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1. Introduction

Cantor had shown that R with its usual ordering is the unique complete dense sep-
arable linear ordering without endpoints up to isomorphism. A linear ordering has the
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countable chain condition if there are no uncountable sets of disjoint nonempty open in-
tervals. Every separable linear ordering has the countable chain condition. Suslin asked
if R is the unique (up to order isomorphism) complete dense linear ordering without end-
points that satisfies the countable chain condition. This question has come to be known
as the Suslin problem. The study of the Suslin problem under the axiom of choice, AC,
has led to a number of developments in set theory such as in constructibility and iterated
forcing.

A Suslin line is a complete dense linear ordering without endpoints which has the
countable chain condition but is not separable. The existence of a Suslin line gives a
negative answer to the Suslin problem. The Suslin hypothesis, SH, is the statement that
there are no Suslin lines.

The Suslin problem can not be resolved under ZFC. However, [4] showed that no linear
ordering which comes from a Al prelinear ordering on R can be a counterexample to
the Suslin problem. This suggests that no linear ordering which comes from a definable
prelinear ordering on R should be a Suslin line. Since the determinacy axiom AD™
implies that every set of reals is definable in a very absolute sense, ZF + ADT is a
natural setting to ask the question of whether any definable prelinear ordering on R
can induce a Suslin line. This paper will show under AD" that no linear ordering which
comes from any prelinear ordering on R is a Suslin line. Assuming the universe satisfies
ZF + ADt +V = L(Z(R)) (which are known as natural models of ADT), the paper will
show that there are no Suslin lines at all. In particular, the most natural model of
determinacy L(R) = AD will always satisfy SH, which answers a question of Foreman [2].
(This question was brought to the authors’ attention by Hamkins [3].)

The following gives a brief introduction to the Suslin problem and a summary of the
main results of the paper:

A tree is a partially ordered set (T, <) so that for any t € T, {s € T : s < t} is a
wellordering under <. An wi-tree is an uncountable tree so that each level is countable.
An Aronszajn tree is an wp-tree with no uncountable branch. A Suslin tree is an wi-tree
with no uncountable branch or uncountable antichain. Under AC, the existence of a
Suslin line is equivalent to the existence of a Suslin tree.

Tennenbaum [15] and Jech [6] independently showed that if ZF is consistent, then
ZFC + —SH is consistent. They used a forcing construction to produce a model of ZFC
with a Suslin tree or Suslin line. With the development of iterated forcing, Solovay and
Tennenbaum [14] showed that if ZF is consistent, then ZF 4+ SH is consistent. In fact,
they showed Martin’s axiom, MA, and the failure of the continuum hypothesis, CH, imply
there are no Suslin lines. Thus SH is independent of ZFC.

One can also ask if SH holds in certain natural models of ZFC. Goédel’s constructible
universe L is the smallest inner model of ZFC. Jensen showed the axiom V = L implies
there is a Suslin line or tree. In fact, the Jensen’s diamond principle <, which holds in L,
implies there is a Suslin tree. Jensen also showed that there is a model of ZFC + CH + SH.
Thus CH is independent of SH.
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Results from descriptive set theory have shown that Borel objects are well-behaved
and have nice regularity properties. This suggests that no Borel linear ordering on R
should be a Suslin line. Friedman and Shelah showed that there are no Borel Suslin
lines. Harrington, Marker, and Shelah strengthened this result using effective methods
and the Gandy—Harrington forcing: A prelinear order is a binary relation that is total and
transitive (but may not be antisymmetric). [4] showed that every Al prelinear ordering
has a perfect set of disjoint closed intervals or there is a Al order preserving function
which maps the prelinear ordering into R with its usual ordering.

The intuition would be that every definable linear ordering which is the surjective
image of R (that is, a collapse of a prelinear ordering on R) is not a Suslin line assuming
that certain descriptive set theoretic arguments are valid for this definable context. One
approach to formalize this idea of extending descriptive set theoretic methods to the
largest possible context is to assume determinacy axioms.

Let “w denote the Baire space which consists of all function from w into w. Let A C “w.
The game G 4 consists of player 1 and 2 alternatingly picking integers a;. Player 1 wins
if @ = {a; : i € w) belongs to A. Player 2 wins if a ¢ A. The axiom of determinacy, AD,
asserts that for all A C “w, one of the players has a winning strategy in G 4.

AD implies that every set of reals has the perfect set property, has the Baire prop-
erty, and is Lebesgue measurable. It is reasonable to expect that under AD every linear
ordering on a set which is the surjective image of R is not a Suslin line.

AD implies the failure of AC. As noted above, under AC, the study of the Suslin
problem can be reduced to the study of Suslin trees. The proof that the existence of a
Suslin line implies the existence of a Suslin tree seems to require AC. Under determinacy
assumptions, the existence of Suslin trees and Suslin lines are considered separately.

AD by its very nature is in general restricted to providing information about set which
are surjective images of R. However, SH is a statement about all linear orderings. L(R) is
the smallest transitive inner model of ZF containing all the reals. Woodin has shown that
if V' |= ZFC and has a measurable cardinal with infinitely many Woodin cardinals below
it, then L(R)V |= AD. (See [10].) Sometimes results about all sets can be proved in this
minimal model of AD containing the reals. Kechris [9] showed that if L(R) = AD, then
L(R) = DC. Caicedo and Ketchersid [1] extended the Silver’s dichotomy [12] to show
that in L(R), every set is either wellorderable or R inject into it. Moreover, if V | ZFC
and has a proper class of Woodin cardinals, then for any forcing P € V and G C P
which is P-generic over V, L(R)" and L(R)VI¢! are elementarily equivalent. An external
forcing cannot change the theory of L(R) and in particular the status of SH in L(R)Y
and L(R)VI[¢]. At the end of [2], Foreman asked whether L(R) = SH if L(R) = AD.

First, the paper will consider the existence of Suslin trees.

Theorem 3.4. If L(R) |= AD, then L(R) has no Aronszajn tree and hence no Suslin trees.

To study linear orderings on surjective images of R, one will work in a strengthening
of AD isolated by Woodin known as ADT. It includes DCg and the statement that all sets
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of reals have an absolute definition provided by an oco-Borel code. AD' holds in every
model of AD that has been produced. It is open whether AD and ADT are equivalent.

Theorem 4.2. (ZF + AD™) Let < be a prelinear order on R. Ezactly one of the following
holds.

(i) There is a perfect set of disjoint closed intervals in <. (That is, this set of intervals
is in bijection with R.)
(ii) There is a wellordered separating family for <.

Here, a separating family is a collection S of <-downward closed sets so that for any
a < b, there is some A € S so that a € A and b ¢ A. Note that (ii) cannot be replaced
with the statement that < order embeds into R as in the case for Borel linear orderings.
For example, there is a ¥} prelinear ordering whose quotient has ordertype w;.

The argument associated with (i) is a modification of the Gandy—Harrington forcing
argument from [4] using the Vopénka algebra. The argument associated with (ii) follows
an idea of Hjorth from [5].

The proof has a clear descriptive set theoretic flavor: Instead of considering a set as an
static object, one uses a sufficiently absolute definition of a set provided by the co-Borel
code. This allows the definition to be interpreted in various inner models containing the
necessary parameters to derive information about the true object in the real world.

The theorem implies the following:

Theorem 4.4. (ZF + AD™) There are no Suslin lines on a set which is the surjective
image of R.

The previous results will be used to establish the full SH in models satisfying
ZF + ADT +V = L(Z(R)). Woodin showed that such model take one of two forms: If
ADg (the determinacy axiom for games with moves from R) fails, then V = L(J,R) for
some set of ordinals J. Model of the form L(J,R) cannot satisfy ADg.

In such models, an arbitrary linear ordering is uniformly a union of sublinear orderings
which are surjective images of R. The dichotomy result is applied uniformly to each
sublinear ordering to produce wellordered separating family for each sublinear ordering.
Then these wellordered separating family need to be coherently patched together to form
a wellordered separating family for the original linear ordering. In models of the form
L(J,R), this is relatively straightforward. In L(Z?(R)) = ADg, one will need to use the
unique supercompactness measure on Z,,, () for each A < ©. These patching arguments
are similar to those used in [1].

