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Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a

background which varies only in a single direction, we here study the electromagnetic stress tensor in a

medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-

space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial

point splitting, which have a universal character for both transverse electric and transverse magnetic modes.

The nature of the divergences depends on the model of dispersion adopted. And there are singularities

occurring at the edge between the dielectric and vacuum regions, which also have a universal character,

depending on the structure of the discontinuities in the material properties there. Remarks are offered

concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in

separating “bulk” and “scattering” parts of the stress tensor is discussed.
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I. INTRODUCTION

Most studies of the Casimir effect deal with quantum

fluctuation forces between rigid bodies separated by vac-

uum. Such forces are finite and can be calculated exactly, in

principle. (For reviews, see, for example, [1–3].) Casimir’s

original configuration was that of perfectly conducting plates

in otherwise empty space [4]. This was generalized by

Lifshitz to dielectric slabs, but again they were separated by

vacuum [5]. The addition of Dzyaloshinskii and Pitaevskii

was essential to the replacement of the intervening vacuum

by a homogeneous medium [6]. The resulting theory has

been remarkably successful, and was confirmed by the

verification of the attractive force of a helium film by a

substrate [7,8], well before the modern demonstration of the

vacuum Casimir force [9]. The theory has been applied to a

wide variety of fields [10–15].

The local Casimir energy density and other components

of the stress tensor have also been intensively investigated.

These exhibit well-known behaviors near the surfaces of

the bodies. (For a review of some of the literature on this,

see Ref. [16].) This is relevant, not only for a deeper

understanding of the Casimir force, but fundamentally for

the coupling to gravity; in simple contexts, the local

Casimir stress tensor has been shown to be consistent with

the equivalence principle, including the divergent contri-

butions [17]. Consistent results for finite Casimir stress

tensor components were earlier obtained in Refs. [18,19].

At least formally, separating rigid bodies by a uniform

dielectric leads to no difficulties in computing vacuum

forces, and even dispersion can be incorporated, although

including dissipation may present challenges. However, the

situation is much less clear when the bodies are immersed in

an inhomogeneous medium. There have been various

attempts to describe Casimir forces with nonuniform dielec-

trics [20–22]. The most ambitious treatment of the inho-

mogeneous electromagnetic Casimir problem seems to be

that of Griniasty and Leonhardt [23,24], who examine the

local stress tensor and propose a specific renormalization
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scheme to remove the divergences that occur in such

circumstances. For the case of a one-dimensional slab with

a dielectric response that varies smoothly except for a

discontinuity in the slope as one enters the material, they

find a universal singularity behavior in the normal-normal

component of the vacuum expectation value of the stress

tensor at the boundary between vacuum and the dielectric.

For some years we have been investigating similar

issues, but in the scalar field context [25–28]. In particular,

using a WKB analysis, we identified the universal Weyl

divergences in the stress tensor components for an arbitrary

semi-infinite slab described by a potential vðzÞ, where z is
the distance into the slab. For particular cases (a linear or a

quadratic wall) we also examined how the remainder of the

stress tensor, after the divergent and growing terms are

removed, behaves near the edge. In this connection the

work of Mazzitelli et al. should be mentioned [29,30]. (For

more references, see the appendix of Ref. [27], and also

Ref. [31], which should have been included there.) Very

recently, we have made further progress in understanding

how the divergences are to be renormalized [32].

In the present paper, inspired by the remarkable results of

Ref. [24], we generalize our considerations [25–28] of the

local stress tensor in one-dimensional geometries to the

electromagnetic case, in which the role of the potential is

played by the permittivity. More precisely, the deviation of

the permittivity from its vacuum value will be referred to

as the potential in this paper. In the next section, we review

the difficulty of formulating the stress tensor in inhomo-

geneousmedia, and derive the nonconservation law satisfied

classically by the spatial stress tensor. In Sec. III we show

how the Green’s dyadic for this problem breaks up into

transverse electric (TE) and transverse magnetic (TM) parts.

We also write down the construction of the various compo-

nents of the stress tensor in terms of the TE and TMGreen’s

functions. This also includes the correct dispersive factor for

the energy density [33].

The generic setup of the problem is given in Sec. IV,

including the breakup of the Green’s functions into “scatter-

ing” and “bulk” parts, referring to the contributions from the

outgoing wave and incoming wave contributions. This

breakup, of course, is not unique. An example, the reflec-

tionless potential considered in Ref. [24], is treated some-

what more generally in Sec. VA. There we show, using the

uniform (Debye) asymptotic expansions for the modified

Bessel functions, that there are two types of singularities in

the normal-normal component of the stress tensor occurring

at the edge between thevacuumanddielectric region: a cubic

singularity if there is a discontinuity in the permittivity, and a

quadratic one (coinciding with that found in Ref. [24]) if

only the derivative of the permittivity is discontinuous. We

also show that the bulk term (the term independent of the

reflection coefficient) contains the expected leading Weyl

divergence, as well as further divergences involving the

potential, which are regulated by point splitting.

A second example for which the TE and TM Green’s

functions may be exactly found is given in Sec. V B. The

same edge behavior is found as in Sec. VA for the

continuous case. This behavior is evidently universal, as

claimed by Ref. [24], and we demonstrate that explicitly in

Sec. VI A, using a general perturbative expansion of the

Green’s functions. All of the above neglects dispersion. In

Sec. VI B we discuss the more realistic plasma model, which

results in the elimination of the edge singularity in the

normal-normal stress, but yields the divergence structure for

the bulk contribution coinciding with that for the scalar case

considered in Ref. [28]. For the plasma model of dispersion,

the TE Green’s function is identical with the scalar one.

Other components of the stress tensor are considered in

Sec. VII. Again, for the plasma model, the divergences

arising from the bulk term in the Green’s function coincide

with those found for the scalar situation for both TE and

TM modes, and the edge singularity for the TE mode for

the energy density coincides with that found for the

canonical scalar energy density in Ref. [28], while the

TM mode has a different numerical coefficient.

The breakup into bulk and scattering parts is not unique,

because we can always add an arbitrary admixture of the

exponentially suppressed fundamental solution to the

exponentially growing one. We attempt to explore this

further in Sec. VIII, for the TE mode, which can be exactly

solved for a potential that depends on the z coordinate

linearly. Numerically, we show that the scattering part of

the energy density and the normal-normal component of

the stress tensor rapidly go to zero as the dielectric is

penetrated, the former exhibiting the expected edge singu-

larity. If an admixture of the first solution is added to

the second, the edge singularities do not change, but the

behavior inside the dielectric is altered. However, the mixed

solution still tends to zero as one goes deeply within the

material. Only if the scattering part of theGreen’s function is

completely suppressed (a set of measure zero in parameter

space) does the qualitative (and quantitative, for the diver-

gences and edge singularities) behavior change.

We finally consider a situation with mirror symmetry

in Sec. IX. Here we consider two reflected potentials

meeting at z ¼ 0 so there is no vacuum region. In this

case, not surprisingly, the edge singularity is doubled.

Concluding remarks are offered in Sec. X. In Appendix A

we explain the point-split regulation we use in this

paper, while in Appendix B we develop the perturbation

theory for a potential which is both continuous and has a

continuous first derivative, but where the second derivative

is discontinuous.

In this paper we use Heaviside-Lorentz electromagnetic

units, and ℏ ¼ c ¼ 1.

II. FORCE ON DIELECTRIC

From the Maxwell-Heaviside equations we can derive

the statement of electromagnetic momentum conservation.

