 
(This question was brought to the authors’ attention by Hamkins [3].)

The following gives a brief introduction to the Suslin problem and a summary of the 
main results of the paper:

A tree is a partially ordered set (T, ≺) so that for any t ∈ T , {s ∈ T : s ≺ t} is a 
wellordering under ≺. An ω1-tree is an uncountable tree so that each level is countable. 
An Aronszajn tree is an ω1-tree with no uncountable branch. A Suslin tree is an ω1-tree 
with no uncountable branch or uncountable antichain. Under AC, the existence of a 
Suslin line is equivalent to the existence of a Suslin tree.

Tennenbaum [15] and Jech [6] independently showed that if ZF is consistent, then 
ZFC + ¬SH is consistent. They used a forcing construction to produce a model of ZFC
with a Suslin tree or Suslin line. With the development of iterated forcing, Solovay and 
Tennenbaum [14] showed that if ZF is consistent, then ZF + SH is consistent. In fact, 
they showed Martin’s axiom, MA, and the failure of the continuum hypothesis, CH, imply 
there are no Suslin lines. Thus SH is independent of ZFC.

One can also ask if SH holds in certain natural models of ZFC. Gödel’s constructible 
universe L is the smallest inner model of ZFC. Jensen showed the axiom V = L implies 
there is a Suslin line or tree. In fact, the Jensen’s diamond principle �, which holds in L, 
implies there is a Suslin tree. Jensen also showed that there is a model of ZFC + CH + SH. 
Thus CH is independent of SH.
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Results from descriptive set theory have shown that Borel objects are well-behaved 
and have nice regularity properties. This suggests that no Borel linear ordering on R
should be a Suslin line. Friedman and Shelah showed that there are no Borel Suslin 
lines. Harrington, Marker, and Shelah strengthened this result using effective methods 
and the Gandy–Harrington forcing: A prelinear order is a binary relation that is total and 
transitive (but may not be antisymmetric). [4] showed that every Δ1

1 prelinear ordering 
has a perfect set of disjoint closed intervals or there is a Δ1

1 order preserving function 
which maps the prelinear ordering into R with its usual ordering.

The intuition would be that every definable linear ordering which is the surjective 
image of R (that is, a collapse of a prelinear ordering on R) is not a Suslin line assuming 
that certain descriptive set theoretic arguments are valid for this definable context. One 
approach to formalize this idea of extending descriptive set theoretic methods to the 
largest possible context is to assume determinacy axioms.

Let ωω denote the Baire space which consists of all function from ω into ω. Let A ⊆ ωω. 
The game GA consists of player 1 and 2 alternatingly picking integers ai. Player 1 wins 
if ā = 〈ai : i ∈ ω〉 belongs to A. Player 2 wins if ā /∈ A. The axiom of determinacy, AD, 
asserts that for all A ⊆ ωω, one of the players has a winning strategy in GA.

AD implies that every set of reals has the perfect set property, has the Baire prop-
erty, and is Lebesgue measurable. It is reasonable to expect that under AD every linear 
ordering on a set which is the surjective image of R is not a Suslin line.

AD implies the failure of AC. As noted above, under AC, the study of the Suslin 
problem can be reduced to the study of Suslin trees. The proof that the existence of a 
Suslin line implies the existence of a Suslin tree seems to require AC. Under determinacy 
assumptions, the existence of Suslin trees and Suslin lines are considered separately.

AD by its very nature is in general restricted to providing information about set which 
are surjective images of R. However, SH is a statement about all linear orderings. L(R) is 
the smallest transitive inner model of ZF containing all the reals. Woodin has shown that 
if V |= ZFC and has a measurable cardinal with infinitely many Woodin cardinals below 
it, then L(R)V |= AD. (See [10].) Sometimes results about all sets can be proved in this 
minimal model of AD containing the reals. Kechris [9] showed that if L(R) |= AD, then 
L(R) |= DC. Caicedo and Ketchersid [1] extended the Silver’s dichotomy [12] to show 
that in L(R), every set is either wellorderable or R inject into it. Moreover, if V |= ZFC
and has a proper class of Woodin cardinals, then for any forcing P ∈ V and G ⊆ P

which is P-generic over V , L(R)V and L(R)V [G] are elementarily equivalent. An external 
forcing cannot change the theory of L(R) and in particular the status of SH in L(R)V

and L(R)V [G]. At the end of [2], Foreman asked whether L(R) |= SH if L(R) |= AD.
First, the paper will consider the existence of Suslin trees.

Theorem 3.4. If L(R) |= AD, then L(R) has no Aronszajn tree and hence no Suslin trees.

To study linear orderings on surjective images of R, one will work in a strengthening 
of AD isolated by Woodin known as AD+. It includes DCR and the statement that all sets 
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of reals have an absolute definition provided by an ∞-Borel code. AD+ holds in every 
model of AD that has been produced. It is open whether AD and AD+ are equivalent.

Theorem 4.2. (ZF + AD+) Let � be a prelinear order on R. Exactly one of the following 
holds.

(i) There is a perfect set of disjoint closed intervals in �. (That is, this set of intervals 
is in bijection with R.)

(ii) There is a wellordered separating family for �.

Here, a separating family is a collection S of �-downward closed sets so that for any 
a ≺ b, there is some A ∈ S so that a ∈ A and b /∈ A. Note that (ii) cannot be replaced 
with the statement that � order embeds into R as in the case for Borel linear orderings. 
For example, there is a Σ1

1 prelinear ordering whose quotient has ordertype ω1.
The argument associated with (i) is a modification of the Gandy–Harrington forcing 

argument from [4] using the Vopěnka algebra. The argument associated with (ii) follows 
an idea of Hjorth from [5].

The proof has a clear descriptive set theoretic flavor: Instead of considering a set as an 
static object, one uses a sufficiently absolute definition of a set provided by the ∞-Borel 
code. This allows the definition to be interpreted in various inner models containing the 
necessary parameters to derive information about the true object in the real world.

The theorem implies the following:

Theorem 4.4. (ZF + AD+) There are no Suslin lines on a set which is the surjective 
image of R.

The previous results will be used to establish the full SH in models satisfying 
ZF + AD+ + V = L(P(R)). Woodin showed that such model take one of two forms: If 
ADR (the determinacy axiom for games with moves from R) fails, then V = L(J, R) for 
some set of ordinals J . Model of the form L(J, R) cannot satisfy ADR.

In such models, an arbitrary linear ordering is uniformly a union of sublinear orderings 
which are surjective images of R. The dichotomy result is applied uniformly to each 
sublinear ordering to produce wellordered separating family for each sublinear ordering. 
Then these wellordered separating family need to be coherently patched together to form 
a wellordered separating family for the original linear ordering. In models of the form 
L(J, R), this is relatively straightforward. In L(P(R)) |= ADR, one will need to use the 
unique supercompactness measure on Pω1(λ) for each λ < Θ. These patching arguments 
are similar to those used in [1].

Theorem 4.5. Let J be a set of ordinals. If L(J, R) |= AD, then L(J, R) |= SH. In partic-
ular, one has that ZF + AD + V = L(R) proves SH.

Theorem 4.8. ZF + AD+ + ADR + V = L(P(R)) 	 SH.
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Theorem 4.9. ZF + AD+ + V = L(P(R)) 	 SH.

The Solovay model is a choiceless model of ZF which possesses many of the descriptive 
set theory regularity properties which are consequences of AD. Woodin observed that 
the methods used above in the determinacy setting can be adapted to establish SH in 
some Solovay models. The final section provides some details on the modification of the 
earlier arguments to analyze when SH holds in Solovay models.

Theorem 5.7. (Woodin) Let V |= ZFC and κ be a weakly compact cardinal of V . Let G
be Coll(ω, < κ)-generic over V . V (RV [G]) |= SH.

Theorem 5.12. Suppose V |= ZFC and κ is an inaccessible cardinal of V . Let G ⊆
Coll(ω, < κ) be Coll(ω, < κ)-generic over V . The Solovay model V (RV [G]) has a Suslin 
line if and only if V (RV [G]) has a Suslin tree on ω1.

The authors would like to thank Itay Neeman for many helpful comments on the 
material that appear in this paper. Also thanks to Hugh Woodin for informing the 
authors about the results in the Solovay model and allowing the details of the arguments 
to appear in this paper. Finally, the authors would also like to thank Joel Hamkins for 
asking the main question on Mathoverflow [3], from which the authors heard about this 
question.

2. Basics

Definition 2.1. Let (L, ≺) be a (strict) linear ordering. L is dense if for all a, c ∈ L with 
a ≺ c, there is some b ∈ L with a ≺ b ≺ c. L has the countable chain condition if there 
are no uncountable collection of disjoint nonempty open intervals in L. L is separable if 
there is a countable dense subset of L. L is complete if every nonempty subset which is 
bounded above has a supremum.

A Suslin line is a complete dense linear ordering without endpoints which has the 
countable chain condition and is not separable.

It should be noted that the existence of a nonseparable linear ordering with the 
countable chain condition is sufficient to imply the existence of a Susline line.

Definition 2.2. The Suslin hypothesis, denoted SH, is the statement that there are no 
Suslin lines.