Theorem 4.5. Let J be a set of ordinals. If L(J,R) |= AD, then L(J,R) = SH. In partic-
ular, one has that ZF + AD +V = L(R) proves SH.

Theorem 4.8. ZF + AD" + ADg + V = L(Z(R)) + SH.
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Theorem 4.9. ZF + ADT +V = L(Z(R)) - SH.

The Solovay model is a choiceless model of ZF which possesses many of the descriptive
set theory regularity properties which are consequences of AD. Woodin observed that
the methods used above in the determinacy setting can be adapted to establish SH in
some Solovay models. The final section provides some details on the modification of the
earlier arguments to analyze when SH holds in Solovay models.

Theorem 5.7. (Woodin) Let V = ZFC and x be a weakly compact cardinal of V. Let G
be Coll(w, < k)-generic over V. V(RVIC]) = SH.

Theorem 5.12. Suppose V |= ZFC and k is an inaccessible cardinal of V. Let G C
Coll(w, < &) be Coll(w, < k)-generic over V. The Solovay model V(RVIE!) has a Suslin
line if and only if V(RVIC]) has a Suslin tree on w;.

The authors would like to thank Itay Neeman for many helpful comments on the
material that appear in this paper. Also thanks to Hugh Woodin for informing the
authors about the results in the Solovay model and allowing the details of the arguments
to appear in this paper. Finally, the authors would also like to thank Joel Hamkins for
asking the main question on Mathoverflow [3], from which the authors heard about this
question.

2. Basics

Definition 2.1. Let (L, <) be a (strict) linear ordering. L is dense if for all a,c € L with
a < ¢, there is some b € L with a < b < ¢. L has the countable chain condition if there
are no uncountable collection of disjoint nonempty open intervals in L. L is separable if
there is a countable dense subset of L. L is complete if every nonempty subset which is
bounded above has a supremum.

A Suslin line is a complete dense linear ordering without endpoints which has the
countable chain condition and is not separable.

It should be noted that the existence of a nonseparable linear ordering with the
countable chain condition is sufficient to imply the existence of a Susline line.

Definition 2.2. The Suslin hypothesis, denoted SH, is the statement that there are no
Suslin lines.

Definition 2.3. A (nonreflexive) partially ordered set (7', <) is a tree if and only if for
allt € T, {s € T : s < t} is a wellordered by <. For t € T, let |¢t|< denote the
ordertype of {s € T : s < t}. If a is an ordinal, then let LT = {t € T : |t|x = a}.
Let |T|< = sup{|t|< + 1 : t € T} be the height of the tree T. A branch through T is a
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maximal <-linearly ordered subset of T. A C T is an antichain if every pair of elments
from A is <-incomparable.

Let k be a cardinal. (T, <) is a k-tree if and only if (T, <) is a tree with |T|< = x and
for each ordinal , LT injects into x but does not biject onto #. (In particular, the levels
are wellorderable.) A k-Aronszajn tree is a k-tree so that each chain has cardinality less
than k. A k-Suslin tree is a k-tree so that all chains have cardinality less than x and &
does not inject into any antichain. (Every s-Suslin tree is a k-Aronszajn tree.)

An Aronszajn or Suslin tree is an wi-Aronszajn or wi-Suslin tree, respectively.

ZFC shows that there is a Suslin line if and only if there is a Suslin tree. However,
the usual proof does seem to use AC. Suslin trees and Suslin lines will be studied in
the choiceless context of ZF augmented with determinacy axioms or in specific natural
models of these determinacy axioms.

Definition 2.4. Let X C R. An oco-Borel code for X is a pair (5, ¢) where S is a set
of ordinals and ¢ is a formula in the language of set theory such that for all x € R,
x € X < L[S, z] E ¢(S, ).

Definition 2.5. ([17] Section 9.1) AD* consists of the following statements:

(i) DCg.
(ii) Every X C R has an oco-Borel code.
(iii) For all A < ©, X C R, and continuous function 7 : “A — R, 7~ 1(X) is determined.

If J is a set of ordinals and L(J,R) = AD, then L(J,R) = ADT. Also L(J,R) = DC
by [9]. Models of ZF +ADT +V = L(£(R)) are considered natural models of AD. No
models of the form L(J,R) can satisfy ADg. Woodin ([1] Corollary 3.2) showed that
if VEZF+ADT +V = L(Z(R)) + —ADg, then V is of the form L(J,R) for some set
of ordinals J. Of particular importance to this paper is the existence of co-Borel codes
for sets of reals. Although it is open whether ZF + ADg implies ZF + AD™, Woodin has
shown that ZF + ADgr can prove that every set of reals has an oo-Borel code. How-
ever, it is known that ZF + DC + ADg implies ZF + AD™. (See [1] for more information
about ADT.)

Definition 2.6. (Vopénka) Let S be a set of ordinals. Let Qg be the forcing of nonempty
ODg subsets of reals ordered by C. By using the canonical bijection of ODg with ON,
one will assume that this forcing has been transfered onto ON and is hence an element
of HODg. Og adds a generic real. Let 7 denote the canonical Og-name for the canonical
real.

More specifically, if G is Qg-generic, then n € 7[G] & {r e R:n € z} € G.

Fact 2.7. (Vopénka’s Theorem) Let S be a set of ordinals.
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Let M = ZF be a transitive inner model containing S. For all x € RM | there is a
filter G, € M which is QM -generic over HODY so that 7[G,] = =.

Suppose ¢ is a formula and & is a tuple of ordinals. Let K be a set of ordinals in
ODZSVI. Suppose N |= ZF is an inner model with N 2 HOD?. Suppose p = {x € RM .
LIK,z] E ¢(K,&,z)} is a condition of OY, that is, it is a nonempty ODg set. Then
N Eplroy LIK, 7] | o(K, a,7).

Proof. The first statement is a classical result which can be found in [7] Theorem 15.46
or [5] Theorem 2.4. The set G, is {p € O : 2 € p}, where O} is considered as the
collection of ODg sets of reals in M.

The second statement appears in [5] Theorem 2.4. A brief sketch will be given:

Suppose not. Then there is some ¢’ <gu p such that N | ¢ lrgu LIK,7] &
—mp([v( ,a, 7). Since every O -generic filter over N is generic over HOD% , there is some
q <pu ¢ so that HODY = ¢ IFou LIK,7] = —¢(K,a,7). Let y € ¢. Let G, be
the O} -generic filter over HOD? derived from y. ¢ € G,. By the forcing theorem,
HODY[G,]  LIK,y] E —¢(K,a&,y). Hence LIK,y] = —¢(K,a&,y). This contradicts
gCp. O

Fact 2.8. Let S be a set of ordinals. Let M be an inner model of ZF containing S. Suppose
N is an inner model of ZF containing S and HOD% C N. Ifn > 1 is a natural number,
let ,OM be the Vopénka forcing on R™. Suppose (go, .., gn-1) is a ,O¥ -generic over N
n-tuple of reals. Then each of gg,..., gn—1 5 a (O)g/f generic real over N.

Proof. Here a real g is O -generic over N if and only if there is a filter G which is
(O)ZSM -generic over IV such that g is the canonical real that is added by G.

Consider the case when n = 2.

For each p € 0¥ let ¥(p) = {x € R: (y)(z,y) € p}. Note that ¥(p) € OM.

Let (go,g1) be 20% -generic over N. Let Gy, 4,) be the ;0% -generic filter over N
which adds (go, g1)- Let G = {¥(p) : p € G(49,41)}- G is a filter on OF.

Suppose D C OY is dense open and belongs to N. Let D’ = {p: ¥(p) € D}. Suppose
r € ;0. Since D is dense, there is some 1’ <ou ¥(r) withr" € D. Let s = (' x R)Nr.
Note that s € 0¥, U(s) =1' € D, and s <,ou 7. Hence s € D'. This shows that D’ is
dense in Q@JSM.