PRACHI PARASHAR et al. PHYS. REV. D 97, 125009 (2018)

125009-2



We follow Sec. 7.1 of Ref. [34]. Equation (7.10) there

says that

fþ ∂

∂t
G ¼ −Di∇Ei þ ∇ · ðDEÞ − Bi∇Hi þ ∇ · ðBHÞ;

ð2:1Þ

where

f ¼ ρEþ j ×B ð2:2Þ

is the force density on the charged particles, and the field

momentum is

G ¼ D ×B: ð2:3Þ

Here, a summation convention is used for repeated indices,

and ρ and j are the free charge and current densities.

To what extent is the right side of Eq. (2.1) the negative

of a total divergence, −∇ · T, which would imply a local

conservation law of momentum? As usual it is convenient

to do a Fourier (frequency) transform of the fields (we will

here suppress the spatial coordinates), assuming a linear

medium. For the electric fields

EðtÞ ¼
Z

dω

2π
e−iωtEðωÞ;

DðtÞ ¼
Z

dω

2π
e−iωtεðωÞ ·EðωÞ; ð2:4Þ

where we have introduced a frequency-dependent permit-

tivity tensor, εðωÞ, which we allow to be spatially varying.

Similarly for the magnetic fields,

HðtÞ ¼
Z

dω

2π
e−iωtHðωÞ;

BðtÞ ¼
Z

dω

2π
e−iωtμðωÞ ·HðωÞ; ð2:5Þ

where μðωÞ is the frequency-dependent permeability. We

now take the average over a time T large compared to atomic

timescales but short compared to macroscopic times, so the

dyadic product can be written, for example, as

DðtÞEðtÞ ¼ 1

T

Z

dω

2π
½εðωÞ ·EðωÞ�EðωÞ�: ð2:6Þ

Then, in the absence of dissipation, we use the Hermiticity

property arising from the reality of the constitutive relations

in spacetime, εijðωÞ ¼ εjið−ωÞ ¼ εjiðωÞ�.1 If the permit-

tivity and permeability were independent of position, there

would be an averaged macroscopic stress tensor,

T ¼ 1

T

Z

dω

2π

�

1

2
½DðωÞ� ·EðωÞ þBðωÞ� ·HðωÞ�

− DðωÞ�EðωÞ −BðωÞ�HðωÞ
�

: ð2:7Þ

However, if the electrical properties depend on position, this

is not the case, but, rather, the right side of Eq. (2.1) would be

− ∇ · Tþ 1

2T

Z

dω

2π
½EiðωÞ�ð∇εijðωÞÞEjðωÞ

þHiðωÞ�ð∇μijðωÞÞHjðωÞ�: ð2:8Þ

For a recent review concerning electromagnetic stress

tensors see Ref. [35].

For example, consider a dielectric body (μ ¼ 1)

immersed in a static classically imposed electric field.

Because there is no time dependence and no free charge,

we have

∇ · T ¼ 1

2
trEEð∇Þε; ð2:9Þ

where the trace is over the tensor indices, and the notation

ð∇Þ is a reminder that the free vector index is on the

gradient operator. Suppose the body, which need not be

homogeneous, is immersed in a homogeneous medium of

permittivity ϵ. The force on the body is the momentum flux

into the body,

F ¼ −

I

S

dS · T; ð2:10Þ

since the local momentum conservation law holds there,

where S is a surface that entirely surrounds the body. By the

divergence theorem

F ¼ −

Z

V

ðdrÞ∇ · T ¼ −
1

2

Z

V

ðdrÞtrEEð∇Þε; ð2:11Þ

where the spatial integral is over the interior of the body

(because the permittivity is constant outside the body). This

is a generalization of the familiar formula for the force on a

dielectric, Eq. (11.44) of Ref. [34], to which it reduces for

the isotropic case.

We can immediately generalize this to the Casimir force

by replacing in Eq. (2.8)

hEðωÞEðω0Þ�i ¼ 2πδðω − ω0Þ 1
i
ΓðωÞ; ð2:12Þ

in terms of the Green’s dyadic Γ, so that the dispersion

force on the dielectric body is

FCas ¼ −
1

2i

Z

ðdrÞ
Z

dω

2π
trΓðr; r;ωÞð∇Þεðr;ωÞ: ð2:13Þ

1
That is, ε† ¼ ε. This cannot be true if dissipation is present. In

that case, if we suppose ε is symmetric, ℜε and ℑε are then both
diagonalizable, but in different bases.
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Here we have identified 2πδð0Þ with the averaging time T.
In particular, if the body has a homogeneous dielectric

constant ε ≠ ϵ, then

∇ε ¼ −ŝðε − ϵÞδðs − s0ðr⊥ÞÞ; ð2:14Þ

where the surface of the body is given by s ¼ s0ðr⊥Þ, in
terms of a coordinate s (outwardly) normal to the surface.

The other coordinates are denoted by r⊥. (For the case of a

planar body in the x-y plane, s ¼ z.) Thus the Casimir force

on the body is given by an integral over the surface of the

body,

FCas ¼
1

2i

I

S

dS

Z

dω

2π
trðε − ϵÞðr;ωÞΓðr; r;ωÞ: ð2:15Þ

Again, this is an obvious generalization of known formulas.
2

The general form for the nonconservation of the vacuum

expectation value of the electromagnetic stress tensor in a

medium is

∇ · hTðrÞi ¼ 1

2i

Z

dω

2π
trΓðr; r;ωÞð∇Þεðr;ωÞ; or

∂jhTjiiðrÞ ¼
1

2i

Z

dω

2π
Γjkðr; r;ωÞ∂iεkjðr;ωÞ: ð2:16Þ

This is, of course, quite analogous to the nonconservation

equation satisfied by the stress tensor for a scalar field in a

background potential [28].

III. GREEN’S FUNCTIONS

In this paper we will consider planar situations in which

the permittivity εðzÞ and the permeability μðzÞ depend only
on a single coordinate z. We will also allow ε and μ to

depend on frequency. For simplicity, we will henceforth

assume that ε and μ are isotropic. It is also convenient to

make a Euclidean transformation ω → iζ. The general

Green’s dyadic obeys an equation which follows from

the Maxwell-Heaviside equations,

�

−
1

ζ2
∇ ×

1

μ
∇ × −ε1

�

· Γ ¼ 1; ð3:1Þ

which breaks into two modes, TE and TM modes, denoted

by two scalar Green’s functions labeled by E and H,

respectively. These satisfy the differential equations

�

−
∂

∂z

1

μ

∂

∂z
þ k2

μ
þ ζ2ε

�

gEðz; z0Þ ¼ δðz − z0Þ; ð3:2aÞ

�

−
∂

∂z

1

ε

∂

∂z
þ k2

ε
þ ζ2μ

�

gHðz; z0Þ ¼ δðz − z0Þ: ð3:2bÞ

The spatial Fourier components of Γ, defined by

Γðr; r0Þ ¼
Z ðdk⊥Þ

ð2πÞ2 eik⊥·ðr−r0Þ⊥γðz; z0Þ; ð3:3Þ

are given in terms of these two scalar Green’s functions, in

the coordinate system where k⊥ has only a component in

the x direction (we drop the z, z0 dependence of gE and gH):

γðz;z0Þ

¼

0

B

B

@

1

ε
∂z

1

ε0
∂z0g

H−
1

ε
δðz−z0Þ 0

ik

εε0
∂zg

H

0 −ζ2gE 0

−
ik

εε0
∂z0g

H 0
k2

εε0
gH−

1

ε
δðz−z0Þ

1

C

C

A

:

ð3:4Þ

Here ε ¼ εðzÞ, ε0 ¼ εðz0Þ. These are just as given in

Refs. [1,36].