Definition 2.3. A (nonreflexive) partially ordered set (T, ≺) is a tree if and only if for 
all t ∈ T , {s ∈ T : s ≺ t} is a wellordered by ≺. For t ∈ T , let |t|≺ denote the 
ordertype of {s ∈ T : s ≺ t}. If α is an ordinal, then let LT

α = {t ∈ T : |t|≺ = α}. 
Let |T |≺ = sup{|t|≺ + 1 : t ∈ T } be the height of the tree T . A branch through T is a 
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maximal ≺-linearly ordered subset of T . A ⊆ T is an antichain if every pair of elments 
from A is ≺-incomparable.

Let κ be a cardinal. (T, ≺) is a κ-tree if and only if (T, ≺) is a tree with |T |≺ = κ and 
for each ordinal α, LT

α injects into κ but does not biject onto κ. (In particular, the levels 
are wellorderable.) A κ-Aronszajn tree is a κ-tree so that each chain has cardinality less 
than κ. A κ-Suslin tree is a κ-tree so that all chains have cardinality less than κ and κ
does not inject into any antichain. (Every κ-Suslin tree is a κ-Aronszajn tree.)

An Aronszajn or Suslin tree is an ω1-Aronszajn or ω1-Suslin tree, respectively.

ZFC shows that there is a Suslin line if and only if there is a Suslin tree. However, 
the usual proof does seem to use AC. Suslin trees and Suslin lines will be studied in 
the choiceless context of ZF augmented with determinacy axioms or in specific natural 
models of these determinacy axioms.

Definition 2.4. Let X ⊆ R. An ∞-Borel code for X is a pair (S, ϕ) where S is a set 
of ordinals and ϕ is a formula in the language of set theory such that for all x ∈ R, 
x ∈ X ⇔ L[S, x] |= ϕ(S, x).

Definition 2.5. ([17] Section 9.1) AD+ consists of the following statements:

(i) DCR.
(ii) Every X ⊆ R has an ∞-Borel code.

(iii) For all λ < Θ, X ⊆ R, and continuous function π : ωλ → R, π−1(X) is determined.

If J is a set of ordinals and L(J, R) |= AD, then L(J, R) |= AD+. Also L(J, R) |= DC
by [9]. Models of ZF + AD+ + V = L(P(R)) are considered natural models of AD. No 
models of the form L(J, R) can satisfy ADR. Woodin ([1] Corollary 3.2) showed that 
if V |= ZF + AD+ + V = L(P(R)) + ¬ADR, then V is of the form L(J, R) for some set 
of ordinals J . Of particular importance to this paper is the existence of ∞-Borel codes 
for sets of reals. Although it is open whether ZF + ADR implies ZF + AD+, Woodin has 
shown that ZF + ADR can prove that every set of reals has an ∞-Borel code. How-
ever, it is known that ZF + DC + ADR implies ZF + AD+. (See [1] for more information 
about AD+.)

Definition 2.6. (Vopěnka) Let S be a set of ordinals. Let OS be the forcing of nonempty 
ODS subsets of reals ordered by ⊆. By using the canonical bijection of ODS with ON, 
one will assume that this forcing has been transfered onto ON and is hence an element 
of HODS . OS adds a generic real. Let τ denote the canonical OS-name for the canonical 
real.

More specifically, if G is OS-generic, then n ∈ τ [G] ⇔ {x ∈ R : n ∈ x} ∈ G.

Fact 2.7. (Vopěnka’s Theorem) Let S be a set of ordinals.
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Let M |= ZF be a transitive inner model containing S. For all x ∈ RM , there is a 
filter Gx ∈ M which is OM

S -generic over HODM
S so that τ [Gx] = x.

Suppose ϕ is a formula and ᾱ is a tuple of ordinals. Let K be a set of ordinals in 
ODM

S . Suppose N |= ZF is an inner model with N ⊇ HODM
S . Suppose p = {x ∈ RM :

L[K, x] |= ϕ(K, ᾱ, x)} is a condition of OM
S , that is, it is a nonempty ODS set. Then 

N |= p �OM
S

L[Ǩ, τ ] |= ϕ(Ǩ, ᾱ, τ).

Proof. The first statement is a classical result which can be found in [7] Theorem 15.46 
or [5] Theorem 2.4. The set Gx is {p ∈ OM

S : x ∈ p}, where OM
S is considered as the 

collection of ODS sets of reals in M .
The second statement appears in [5] Theorem 2.4. A brief sketch will be given:
Suppose not. Then there is some q′ ≤OM

S
p such that N |= q′ �OM

S
L[Ǩ, τ ] |=

¬ϕ(Ǩ, ᾱ, τ). Since every OM
S -generic filter over N is generic over HODM

S , there is some 
q ≤OM

S
q′ so that HODM

S |= q �OM
S

L[Ǩ, τ ] |= ¬ϕ(Ǩ, ᾱ, τ). Let y ∈ q. Let Gy be 

the OM
S -generic filter over HODM

S derived from y. q ∈ Gy. By the forcing theorem, 
HODM

S [Gy] |= L[K, y] |= ¬ϕ(K, ᾱ, y). Hence L[K, y] |= ¬ϕ(K, ᾱ, y). This contradicts 
q ⊆ p. �
Fact 2.8. Let S be a set of ordinals. Let M be an inner model of ZF containing S. Suppose 
N is an inner model of ZF containing S and HODM

S ⊆ N . If n ≥ 1 is a natural number, 
let nO

M
S be the Vopěnka forcing on Rn. Suppose (g0, ..., gn−1) is a nO

M
S -generic over N

n-tuple of reals. Then each of g0,..., gn−1 is a OM
S generic real over N .

Proof. Here a real g is OM
S -generic over N if and only if there is a filter G which is 

OM
S -generic over N such that g is the canonical real that is added by G.
Consider the case when n = 2.
For each p ∈ 2O

M
S , let Ψ(p) = {x ∈ R : (∃y)(x, y) ∈ p}. Note that Ψ(p) ∈ OM

S .
Let (g0, g1) be 2O

M
S -generic over N . Let G(g0,g1) be the 2O

M
S -generic filter over N

which adds (g0, g1). Let G = {Ψ(p) : p ∈ G(g0,g1)}. G is a filter on OM
S .

Suppose D ⊆ OM
S is dense open and belongs to N . Let D′ = {p : Ψ(p) ∈ D}. Suppose 

r ∈ 2O
M
S . Since D is dense, there is some r′ ≤OM

S
Ψ(r) with r′ ∈ D. Let s = (r′ ×R) ∩ r. 

Note that s ∈ 2O
M
S , Ψ(s) = r′ ∈ D, and s ≤2OM

S
r. Hence s ∈ D′. This shows that D′ is 

dense in 2O
M
S .

By genericity, there is some r ∈ D′ such r ∈ G(g0,g1). Then Ψ(r) ∈ D ∩ G. G is 
OM

S -generic over N . g0 is the real added by G. �
For this paper, one will need a uniform procedure for taking an OD definition for a 

set of reals to an OD ∞-Borel code for that set of reals.

Fact 2.9. (Woodin, [1] Theorem 3.4) Assume ZF + AD+ + V = L(P(R)). Let J be a set 
of ordinals. Let X ⊆ R be an ODJ set. Then X has an ∞-Borel code in HODJ .
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Definition 2.10. Let ≤T denote the relation of Turing reducibility. If x, y ∈ R, then 
x ≡T y if and only if x ≤T y and y ≤T x. A Turing degree is an ≡T -equivalence class. 
Let D denote the set of Turing degrees. If X, Y ∈ D, then let X ≤T Y if and only if for 
all x ∈ X and y ∈ Y , x ≤T y. The Turing cone above X is the set {Y ∈ D : X ≤T Y }. 
The Martin measure μ is a measure on D defined by A ∈ μ if and only if A contains a 
Turing cone. Under AD, μ is a countably complete ultrafilter on D.

Fact 2.11. (Woodin, [1] Section 2.2) Assume ZF + AD+. Let 
∏

X∈D ON be the collection 
of function f : D → ON. If f, g ∈

∏
X∈D ON, then define f ∼ g if and only if {X ∈ D :

f(X) = g(X)} ∈ μ. Let [f ]∼ < [g]∼ if and only if {X ∈ D : f(X) < g(X)} ∈ μ. Then ∏
X∈D ON/μ, the set of ∼-equivalence classes, is wellordered under <.

3. No Aronszajn trees

Fact 3.1. (ZF + AD) There are no Aronszajn trees on a wellorderable set.

Proof. This is a well known result using standard techniques involving measures on ω1. 
The following provides some details under AD.

Using AD, let U be a countably complete ultrafilter on ω1. (For example, if μ is 
Martin’s Turing cone measure on D, let A ∈ U ⇔ {X ∈ D : ωX

1 ∈ A} ∈ μ, where for 
X ∈ D, ωX

1 = ωx
1 , the least x-admissible ordinal for any x ∈ X.)

Let (T, ≺) be an ω1-tree. Since T is wellorderable, one may assume that T = ω1. For 
each s ∈ T , let As = {t ∈ T : s ≺ t}.