By genericity, there is some r € D’ such r € G4, 4,). Then ¥(r) € DNG. G is

90,91
OM-generic over N. go is the real added by G. O

For this paper, one will need a uniform procedure for taking an OD definition for a
set of reals to an OD oco-Borel code for that set of reals.

Fact 2.9. (Woodin, [1] Theorem 3.4) Assume ZF + ADT +V = L(Z(R)). Let J be a set
of ordinals. Let X C R be an ODj; set. Then X has an co-Borel code in HOD ;.
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Definition 2.10. Let <7 denote the relation of Turing reducibility. If z,y € R, then
x =7 y if and only if z <7 y and y <7 x. A Turing degree is an =p-equivalence class.
Let D denote the set of Turing degrees. If X, Y € D, then let X <7 Y if and only if for
all z € X and y € Y, x <r y. The Turing cone above X is the set {Y € D: X <p Y'}.
The Martin measure 1 is a measure on D defined by A € p if and only if A contains a
Turing cone. Under AD, pu is a countably complete ultrafilter on D.

Fact 2.11. (Woodin, [1] Section 2.2) Assume ZF + AD*. Let ]y 5, ON be the collection
of function f :D — ON. If f,g € [[xcp ON, then define f ~ g if and only if {X € D :
f(X) =9(X)} € p. Let [f]l~ < [g]~ if and only if {X € D: f(X) < g(X)} € u. Then
[Ixep ON/p, the set of ~-equivalence classes, is wellordered under <.

3. No Aronszajn trees

Fact 3.1. (ZF + AD) There are no Aronszajn trees on a wellorderable set.

Proof. This is a well known result using standard techniques involving measures on ws.
The following provides some details under AD.

Using AD, let U be a countably complete ultrafilter on wy. (For example, if p is
Martin’s Turing cone measure on D, let A € U < {X € D : wi € A} € p, where for
X € D, w¥ = w¥, the least x-admissible ordinal for any z € X.)

Let (T, <) be an ws-tree. Since 7' is wellorderable, one may assume that 7' = w;. For
each seT,let A, ={teT:s =<t}

Note wy =T = UseLOT Ag. Since (T, <) is an w;-tree, LY is countable. Since U is
countably complete, there is some s € LI so that A, € U. Since T = wy, let sg be the
least such object according to the wellordering of w;.

Suppose s, € LT has been defined so that A, € U. Note that A, = USELT+1QA
By countably completeness, let 5,41 be the least s € L1, N A, so that A, € U.

Suppose « is a limit ordinal and s, has been defined for all v < «. Since « is countable
and each A; € U, ., 4s, € U. Note that for all s € [ _, As

all v < a. Observe ﬂ,Ka = UseLTmﬂKa AL, A,. By countable completeness, let s,
be the least element s € LT ﬂ ﬂ7<a s, S0 that A, eU.

(S : @@ < wq) is an uncountable branch through (7, <). O

one has s, < s for

Fact 3.2. (/1] Theorem 1.4) Assume ZF + ADT +V = L(Z(R)). For any set X, either
X s wellorderable or R injects into X.

Many of the ideas used in [1] to prove Fact 3.2 will be used in this paper to investigate
Suslin lines. Fact 3.2 gives the following result about x-trees.

Fact 3.3. Assume ZF + ADT +V = L(Z(R)). Let s be a cardinal. There are no k-trees
on a nonwellorderable set.
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Proof. Let (T, <) be a k-tree where T cannot be wellordered. By Fact 3.2, there is an
injection ® : R — T. Define a prewellordering C on R as follows: x C y if and only
if |®(x)|<x < |®(y)|<. Since each level of T is wellorderable and AD implies there are
no uncountable wellordered sequences of distinct reals, each C-prewellordering class is
countable.

However, there are no prewellorderings of R with every prewellordering class countable
(or more generally meager) under AD. To see this: Suppose there was such a prewellorder-
ing. Under AD, all sets of reals have the Baire property. By taking an appropriate
homeomorphic image, one may assume one has a prewellordering < on all of R so that
each initial segment of the prewellordering is meager. By AD, < itself has the Baire prop-
erty as a subset of R2. Then the Kuratowski—Ulam theorem would yield a contradiction
after considering the various horizontal and vertical sections of <. O

Theorem 3.4. Assume ZF +AD' +V = L(Z(R)). There are no Aronszajn trees and
hence no Suslin trees.

In particular, if L(R) = AD, then L(R) has no Aronszajn trees and hence no Suslin
trees.

4. No Suslin lines

Definition 4.1. A prelinear ordering < on a set P is a total transitive binary relation on
P (which may not be antisymmetric).

Let (P, =) be a prelinear ordering. For each z,y € P, let x < y if and only if z < y
and ~(y = z). § C H(P) is a separating family for P if and only if every A € S is
<-downward closed and for all z,y € P with x < y, there is some A € S with x € A and
y¢ A

Theorem 4.2. (ZF + AD") Let < be a prelinear order on R. Ezactly one of the following
holds.

(i) There is a perfect set of disjoint closed intervals in <. (That is, this set of intervals
is in bijection with R.)
(ii) There is a wellordered separating family for <.

Proof. Let (S, ¢) be an co-Borel code for <. Let (.5, 1) be an co-Borel code for < which
is uniformly derived from (S, ¢). Although Qg is a forcing on the ordinals which belong
to HODg, it will also be considered as the forcing of nonempty ODg sets of reals. Let
Ug denote the sets in Qg which are <-downward closed.

Throughout this proof, within any transitive inner model M of ZF containing S, <
and < will always be defined using the co-Borel code (S, @) and (S,v), respectively.
Therefore, if a,b € RM | M |= L[S, a,b] = ¢(S,a,b) if and only if L[S, a,b] = ¢(S, a, b) if
only if V = L[S, a,b] = ¢(S,a,b) if and only if V }=a <.
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(Case I) For all z € R, for all a,b € RES?] with a < b, there exists some A € [US[S ]

with a € A and b ¢ A.

For each [f]~ € [[xepwi/m, let Afy be the set of y € R so that on a cone of X € D,
y belongs to the f(X)™ element of Ug[s,m] accordmg to the canomcal global wellordering
of HODg[S “ where z is any real in X. The f(X)™ element of U S lis formally defined
to be @ if there is no f(X)'" element of TUL[S *l This is well-defined. (Note that if z =7 y,
then L[S, x] = L[S, y] and their canonical wellorderings of their HODg’s are the same.)

For each [f]~, Afs). is X-downward closed. To see this, suppose b € A}y . Let a < b.
There is some z € R so that for all X >r [z]=,., b belongs to the f(X )th set in UL[S T],
where x € X. Then for any X >7 [a @ 2]=,., b belongs to the f(X)'" set in UL[S “l
where x € X. Since z > a, a € L[S, z]. By <-downward closure, a also belongs to the
F(X)th set in Ué[s’w]. This verifies that a € Apy_ .

By Fact 2.11, [[xecpwi/p is wellordered. Hence {As : [fl~ € [[xepwi/u} is a
wellordered set. The next claim is that it is a separating family for <.

To see this: Let a < b. Suppose X >7 [a @ b]=,.. Define f(X) to be the rank under

LIS of the least element of Ug LiS.al

the canonical wellordering of HOD according to the
canonical wellordering of HODé[S’m (for any = € X) containing a but not b. Note that
this set exists by the Case I assumption. By definition, a € Ay and b ¢ Afy .

This shows that Case I implies that (ii) holds.

(Case IT) There exists = € R, there exists a,b € RY5?] with a < b so that for all
AcUP a¢ Aorbe A

Let
u={(co,c1) € RS : g < ey A (VAY(A € UEE™ = (¢g ¢ Av ey € A))).

Observe that u € 2Og LiSal and in particular is nonempty due to the Case II assumption.
Claim 1: Let M |= ZF be an inner model of V' such that M D HOD LISe] Tet r e RM,
Then

M'ZUH— L @] (To<’lx<7'1)

where 79 and 71 are the canonical names for the first and second real in the generic pair.

To prove Claim 1: Suppose it was not true. Then there is some v Sz@é[s,m] u so that
M ': v H—2©§[s,z] To< T <Ty.