The Fourier-transformed electromagnetic stress tensor

may also be given in simple form in terms of these two

scalar Green’s functions. For example, the zz component of

the reduced stress tensor is simply

tzzðzÞ ¼
1

2ε0
½∂z∂z0 − ðk2 þ ζ2ε0μÞ�gH

þ 1

2μ0
½∂z∂z0 − ðk2 þ ζ2εμ0Þ�gE; ð3:5Þ

where after differentiation, the limit z → z0 is understood.
Let us also record the other diagonal components of the

reduced stress tensor. First, the energy density, which must

include the dispersive factors, is

t00ðzÞ ¼
1

2

dðζεÞ
dζ

�

1

ε
∂z

1

ε0
∂z0g

H − ζ2gE þ k2

εε0
gH

�

þ 1

2

dðζμÞ
dζ

�

1

μ
∂z

1

μ0
∂z0g

E − ζ2gH þ k2

μμ0
gE
�

:

ð3:6Þ

To preserve the symmetry between the transverse compo-

nents of the reduced stress tensor, we rotate γ to a general

coordinate system. Doing so does not affect t00 and tzz, but
yields after using the equations of motion (3.2)

txxðzÞ¼
1

2ε0

�

−
k2x−k2y

k2
ð∂z∂z0 þζ2ε0μÞþk2

�

gH

þ 1

2μ0

�

−
k2x−k2y

k2
ð∂z∂z0 þζ2εμ0Þþk2

�

gE; ð3:7aÞ

2
For example, for the case of a dielectric ball, this formula

leads immediately, upon use of the orthogonality relations for the
vector spherical harmonics given in Ref. [34], p. 534, to the
expression (5.19) for the total outward stress given in Ref. [1].
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tyyðzÞ¼
1

2ε0

�

−
k2y−k2x

k2
ð∂z∂z

0þζ2ε0μÞþk2
�

gH

þ 1

2μ0

�

−
k2y−k2x

k2
ð∂z∂z0 þζ2εμ0Þþk2

�

gE: ð3:7bÞ

There are also off-diagonal terms, linear in kx or ky, which

would vanish upon regulated integration, if that regulation

respects the two-dimensional rotational symmetry of the

problem. Such a regulator reduces txx and tyy to

txx ¼ tyy ¼
k2

2

�

1

ε
gH þ 1

μ
gE
�

: ð3:8Þ

The four-dimensional trace

t
μ
μ ¼ tzz þ txx þ tyy − t00

¼ −
1

2

ζ

ε

dε

dζ

�

1

ε0
ð∂z∂z0 þ k2ÞgH − ζ2εgE

�

−
1

2

ζ

μ

dμ

dζ

�

1

μ0
ð∂z∂z0 þ k2ÞgE − ζ2μgH

�

ð3:9Þ

is zero if there is no dispersion.

IV. GENERIC PLANAR PROBLEM

To save typographical space, we use comma-separated

notation, ðμ; εÞ and ðE;HÞ, to write the TE and TM mode

expressions in the following. We can construct the Green’s

functions from the solutions of the homogeneous equations

�

−∂z

1

μ; ε
∂z þ

k2

μ; ε
þ ζ2ðε; μÞ

��

FE;H

GE;H
¼ 0: ð4:1Þ

Here we take F to denote a solution that does not diverge

for z → ∞ (typically goes to zero), while G is an arbitrary

independent solution. The Wronskian of these two solu-

tions is

wðzÞ ¼ FðzÞG0ðzÞ −GðzÞF0ðzÞ: ð4:2Þ

We want to solve the Green’s function equations (3.2) in

terms of these solutions, for the situation of a “soft wall,”

where

μðzÞ; εðzÞ ¼
�

1; z < 0;

μ̃ðzÞ; ε̃ðzÞ; z > 0.
ð4:3Þ

The solutions are (κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2
p

)

gE;Hðz; z0Þ ¼

8

>

>

<

>

>

:

1

2κ
½e−κjz−z0j þ RE;Heκðzþz0Þ�; z; z0 < 0;

1

αE;H
½FE;Hðz>ÞGE;Hðz<Þ þ R̃E;HFE;HðzÞFE;Hðz0Þ�; z; z0 > 0.

ð4:4Þ

Here, the constant α is related to the Wronskian by

αE;H ¼ wE;HðzÞ
μ̃ðzÞ; ε̃ðzÞ : ð4:5Þ

The reflection coefficients are determined by requiring that

gE:H be continuous at z ¼ 0, and that 1
μ;ε

∂zg
E;H also be

continuous there. This corresponds to the continuity of

ẑ × E and ẑ ·B, and of ẑ ×H and ẑ ·D. (Imposing

these matching conditions requires the form of the

Green’s function for z> > 0 > z<, not displayed here.)

The consequence is

RE;H ¼
κFE;Hð0Þ þ 1

μ;ϵ
FE;H0ð0Þ

κFE;Hð0Þ − 1
μ;ϵ

FE;H0ð0Þ ð4:6Þ

and

R̃E;H ¼ −
κGE;Hð0Þ − 1

μ;ϵ
GE;H0ð0Þ

κFE;Hð0Þ − 1
μ;ϵ

FE;H0ð0Þ : ð4:7Þ

Here μ ¼ μ̃ð0Þ, ϵ ¼ ε̃ð0Þ.

In the above construction,G is completely arbitrary, save

that it is a solution, independent of F, to the differential

equation (4.1). Therefore, the reflection coefficient R̃ is

not unique, and indeed can be made equal to zero by the

replacement G → G − R̃F. To have a unique reflection

coefficient, we need a condition to determine the form

ofG. Such is supplied by imposing a boundary condition at

z → −∞, even though this is outside the region z; z0 > 0

where the construction (4.4) holds. That is, assuming the

continuous functions ε̃ðzÞ, μ̃ðzÞ hold in all space, so there is
no discontinuity, wewill henceforth chooseG subject to the

boundary condition

z → −∞∶ GE;H
→ 0: ð4:8Þ

Then the reflection coefficient is uniquely defined.

[These boundary conditions as stated here are somewhat

schematic; the specific conditions at �∞ depend on the

structure of εðzÞ.]
The stress in the vacuum region, to the left of the wall

(z < 0), is immediately calculated from Eq. (3.5):
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z < 0∶ tE;Hzz ¼ −
κ

2
; ð4:9Þ

which is independent of z, the term involving the reflection

coefficient having canceled out. This is universally recog-

nized as an irrelevant bulk term, since it has no contribution

from the wall, and would be present if vacuum filled all

space, so it is to be omitted.

It is the assertion of Ref. [24] that the same omission is to

be done for the contribution to the stress tensor coming

from the part of the Green’s function in the z > 0 region

that is not proportional to the reflection coefficient: in

particular, they advocate omitting the stress tensor con-

tribution arising from the term 1
α
Fðz>ÞGðz<Þ in the Green’s

function (4.4), even though it is spatially varying, because

this term would be there in the absence of the edge at z ¼ 0.

This hypothesis may be suspect, but we will follow it for

the moment.

V. EXACTLY SOLVABLE EXAMPLES

Now we examine two cases where both the TE and TM

modes may be explicitly given. In the first example, the

permittivity has a singularity at a finite value of z, which is

the natural boundary of the problem, and in the second the

permittivity has an exponential behavior.