Note ω1 = T =
⋃

s∈LT
0

As. Since (T, ≺) is an ω1-tree, LT
0 is countable. Since U is 

countably complete, there is some s ∈ LT
0 so that As ∈ U . Since T = ω1, let s0 be the 

least such object according to the wellordering of ω1.
Suppose sα ∈ LT

α has been defined so that Asα
∈ U . Note that Asα

=
⋃

s∈LT
α+1∩Asα

As. 
By countably completeness, let sα+1 be the least s ∈ LT

α+1 ∩ Asα
so that As ∈ U .

Suppose α is a limit ordinal and sγ has been defined for all γ < α. Since α is countable 
and each Asγ

∈ U , 
⋂

γ<α Asγ
∈ U . Note that for all s ∈

⋂
γ<α Asγ

, one has sγ ≺ s for 
all γ < α. Observe 

⋂
γ<α Asγ

=
⋃

s∈LT
α ∩

⋂
γ<α Asγ

As. By countable completeness, let sα

be the least element s ∈ LT
α ∩

⋂
γ<α Asγ

so that As ∈ U .
〈sα : α < ω1〉 is an uncountable branch through (T, ≺). �

Fact 3.2. ([1] Theorem 1.4) Assume ZF + AD+ + V = L(P(R)). For any set X, either 
X is wellorderable or R injects into X.

Many of the ideas used in [1] to prove Fact 3.2 will be used in this paper to investigate 
Suslin lines. Fact 3.2 gives the following result about κ-trees.

Fact 3.3. Assume ZF + AD+ + V = L(P(R)). Let κ be a cardinal. There are no κ-trees 
on a nonwellorderable set.
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Proof. Let (T, ≺) be a κ-tree where T cannot be wellordered. By Fact 3.2, there is an 
injection Φ : R → T . Define a prewellordering � on R as follows: x � y if and only 
if |Φ(x)|≺ ≤ |Φ(y)|≺. Since each level of T is wellorderable and AD implies there are 
no uncountable wellordered sequences of distinct reals, each �-prewellordering class is 
countable.

However, there are no prewellorderings of R with every prewellordering class countable 
(or more generally meager) under AD. To see this: Suppose there was such a prewellorder-
ing. Under AD, all sets of reals have the Baire property. By taking an appropriate 
homeomorphic image, one may assume one has a prewellordering � on all of R so that 
each initial segment of the prewellordering is meager. By AD, � itself has the Baire prop-
erty as a subset of R2. Then the Kuratowski–Ulam theorem would yield a contradiction
after considering the various horizontal and vertical sections of �. �
Theorem 3.4. Assume ZF + AD+ + V = L(P(R)). There are no Aronszajn trees and 
hence no Suslin trees.

In particular, if L(R) |= AD, then L(R) has no Aronszajn trees and hence no Suslin 
trees.

4. No Suslin lines

Definition 4.1. A prelinear ordering � on a set P is a total transitive binary relation on 
P (which may not be antisymmetric).

Let (P, �) be a prelinear ordering. For each x, y ∈ P , let x ≺ y if and only if x � y

and ¬(y � x). S ⊆ P(P ) is a separating family for P if and only if every A ∈ S is 
�-downward closed and for all x, y ∈ P with x ≺ y, there is some A ∈ S with x ∈ A and 
y /∈ A.

Theorem 4.2. (ZF + AD+) Let � be a prelinear order on R. Exactly one of the following 
holds.

(i) There is a perfect set of disjoint closed intervals in �. (That is, this set of intervals 
is in bijection with R.)

(ii) There is a wellordered separating family for �.

Proof. Let (S, ϕ) be an ∞-Borel code for �. Let (S, ψ) be an ∞-Borel code for ≺ which 
is uniformly derived from (S, ϕ). Although OS is a forcing on the ordinals which belong 
to HODS , it will also be considered as the forcing of nonempty ODS sets of reals. Let 
US denote the sets in OS which are �-downward closed.

Throughout this proof, within any transitive inner model M of ZF containing S, �
and ≺ will always be defined using the ∞-Borel code (S, ϕ) and (S, ψ), respectively. 
Therefore, if a, b ∈ RM , M |= L[S, a, b] |= ϕ(S, a, b) if and only if L[S, a, b] |= ϕ(S, a, b) if 
only if V |= L[S, a, b] |= ϕ(S, a, b) if and only if V |= a � b.
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(Case I) For all x ∈ R, for all a, b ∈ RL[S,x] with a ≺ b, there exists some A ∈ U
L[S,x]
S

with a ∈ A and b /∈ A.
For each [f ]∼ ∈

∏
X∈D ω1/μ, let A[f ]∼ be the set of y ∈ R so that on a cone of X ∈ D, 

y belongs to the f(X)th element of UL[S,x]
S according to the canonical global wellordering 

of HODL[S,x]
S , where x is any real in X. The f(X)th element of UL[S,x]

S is formally defined 
to be ∅ if there is no f(X)th element of UL[S,x]

S . This is well-defined. (Note that if x ≡T y, 
then L[S, x] = L[S, y] and their canonical wellorderings of their HODS ’s are the same.)

For each [f ]∼, A[f ]∼ is �-downward closed. To see this, suppose b ∈ A[f ]∼ . Let a � b. 
There is some z ∈ R so that for all X ≥T [z]≡T

, b belongs to the f(X)th set in UL[S,x]
S , 

where x ∈ X. Then for any X ≥T [a ⊕ z]≡T
, b belongs to the f(X)th set in UL[S,x]

S , 
where x ∈ X. Since x ≥T a, a ∈ L[S, x]. By �-downward closure, a also belongs to the 
f(X)th set in UL[S,x]

S . This verifies that a ∈ A[f ]∼ .
By Fact 2.11, 

∏
X∈D ω1/μ is wellordered. Hence {A[f ]∼ : [f ]∼ ∈

∏
X∈D ω1/μ} is a 

wellordered set. The next claim is that it is a separating family for �.
To see this: Let a ≺ b. Suppose X ≥T [a ⊕ b]≡T

. Define f(X) to be the rank under 
the canonical wellordering of HODL[S,x]

S of the least element of UL[S,x]
S according to the 

canonical wellordering of HODL[S,x]
S (for any x ∈ X) containing a but not b. Note that 

this set exists by the Case I assumption. By definition, a ∈ A[f ]∼ and b /∈ A[f ]∼ .
This shows that Case I implies that (ii) holds.
(Case II) There exists x ∈ R, there exists a, b ∈ RL[S,x] with a ≺ b so that for all 

A ∈ U
L[S,x]
S , a /∈ A or b ∈ A.

Let

u = {(c0, c1) ∈ (R2)L[S,x] : c0 ≺ c1 ∧ (∀A)(A ∈ U
L[S,x]
S ⇒ (c0 /∈ A ∨ c1 ∈ A))}.

Observe that u ∈ 2O
L[S,x]
S and in particular is nonempty due to the Case II assumption.

Claim 1: Let M |= ZF be an inner model of V such that M ⊇ HODL[S,x]
S . Let r ∈ RM . 

Then

M |= u �
2O

L[S,x]
S

¬(τ0 < ř < τ1)

where τ0 and τ1 are the canonical names for the first and second real in the generic pair.
To prove Claim 1: Suppose it was not true. Then there is some v ≤

2O
L[S,x]
S

u so that 
M |= v �

2O
L[S,x]
S

τ0 < ř < τ1.
(Subcase 1.1.) There is some (c0, c1) ∈ v and (d0, d1) ∈ v so that c1 � d0.
Let w = {(e0, e1, e2, e3) ∈ (R4)L[S,x] : (e0, e1) ∈ v ∧ (e2, e3) ∈ v ∧ e1 � e2}. w �= ∅ by 

the Subcase 1.1. assumption and w ∈ 4O
L[S,x]
S . Now let (g0, g1, g2, g3) be 4O

L[S,x]
S -generic 

over M containing w. By Fact 2.8 (or essentially the proof), (g0, g1) and (g2, g3) are 

2O
L[S,x]
S -generic over M .
Let u′ = {(c0, c1) ∈ (R2)L[S,x] : c0 ≺ c1}. As u ≤

2O
L[S,x]
S

u′, u′ belongs to the 

2O
L[S,x]
S -generic filter over M derived from (g0, g1) and (g1, g2). Using the ∞-Borel code 

for ≺, u′ is a condition of the form for which Fact 2.7 applies. Hence Fact 2.7 implies 
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that g0 ≺ g1 and g2 ≺ g3. Let w′ = {(e0, e1, e2, e3) ∈ (R4)L[S,x] : e1 � e2}. The condition 
w′ is also a condition of the form for which Fact 2.7 applies. Since w ≤

4O
L[S,x]
S

w′, this 
gives that g1 � g2. By the forcing theorems and the above, g0 ≺ r ≺ g1 � g2 ≺ r ≺ g4. 
Hence r ≺ r gives a contradiction.

(Subcase 1.2) For all (c0, c1) ∈ v and (d0, d1) ∈ v, d0 ≺ c1.
Let A = {x : (∃(e0, e1) ∈ v)(x � e0)}. A is ODL[S,x]

S and A �= ∅ since for any element 
(e0, e1) ∈ v, e0 ∈ A. A is �-downward closed so A ∈ U

L[S,x]
S . Now fix any (e0, e1) ∈ v. 