(Subcase 1.1.) There is some (cg, c1) € v and (dg,d;1) € v so that ¢; < do.

Let w = {(eo, 1, e,e3) € (R3] (eg,e1) € v A (eg,e3) EvAe; < 62} w # 0 by
the Subcase 1.1. assumption and w € 4@5[8 | Now let (90,91, 92,93) be 4@ —generlc
over M containing w. By Fact 2.8 (or essentially the proof), (go,g1) and (gg,gg) are
2(0) generlc over M.

Let v = {(co,c1) € (RQ)L[SW teg < 1} As u <, oLIs:el u’, v’ belongs to the

20¢ LS.q] -generic filter over M derived from (go, g1) and (g1, gg) Using the oco-Borel code
for <, v’ is a condition of the form for which Fact 2.7 applies. Hence Fact 2.7 implies
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that go < g1 and gz < g3. Let w’ = {(eg, €1, €2, e3) € (RH)E192] : ¢; < ey}, The condition
w’ is also a condition of the form for which Fact 2.7 applies. Since w < _r(s..) w’, this
gives that g1 < g2. By the forcing theorems and the above, gy < 7 < g1 jsgg <r < g4
Hence r < r gives a contradiction.

(Subcase 1.2) For all (¢g,c1) € v and (dp,dy1) € v, dy < ¢;1.

Let A= {z: (3(eg,e1) € v)(x < eg)}. Ais ODg LS. and A # ) since for any element
(eg,€1) € v, eg € A. A is <-downward closed so A € Ué[s’m]. Now fix any (eg,e1) € v.
As observed just above, eg € A. Note that e; ¢ A. This is because if e; € A, then
there has to be some (fy, f1) € v so that e; < fo. This contradicts the Subcase 1.2
assumption. Thus A witnesses that (eg,e1) ¢ w. This shows that v and u are disjoint
which contradicts the fact that v Sz@é[s,w] U.

Claim 1 has been established. (Claim 1 is enough to produce a perfect set of dis-
joint open intervals. However, a perfect set of disjoint closed intervals can actually be
constructed using the next claim.)

Claim 2: Let M = ZF be an inner model of V' such that M D HODg[S’m]. Let r € RM,
Then

M|:u||— £1s.2] To T AT #T.

To prove this: Suppose there is some v < Lis.e] u S0 that (without loss of generality)
Mol oLise) To = =7 o

Suppose ‘there is some (co,c1) € v so that there is some n € w with ¢o(n) # r(n).
Let o' = {(co,c1) € (R2)ES7 : ¢y(n) # r(n)}. Note v/ € (O)L[Sm (Observe that v’
is a condition which can be expressed in the form for which Fact 2.7 applies.) By the

LiSal 14 (90,91) be a Q(ODQ[S’E}—generic over M whose associated

assumption, v’ Nv € Oy
generic-filter contains the condition v Nv’. Since v’ belong to this generic filter, Fact 2.7
implies that go(n) # r(n). However since v belongs to this generic filter, the forcing
theorem implies that go(n) = r(n). Contradiction.

It has been shown that for all (cg,c1) € v, ¢ = r. Hence {r} = {x : (I(co,1) €
v) : & = ¢o}. Thus r is ODL[S I Now let (r,c1) be some element of v. The set {z €
RES2] ¢ <7} s in US ]. Clearly r is in this set but ¢; is not. Thus (r,¢1) ¢ u. This
contradicts (r,¢1) € v C u. This completes the proof of Claim 2.

Since V' [= AD, there are only countably many dense open subsets of 2Oy LiS.e]
HODg[S “ n V,let (D, : n € w) enumerate all of these dense open sets. By mtersectlng,
one may assume that for all n, Dn+1 C D,,. Similarly, let (E, : n € w) enumerate all the

Lise) o @ Lisal HODg[Sw]. Assume again that the sequence

dense open subsets of ;O
is decreasing.

Let pp <, oSl U be any condition of 2@ LIS2] that meets Dy.

Suppose for some n € w, p, has been defined for all o € "2. For each ¢, let p/ ., be

some condition below p, that meets D, 1.
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Let 71, ..., Tont1 enumerate "T12, the set of binary strings of length n + 1. For each
1 <m <27 et ¢) = pl. . For 0 <k < 2""! suppose ¢, has been defined. For each
1 <m < 2" find some ¢~f! <, oklsel qF, so that for all m # k + 1, (qfn“,q’,jﬂ) and

( k+1 k1

drp+159m ) meet Ej, 1.

Let p,,, = g2 This completes the construction of (po : 0 € <¥2).

m
For each z € R, let G, be the upward closure of {ps}, : n € w}. By construction,
G, is 2©§[S’x]—generic over HODé[S’w]. If © # y, then by construction G, x G, are
g@)g[s’z] X g@g[s’”:]—generic over HODg[S’I]. For each x € R, let (¢, ¢]) denote the generic
pair added by G,. Using Claim 1 and 2, one has that if = # y, the intervals [c{, ¢}] and
[c¥, Y] are disjoint.
The proof is complete. O

Fact 4.3. (ZF) Suppose (P, <) is a complete dense nonseparable linear ordering with the
countable chain condition and has a wellordered separating family, then there is a Suslin
tree (on wi ).

Proof. In this case, the usual construction of a Suslin tree from a Suslin line works. The
details follows:

Let (A, : @ < k) for some & be a sequence of <-downward closed subsets of P which
forms a separating family for (P, <).

Let By = (. Choose the least pair (o, 3) so that A, C Ag and Ag \ A, is infinite.
Ag \ A, is a bounded infinite set. Using completeness, let ag = inf Az \ A, and by =
sup Ag \ Aq. Let By = {ag, bo}.

If ¢ is a limit ordinal, let Bs = {J, 5 B,

Suppose for some 0 < wq, (ay,by) has been defined for all ¥ < § and B;s has been
defined. Since Bj is countable and P is not separable, there is some interval (a,b) so
that (a,b) N Bs = 0. By density, find a’,0’ € P so that a < @’ < ¥’ < b. There is some v
and ¢ so that A, separates a from o’ and A separates b’ from b. Then A-\ A, NBs =
and A¢ \ A, is an infinite set since o', " € A¢ \ A, and density.

Now let (v, B) be the least pair so that Ag\ A, is infinite and Ag\ A,NBs = 0. Ag\ Ao
is a bounded nonempty set so by completeness, let as = inf Ag\ A, and by = sup A\ A,.
Let Bsy1 = Bs U {a(;, bg}.

This construction produces points a, and b, for each a@ < wy. Let I, be the open
interval (aq, by). Define a tree (w1, ) by o C S if and only if Ig C I,,. Note that a T 3
implies a < 8. Hence (w1, ) is a tree.

If o and B are C-incomparable, then I, and I are disjoint intervals of (P, <). Since
(P, <) has the countable chain condition, C cannot have an uncountable antichain.

Suppose (e, : a < wp) forms an uncountable chain in C. Then (a., : @ < w) is a
<-increasing sequence. Then ((ae,,ac,,,) : @ < wi) forms an uncountable collection of
disjoint open intervals of (P, <). This contradicts the countable chain condition.

(w1, ) is a Suslin-tree. O
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If J is a set of ordinals and L(J,R) = AD, then every set in Lo (J, R) is the surjective
image of R. Hence every linear ordering in Lg(J, R) is the quotient of a prelinear ordering
on R. The following has been shown:

Theorem 4.4. (ZF + AD™) There is no Suslin line on a set which is the surjective image
of R.
If J is a set of ordinals and L(J,R) |= AD, then there are no Suslin lines in Lo (J,R).

Theorem 4.5. Let J be a set of ordinal. If L(J,R) = AD, then L(J,R) = SH.
In particular, ZF + AD +V = L(R) F SH.

Proof. Let ® : R x ON — L(J,R) be a definable surjection using only J as a parameter.
Using a definable surjection of On onto On x On so that the preimage of any element
is a proper class, one can assume that for any x,y € L(J,R), there is a proper class of
ordinals a such that there are r, s € R with ®(r,a) = z and (s, ) = y.