A. Inverse square permittivity

Let us consider a planar medium described by

a > z > 0∶ μ̃ ¼ 1; ε̃ðzÞ ¼ λ

ða − zÞ2 ; ð5:1Þ

whichhas a singularity at z ¼ a. [This is a slightly generalized
version of the medium considered in Ref. [24], where the

potential was continuous, so ϵ≡ ε̃ð0Þ ¼ λ=a2 ¼ 1.] Because

of that singularity, the right side of the wall has a finite

depth, 0 < z < a; the region z > a is completely discon-

nected from the region containing the wall. This potential

has the virtue of allowing explicit solutions:

FE;H ¼ ða − zÞ�1=2Iνðkða − zÞÞ;
GE;H ¼ ða − zÞ�1=2Kνðkða − zÞÞ; ð5:2Þ

where

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λζ2 þ 1

4

r

;
1

αE;H
¼ 1; λ: ð5:3Þ

Here F is chosen to be finite as z → a. Indeed, Iνð0Þ ¼ 0,

Kνðþ∞Þ ¼ 0, consistent with the criteria stated in the

previous section. Then the reflection coefficients in the

medium are

R̃E;H ¼ −

ka
1;ϵ

K0
νðkaÞ þ ðκa� 1

2ð1;ϵÞÞKνðkaÞ
ka
1;ϵ

I0νðkaÞ þ ðκa� 1
2ð1;ϵÞÞIνðkaÞ

: ð5:4Þ

The scattering part of the zz component of the reduced

stress tensor (the part proportional to the reflection coeffi-

cients) is

ts;E;Hzz ðzÞ ¼ 1

2
R̃E;H

�

−

�

k2ða − zÞ þ λζ2 − 1=4

a − z

�

I2νðkða − zÞÞ

þ k2ða − zÞI02ν ðkða − zÞÞ

� kIνðkða − zÞÞI0νðkða − zÞÞ
�

: ð5:5Þ

As we wish to examine the stress just inside the wall,

we can use the uniform asymptotic expansion (UAE) for

the Bessel functions, because it captures the short-distance

behavior [37]. That expansion is, as ν → ∞,

IνðνZÞ∼
1
ffiffiffiffiffiffiffiffi

2πν
p eνηðZÞ

ð1þZ2Þ1=4
�

1þ
X

∞

k¼1

ukðtÞ
νk

�

;

KνðνZÞ∼
ffiffiffiffiffi

π

2ν

r

e−νηðZÞ

ð1þZ2Þ1=4
�

1þ
X

∞

k¼1

ð−1ÞkukðtÞ
νk

�

; ð5:6aÞ

I0νðνZÞ∼
1
ffiffiffiffiffiffiffiffi

2πν
p eνηðZÞ

ð1þZ2Þ1=4
Z

�

1þ
X

∞

k¼1

vkðtÞ
νk

�

;

K0
νðνZÞ∼−

ffiffiffiffiffi

π

2ν

r

e−νηðZÞ
ð1þZ2Þ1=4

Z

�

1þ
X

∞

k¼1

ð−1ÞkvkðtÞ
νk

�

;

ð5:6bÞ

where uk and vk are polynomials in t ¼ ð1þ Z2Þ−1=2. The
first of these are

u1ðtÞ ¼
1

24
ð3t − 5t3Þ; v1ðtÞ ¼

1

24
ð−9tþ 7t3Þ: ð5:7Þ

All we need to know about the functions in the exponents is

the derivative:

η0ðZÞ ¼ 1

Zt
: ð5:8Þ

If we retain only the leading factor in the UAE the

reflection coefficients are approximately

R̃E;H ∼ −πe−2νηðka=νÞ
κa� 1

2ð1;ϵÞ −
1
1;ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ̃2a2 þ 1=4
p

κa� 1
2ð1;ϵÞ þ 1

1;ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ̃2a2 þ 1=4
p : ð5:9Þ

Here κ̃2 ¼ ϵζ2 þ k2. In the remaining factor of Eq. (5.5) we

must keep the Oð1=νÞ corrections because they are of the

same order in κa as the leading term in the stress tensor
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construction, leaving for the rest of the zz component of the

reduced stress tensor

ts;E;Hzz ∼
R̃E;H

4πða − zÞ e
2νηðkða−zÞ=νÞ

×

�

1þ 4ðκ̃aÞ2½v1ðtÞ − u1ðtÞ�=ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λζ2 þ k2ða − zÞ2 þ 1=4
p � 1

�

;

t ¼
�

1þ
�

kða − zÞ
ν

�

2
�

−1=2

; ð5:10Þ

where u1ðtÞ − v1ðtÞ ¼ t
2
ð1 − t2Þ. The UAE presumes that

the significant values of κ̃ are large. If ϵ ¼ εð0Þ ≠ 1, in the

first approximation we may neglect terms of order 1=ðκ̃aÞ
and smaller, so the reflection coefficients reduce to

R̃E;H ≈ −πe−2νηðka=νÞ
κ − 1

1;ϵ
κ̃

κ þ 1
1;ϵ

κ̃
; ð5:11Þ

which has the form familiar from a step discontinuity in the

dielectric constant. Further, near the boundary, the expo-

nents combine:

2νηðkða − zÞ=νÞ − 2νηðka=νÞ ≈ −2κ̃z; ð5:12Þ

which makes use of Eq. (5.8). Finally, to carry out the

integrals over frequency and transverse wave vectors we

adopt polar coordinates, so that

Z

dζ

Z

ðdk⊥Þ¼
1
ffiffiffi

ϵ
p

Z

∞

0

dκ̃κ̃2
Z

1

−1

dcosθ

Z

2π

0

dϕ; ð5:13Þ

with
ffiffiffi

ϵ
p

ζ ¼ κ̃ cos θ, k ¼ κ̃ sin θ. The angle θ occurs

inside the two reflection coefficients, as well as inside

the formula for tszz, Eq. (5.10), since near the wall

½u1ðka=νÞ − v1ðka=νÞ�=ν ¼ ð1 − cos2θÞ=ð2κ̃aÞ, and the

integrals of these dependencies for the TE and TM modes

give

EðϵÞ ¼
Z

1

−1

d cos θcos2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ − 1Þcos2θ þ 1
p

− 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ − 1Þcos2θ þ 1
p

þ 1
;

ð5:14aÞ

HðϵÞ ¼
Z

1

−1

dcosθðcos2θ− 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ− 1Þcos2θþ 1
p

− 1=ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=ϵ− 1Þcos2θþ 1
p

þ 1=ϵ
:

ð5:14bÞ

The functions EðϵÞ and HðϵÞ are elementary, given in

terms of logarithms, but are not very illuminating to

display. Instead we show the plot of them in Fig. 1, and

give the limits for small and large values of ϵ − 1:

ϵ − 1 ≪ 1∶ EðϵÞ ∼ −
1

10
ðϵ − 1Þ þ 9

140
ðϵ − 1Þ2 þ � � � ;

HðϵÞ ∼ −
43

30
ðϵ − 1Þ þ 93

140
ðϵ − 1Þ2 þ � � � ;

ð5:15aÞ

ϵ ≫ 1∶ EðϵÞ ∼ π −
10

3
þ 3π=2 − 4

ϵ
−
4

3

1

ϵ3=2
þ � � � ;

HðϵÞ ∼ −
10

3
þ 3π

ϵ
−

4

ϵ3=2
þ � � � : ð5:15bÞ

The remaining integral on κ̃ is simple, so after integrating

over k and ζ, we are left with the “scattering part” of the zz
component of the stress tensor near the wall (z → 0þ):

Ts;E;H
zz ∼ −

1

64π2
ffiffiffi

ϵ
p 1

az3

�

EðϵÞ
HðϵÞ

: ð5:16Þ

And the total zz component of the stress is the sum of these

two components, which for the case of a small disconti-

nuity reduces to

Ts;EþH
zz ¼ 23

960π2
ðϵ− 1Þ 1

az3
;

E

H
¼ 3

43
; ϵ− 1 ≪ 1:

ð5:17Þ

This cubic singularity disappears if there is no disconti-

nuity, that is, ϵ ¼ 1, where κ̃ ¼ κ. Then we need to keep the

order 1=ν correction in the reflection coefficients as well, so
Eq. (5.9) gets modified to

R̃E;H∼ ∓
π

4κa
½1 ∓ ð1 − cos2θÞ�e−2νηðka=νÞ; ð5:18Þ

FIG. 1. The ϵ-dependent factors in the zz components of the

stress tensor in Eq. (5.14). The small and large ϵ − 1 limits go out

to third order and −7=2 order, respectively. Clearly, the TE

contribution is almost insignificant, and the two asymptotic limits

accurately cover the full range of ϵ.
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which when inserted into Eq. (5.10) yields immediately

ts;E;Hzz ¼ −
1

16κa2
½1 ∓ ð1 − cos2θÞ�2e−2κz: ð5:19Þ

When the integrals over κ and θ are carried out, we obtain

Ts;E;H
zz ∼ −

1

1920π2a2z2

�

3

43
; ð5:20Þ

the sum of the two contributions being

Ts;EþH
zz ¼ −

23

960

1

π2a2z2
; ð5:21Þ

which is exactly the result found in Ref. [24]. The similarity

of the coefficients in Eqs. (5.17), (5.20), and (5.21) is

striking.