As observed just above, e0 ∈ A. Note that e1 /∈ A. This is because if e1 ∈ A, then 
there has to be some (f0, f1) ∈ v so that e1 � f0. This contradicts the Subcase 1.2 
assumption. Thus A witnesses that (e0, e1) /∈ u. This shows that v and u are disjoint 
which contradicts the fact that v ≤

2O
L[S,x]
S

u.
Claim 1 has been established. (Claim 1 is enough to produce a perfect set of dis-

joint open intervals. However, a perfect set of disjoint closed intervals can actually be 
constructed using the next claim.)

Claim 2: Let M |= ZF be an inner model of V such that M ⊇ HODL[S,x]
S . Let r ∈ RM . 

Then

M |= u �
2O

L[S,x]
S

τ0 �= ř ∧ τ1 �= ř.

To prove this: Suppose there is some v ≤
2O

L[S,x]
S

u so that (without loss of generality) 
M |= v �

2O
L[S,x]
S

τ0 = ř.
Suppose there is some (c0, c1) ∈ v so that there is some n ∈ ω with c0(n) �= r(n). 

Let v′ = {(c0, c1) ∈ (R2)L[S,x] : c0(n) �= r(n)}. Note v′ ∈ O
L[S,x]
S . (Observe that v′

is a condition which can be expressed in the form for which Fact 2.7 applies.) By the 
assumption, v′ ∩ v ∈ O

L[S,x]
S . Let (g0, g1) be a 2O

L[S,x]
S -generic over M whose associated 

generic-filter contains the condition v ∩ v′. Since v′ belong to this generic filter, Fact 2.7
implies that g0(n) �= r(n). However since v belongs to this generic filter, the forcing 
theorem implies that g0(n) = r(n). Contradiction.

It has been shown that for all (c0, c1) ∈ v, c0 = r. Hence {r} = {x : (∃(c0, c1) ∈
v) : x = c0}. Thus r is ODL[S,x]

S . Now let (r, c1) be some element of v. The set {x ∈
RL[S,x] : x ≤ r} is in UL[S,x]

S . Clearly r is in this set but c1 is not. Thus (r, c1) /∈ u. This 
contradicts (r, c1) ∈ v ⊆ u. This completes the proof of Claim 2.

Since V |= AD, there are only countably many dense open subsets of 2O
L[S,x]
S in 

HODL[S,x]
S . In V , let (Dn : n ∈ ω) enumerate all of these dense open sets. By intersecting, 

one may assume that for all n, Dn+1 ⊆ Dn. Similarly, let (En : n ∈ ω) enumerate all the 
dense open subsets of 2OL[S,x]

S × 2O
L[S,x]
S in HODL[S,x]

S . Assume again that the sequence 
is decreasing.

Let p∅ ≤
2O

L[S,x]
S

u be any condition of 2O
L[S,x]
S that meets D0.

Suppose for some n ∈ ω, pσ has been defined for all σ ∈ n2. For each σ î, let p′
σˆi be 

some condition below pσ that meets Dn+1.
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Let τ1, ..., τ2n+1 enumerate n+12, the set of binary strings of length n + 1. For each 
1 ≤ m ≤ 2n+1, let q0

m = p′
τm

. For 0 ≤ k < 2n+1, suppose qk
m has been defined. For each 

1 ≤ m ≤ 2n+1, find some qk+1
m ≤

2O
L[S,x]
S

qk
m so that for all m �= k + 1, (qk+1

m , qk+1
k+1) and 

(qk+1
k+1 , qk+1

m ) meet En+1.
Let pτm

= q2n+1

m . This completes the construction of (pσ : σ ∈ <ω2).
For each x ∈ R, let Gx be the upward closure of {px�n : n ∈ ω}. By construction, 

Gx is 2O
L[S,x]
S -generic over HODL[S,x]

S . If x �= y, then by construction Gx × Gy are 

2O
L[S,x]
S ×2O

L[S,x]
S -generic over HODL[S,x]

S . For each x ∈ R, let (cx
0 , cx

1) denote the generic 
pair added by Gx. Using Claim 1 and 2, one has that if x �= y, the intervals [cx

0 , cx
1 ] and 

[cy
0 , cy

1] are disjoint.
The proof is complete. �

Fact 4.3. (ZF) Suppose (P, ≺) is a complete dense nonseparable linear ordering with the 
countable chain condition and has a wellordered separating family, then there is a Suslin 
tree (on ω1).

Proof. In this case, the usual construction of a Suslin tree from a Suslin line works. The 
details follows:

Let 〈Aα : α < κ〉 for some κ be a sequence of �-downward closed subsets of P which 
forms a separating family for (P, ≺).

Let B0 = ∅. Choose the least pair (α, β) so that Aα ⊆ Aβ and Aβ \ Aα is infinite. 
Aβ \ Aα is a bounded infinite set. Using completeness, let a0 = inf Aβ \ Aα and b0 =
sup Aβ \ Aα. Let B1 = {a0, b0}.

If δ is a limit ordinal, let Bδ =
⋃

γ<δ Bγ .
Suppose for some δ < ω1, (aγ , bγ) has been defined for all γ < δ and Bδ has been 

defined. Since Bδ is countable and P is not separable, there is some interval (a, b) so 
that (a, b) ∩ Bδ = ∅. By density, find a′, b′ ∈ P so that a ≺ a′ ≺ b′ ≺ b. There is some ν
and ζ so that Aν separates a from a′ and Aζ separates b′ from b. Then Aζ \ Aν ∩ Bδ = ∅
and Aζ \ Aν is an infinite set since a′, b′ ∈ Aζ \ Aν and density.

Now let (α, β) be the least pair so that Aβ \Aα is infinite and Aβ \Aα∩Bδ = ∅. Aβ \Aα

is a bounded nonempty set so by completeness, let aδ = inf Aβ \Aα and bδ = sup Aβ \Aα. 
Let Bδ+1 = Bδ ∪ {aδ, bδ}.

This construction produces points aα and bα for each α < ω1. Let Iα be the open 
interval (aα, bα). Define a tree (ω1, �) by α � β if and only if Iβ � Iα. Note that α � β

implies α < β. Hence (ω1, �) is a tree.
If α and β are �-incomparable, then Iα and Iβ are disjoint intervals of (P, ≺). Since 

(P, ≺) has the countable chain condition, � cannot have an uncountable antichain.
Suppose (εα : α < ω1) forms an uncountable chain in �. Then (aεα

: α < ω1) is a 
≺-increasing sequence. Then ((aεα

, aεα+1) : α < ω1) forms an uncountable collection of 
disjoint open intervals of (P, ≺). This contradicts the countable chain condition.

(ω1, �) is a Suslin-tree. �
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If J is a set of ordinals and L(J, R) |= AD, then every set in LΘ(J, R) is the surjective 
image of R. Hence every linear ordering in LΘ(J, R) is the quotient of a prelinear ordering 
on R. The following has been shown:

Theorem 4.4. (ZF + AD+) There is no Suslin line on a set which is the surjective image 
of R.

If J is a set of ordinals and L(J, R) |= AD, then there are no Suslin lines in LΘ(J, R).

Theorem 4.5. Let J be a set of ordinal. If L(J, R) |= AD, then L(J, R) |= SH.
In particular, ZF + AD + V = L(R) 	 SH.

Proof. Let Φ : R × ON → L(J, R) be a definable surjection using only J as a parameter. 
Using a definable surjection of On onto On × On so that the preimage of any element 
is a proper class, one can assume that for any x, y ∈ L(J, R), there is a proper class of 
ordinals α such that there are r, s ∈ R with Φ(r, α) = x and Φ(s, α) = y.

Let (P, ≺) be a complete dense nonseparable linear ordering. (P, ≺) is ODJ,z for some 
z ∈ R.

Let Qα = {x ∈ R : Φ(x, α) ∈ P}. Let Pα = Φ[Qα ×{α}]. Let (Pα, ≺) be the restriction 
of ≺ to Pα. Let (Qα, �) be the induced prelinear ordering coming from Φ and (Pα, ≺). 
For all α, (Pα, ≺) and (Qα, �) are uniformly ODJ,z in the sense that using α and the 
formula and ordinal that gives the ODJ,z definition of (P, ≺), one can explicitly produce 
the ordinal and formula giving the ODJ,z-definition of (Pα, ≺) and (Qα, �).

If any (Qα, �) has a perfect set of disjoint closed intervals, then collapsing using Φ
would give a perfect set of disjoint closed intervals in (Pα, ≺). This would imply that 
(P, ≺) has a perfect set of disjoint closed intervals. In this case, (P, ≺) does not have the 
countable chain condition.

Therefore, assume for all α ∈ ON, (Qα, �) does not have a perfect set of disjoint closed 
intervals. Theorem 4.2 implies that each (Qα, �) has a wellordered separating family. 
Using Fact 2.9, one can obtain a sequence of ∞-Borel codes of (Qα, �) by chosing the 
HODJ,z-least ∞-Borel code for (Qα, �). Since the argument in Case I of Theorem 4.2
gives an explicit procedure for obtaining the separating family from the ∞-Borel code 
of the prelinear ordering, one has a sequence 〈E ′

α : α ∈ On〉 such that each E ′
α is a 

wellordered separating family for (Qα, �) along with the wellordering. Collapsing using 
Φ, let 〈Eα : α ∈ ON〉 be the derived sequence of wellordered separating family for (Pα, ≺)
along with the wellordering.