Let (P, <) be a complete dense nonseparable linear ordering. (P, <) is OD, , for some
zeR.

Let Qo = {z € R: &(z,a) € P}. Let P, = ®[Q, X {a}]. Let (Py, <) be the restriction
of < to P,. Let (Qq,C) be the induced prelinear ordering coming from ® and (P,, <).
For all o, (P, <) and (Qq,C) are uniformly OD; . in the sense that using « and the
formula and ordinal that gives the OD, , definition of (P, <), one can explicitly produce
the ordinal and formula giving the OD ,-definition of (P,, <) and (Qq, C).

If any (Qa,C) has a perfect set of disjoint closed intervals, then collapsing using ®
would give a perfect set of disjoint closed intervals in (P,, <). This would imply that
(P, <) has a perfect set of disjoint closed intervals. In this case, (P, <) does not have the
countable chain condition.

Therefore, assume for all & € ON, (Q,, C) does not have a perfect set of disjoint closed
intervals. Theorem 4.2 implies that each (Q.,C) has a wellordered separating family.
Using Fact 2.9, one can obtain a sequence of co-Borel codes of (Qn, C) by chosing the
HOD .-least co-Borel code for (Qq,C). Since the argument in Case I of Theorem 4.2
gives an explicit procedure for obtaining the separating family from the oo-Borel code
of the prelinear ordering, one has a sequence (£, : @ € On) such that each & is a
wellordered separating family for (Q.,C) along with the wellordering. Collapsing using
D, let (€4 : @ € ON) be the derived sequence of wellordered separating family for (P,, <)
along with the wellordering.

For any a, if A € &,, let A be the <-downward closure of A in (P, <). Let S = {A :
(Ja)(A € &,)}. Using the wellordering of ordinals and the wellordering of each &, which
is given uniformly, S can be wellordered. Suppose a,b € P and a < b. By the assumption
on ® mentioned at the beginning of the proof, there is some « so that a,b € P,. There
is some A € £, sothat a € Aand b ¢ A. Then A€ S, a € A, and b ¢ A. It has been
shown that S is a wellordered separating family for (P, <). By Fact 3.1 and Fact 4.3,
(P, <) cannot have the countable chain condition. O
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Woodin showed that assuming ADT +V = L(Z(R)), if ADg fails, then there is some
set of ordinal J so that V = L(J,R). To study the Suslin hypothesis in these natural
models of ADT, it remains to consider L(Z(R)) = ADg. The argument uses techniques
from [1]. The following results of Woodin will be necessary.

Fact 4.6. (/1] Theorem 3.3) Assume ZF + AD" + ADg +V = L(Z(R)). Then every set
is ordinal definable from some element of | Jy_.g Pu, (N).

Fact 4.7. ([16] and [1] Theorem 2.13) (ZF + AD* + ADg) For each A < ©, there is a
unique fine normal measure on P, (\) which is also OD. (Such a measure is called a
supercompactness measure on 2, (\).)

Theorem 4.8. ZF + AD™ + ADg + V = L(Z(R)) I~ SH.

Proof. Suppose (P, <) is a complete dense nonseparable linear ordering. By Fact 4.6,
there is some a < © and some o € Z,, («) so that (P, <) is OD,.

For each 7 € U5<® Z..(8), ¢ € ON, and formula ¢, define P, ¢, to be the set of
x € P such that there is some r € R so that z is the unique solution v to ¢(o, 7, ¢, r,v).
Let (Pr.¢ 4, <) be the linear ordering resulting from restricting < to Py ¢ .. Let « be some
set not in P. There is a surjection of R onto P; ¢, U {*} defined by letting r map to
the unique solution v in ¢(o, 7, ¢, r,v) if it exists and x otherwise. Let (Qr ¢, ) be the
induced prelinear ordering on R coming from (P ¢ ,, <) with % as the largest element
via the surjection.

Observe that if p € Ug.g P, (B) and p 2 7, then for all ( € ON and formula ¢,
there is some other formula v so that P, ¢, C P, ¢ 4.

Let Form be the collection of formulas. For each 7 € Uz g P, (8), let

Pr = U Prip
(€eONAp€eForm

By the previous observation, if 7 C p, then P, C P,.

For each fixed 7 and formula ¢, P: ¢ , and Q¢ , are OD, » with witnessing formulas
obtained uniformly from the OD, witness to P. By Fact 2.9, choose the HOD, ,-least
oo-Borel code for (Qr¢,,,C) to be the canonical co-Borel code for this set. If any
(Qr.¢,0,C) has a perfect set of disjoint closed intervals, then such a collection would
yield a perfect set of disjoint closed intervals for (P; ¢ ,, <) and hence (P, <). Therefore,
one may assume that each (Qr ¢ ,, C) satisfies Case I of Theorem 4.2. By the proof in
Case I in Theorem 4.2, this gives a sequence 5;’“0
(along with the wellordering) for (Qr.¢,,, C). Collapsing €] -,
family &; ¢, for (Pr¢ s, <). Using the wellordering of the ordinals and the wellorder-

of wellordered separating families
one obtains a separating

ing of each &:¢ ., one obtains a wellordering of &7 = U;conaperorm €r.¢,p- Downward
=-closing each set of £/ in P, gives a wellordered separating family &, for P;.
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Now fix a < 3 < ©. Define
Py =|J{Pr: 7P, (B)}

Note that the sequence (£ : 7 € Py, (8)) belongs to OD‘S/?’wl(ﬁ)' Let pup be the unique

\'4
OD supercompactness measure for 2, (8). Let Ug = (HB%I(/B) ON/MB)HOD9w1 8, Now

suppose [f]~ € Ug where f € HODE%I(B)' Let Afy_ be the set of z € Py such that the
set K of p € Z,,(B) such that z belongs to the f(p)'" set in &, (according to the
wellordering of £,) belongs to pg.

Each A[f]N is <-downward closed in Pg. Suppose 21,21 € Pg, 21 =X 22, and 23 € A[f]w.
There is a K € pg so that for all p € K, z2 belong to the f(p)*™ set in &,. 21,22 € Pg
means that z; € P, and zp € Pe, for some &,& € P, (B). For p € £, (B), let
R, ={y € Z,,(B) : p C~v}. By fineness and countable completeness, R, € pug. For any
p € Re, NRe, NK € p, 21,22 € P,. This shows that 2y € Ay .

Now suppose z1, 22 € Pg and 21 < 2. There is some &1,& € P, (8) so that z; € P,
and 2 € P,. Note that this implies that 21 and 22 are ODgry(s ¢, ¢,}- In particular, they
belong to ODL@M(@. Hence if p O (3 U (2, then 21,29 € P,. Define f : #,, (8) — On
by f(p) is the least ordinal a so that the o' element of &, contains z; but not =z
whenever p € Re,ue, and 0 otherwise. Note that f € HOD;’M(ﬁ) so [f]~ € Ug. Then
Ay, separates 21 from 2.

Let &5 = (Ajp. : [f]~ € Ug). Note that HODZZwl(ﬁ) = DC since V' = DCg. Hence Up
is wellfounded. &5 is a wellordered separating family for Pg.

One has produced a sequence of separating families (3 : f < O) for (Pz : § < O).
Using the wellordering of the ordinals and the wellordering of each &g for 8 < ©, one
obtains, as before, a wellordered separating family S for P = Ua§ s<o Ps-

Now Fact 3.1 and Fact 4.3 imply that there are no Suslin lines. O

Theorem 4.9. ZF + ADT +V = L(Z(R)) - SH.

Proof. This follows from Theorem 4.5, Theorem 4.8, and the comments after Defini-
tion 2.5. O

5. The Solovay model

Woodin has observed that the methods above can be applied to explore the Suslin
hypothesis in the Solovay model. This section will give the details of Woodin’s argument.
Let V denote the ground model satisfying ZFC. Let x be an inaccessible cardinal. Let
Coll(w, < k) be the finite support product of (Coll(w,§) : £ < k). Let G C Coll(w, < k)
be Coll(w, < x)-generic over V. V(RVI]) = HOD“;[UC]%JV[G] is known as the Solovay model
(of an inaccessible cardinal). If k is weakly compact or measurable, one will refer to

the resulting model as the Solovay model of a weakly compact cardinal or measurable
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cardinal. For more about the Solovay model see [13], [7] Chapter 26, [11] Chapter 8, or
[8] Section 11.