We close this subsection by examining the omitted

contribution from the “bulk” term in the interior,

gb;E;Hðz; z0Þ ¼ 1

αE;H
FE;Hðz>ÞGE;Hðz<Þ

¼ ð1; λÞða − zÞ�1=2ða − z0Þ�1=2

× Iνðkða − z>ÞÞKνðkða − z<ÞÞ: ð5:22Þ

It is quite obvious that this does not give singular behavior

near the discontinuity in εðzÞ at z ¼ 0, but it does yield

divergent contributions. The corresponding reduced stress

tensor has a form similar to that given in Eq. (5.5):

tb;E;Hzz ðzÞ ¼ 1

2

�

−

�

k2ða − zÞ þ λζ2 − 1=4

a − z

�

Iνðkða − zÞÞKνðkða − zÞÞ þ k2ða − zÞI0νðkða − zÞÞK0
νðkða − zÞÞ

� k½Iνðkða − zÞÞK0
νðkða − zÞÞ þ I0νðkða − zÞÞKνðkða − zÞÞ�

�

: ð5:23Þ

Now, when the UAE is inserted, the cancellation observed

in the reflection-dependent part does not occur, so the

leading term is

tb;E;Hzz ∼
1

4ða − zÞ
	

−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λζ2 þ k2ða − zÞ2
q

� 1




: ð5:24Þ

For the moment we examine only the leading term in the

limit of this expression as z → 0, which is

tb;E;Hzz → −
κ̃

2
; ð5:25Þ

the obvious generalization of Eq. (4.9). When this is

integrated over all frequencies and wave numbers, and

regulated by point splitting as in Ref. [28], we obtain (see

Appendix A)

Tb;E;H
zz ∼−

1

4π2
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃3
sin κ̃δ

κ̃δ
¼ 1

2π2
ffiffiffi

ϵ
p

δ4
; δ→ 0;

ð5:26Þ

exactly the leading bulk divergence seen for each scalar

mode in Ref. [28], apart from the expected index of the

refraction factor. Later we shall encounter the subleading

divergences dependent on the potential; beyond them, in

the exact tb;E;H there are finite terms that presumably have

physical significance.

B. Exponential permittivity

Let us give another exactly solvable model. Consider the

permittivity function

εðzÞ ¼
�

1; z < 0;

eαz; z > 0.
ð5:27Þ

For the two modes, the two fundamental solutions to

Eq. (4.1) are for z > 0 [38]

FEðzÞ
GEðzÞ

�

¼
�

Kνð2ζeαz=2=αÞ;
Iνð2ζeαz=2=αÞ;

ð5:28aÞ

FHðzÞ
GHðzÞ

�

¼ eαz=2
�

Kν̃ð2ζeαz=2=αÞ;
Iν̃ð2ζeαz=2=αÞ;

ð5:28bÞ

where

ν ¼ 2k

α
; ν̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k2

α2

s

: ð5:29Þ

Again, the second solution is unique, according to the

criteria enunciated in Sec. IV, because Iνð0Þ ¼ 0. In each

case, the effective Wronskian (4.5) is the same,

αE;H ¼ α

2
: ð5:30Þ

Using the UAE, the leading bulk stress tensor component is
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tb;Ezz ¼ −
κ̆

2
; κ̆ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2eαz
p

; ð5:31aÞ

tb;Hzz ¼ −
κ̆2

2κ̂
; κ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2eαz þ α2

4

r

: ð5:31bÞ

The scattering part of the reduced stress tensor, near the

wall, has the form seen before in Eq. (5.19) if we replace ζ2

by κ2 cos2 θ, and a by 2=α, where α is the slope of the

potential at the edge:

ts;E;Hzz ∼ −
α2

16κ
e−2κz

8

>

>

>

<

>

>

>

:

�

ζ2

2κ2

�

2

;

�

1 −
ζ2

2κ2

�

2

:

ð5:32Þ

From this follows the same result for the stress tensor as

in Eq. (5.20).

We will see in the following section that this behavior is

universal, as long as the potential is continuous and has a

linear slope at the edge.

VI. UNIVERSAL EDGE BEHAVIOR

A. First-order perturbation theory

Griniasty and Leonhardt [24] asserted that the behavior

of the zz component of the subtracted stress tensor seen in

Eq. (5.20) is universal. That is, it holds whenever the

potential is continuous, but has a discontinuous slope at

the origin, the slope being in that case α ¼ 2=a. We will

prove that assertion here, which follows from perturbation

theory near the edge. We can generalize this slightly, by

allowing for a discontinuity ϵ − 1 in the permittivity near

the boundary. Sufficiently close to the edge, εðzÞ ¼
ϵð1þ αzÞ, and we will calculate the stress tensor in the

approximation that α is very small compared to κ.

We start with the TE mode. The functions F and G
satisfy

�

−
d2

dz2
þ κ̃2 þ ζ2ϵαz

��

FEðzÞ
GEðzÞ

¼ 0: ð6:1Þ

This is easily solved perturbatively for solutions that

decay exponentially fast, or that grow exponentially fast,

at infinity:

FEðzÞ
GEðzÞ

�

¼ e∓κ̃zfE∓ðzÞ; fE∓ðzÞ ¼
�

1−
ζ2αϵz

4κ̃2
ð1� κ̃zÞ

�

;

ð6:2Þ

keeping terms out through OðαÞ. Since the differential

equation contains no first derivatives, the Wronskian

remains constant,

wðzÞ ¼ 2κ̃: ð6:3Þ

Using the “bulk” part of the Green’s function in the

medium, the first term in the second line of Eq. (4.4),

we find for the corresponding reduced stress tensor

tb;Ezz ¼ −
κ̃

2
−
αζ2ϵ

4κ̃
zþOðα2Þ; ð6:4Þ

which agrees with Eqs. (5.24) or (5.31a) when they are

expanded for small α (fixed z). Integrated over frequency

and wave numbers, we obtain the full bulk stress tensor,

when the time splitting, or transverse space splitting,

regulation as in Eq. (5.26) is inserted (see Appendix A),

Tb;E;τ
zz ¼ 1

2π2
ffiffiffi

ϵ
p

δ4

�

1þ 3

2
αz

�

; Δ ¼ 0; δ ¼ τ=
ffiffiffi

ϵ
p

;

ð6:5aÞ

Tb;E;δ
zz ¼ 1

2π2
ffiffiffi

ϵ
p

δ4

�

1 −
1

2
αz

�

; τ ¼ 0; δ ¼ jΔj:

ð6:5bÞ

The relative factor of −3 between the linear dependencies

of these two forms is the result of the identity given in

Ref. [17], reproduced here in Eq. (A6).