For any α, if A ∈ Eα, let Ā be the �-downward closure of A in (P, ≺). Let S = {Ā :
(∃α)(A ∈ Eα)}. Using the wellordering of ordinals and the wellordering of each Eα which 
is given uniformly, S can be wellordered. Suppose a, b ∈ P and a ≺ b. By the assumption 
on Φ mentioned at the beginning of the proof, there is some α so that a, b ∈ Pα. There 
is some A ∈ Eα so that a ∈ A and b /∈ A. Then Ā ∈ S, a ∈ Ā, and b /∈ Ā. It has been 
shown that S is a wellordered separating family for (P, ≺). By Fact 3.1 and Fact 4.3, 
(P, ≺) cannot have the countable chain condition. �
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Woodin showed that assuming AD+ + V = L(P(R)), if ADR fails, then there is some 
set of ordinal J so that V = L(J, R). To study the Suslin hypothesis in these natural 
models of AD+, it remains to consider L(P(R)) |= ADR. The argument uses techniques 
from [1]. The following results of Woodin will be necessary.

Fact 4.6. ([1] Theorem 3.3) Assume ZF + AD+ + ADR + V = L(P(R)). Then every set 
is ordinal definable from some element of 

⋃
λ<Θ Pω1(λ).

Fact 4.7. ([16] and [1] Theorem 2.13) (ZF + AD+ + ADR) For each λ < Θ, there is a 
unique fine normal measure on Pω1(λ) which is also OD. (Such a measure is called a 
supercompactness measure on Pω1(λ).)

Theorem 4.8. ZF + AD+ + ADR + V = L(P(R)) 	 SH.

Proof. Suppose (P, ≺) is a complete dense nonseparable linear ordering. By Fact 4.6, 
there is some α < Θ and some σ ∈ Pω1(α) so that (P, ≺) is ODσ.

For each τ ∈
⋃

β<Θ Pω1(β), ζ ∈ ON, and formula ϕ, define Pτ,ζ,ϕ to be the set of 
x ∈ P such that there is some r ∈ R so that x is the unique solution v to ϕ(σ, τ, ζ, r, v). 
Let (Pτ,ζ,ϕ, ≺) be the linear ordering resulting from restricting ≺ to Pτ,ζ,ϕ. Let � be some 
set not in P . There is a surjection of R onto Pτ,ζ,ϕ ∪ {�} defined by letting r map to 
the unique solution v in ϕ(σ, τ, ζ, r, v) if it exists and � otherwise. Let (Qτ,ζ,ϕ, �) be the 
induced prelinear ordering on R coming from (Pτ,ζ,ϕ, ≺) with � as the largest element 
via the surjection.

Observe that if ρ ∈
⋃

β<Θ Pω1(β) and ρ ⊇ τ , then for all ζ ∈ ON and formula ϕ, 
there is some other formula ψ so that Pτ,ζ,ϕ ⊆ Pρ,ζ,ψ.

Let Form be the collection of formulas. For each τ ∈
⋃

β<Θ Pω1(β), let

Pτ =
⋃

ζ∈ON∧ϕ∈Form

Pτ,ζ,ϕ.

By the previous observation, if τ ⊆ ρ, then Pτ ⊆ Pρ.
For each fixed τ and formula ϕ, Pτ,ζ,ϕ and Qτ,ζ,ϕ are ODσ,τ with witnessing formulas 

obtained uniformly from the ODσ witness to P . By Fact 2.9, choose the HODσ,τ -least 
∞-Borel code for (Qτ,ζ,ϕ, �) to be the canonical ∞-Borel code for this set. If any 
(Qτ,ζ,ϕ, �) has a perfect set of disjoint closed intervals, then such a collection would 
yield a perfect set of disjoint closed intervals for (Pτ,ζ,ϕ, ≺) and hence (P, ≺). Therefore, 
one may assume that each (Qτ,ζ,ϕ, �) satisfies Case I of Theorem 4.2. By the proof in 
Case I in Theorem 4.2, this gives a sequence E ′

τ,ζ,ϕ of wellordered separating families 
(along with the wellordering) for (Qτ,ζ,ϕ, �). Collapsing E ′

τ,ζ,ϕ, one obtains a separating 
family Eτ,ζ,ϕ for (Pτ,ζ,ϕ, ≺). Using the wellordering of the ordinals and the wellorder-
ing of each Eτ,ζ,ϕ, one obtains a wellordering of E ′

τ =
⋃

ζ∈ON∧ϕ∈Form E ′
τ,ζ,ϕ. Downward 

�-closing each set of E ′
τ in Pτ gives a wellordered separating family Eτ for Pτ .
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Now fix α ≤ β < Θ. Define

Pβ =
⋃

{Pτ : τ ∈ Pω1(β)}.

Note that the sequence 〈Eτ : τ ∈ Pω1(β)〉 belongs to ODV
Pω1 (β). Let μβ be the unique 

OD supercompactness measure for Pω1(β). Let Uβ = (
∏

Pω1 (β) ON/μβ)HODV
Pω1 (β) . Now 

suppose [f ]∼ ∈ Uβ where f ∈ HODV
Pω1 (β). Let A[f ]∼ be the set of z ∈ Pβ such that the 

set K of ρ ∈ Pω1(β) such that z belongs to the f(ρ)th set in Eρ (according to the 
wellordering of Eρ) belongs to μβ .

Each A[f ]∼ is �-downward closed in Pβ. Suppose z1, z1 ∈ Pβ , z1 � z2, and z2 ∈ A[f ]∼ . 
There is a K ∈ μβ so that for all ρ ∈ K, z2 belong to the f(ρ)th set in Eρ. z1, z2 ∈ Pβ

means that z1 ∈ Pξ1 and z2 ∈ Pξ2 for some ξ1, ξ2 ∈ Pω1(β). For ρ ∈ Pω1(β), let 
Rρ = {γ ∈ Pω1(β) : ρ ⊆ γ}. By fineness and countable completeness, Rρ ∈ μβ . For any 
ρ ∈ Rξ1 ∩ Rξ2 ∩ K ∈ μ, z1, z2 ∈ Pρ. This shows that z1 ∈ A[f ]∼ .

Now suppose z1, z2 ∈ Pβ and z1 ≺ z2. There is some ξ1, ξ2 ∈ Pω1(β) so that z1 ∈ Pξ1

and z2 ∈ Pξ2 . Note that this implies that z1 and z2 are ODR∪{σ,ξ1,ξ2}. In particular, they 
belong to ODPω1 (β). Hence if ρ ⊇ ζ1 ∪ ζ2, then z1, z2 ∈ Pρ. Define f : Pω1(β) → On
by f(ρ) is the least ordinal α so that the αth element of Eρ contains z1 but not z2

whenever ρ ∈ Rξ1∪ξ2 and 0 otherwise. Note that f ∈ HODV
Pω1 (β) so [f ]∼ ∈ Uβ . Then 

A[f ]∼ separates z1 from z2.
Let Eβ = 〈A[f ]∼ : [f ]∼ ∈ Uβ〉. Note that HODV

Pω1 (β) |= DC since V |= DCR. Hence Uβ

is wellfounded. Eβ is a wellordered separating family for Pβ.
One has produced a sequence of separating families 〈Eβ : β < Θ〉 for 〈Pβ : β < Θ〉. 

Using the wellordering of the ordinals and the wellordering of each Eβ for β < Θ, one 
obtains, as before, a wellordered separating family S for P =

⋃
α≤β<Θ Pβ .

Now Fact 3.1 and Fact 4.3 imply that there are no Suslin lines. �
Theorem 4.9. ZF + AD+ + V = L(P(R)) 	 SH.

Proof. This follows from Theorem 4.5, Theorem 4.8, and the comments after Defini-
tion 2.5. �
5. The Solovay model

Woodin has observed that the methods above can be applied to explore the Suslin 
hypothesis in the Solovay model. This section will give the details of Woodin’s argument.

Let V denote the ground model satisfying ZFC. Let κ be an inaccessible cardinal. Let 
Coll(ω, < κ) be the finite support product of 〈Coll(ω, ξ) : ξ < κ〉. Let G ⊆ Coll(ω, < κ)
be Coll(ω, < κ)-generic over V . V (RV [G]) = HODV [G]

V ∪RV [G] is known as the Solovay model 
(of an inaccessible cardinal). If κ is weakly compact or measurable, one will refer to 
the resulting model as the Solovay model of a weakly compact cardinal or measurable 
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cardinal. For more about the Solovay model see [13], [7] Chapter 26, [11] Chapter 8, or 
[8] Section 11.

In the Solovay model, every set of reals has a code which is a generalization of the 
∞-Borel code which allows a parameter from V :

Definition 5.1. Assume V |= ZFC and κ is an inaccessible cardinal. Let G ⊆ Coll(ω, < κ)
be Coll(ω, < κ)-generic over V . A Solovay code is a triple (v, r, ϕ) where v ∈ V , r ∈ RV [G]

and ϕ is formula. The set coded by (v, r, ϕ) is {x ∈ RV [G] : V [r][x] |= ϕ(v, r, x)}.