In the Solovay model, every set of reals has a code which is a generalization of the
oo-Borel code which allows a parameter from V:

Definition 5.1. Assume V' |= ZFC and & is an inaccessible cardinal. Let G C Coll(w, < &)
be Coll(w, < k)-generic over V. A Solovay code is a triple (v, r, ¢) where v € V., - € RV[C]
and ¢ is formula. The set coded by (v,7,¢) is {z € RV : V[r][z] = o(v,r, z)}.

Fact 5.2. Let V = ZFC and let k be an inaccessible cardinal of V. Let G be
Coll(w, < k)-generic over V. Suppose X € V(RVIC) is a set of reals. Then there is
some v € V, r € RVIC and formula ¢ so that x € X if and only if V[G] k= o(v,r,z).
(The objects @, v, and r are the witnesses to X € V(RVIC]).) Then for all x € RVIC]
x € X if and only if

V[’I"] [x] ): 1Coll(w,<i{) “_Coll(w,<n) QD(’Ev%ﬂf)

Thus every set of reals in V(RV[G]) has a Solovay code. In particular, given the witnesses
to X € V(RV[G]), the above gives an explicit procedure to obtain a Solovay code for X.

Proof. This is a well-known result of Solovay. The following is a brief sketch.

Suppose z € X. So V[G] = ¢(v,r, z). Note that r and x are generic over V since they
belong to some V[G | €] where £ < k and G | ¢ is the induced Coll(w, < &)-generic
over V coming from G. By a crucial property of the Lévy collapse, there is some
H C Coll(w, < ) which is Coll(w, < k)-generic over Vr|[z] so that V[G] = Vr|[z][H].
Therefore, Vr][z][H] = ¢(v,r, ). By the forcing theorem, there is some p € Coll(w, < k)
so that

V[T’} [LE] ': p |FCOU(UJ,<H) (p(,lv}a 7\:7 55)

By the homogeneity of Coll(w, < &),

Now suppose

V[T] [1’] }: ICOH(UJ,<H) IFColl(w,<n) @(i}/’zai’)

As before, there is some H C Coll(w, < ) which is Coll(w, < k)-generic over Vr][z] so
that V[r][z][H] = V[G]. Hence V[G] = ¢(v,r,z). This shows that z € X. O

If x is a measurable cardinals and G C Coll(w, < k) is generic over V, the prelinear
order dichotomy result for the associated Solovay model V(RIS follows by methods
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similar to the arguments in the determinacy setting. This is done by replacing Martin’s
measure with a fine countably complete ultrafilter on &, (R), co-Borel codes with Solo-
vay codes, and the Vopénka forcings with forcing of ODy subsets of R. The following is
a brief sketch of the main modifications.

Subsequently, Woodin’s argument for the prelinear ordering dichotomy theorem for
Solovay models of inaccessible cardinals will be given. This will require more substantial
modifications involving intervals generated by Coll(w, {)-names for reals, where £ < k.

Fact 5.3. Suppose V' |= ZFC and k is a measurable cardinal. Let G C Coll(w, < k) be
Coll(w, < k)-generic over V. In V(RVIC]), there is a fine countably complete ultrafilter
on Z,, (R).

Theorem 5.4. Let V | ZFC and k be a measurable cardinal of V. Let G be
Coll(w, < k)-generic over V. The following holds in V(RVIE!), the Solovay model of
a measurable cardinal:

Let < be a prelinear order on R. Exactly one of the following holds.

(i) There is a perfect set of disjoint closed intervals in <. (That is, this set of intervals
is in bijection with R.)
(ii) There is a wellordered separating family for <.

Proof. This can be proved by a modification of the argument in Theorem 4.2. Let u
denote the fine countably complete ultrafilter on Z,, (R) in V(R"]) given by Fact 5.3.

For each r € RVI¢l and X € 22, (R), let MX denote the model HOD“;L(JR;(/E?T)’X}.

Using replacement in V[G], choose &' € ON so large so that for all » € RVIC and
X € Z,,(R), every ODJ‘%( (ry 5t of reals has a definition whose parameters from V'
are actually from V5. Then choose § > &' so that every (ODy_gr)"[C] set of reals has a
definition whose parameters from V are actually from Vj.

Let < be a prelinear ordering on R in V(RVIE). Let (v,7,¢) be the Solovay code for
= given by Fact 5.2. (By the explicit procedure to produce the Solovay code in Fact 5.2
and the choice of J, one may assume v € V;.) Let O, denote the forcing of ODy,y
subsets of the reals. Let U, denote the sets in O, which are <-downward closed. Using
parameters in Vs, for each X € 2, (R), (O)f-VITX can be coded as a set in V. Hence it may
be considered a forcing in HOD%TT{T}. This forcing still has the basic properties of the
ordinary Vopénka forcing. As V = AC, fix some wellordering of Vs which belongs to V
for the rest of the proof. This wellordering can be used to define a wellordering of Q..

Work in V/(RVIE]). The proof splits into two cases. The following includes some details
of how to handle each case.

(Case I) For all X € 2, (R), for all a,b € RM" with a < b, there exists some

AEU%T)’( witha € A and b ¢ A.
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If fe ng1(R) w1, then [f]~. denotes the equivalence class of f modulo p. For each
[f]~ € HB%I(R) w1/, let Afy . be the set of y € R so that the set of X € Z,, (R) with

the property that y belongs to the f(X)'" element of [Ufnw ’f( according to the wellordering
of O TX (defined from the fixed wellordering of Vy) belongs to pu.

For each [f]~, A[y). is =-downward closed. To see this: Suppose a < band b € Afy_.
Since b € Ay, if K is the set of X € 2, (R) so that b belongs to the f(X)™ set
in UiVITX, then K € p. For any ¢ € R, let O, = {X € Z,,(R) : ¢ € X}. By fineness,
Oa,O0p € p1. Thus KN O, N Oy € p. For any X € K N O, N Oy, one has that a,b € MX.
Hence for all X € K N O, N Oy, a belongs to the f(X)*™ set in inﬁ‘.

Since V(RVI]) = DC and y is countably complete, ngw1 (r)w1/p is a wellordering.
The claim is that {Ay_ : [f]~ € HB%I(R) w1/} is a wellordered separating family.

So see this: Suppose a < b. Define a function f by letting, for each X € 2, (R), f(X)
be the least ordinal « so that the o set in IU,M " contains a but does not contain b.
Such a set exists using the Case I assumption. Then a € Ay and b ¢ Ay .

(Case IT) There exists some X € £, (R), there exist a,b € RM." with a < b so that
forall Ac UM a¢ Aorbe Al

The argument in this case is essentially the same as in Theorem 4.2. It should be
noted that at the beginning of Case II in Theorem 4.2, one defines a condition which in
the present situation would take the form

X
u={(co,c1) € ROM 1 ¢y < ey A(VAYA € UM = (co ¢ AV ey € A))}
. " MX . MX
This definition uses U, " as a parameter. By using Vs as a parameter, O, = and also

MX MmMX
U, " can be identified as sets in V[r]. Hence u is indeed ODy ),y

With these modifications, the results follow. O

Theorem 5.5. (Woodin) Let r be an inaccessible cardinal. Let G C Coll(w, < k) be generic
over V.. Then the following holds in V (RVIC1): Let (R, <) be a dense prelinear ordering
on R. One of the following holds

(i) There is a wellordered separating family for (R, <).
(ii) There is a perfect set of disjoint open intervals for (R, <).

Proof. Work in V(RYI¢). By Fact 5.2, < has a Solovay code (v,7,¢). Without loss of
generality, assume that r € RY. In the remainder of the proof, < will always refer to the
set defined by this Solovay code.