The reflection coefficient computed from Eq. (4.7) to

first order in α is

R̃E ¼ −

�

κ − κ̃

κ þ κ̃
þ ζ2αϵ

4κ̃2
1

κ þ κ̃

�

: ð6:6Þ

The first term in the parentheses refers to the scattering due

to the discontinuity in εðzÞ at the edge, while the second

term refers to the contribution arising from the slope of

the potential. If the latter effect is negligible, this agrees

with the form in Eq. (5.11). A bit of algebra shows that the

“scattering” part of the reduced stress tensor is

ts;Ezz ¼ −
αϵζ2

8κ̃2

�

κ − κ̃

κ þ κ̃
þ ζ2αϵ

4κ̃2
1

κ þ κ̃

�

e−2κ̃z: ð6:7Þ

When Eq. (6.7) is integrated over frequency and transverse

wave numbers according to Eq. (5.13), the result for the

stress coincides with that given in Eq. (5.16):

Ts;E
zz ¼ −

αEðϵÞ
128π2

ffiffiffi

ϵ
p 1

z3
; ð6:8Þ

recalling that there α ¼ 2=a. On the other hand, if εðzÞ is
continuous, so ϵ ¼ 1, we obtain

Ts;E
zz ¼ −

α2

2560π2
1

z2
: ð6:9Þ

This exactly coincides with Eq. (5.20).
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The linearized version of the TM equation (4.1) is

�

−
d2

dz2
þ κ̃2 þ α

�

d

dz
z
d

dz
− k2z

���

FHðzÞ
GHðzÞ

¼ 0; ð6:10Þ

which has a first-order perturbative solution

FHðzÞ
GHðzÞ

�

¼ e∓κ̃zfH∓ðzÞ;

fH∓ðzÞ ¼
�

1þ αz

2

�

1 −
ζ2ϵ

2κ̃2
ð1� κ̃zÞ

��

: ð6:11Þ

Now the Wronskian of the two solutions is not constant,

wHðzÞ ¼ 2κ̃ð1þ αzÞ; ð6:12Þ

which is exactly what is needed to make αH a constant:

αH ¼ wHðzÞ
εðzÞ ¼ 2κ̃

ϵ
: ð6:13Þ

The bulk term in the zz-component of the stress tensor turns

out to be the same as its TE counterpart (6.5), for example,

for time splitting:

Tb;H;τ
zz ¼ 1

2π2
ffiffiffi

ϵ
p

δ4

�

1þ 3

2
αz

�

: ð6:14Þ

Now it is straightforward to calculate the scattering part

of the stress tensor to Oðα2Þ, in terms of the reflection

coefficient:

R̃H ¼ −

�

κ − κ̃=ϵ

κ þ κ̃=ϵ
−

α

2ðκ þ κ̃=ϵÞ

�

1 −
ζ2ϵ

2κ̃2

��

: ð6:15Þ

The zz component of the scattering part of the reduced

stress tensor is then

ts;Hzz ¼ α

4
e−2κ̃z

�

κ − κ̃=ϵ

κþ κ̃=ϵ
−
α

2

1

κþ κ̃=ϵ

�

1−
ζ2ϵ

2κ̃2

���

1−
ζ2ϵ

2κ2

�

:

ð6:16Þ

Again, if for ϵ ≠ 1 we drop the second term in the square

brackets, we see the appearance of the TM reflection

coefficient for a discontinuity in the permittivity, which

leads to the stress tensor as z → 0þ:

Ts;H
zz ¼ −

α

128π2
ffiffiffi

ϵ
p HðϵÞ 1

z3
; ð6:17Þ

coinciding with the TM part of Eq. (5.16). If ϵ ¼ 1

however, the second term in Eq. (6.16) must be retained,

leaving just the form seen in Eq. (5.32), and we obtain for

the zz component of the stress tensor

Ts;H
zz ¼ −

43

7680π2
α2

z2
; ð6:18Þ

which again exactly coincides with Eq. (5.20).

B. Dispersion

The above assumes that the permittivity does not depend

on frequency. This is quite unrealistic. Instead, let us

examine what happens if we use a plasma model, where

α ¼ α0=ζ
2. This then makes the TE mode coincide with the

linear scalar problem considered in Ref. [28]. There the

divergent terms were isolated using a WKB approximation.

We can easily reproduce those leading divergences. To

compare with the results there, we set the discontinuity

ϵ − 1 equal to zero.

With the plasma dispersion relation, the bulk term (6.4)

reads, before integration,

tb;Ezz ¼ −
κ

2
−
α0z

4κ
; ð6:19Þ

and then carrying out the frequency and wave number

integrations using the formulas in Appendix A, we find

Tb;E
zz ¼ 1

2π2δ4
−

α0z

8π2δ2
; ð6:20Þ

which are the two leading divergent terms found in

Ref. [28] for a linear potential. Perhaps surprisingly, the

same holds for Tb;H
zz .

To get the logarithmically divergent term in Tb;E
zz one

might think we would have to work out perturbation theory

to second order, which we will do in the next section.

However, the zz component of the reduced bulk stress

tensor to second order can be calculated by knowing only

the OðαÞ solutions because we easily see from the

definition of the Wronskian that

tb;Ezz ¼ −
κ̃

2
þ 1

2wE
ðfE0− fE0þ − αζ2ϵzfE−f

E
þÞ: ð6:21Þ

From this follows

tb;Ezz ¼ −
κ̃

2
− αγκ̃zþ α2γ2

�

1

4κ̃
þ κ̃z2

�

; ð6:22Þ

where we have introduced the abbreviation γ ¼ ζ2ϵ=ð4κ̃2Þ.
The small δ expansion of

R

∞
0
dκ sinðκδÞ=κ2 [Eq. (A3e)]

yields in second order in the plasma model

T
b;Eð2Þ
zz ∼ −

α20z
2

32π2
ln δ; ð6:23Þ

which corresponds to the logarithmically divergent term

found in Ref. [28].
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Again only the first order result is necessary to give the

order α2 contribution to the bulk stress for the TM mode,

since the same formula as Eq. (6.21) applies for the TM

mode as well. The result is only slightly different from that

in Eq. (6.22):

tb;Hzz ¼ −
κ̃

2
− αγκ̃zþ α2γ2κ̃z2 þ α2

4κ̃

�

γ −
1

2

�

2

: ð6:24Þ

This leads to exactly the same logarithmic divergence in

the plasma model as in Eq. (6.23). However, to get such

terms for the other components of the stress tensor, we need

second-order perturbative solutions for F and G, which we

will deal with in the following section.

As for the scattering contributions, it is evident that due

to the softening produced by the plasma dispersion relation,

the singular behavior in Ts;E
zz as the edge is approached from

the inside goes away, consistent with the numerical results

shown in Fig. 5 of Ref. [28]. (See further discussion in

Sec. VIII.) The scattering part of Ts;H
zz in the plasma model

has to be defined with an infrared cutoff, but certainly also

does not diverge as the edge is approached.

So we have verified and extended the results of Ref. [24]:

For a vacuum interface with a planar dielectric without

dispersion, if the permittivity is continuous, but has a linear

slope at the edge, the singularities in the normal-normal

component of the stress tensor possess a universal 1=z2

form, where z is the distance from the edge into the

medium. If the permittivity is discontinuous, the normal-

normal component of the stress tensor has a 1=z3 singu-

larity, and as shown in Appendix B, the singularity is

reduced to logarithmic if the discontinuity is in the second

derivative. As we will see Sec. VII, the singularities in the

energy density are one order higher for a linear disconti-

nuity. Only the behavior of the potential at the edge of the

dielectric is necessary to determine the singularities in form

and magnitude; this we have demonstrated through exam-

ples and a general perturbative analysis.

VII. OTHER STRESS TENSOR COMPONENTS

Let us now examine other components of the stress

tensor, particularly in the continuous permittivity situation.

The leading perturbative approximation yields the leading

divergent structure, and the leading behavior near the edge.

We will consider both the dispersive case with the plasma

model, since it is approximately realistic and agrees, for the

TE mode, with the scalar case, and the situation when the

permittivity is independent of frequency.