Fact 5.2. Let V |= ZFC and let κ be an inaccessible cardinal of V . Let G be 
Coll(ω, < κ)-generic over V . Suppose X ∈ V (RV [G]) is a set of reals. Then there is 
some v ∈ V , r ∈ RV [G], and formula ϕ so that x ∈ X if and only if V [G] |= ϕ(v, r, x). 
(The objects ϕ, v, and r are the witnesses to X ∈ V (RV [G]).) Then for all x ∈ RV [G], 
x ∈ X if and only if

V [r][x] |= 1Coll(ω,<κ) �Coll(ω,<κ) ϕ(v̌, ř, x̌).

Thus every set of reals in V (RV [G]) has a Solovay code. In particular, given the witnesses 
to X ∈ V (RV [G]), the above gives an explicit procedure to obtain a Solovay code for X.

Proof. This is a well-known result of Solovay. The following is a brief sketch.
Suppose x ∈ X. So V [G] |= ϕ(v, r, x). Note that r and x are generic over V since they 

belong to some V [G � ξ] where ξ < κ and G � ξ is the induced Coll(ω, < ξ)-generic 
over V coming from G. By a crucial property of the Lévy collapse, there is some 
H ⊆ Coll(ω, < κ) which is Coll(ω, < κ)-generic over V [r][x] so that V [G] = V [r][x][H]. 
Therefore, V [r][x][H] |= ϕ(v, r, x). By the forcing theorem, there is some p ∈ Coll(ω, < κ)
so that

V [r][x] |= p �Coll(ω,<κ) ϕ(v̌, ř, x̌).

By the homogeneity of Coll(ω, < κ),

V [r][x] |= 1Coll(ω,<κ) �Coll(ω,<κ) ϕ(v̌, ř, x̌).

Now suppose

V [r][x] |= 1Coll(ω,<κ) �Coll(ω,<κ) ϕ(v̌, ř, x̌).

As before, there is some H ⊆ Coll(ω, < κ) which is Coll(ω, < κ)-generic over V [r][x] so 
that V [r][x][H] = V [G]. Hence V [G] |= ϕ(v, r, x). This shows that x ∈ X. �

If κ is a measurable cardinals and G ⊆ Coll(ω, < κ) is generic over V , the prelinear 
order dichotomy result for the associated Solovay model V (RV [G]) follows by methods 
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similar to the arguments in the determinacy setting. This is done by replacing Martin’s 
measure with a fine countably complete ultrafilter on Pω1(R), ∞-Borel codes with Solo-
vay codes, and the Vopěnka forcings with forcing of ODV subsets of R. The following is 
a brief sketch of the main modifications.

Subsequently, Woodin’s argument for the prelinear ordering dichotomy theorem for 
Solovay models of inaccessible cardinals will be given. This will require more substantial 
modifications involving intervals generated by Coll(ω, ξ)-names for reals, where ξ < κ.

Fact 5.3. Suppose V |= ZFC and κ is a measurable cardinal. Let G ⊆ Coll(ω, < κ) be 
Coll(ω, < κ)-generic over V . In V (RV [G]), there is a fine countably complete ultrafilter 
on Pω1(R).

Theorem 5.4. Let V |= ZFC and κ be a measurable cardinal of V . Let G be 
Coll(ω, < κ)-generic over V . The following holds in V (RV [G]), the Solovay model of 
a measurable cardinal:

Let � be a prelinear order on R. Exactly one of the following holds.

(i) There is a perfect set of disjoint closed intervals in �. (That is, this set of intervals 
is in bijection with R.)

(ii) There is a wellordered separating family for �.

Proof. This can be proved by a modification of the argument in Theorem 4.2. Let μ

denote the fine countably complete ultrafilter on Pω1(R) in V (RV [G]) given by Fact 5.3.
For each r ∈ RV [G] and X ∈ Pω1(R), let MX

r denote the model HODV (RV [G])
V ∪X∪{r,X}.

Using replacement in V [G], choose δ′ ∈ ON so large so that for all r ∈ RV [G] and 

X ∈ Pω1(R), every ODMX
r

V ∪{r} set of reals has a definition whose parameters from V

are actually from Vδ′ . Then choose δ ≥ δ′ so that every (ODV ∪R)V [G] set of reals has a 
definition whose parameters from V are actually from Vδ.

Let � be a prelinear ordering on R in V (RV [G]). Let (v, r, ϕ) be the Solovay code for 
� given by Fact 5.2. (By the explicit procedure to produce the Solovay code in Fact 5.2
and the choice of δ, one may assume v ∈ Vδ.) Let Or denote the forcing of ODV ∪{r}
subsets of the reals. Let Ur denote the sets in Or which are �-downward closed. Using 

parameters in Vδ, for each X ∈ Pω1(R), OMX
r

r can be coded as a set in V . Hence it may 

be considered a forcing in HODMX
r

V ∪{r}. This forcing still has the basic properties of the 
ordinary Vopěnka forcing. As V |= AC, fix some wellordering of Vδ which belongs to V
for the rest of the proof. This wellordering can be used to define a wellordering of Or.

Work in V (RV [G]). The proof splits into two cases. The following includes some details 
of how to handle each case.

(Case I) For all X ∈ Pω1(R), for all a, b ∈ RMX
r with a ≺ b, there exists some 

A ∈ U
MX

r
r with a ∈ A and b /∈ A.



322 W. Chan, S. Jackson / Advances in Mathematics 346 (2019) 305–328
If f ∈
∏

Pω1 (R) ω1, then [f ]∼ denotes the equivalence class of f modulo μ. For each 
[f ]∼ ∈

∏
Pω1 (R) ω1/μ, let A[f ]∼ be the set of y ∈ R so that the set of X ∈ Pω1(R) with 

the property that y belongs to the f(X)th element of UMX
r

r according to the wellordering 

of OMX
r

r (defined from the fixed wellordering of Vδ) belongs to μ.
For each [f ]∼, A[f ]∼ is �-downward closed. To see this: Suppose a � b and b ∈ A[f ]∼ . 

Since b ∈ A[f ]∼ , if K is the set of X ∈ Pω1(R) so that b belongs to the f(X)th set 
in UMX

r
r , then K ∈ μ. For any c ∈ R, let Oc = {X ∈ Pω1(R) : c ∈ X}. By fineness, 

Oa, Ob ∈ μ. Thus K ∩ Oa ∩ Ob ∈ μ. For any X ∈ K ∩ Oa ∩ Ob, one has that a, b ∈ MX
r . 

Hence for all X ∈ K ∩ Oa ∩ Ob, a belongs to the f(X)th set in UMX
r

r .
Since V (RV [G]) |= DC and μ is countably complete, 

∏
Pω1 (R) ω1/μ is a wellordering. 

The claim is that {A[f ]∼ : [f ]∼ ∈
∏

Pω1 (R) ω1/μ} is a wellordered separating family.
So see this: Suppose a ≺ b. Define a function f by letting, for each X ∈ Pω1(R), f(X)

be the least ordinal α so that the αth set in UMX
r

r contains a but does not contain b. 
Such a set exists using the Case I assumption. Then a ∈ A[f ]∼ and b /∈ A[f ]∼ .

(Case II) There exists some X ∈ Pω1(R), there exist a, b ∈ RMX
r with a ≺ b so that 

for all A ∈ U
MX

r
r , a /∈ A or b ∈ A.

The argument in this case is essentially the same as in Theorem 4.2. It should be 
noted that at the beginning of Case II in Theorem 4.2, one defines a condition which in 
the present situation would take the form

u = {(c0, c1) ∈ (R2)MX
r : c0 ≺ c1 ∧ (∀A)(A ∈ U

MX
r

r ⇒ (c0 /∈ A ∨ c1 ∈ A))}

This definition uses UMX
r

r as a parameter. By using Vδ as a parameter, OMX
r

r and also 

U
MX

r
r can be identified as sets in V [r]. Hence u is indeed ODMX

r

V ∪{r}.
With these modifications, the results follow. �

Theorem 5.5. (Woodin) Let κ be an inaccessible cardinal. Let G ⊆ Coll(ω, < κ) be generic 
over V . Then the following holds in V (RV [G]): Let (R, �) be a dense prelinear ordering 
on R. One of the following holds

(i) There is a wellordered separating family for (R, �).
(ii) There is a perfect set of disjoint open intervals for (R, �).

Proof. Work in V (RV [G]). By Fact 5.2, � has a Solovay code (v, r, ϕ). Without loss of 
generality, assume that r ∈ RV . In the remainder of the proof, � will always refer to the 
set defined by this Solovay code.