For any £ < k, p € Coll(w, &), and Coll(w,{)-name 7 such that p IF 7 € R, let
Eval(¢, p, 7) be the collection of 7[h] where h € V(RVIC]), h C Coll(w, £) is generic over V/,
and p € h. Let I(£,p,7) be the <-interval generated by Eval(¢, p,7) in V(RVIE]). That
is, xz € I(&, p, 7) if and only if there exists a,b € Eval(§,p, 7) so that a < x < b. Suppose
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g C Coll(w, &) belongs to V(RVIC]) and is generic over V. Let I(¢,7,9) = N{I(&,p,7) :
p € g Aplk T € R}. Note that 7[g] € I(£,T,9).

(Case I) For all £ < k, Coll(w,{)-name 7, and g C Coll(w, &) as above, I(¢,7,g) has
only one =<-class (i.e. the <-class of 7[g]).

Choose A large enough so that for every £ < k, p € Coll(w, £), and Coll(w, £)-name 7
such that p IF 7 € R, there is some Coll(w, {)-name 7" € V) so that p I 7 = 7’. Since
V = AC, use a fixed wellordering of V) to wellorder all (£, p, 7) such that p € Coll(w, §),
7 € V) is a Coll(w, £)-name such that p IF 7 € R.

Suppose a, c € R are such that a < ¢. By density, find some b € R such that a < b < c.
Find some ¢ < &, Coll(w, £)-name 7 € Vi, and g C Coll(w, £) in V(RVIE) so that 7[g] = b.
By the case assumption, there is some p € g so that ¢ ¢ I(£,p, 7). Let A(&,p,7) be the
=-downward closure of Eval(¢,p, 7). Then a € A(&,p,7) but ¢ ¢ A(E,p, 7).

Using the wellordering of the collection of appropriate tuples (£, p,7) from above,
one can wellorder the collection of all appropriate A(E,p, 7). This gives a wellordered
separating family for <.

(Case II) For some ¢ < k, Coll(w,&)-name 7, and g C Coll(w, &) as above, I(£,7,9)
has more than one =-class.

Let R be the canonical homogeneous Coll(w, < )-name for the set of reals of the
Coll(w, < k)-generic extension. By the basic properties of Coll(w,< &), find some
H C Coll(w, < k) which is generic over V[g] such that V[G] = V][g][H]. Note that
V[G] = V[g][H] models that V' (RVI9IIH]) thinks that I(¢, 7, g) has more than one <-class.
Applying the forcing theorem and homogeneity of Coll(w, < k) over V]g], one has that
V[g] models that 1con(w,<x) forces that V(R) thinks I(fv7 7, §) has more than one =-class.
Let ¢ denote the canonical Coll(w, £)-name for the generic filter. Then applying the forc-
ing theorem in V, there is some p* € Coll(w, &) so that V' models that p* forces that
Leoli(w,<x) forces that V(R) thinks I(é%,g) has more than one =<-class. The main ob-
servation is that for any generic h € V(RVI¢) such that p* € h, I(£, 7, h) has more than
one =<-class.

(Claim i) For any p < p*, there exists g1,g2 < p so that (qi1,¢2) IF Tiers < Trignt,
where Tiesr and Tyighe are the canonical Coll(w, §) x Coll(w, §)-name for the evaluation of
7 according to the left and right Coll(w, £)-generic, respectively, added by a Coll(w, ) x
Coll(w, £)-generic filter.

To prove this: Since p < p*, Eval(§,p,7) has representatives from more than one
=-class. Let hy,hy be Coll(w, £)-generics over V containing p and belongs to V (RVIC])
such that =(7[h1] < 7[ha] AT[ha] < 7[h1]). Since Coll(w, &) and Z(Coll(w, £))Y is count-
able in V(RVI]), find some h C Coll(w,£) generic over V, belonging to V(RVIC]),
contains p, and such that hy; x h and hg x h are Coll(w, &) x Coll(w, £)-generic over V.
Since —(7[h1] =< 7[h2] A T[ha] =< 7[h1]) means that 7[hi] and 7[hz] are in two distinct
=<-classes, 7[h] must not belong to the <-class of 7[h;] or 7[ha]. Without loss of general-
ity, suppose 7[h] does not belong to the =<-class of 7[hi] and in fact 7[h;] < 7[h]. (The
argument for the other possibilities are similar.) By the forcing theorem, there exists
(¢1,92) < (p,p) so that (g1, ¢2) IF Tieft < Tright- This proves Claim i.
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(Claim ii) Suppose (p1,p2) < (p*,p*) and (p1,p2) IF Tiett < Tright- Then for all a €
Eval(¢, 7,p1) and all b € Eval(¢, 7, p2), one has that a < b.

To prove this: Let hy and hy be Coll(w, £)-generic filters over V' so that p; € hy,
p2 € ho, a = 7[h1], and b = 7[hs]. Let

Dy ={q € Coll(w,&) : ¢ <p1 A 3¢ )¢ <p1 A, ¢) IF Tiete < Tright) }
Dy ={q € Coll(w,&) : ¢ <p2A3¢)(q" <p2 A (¢, ) IF Tiete < Tright)}-

Claim i implies that D; and D5 are dense below p; and ps, respectively. Since py € hq,
p2 € hg, genericity implies there are some r; € D1 N hy and so € Do N hy. Hence there
is some ro < p1 and s1 < pa so that (r1,72) IF Tt < Tright and (s1, 52) IF Tieft < Trighs-
Let k1 C Coll(w,£) and ko C Coll(w, €) belong to V(RVIC]) and be such that k; x ky,
h1 X k1, and kg X hy are Coll(w, &) x Coll(w, §)-generic over V' with (r1,7r2) € hy X k;
and (s1,82) € ko X hg. Since ro < p; and s1 < po, (r2,51) € k1 X ko implies that
(p1,p2) € k1 X ko. Hence 7[k1] < 7[kz]. Since (r1,72) € hy1 X ka, T[h1] < 7[k1]. Since
(s1,82) € ko X ha, T[k2] < 7[hg]. Hence 7[h1] < 7[k1] < 7[k2] < 7[h2]. This show
a = 7]h1] < 7[hg] = b. This completes the proof of Claim ii.

(Claim iii) Suppose g1 X g2 is Coll(w, &) x Coll(w, £)-generic over V and contains
(p*,p"). Then =(7[g1] = 7[g2] A 7[g2] = 7[g1])-

To prove this: If not, there is some (p1,p2) € ¢1 X ¢1 so that (p1,p2) F Terr =
Tright A Tright = Tle- By Claim ii, there is some (¢1,g2) = p1 so that (¢1,¢2) IF Tiery, <
Tyight- Let k1, ko C Coll(w, ) be such that (¢1,q2) € k1 x ko and ki X ko, k1 X go, and
ko X go are Coll(w, &) x Coll(w, £)-generic over V. Note that (¢1,¢2) € k1 X ko implies
that 7[k1] < T[ke]. (p1,p2) € k1 X g2 and (p1,p2) € ka2 X go implies 7T[g2] < 7[k1] and
T[k2] = 7[g2]. Hence 7[k3] < 7[k1]. Contradiction. This proves Claim iii.

Now suppose g1 X g is Coll(w, &) X Coll(w, £)-generic over V such that (p*, p*) € g1 X ga.
By Claim iii, without loss of generality, one may assume that 7[g1] < 7[g2]. Then there
is some (p1,p2) € g1 X g2 such that (p1,p2) < (p*,p*) and (p1,p2) IF ey < Tright- Claim
ii implies that every element of Eval({,p1,7) is less than any element of Eval(¢, pa, 7).
Thus I(¢,7,91) NI(&,7,92) = 0.

By the usual argument, one can construct, within V(RVI¢!), a perfect set of mutual
Coll(w, &)-generic filters over V' containing p*. This yields a perfect set of open intervals
in (R, <). This completes the proof. O

Fact 5.6. Let V = ZF and k be a weakly compact cardinal of V. Let G be
Coll(w, < k)-generic over V. There are no Aronszajn trees on a wellorderable set in
the Solovay model V (RVIC).