A. Leading-order contributions

Including the dispersive factor, the reduced TE energy

density for the plasma model, where α ¼ α0=ζ
2, is for

small α0z (exactly, for a linear potential)

tE00 ¼
1

2
ð∂z∂z0 þ k2 − ζ2ϵþ α0ϵzÞgE; ð7:1Þ

which agrees with the scalar energy density for a linear

potential provided the conformal parameter ξ ¼ 0 (or in the

language of Ref. [28], β ¼ −1=4), surprisingly, not the

scalar conformal value of ξ ¼ 1=6. (That is, the canonical

stress tensor emerges, not the conformal one.) Thus we see

that (setting ϵ ¼ 1)

tE00 ¼ tEzz þ ðk2 þ α0zÞgE: ð7:2Þ

Using the point-splitting methods of the Appendix, we find

for the bulk contribution to the energy density

Tb;E
00 ∼

8

>

>

<

>

>

:

3

2π2δ4
−

α0z

8π2δ2
; τ splitting;

−
1

2π2δ4
þ α0z

8π2δ2
; Δ splitting;

ð7:3Þ

which coincides with the leading divergences found in

Ref. [28]. Note that

∂

∂δ
ðδTΔ

00Þ ¼ Tτ
00 ð7:4Þ

holds for the relation between the energy densities with

the spatial and temporal cutoffs, as in Ref. [17]. And in the

medium, just to the right of the edge, we find for the

scattering contribution

ts;E00 ∼ −
α0k

2

16κ4
e−2κz; ð7:5Þ

which when integrated over frequency and wave numbers

yields

Ts;E
00 ∼ −

α0

96π2z
; ð7:6Þ

exactly the result as for the scalar case with β ¼ −1=4 given
by Eq. (6.7) of Ref. [28].

Had we assumed that α was independent of ζ, the sign

of the potential term in Eq. (7.1) would have reversed, and

we would have obtained instead for the bulk divergence

(with temporal splitting)

Tb;E
00 ¼ 3

2π2δ4

�

1þ 3

2
αz

�

; ð7:7Þ

and for the edge singularity in the scattering part

Ts;E
00 ∼ −

α

960π2z3
; ð7:8Þ

more singular than the behavior of Ts;E
zz in this non-

dispersive model seen in Eq. (6.9).
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For the remaining diagonal components, from Eq. (3.8),

for τ splitting, or Δ splitting, respectively, in the plasma

model,

Tb;E
xx ¼ Tb;E

yy ¼

8

>

>

<

>

>

:

1

2π2δ4
−

α0z

8π2δ2
;

−
1

2π2δ4
;

ð7:9Þ

which exactly coincides with the leading scalar divergences

found in Ref. [28] when we average over ρx, ρy there. It is

easily checked that the trace identity (3.9) is satisfied:

ðTb;EÞμμ ¼ −
α0z

4π2δ2
: ð7:10Þ

For the scattering part,

Ts;E
xx ¼ Ts;E

yy ¼ −
α0

192π2z
; ð7:11Þ

which is exactly half the energy density found in Eq. (7.6)

as required by the trace of the scattering part of the stress

tensor being of Oðα20Þ.
For the TM mode in the plasma model the bulk part of

the reduced energy density is

tb;H00 ¼ −
ζ2

2κ

�

1 −
α0z

2κ2

�

; ð7:12Þ

which, upon integration, leads to the same result as

Eq. (7.3). The transverse bulk parts of the reduced stress

tensor are

tb;Hxx ¼ tb;Hyy ¼ k2

4κ

�

1 −
α0z

2κ2

�

; ð7:13Þ

leading to the same result as Eq. (7.9), as required by the

trace identity. For constant α the energy density divergence

is the same as for the TE part, Eq. (7.7). The scattering part

of the reduced energy density is

ts;H00 ¼ α0

8ζ2
k2

κ2

�

1 −
ζ2

2κ2

�

e−2κz ¼ 2ts;Hxx ¼ 2ts;Hyy ; ð7:14Þ

which is twice the transverse reduced stress tensor com-

ponents, as required by the trace identity. This possesses

singularities, when ζ2 ¼ κ2 cos2 θ goes to zero, so the

meaning of these seems somewhat obscure. However, if

we adopt the nondispersive model and assume that α

is constant, we can find the energy density singularity

near the edge

Ts;H
00 ¼ 3α

320π2z3
; ð7:15Þ

which is −9 times that from the TE mode, Eq. (7.8).

B. Second order perturbation theory

To proceed further, we need to work to the next order in

perturbation theory. It is easy to work out the solutions to

Eq. (6.1) to second order, assuming the potential is exactly

linear. The two solutions are

FEðzÞ
GEðzÞ

�

¼ e∓κ̃z

�

1 − αγzð1� κ̃zÞ

þ α2γ2z

κ̃

�

1

2
ðκ̃zÞ3 � 5

3
ðκ̃zÞ2 þ 5

2
κ̃z� 5

2

��

þOðα3Þ
≡ e∓κ̃zfE∓: ð7:16Þ

The expansion parameter is αγ. The Wronskian changes,

but is still constant:

wE ¼ 2κ̃ − 5
α2γ2

κ̃
þOðα3Þ: ð7:17Þ

The TM equation (4.1) is, assuming an exactly linear

potential,

�

−
∂

∂z

1

1þ αz

∂

∂z
þ k2

1þ αz
þ ζ2ϵ

��

FH

GH
¼ 0; ð7:18Þ

which can also be straightforwardly solved to second order

in α:

FHðzÞ
GHðzÞ

�

¼ e∓κ̃z

�

1þ z

�

α

�

1

2
− γ

�

∓
α2

2κ̃

�

3

4
− 5γ2

��

þ z2
�

∓ κ̃αγ þ α2
�

5γ2

2
−
1

8
−
γ

2

��

∓
α2γκ̃z3

6
ð3 − 10γÞ þ α2γ2κ̃2z4

2

�

: ð7:19Þ

Note that the terms of order αγ and of order α2γ2 coincide

with those of the TE solutions in Eq. (7.16). TheWronskian

of these two solutions gives

αH ¼ wH

ϵð1þ αzÞ ¼
2κ̃

ϵ
þ α2

3 − 20γ2

4κ̃ϵ
: ð7:20Þ

C. Oðα2) corrections

Now to get the order-α2 corrections to the energy density,

we have to use the second-order solutions, Eqs. (7.16) and

(7.19). A straightforward calculation reveals, for the bulk

contributions to the reduced energy density,

tb;E00 ¼−2κ̃γþ4ακ̃γ2zþα2γ2

2κ̃
ð3−10γ−24γκ̃2z2Þ; ð7:21aÞ
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and

tb;H00 ¼−2κ̃γþ4ακ̃γ2z

þα2

8κ̃
ð−1þ4γþ12γ2−40γ3−96γ3κ̃2z2Þ: ð7:21bÞ

Note that the Oðα0Þ, OðαÞ and the Oðα2γ2Þ, Oðα2γ3Þ terms

are the same for the TE and TM contributions, which means

that the divergences in the plasma model are the same, for

example, in temporal point splitting for ϵ ¼ 1 as defined

in Appendix A,

Tb;E;H
00 ¼

Z

dζ

2π

Z ðdk⊥Þ
ð2πÞ2 eiζτtb;E;H00

¼ 3

2π2δ4
−
α0z

8π2
1

δ2
þ α20z

2

32π2
ln δþ � � � ; ð7:22Þ

where the remainder is finite as δ → 0. This includes the

results already found in Eq. (7.3), and coincides with the

scalar divergences found in Ref. [28].