For any ξ < κ, p ∈ Coll(ω, ξ), and Coll(ω, ξ)-name τ such that p � τ ∈ R, let 
Eval(ξ, p, τ) be the collection of τ [h] where h ∈ V (RV [G]), h ⊆ Coll(ω, ξ) is generic over V , 
and p ∈ h. Let I(ξ, p, τ) be the �-interval generated by Eval(ξ, p, τ) in V (RV [G]). That 
is, x ∈ I(ξ, p, τ) if and only if there exists a, b ∈ Eval(ξ, p, τ) so that a � x � b. Suppose 
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g ⊆ Coll(ω, ξ) belongs to V (RV [G]) and is generic over V . Let I(ξ, τ, g) =
⋂

{I(ξ, p, τ) :
p ∈ g ∧ p � τ ∈ R}. Note that τ [g] ∈ I(ξ, τ, g).

(Case I) For all ξ < κ, Coll(ω, ξ)-name τ , and g ⊆ Coll(ω, ξ) as above, I(ξ, τ, g) has 
only one �-class (i.e. the �-class of τ [g]).

Choose λ large enough so that for every ξ < κ, p ∈ Coll(ω, ξ), and Coll(ω, ξ)-name τ
such that p � τ ∈ R, there is some Coll(ω, ξ)-name τ ′ ∈ Vλ so that p � τ = τ ′. Since 
V |= AC, use a fixed wellordering of Vλ to wellorder all (ξ, p, τ) such that p ∈ Coll(ω, ξ), 
τ ∈ Vλ is a Coll(ω, ξ)-name such that p � τ ∈ R.

Suppose a, c ∈ R are such that a ≺ c. By density, find some b ∈ R such that a ≺ b ≺ c. 
Find some ξ < κ, Coll(ω, ξ)-name τ ∈ Vλ, and g ⊆ Coll(ω, ξ) in V (RV [G]) so that τ [g] = b. 
By the case assumption, there is some p ∈ g so that c /∈ I(ξ, p, τ). Let A(ξ, p, τ) be the 
�-downward closure of Eval(ξ, p, τ). Then a ∈ A(ξ, p, τ) but c /∈ A(ξ, p, τ).

Using the wellordering of the collection of appropriate tuples (ξ, p, τ) from above, 
one can wellorder the collection of all appropriate A(ξ, p, τ). This gives a wellordered 
separating family for �.

(Case II) For some ξ < κ, Coll(ω, ξ)-name τ , and g ⊆ Coll(ω, ξ) as above, I(ξ, τ, g)
has more than one �-class.

Let Ṙ be the canonical homogeneous Coll(ω, < κ)-name for the set of reals of the 
Coll(ω, < κ)-generic extension. By the basic properties of Coll(ω, < κ), find some 
H ⊆ Coll(ω, < κ) which is generic over V [g] such that V [G] = V [g][H]. Note that 
V [G] = V [g][H] models that V (RV [g][H]) thinks that I(ξ, τ, g) has more than one �-class. 
Applying the forcing theorem and homogeneity of Coll(ω, < κ) over V [g], one has that 
V [g] models that 1Coll(ω,<κ) forces that V (Ṙ) thinks I(ξ̌, ̌τ , ̌g) has more than one �-class. 
Let ġ denote the canonical Coll(ω, ξ)-name for the generic filter. Then applying the forc-
ing theorem in V , there is some p∗ ∈ Coll(ω, ξ) so that V models that p∗ forces that 
1Coll(ω,<κ) forces that V (Ṙ) thinks I(ξ̌, ̌τ , ġ) has more than one �-class. The main ob-
servation is that for any generic h ∈ V (RV [G]) such that p∗ ∈ h, I(ξ, τ, h) has more than 
one �-class.

(Claim i) For any p ≤ p∗, there exists q1, q2 ≤ p so that (q1, q2) � τleft ≺ τright, 
where τleft and τright are the canonical Coll(ω, ξ) × Coll(ω, ξ)-name for the evaluation of 
τ according to the left and right Coll(ω, ξ)-generic, respectively, added by a Coll(ω, ξ) ×
Coll(ω, ξ)-generic filter.

To prove this: Since p ≤ p∗, Eval(ξ, p, τ) has representatives from more than one 
�-class. Let h1, h2 be Coll(ω, ξ)-generics over V containing p and belongs to V (RV [G])
such that ¬(τ [h1] � τ [h2] ∧ τ [h2] � τ [h1]). Since Coll(ω, ξ) and P(Coll(ω, ξ))V is count-
able in V (RV [G]), find some h ⊆ Coll(ω, ξ) generic over V , belonging to V (RV [G]), 
contains p, and such that h1 × h and h2 × h are Coll(ω, ξ) × Coll(ω, ξ)-generic over V . 
Since ¬(τ [h1] � τ [h2] ∧ τ [h2] � τ [h1]) means that τ [h1] and τ [h2] are in two distinct 
�-classes, τ [h] must not belong to the �-class of τ [h1] or τ [h2]. Without loss of general-
ity, suppose τ [h] does not belong to the �-class of τ [h1] and in fact τ [h1] ≺ τ [h]. (The 
argument for the other possibilities are similar.) By the forcing theorem, there exists 
(q1, q2) ≤ (p, p) so that (q1, q2) � τleft ≺ τright. This proves Claim i.
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(Claim ii) Suppose (p1, p2) ≤ (p∗, p∗) and (p1, p2) � τleft ≺ τright. Then for all a ∈
Eval(ξ, τ, p1) and all b ∈ Eval(ξ, τ, p2), one has that a ≺ b.

To prove this: Let h1 and h2 be Coll(ω, ξ)-generic filters over V so that p1 ∈ h1, 
p2 ∈ h2, a = τ [h1], and b = τ [h2]. Let

D1 = {q ∈ Coll(ω, ξ) : q ≤ p1 ∧ (∃q′)(q′ ≤ p1 ∧ (q, q′) � τleft ≺ τright)}
D2 = {q ∈ Coll(ω, ξ) : q ≤ p2 ∧ (∃q′)(q′ ≤ p2 ∧ (q′, q) � τleft ≺ τright)}.

Claim i implies that D1 and D2 are dense below p1 and p2, respectively. Since p1 ∈ h1, 
p2 ∈ h2, genericity implies there are some r1 ∈ D1 ∩ h1 and s2 ∈ D2 ∩ h2. Hence there 
is some r2 < p1 and s1 < p2 so that (r1, r2) � τleft ≺ τright and (s1, s2) � τleft ≺ τright. 
Let k1 ⊆ Coll(ω, ξ) and k2 ⊆ Coll(ω, ξ) belong to V (RV [G]) and be such that k1 × k2, 
h1 × k1, and k2 × h2 are Coll(ω, ξ) × Coll(ω, ξ)-generic over V with (r1, r2) ∈ h1 × k1
and (s1, s2) ∈ k2 × h2. Since r2 ≤ p1 and s1 ≤ p2, (r2, s1) ∈ k1 × k2 implies that 
(p1, p2) ∈ k1 × k2. Hence τ [k1] ≺ τ [k2]. Since (r1, r2) ∈ h1 × k2, τ [h1] ≺ τ [k1]. Since 
(s1, s2) ∈ k2 × h2, τ [k2] ≺ τ [h2]. Hence τ [h1] ≺ τ [k1] ≺ τ [k2] ≺ τ [h2]. This show 
a = τ [h1] ≺ τ [h2] = b. This completes the proof of Claim ii.

(Claim iii) Suppose g1 × g2 is Coll(ω, ξ) × Coll(ω, ξ)-generic over V and contains 
(p∗, p∗). Then ¬(τ [g1] � τ [g2] ∧ τ [g2] � τ [g1]).

To prove this: If not, there is some (p1, p2) ∈ g1 × g1 so that (p1, p2) � τleft �
τright ∧ τright � τleft. By Claim ii, there is some (q1, q2) � p1 so that (q1, q2) � τleft ≺
τright. Let k1, k2 ⊆ Coll(ω, ξ) be such that (q1, q2) ∈ k1 × k2 and k1 × k2, k1 × g2, and 
k2 × g2 are Coll(ω, ξ) × Coll(ω, ξ)-generic over V . Note that (q1, q2) ∈ k1 × k2 implies 
that τ [k1] ≺ τ [k2]. (p1, p2) ∈ k1 × g2 and (p1, p2) ∈ k2 × g2 implies τ [g2] � τ [k1] and 
τ [k2] � τ [g2]. Hence τ [k2] � τ [k1]. Contradiction. This proves Claim iii.

Now suppose g1×g2 is Coll(ω, ξ) ×Coll(ω, ξ)-generic over V such that (p∗, p∗) ∈ g1×g2. 
By Claim iii, without loss of generality, one may assume that τ [g1] ≺ τ [g2]. Then there 
is some (p1, p2) ∈ g1 × g2 such that (p1, p2) ≤ (p∗, p∗) and (p1, p2) � τleft ≺ τright. Claim 
ii implies that every element of Eval(ξ, p1, τ) is less than any element of Eval(ξ, p2, τ). 
Thus I(ξ, τ, g1) ∩ I(ξ, τ, g2) = ∅.

By the usual argument, one can construct, within V (RV [G]), a perfect set of mutual 
Coll(ω, ξ)-generic filters over V containing p∗. This yields a perfect set of open intervals 
in (R, �). This completes the proof. �
Fact 5.6. Let V |= ZF and κ be a weakly compact cardinal of V . Let G be
Coll(ω, < κ)-generic over V . There are no Aronszajn trees on a wellorderable set in 
the Solovay model V (RV [G]).