Proof. Suppose T is an ws-tree in V(RV[G]). Since T' is an w;-tree on a wellorderable set,

one may assume that the underlying domain of the tree T is wy. The tree T is ODK&G{L}

for some r € RVIS], Using the homogeneity of Coll(w, < &) as in the proof of Fact 5.2,
one can show that T € V[r]. In V[r], T is a s-tree. However r € V|G | £] for some & < &.
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Since |Coll(w, < €)|V < k and a forcing smaller than x preserves the weak compactness
of k, V[r] still thinks & is weakly compact. (See [7] Theorem 21.2 and Lemma 9.26 for
this basic forcing fact.) Using the tree property in V|r|, there is a branch through T'. By
absoluteness, it is still a branch in V(RVIC]). O

Theorem 5.7. (Woodin) Let V = ZFC and k be a weakly compact cardinal of V. Let G
be Coll(w, < k)-generic over V. V(RVIC]) = SH.

Proof. Let (P, <) be a complete dense nonseparable linear ordering without endpoints
in V(RVIE]). There is some s € RV w € V, and formula ¢ witnessing (P, <) is OD,, .
Choose V) so large that every element of P is OD, , s for some v € V) and r € RVICT,

By fixing a wellordering B of V), and a wellordering of the formulas, one can define a
surjection from ® : A Xx R — P where A is some ordinal. Modify ® if necessary to ensure
that for any two points of x,y € P, there are cofinal in A many a’s so that there are
a,b € R with ®(a,a) = z and ®(«, b) = y. This map is ordinal-definable from s, w, Vj,
and B.

For a < A, let P, = {®(a,r) : 7 € RVIC}. Let (P,, <) be the linear ordering
resulting from the restriction of <. Let (Qn, ) be the prelinear ordering on R induced
by ¥, : R — P, defined by ¥,(r) = ®(«,r). The witness to each (Qn,C) being
ordinal-definable in V), s, w, B is obtained uniformly. Hence Fact 5.2 gives uniformly
the Solovay codes for each (Qn, Z). The proof of Case I in Theorem 5.5 gives a uniform
sequence of wellordered separating families for each (Q,,C). Collapsing, one obtain a
uniform sequence &, of separating family for each (P,, <). Using the wellordering of A
and the wellordering of each &,, one can define a wellordered separating family for (P, <)
just as in Theorem 4.5.

Fact 4.3 and Fact 5.6 imply that there are no Suslin line. 0O

Fact 5.8. (ZFC) Let x be a cardinal and T be a k-Suslin tree. If P is a forcing with |P| < &,
then in P-generic extensions, T has no branches and no k-sized antichains.

Proof. This is a well known result that small forcing can not kill a x-Suslin tree.

One may assume that (7, <) is a tree on k. Let G C P be P-generic over V. Suppose
B is a branch of T in V[G]. Let p € G and B be a P-name so that B[G] = B and p forces
that B is a branch. Fix some r <p p. For each o < &, let Ey = {geP:qg<prAqlep
& € B}. Since |P| < r, there is some ¢ <p r so that C9 = {a : ¢ € E,} is size x. Let
D={qeP:q<ppA|C? = k}. The above argument showed that D is dense below
p € G. By genericity, let ¢ € GN D. Then B € V since B is the < downward closure
of C'4. Contradiction.

P does not add any k-sized antichains is proved similarly. O

Fact 5.9. (ZF) If there is a Suslin tree on a wellorderable set, then there is a Suslin line.
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Proof. This is the usual argument with some details provided to see that no choice is
needed. See [7] Chapter 9 for the definition of a normal Suslin tree.

If a Suslin tree is on a wellorderable set, one may assume the Suslin tree is on wj.
Given a Suslin tree on wy, one can produce a normal Suslin tree on w; in ZF. (See the
construction in [7] Lemma 9.13.) Let T' = (w1, <) be a normal Suslin tree on w;.

Let m : w — Q be a fixed bijection of w with Q, the set of rationals numbers. One
property required of a normal Suslin tree is that for each = € T, x has countably infinite
many immediate sucessors. Let S, denote the set of immediate successors of = in T'.
Since S; C wq, Sy is in bijection (via the Mostowski collapse map) with its ordertype
which is some countable ordinal w - v 4+ n where v < w; and n € w. By moving the
n-many points to the front, S, is uniformly in bijection with w - v. S, is now uniformly
in bijection with @Q x v (which comes from apply 7 to each w-block). Q x v can be given
the reverse lexicographic ordering where QQ has its usual dense linear order structure.
Pulling this ordering back to S, one has uniformly defined a dense linear ordering <,
on S;. (Individually, (S, <) is isomorphic to Q but this isomorphism can not be found
uniformly in z.)

Let L be the collection of maximal branches in T' = (w1, <). If B € L is a maximal
branch, for « less than the length of B, let B(«) be the element of B that belongs to
the a? level of T. Now suppose B,C € L and B # C. Note that B can not be an initial
segment of C' or the other way around since both are maximal branches. Let ec p denote
the least level a so that B(a) # C(a). Another requirement of being a normal Suslin
tree is that for each limit level 4, if x,y belong to level § and have the same <-initial
segment in 7', then x = y. This implies that if B # C, then ec,p must be a sucessor
ordinal. Let zp ¢ denote the common immediate predecessor of B(ep ¢) and C(ep,c).
Finally, define B<C if and only if B # C and B(ep,c) <. . C(ep,c), where recall that

<.p.c is the dense linear ordering of S which is the collection of immediate sucessor

zZB,C
of zp,c. It can be checked that (L,<) is a linear ordering.

For each © € wy, let I, = {B € L : x € B}. Note that I, is an open interval. Suppose
B<C. Then B(ep,c) <:p. Clep,c). Since (Sz5 o) <z5.) is a dense linear ordering, find
some x € S, . sothat B(ep,c) <:p.c T <25 C(eB,c). One can check that I, C (B, C),
where (B, C) refers to the open interval in (L, <) determined by B and C.

It has been shown that for any open interval (B, C), there is some x € w; so that
I, C (B, C). This implies that (L,<) is a dense linear ordering.

If I, and I, are disjoint, then one has that « and y are incomparable in (7', <). Suppose
£ is a family of disjoint open intervals. For each open interval K € &, let xx denote the
least & € w; so that I, C K which exists by the above observation. Thus {zx : K € £}
is an antichain in 7. Since T is a Suslin tree, this collection must be countable. Thus £
must be countable. So (L, <) has the countable chain condition.

Let D C L be a countable set. Let § < w; be the supremum of the length of all the
maximal branches in D. Let x € T be some element of T on a level higher than §. Then
I, is an open interval disjoint from D. (L, <) is not separable. O
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Fact 5.10. (Jensen) In L, if k is a reqular uncountable non-weakly compact cardinal, then
there is a k-Suslin tree.

Fact 5.11. Suppose k is an inaccessible cardinal which is not weakly compact in L. Let
G C Coll(w, < k) be generic over V. The Solovay model L(R¥C1) has a Suslin tree on
w1 and hence a Suslin line.

Proof. By Fact 5.10, let (T,<) € L be a s-Suslin tree in L. In L(RC) (T, <) is
an wi-tree. If (T, <) fails to be a Suslin tree, then there an uncountable branch or
uncountable chain. This object is OD, for some r € RLC]. As this object is a set of
ordinals, a homogeneity argument shows that it belongs to L[r]. This real r belongs to
a Coll(w, &)-generic extension for some ¢ < k. This object is then a k-sized branch or
antichain in L[r]. However, Fact 5.8 implies that (T, <) is still a x-Suslin tree in L[r].
Contradiction.

Thus (7, <) is a Suslin tree in L(RC]). By Fact 5.9, there is a Suslin line in
L(RMC), o

Theorem 5.12. Suppose V |= ZFC and k is an inaccessible cardinal of V. Let G C
Coll(w, < &) be Coll(w, < k)-generic over V. The Solovay model V(RVIE!) has a Suslin
line if and only if V(RVIC]) has a Suslin tree on w;.

Proof. This follows from Fact 4.3, Theorem 5.5, and Fact 5.9. O
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