Proof. Suppose T is an ω1-tree in V (RV [G]). Since T is an ω1-tree on a wellorderable set, 
one may assume that the underlying domain of the tree T is ω1. The tree T is ODV [G]

V ∪{r}
for some r ∈ RV [G]. Using the homogeneity of Coll(ω, < κ) as in the proof of Fact 5.2, 
one can show that T ∈ V [r]. In V [r], T is a κ-tree. However r ∈ V [G � ξ] for some ξ < κ. 
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Since |Coll(ω, < ξ)|V < κ and a forcing smaller than κ preserves the weak compactness 
of κ, V [r] still thinks κ is weakly compact. (See [7] Theorem 21.2 and Lemma 9.26 for 
this basic forcing fact.) Using the tree property in V [r], there is a branch through T . By 
absoluteness, it is still a branch in V (RV [G]). �
Theorem 5.7. (Woodin) Let V |= ZFC and κ be a weakly compact cardinal of V . Let G
be Coll(ω, < κ)-generic over V . V (RV [G]) |= SH.

Proof. Let (P, ≺) be a complete dense nonseparable linear ordering without endpoints 
in V (RV [G]). There is some s ∈ RV [G], w ∈ V , and formula ϕ witnessing (P, ≺) is ODw,s. 
Choose Vλ so large that every element of P is ODv,r,s for some v ∈ Vλ and r ∈ RV [G].

By fixing a wellordering B of Vλ and a wellordering of the formulas, one can define a 
surjection from Φ : Λ ×R → P where Λ is some ordinal. Modify Φ if necessary to ensure 
that for any two points of x, y ∈ P , there are cofinal in Λ many α’s so that there are 
a, b ∈ R with Φ(α, a) = x and Φ(α, b) = y. This map is ordinal-definable from s, w, Vλ, 
and B.

For α < Λ, let Pα = {Φ(α, r) : r ∈ RV [G]}. Let (Pα, ≺) be the linear ordering 
resulting from the restriction of ≺. Let (Qα, �) be the prelinear ordering on R induced 
by Ψα : R → Pα defined by Ψα(r) = Φ(α, r). The witness to each (Qα, �) being 
ordinal-definable in Vλ, s, w, B is obtained uniformly. Hence Fact 5.2 gives uniformly 
the Solovay codes for each (Qα, �). The proof of Case I in Theorem 5.5 gives a uniform 
sequence of wellordered separating families for each (Qα, �). Collapsing, one obtain a 
uniform sequence Eα of separating family for each (Pα, ≺). Using the wellordering of Λ
and the wellordering of each Eα, one can define a wellordered separating family for (P, ≺)
just as in Theorem 4.5.

Fact 4.3 and Fact 5.6 imply that there are no Suslin line. �
Fact 5.8. (ZFC) Let κ be a cardinal and T be a κ-Suslin tree. If P is a forcing with |P| < κ, 
then in P-generic extensions, T has no branches and no κ-sized antichains.

Proof. This is a well known result that small forcing can not kill a κ-Suslin tree.
One may assume that (T, ≺) is a tree on κ. Let G ⊆ P be P-generic over V . Suppose 

B is a branch of T in V [G]. Let p ∈ G and Ḃ be a P-name so that Ḃ[G] = B and p forces 
that Ḃ is a branch. Fix some r ≤P p. For each α < κ, let Eα = {q ∈ P : q ≤P r ∧ q �P

α̌ ∈ Ḃ}. Since |P| < κ, there is some q ≤P r so that Cq = {α : q ∈ Eα} is size κ. Let 
D = {q ∈ P : q ≤P p ∧ |Cq| = κ}. The above argument showed that D is dense below 
p ∈ G. By genericity, let q ∈ G ∩ D. Then B ∈ V since B is the ≺ downward closure 
of Cq. Contradiction.

P does not add any κ-sized antichains is proved similarly. �
Fact 5.9. (ZF) If there is a Suslin tree on a wellorderable set, then there is a Suslin line.
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Proof. This is the usual argument with some details provided to see that no choice is 
needed. See [7] Chapter 9 for the definition of a normal Suslin tree.

If a Suslin tree is on a wellorderable set, one may assume the Suslin tree is on ω1. 
Given a Suslin tree on ω1, one can produce a normal Suslin tree on ω1 in ZF. (See the 
construction in [7] Lemma 9.13.) Let T = (ω1, ≺) be a normal Suslin tree on ω1.

Let π : ω → Q be a fixed bijection of ω with Q, the set of rationals numbers. One 
property required of a normal Suslin tree is that for each x ∈ T , x has countably infinite 
many immediate sucessors. Let Sx denote the set of immediate successors of x in T . 
Since Sx ⊆ ω1, Sx is in bijection (via the Mostowski collapse map) with its ordertype 
which is some countable ordinal ω · γ + n where γ < ω1 and n ∈ ω. By moving the 
n-many points to the front, Sx is uniformly in bijection with ω · γ. Sx is now uniformly 
in bijection with Q × γ (which comes from apply π to each ω-block). Q × γ can be given 
the reverse lexicographic ordering where Q has its usual dense linear order structure. 
Pulling this ordering back to Sx, one has uniformly defined a dense linear ordering <x

on Sx. (Individually, (Sx, <x) is isomorphic to Q but this isomorphism can not be found 
uniformly in x.)

Let L be the collection of maximal branches in T = (ω1, ≺). If B ∈ L is a maximal 
branch, for α less than the length of B, let B(α) be the element of B that belongs to 
the αth level of T . Now suppose B, C ∈ L and B �= C. Note that B can not be an initial 
segment of C or the other way around since both are maximal branches. Let εC,D denote 
the least level α so that B(α) �= C(α). Another requirement of being a normal Suslin 
tree is that for each limit level δ, if x, y belong to level δ and have the same ≺-initial 
segment in T , then x = y. This implies that if B �= C, then εC,D must be a sucessor 
ordinal. Let zB,C denote the common immediate predecessor of B(εB,C) and C(εB,C). 
Finally, define B � C if and only if B �= C and B(εB,C) <zB,C

C(εB,C), where recall that 
<zB,C

is the dense linear ordering of SzB,C
, which is the collection of immediate sucessor 

of zB,C . It can be checked that (L, �) is a linear ordering.
For each x ∈ ω1, let Ix = {B ∈ L : x ∈ B}. Note that Ix is an open interval. Suppose 

B �C. Then B(εB,C) <zB,C
C(εB,C). Since (SzB,C

, <zB,C
) is a dense linear ordering, find 

some x ∈ SzB,C
so that B(εB,C) <zB,C

x <zB,C
C(εB,C). One can check that Ix ⊆ (B, C), 

where (B, C) refers to the open interval in (L, �) determined by B and C.
It has been shown that for any open interval (B, C), there is some x ∈ ω1 so that 

Ix ⊆ (B, C). This implies that (L, �) is a dense linear ordering.
If Ix and Iy are disjoint, then one has that x and y are incomparable in (T, ≺). Suppose 

E is a family of disjoint open intervals. For each open interval K ∈ E , let xK denote the 
least x ∈ ω1 so that Ix ⊆ K which exists by the above observation. Thus {xK : K ∈ E}
is an antichain in T . Since T is a Suslin tree, this collection must be countable. Thus E
must be countable. So (L, �) has the countable chain condition.

Let D ⊆ L be a countable set. Let δ < ω1 be the supremum of the length of all the 
maximal branches in D. Let x ∈ T be some element of T on a level higher than δ. Then 
Ix is an open interval disjoint from D. (L, �) is not separable. �
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Fact 5.10. (Jensen) In L, if κ is a regular uncountable non-weakly compact cardinal, then 
there is a κ-Suslin tree.

Fact 5.11. Suppose κ is an inaccessible cardinal which is not weakly compact in L. Let 
G ⊆ Coll(ω, < κ) be generic over V . The Solovay model L(RL[G]) has a Suslin tree on 
ω1 and hence a Suslin line.

Proof. By Fact 5.10, let (T, ≺) ∈ L be a κ-Suslin tree in L. In L(RL[G]), (T, ≺) is 
an ω1-tree. If (T, ≺) fails to be a Suslin tree, then there an uncountable branch or 
uncountable chain. This object is ODr for some r ∈ RL[G]. As this object is a set of 
ordinals, a homogeneity argument shows that it belongs to L[r]. This real r belongs to 
a Coll(ω, ξ)-generic extension for some ξ < κ. This object is then a κ-sized branch or 
antichain in L[r]. However, Fact 5.8 implies that (T, ≺) is still a κ-Suslin tree in L[r]. 
Contradiction.

Thus (T, ≺) is a Suslin tree in L(RL[G]). By Fact 5.9, there is a Suslin line in 
L(RL[G]). �
Theorem 5.12. Suppose V |= ZFC and κ is an inaccessible cardinal of V . Let G ⊆
Coll(ω, < κ) be Coll(ω, < κ)-generic over V . The Solovay model V (RV [G]) has a Suslin 
line if and only if V (RV [G]) has a Suslin tree on ω1.

Proof. This follows from Fact 4.3, Theorem 5.5, and Fact 5.9. �
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