We can also straightforwardly find the next order

corrections to the scattering part of the zz component of

the reduced TE stress tensor, for example, with ϵ ¼ 1,

ts;Ezz ¼ −
α2γ2

4κ
½1 − 2αγzð2þ κzÞ�e−2κz; ð7:23Þ

but the order α3 correction means that the corresponding

term in Ts;E
zz has one less power of z, so in the constant α

situation, through this order,

Ts;E
zz ¼ α2

2560π2z2
þ 3α3

1768π2z
: ð7:24Þ

(In the plasma model, recall that there is no singularity in

Ts;E
zz .) Dimensionally, since ½α� ¼ 1=L, the higher order

corrections to the edge singularity must be subdominant.

Similarly, we can write for the TE part of the reduced

energy density through order α2,

ts;E00 ¼ −αγ
k2

4κ2

�

1 −
αγ

κ
½k2ð−2þ 2κzþ 2ðκzÞ2Þ

− κ2ð1þ 4κzÞ�
�

e−2κz; ð7:25Þ

which leads to, for constant α, the energy density through

Oðα2Þ,

Ts;E
00 ¼ −

α

960π2z3
−

α2

17920π2z2
; z → 0þ : ð7:26Þ

Again, the correction is necessarily subdominant.

VIII. EXACT LINEAR TE POTENTIAL

Of course, the linear TE problem is exactly solvable

in terms of Airy functions, as seen in Refs. [25–28].

Independent solutions of Eq. (6.1) are (α ¼ α0=ζ
2)

FðzÞ
GðzÞ

�

¼
�

Aiðα−2=30 ðκ2 þ α0zÞÞ;
Biðα−2=30 ðκ2 þ α0zÞÞ;

ð8:1Þ

which haveWronskian α
1=3
0 =π. It is then immediate to write

down the exact form of the Green’s function.

By using the asymptotic expansion of the Airy functions

for the large argument, we straightforwardly obtain for the

TE reduced scattering Green’s function

gs;Eðz;z0Þ

∼−
α0

16κ3

exp½2κ3
3α0

ð2−ð1þα0z=κ
2Þ3=2−ð1þα0z

0=κ2Þ3=2Þ�
½ðκ2þα0zÞðκ2þα0z

0Þ�1=4 :

ð8:2Þ

The above is valid if κ3=α0 ≫ 1. If we now regard the

potential as weak, we expand in powers of α0 and obtain

through second order

gs;Eðz;z0Þ≈−
α0

16κ4

�

1−
α0

4κ2
ðzþz0Þ−α0

4κ
ðz2þz02Þ

�

e−κðzþz0Þ:

ð8:3Þ

This coincides exactly with the Green’s function

obtained from the perturbative solution (6.2), and leads,

for example, to

ts;Ezz ¼ −
α20

64κ5
e−2κz; ð8:4Þ

which follows from (6.7) when ϵ ¼ 1 and α ¼ α0=ζ
2. But

when one tries to integrate this over wave numbers and

frequency, one encounters an infrared divergence at κ ¼ 0.

Of course, such a divergence is not present in the exact

solution, since the perturbative expansion is not valid for

small κ. In fact, if the exact expression for ts;Ezz is integrated

the result is finite, but nonzero, at z ¼ 0, as shown in Fig. 2,

as earlier stated.

We can do the same type of calculation for the energy

density. In this case the energy density does diverge as the

edge is approached from within the medium, according

to Eq. (7.6). In fact, the numerical integration of the exact

formula fits this asymptotic formula quite well for small z,

as shown in Fig. 3. Ts;E
xx has nearly identical behavior,

except for the factor of 2 seen in Eq. (7.11).

The above figures were drawn with the assumption that

the second solution G was exactly the second Airy function

Bi. But, as noted in Sec. IV, the definition of the reflection
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coefficient is ambiguous, since the second solution may

contain an arbitrary admixture of the first. The criteria given

in Sec. IV do not apply, because both Ai and Bi behave as

damped oscillatory functions for large negative z. The

addition of the second solution is typically asymptotically

exponentially subdominant, so this ambiguity does not

appear in the asymptotic estimates. However, the ambiguity

will affect the behavior away from the edge. We investigated

this by substituting in the reflection coefficient Bi →

Biþ λAi, where λ is a constant. (In fact, λ could be a

function of κ.) In Fig. 4 we show how agreement with the

estimate (7.6) is greatly improved by the choice of λ ¼ 2=π.
The reason for this particular value agreeing with the

asymptotic estimate is, at present, mysterious.

The edge singularity is not altered when different

constant values of λ are used as compared to the perturba-

tive result because the leading asymptotic behavior of the

Airy functions is

AiðxÞ
BiðxÞ

�

¼ 1

ð2; 1Þ ffiffiffi

π
p

x1=4
e∓2x3=2=3; x → þ∞; ð8:5Þ

so that when these are used for large κ and fixed z we see
that the admixture parameter is related to the perturbation

theory one by

λPT ¼ λ

2
e−4κ

3=3: ð8:6Þ

Here, the latter parameter is defined in the language of

Sec. VI A by taking the second solution to be

G ¼ eκzfþ þ λPTe
−κzf−: ð8:7Þ

Thus, it is evident that the admixture of the first solution

will be exponentially suppressed within the wave number

integral.

The comparison between the perturbative value of the

reflection coefficient and the exact one is shown in Fig. 5.

Because the perturbative solutions are normalized such

that Fð0Þ ¼ Gð0Þ ¼ 1, which is not the case for the Airy

functions, an appropriate normalization factor must be

supplied: what is plotted in the dotted curve in the figure

is RPT ¼ − π
8κ3

e4κ
3=3. These curves reveal that the validity of

the perturbative solution depends on the inequality

α0 ≪ κ3: ð8:8Þ

FIG. 3. The TE scattering contribution to the energy density

within the medium, again calculated in the plasma model, with

ϵðzÞ ¼ 1þ z=ζ2. The solid curve is the exact numerical integra-

tion, which has to be carried out to very large values of κ for small

z, because of near-perfect cancellations between the moderate κ

contributions. The dashed curve represents the asymptotic

estimate (7.6).

FIG. 4. The relative error of the asymptotic estimate for the

TE scattering energy density (7.6) when the reflection coefficient

R̃E is replaced by R̃E − λπ=2. Here u ¼ Ts;E
00 and Δu ¼

ðTs;E
00 Þasym − Ts;E

00 . Shown are the errors for λ ¼ 0 (upper curve),

that is, just using the Bi function as the second solution, and for

λ ¼ 2=π, 1, 2, that is, with Bi replaced by different mixtures of Bi

and Ai. Here again we assume α0 ¼ 1.

FIG. 2. The exact TE scattering contribution to the zz
component of the stress tensor Ts;E

zz within a medium having a

linear potential, ϵðzÞ ¼ 1þ z=ζ2, characterized by a plasma-

model dispersion relation. (That is, ϵ ¼ 1 ¼ α0.) Although the

stress gets larger in magnitude as the edge is approached, it

remains finite, and it goes to zero deep within the medium.
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It will be noted from Figs. 2 and 3 that the stress tensor

components rapidly go to zero as one goes deeper into the

potential, as expected. To further explore this, we look at

the Green’s function, which represents the expectation

value of the product of the electric fields in the medium,

for the case α0 ¼ 1,

Gs;Eðz; z0Þ ¼
Z

dζ

2π

ðdk⊥Þ
ð2πÞ2 gs;Eðz; zÞ

¼ −
1

2π

Z

∞

0

dκκ2
κBiðκ2Þ − Bi0ðκ2Þ
κAiðκ2Þ − Ai0ðκ2Þ

× Aiðκ2 þ zÞAiðκ2 þ z0Þ: ð8:9Þ

This is plotted, for z ¼ z0, in Fig. 6. For even larger z than
shown in the figure, the reflection coefficient may be

replaced by its small-κ expansion, and then the resulting

analytic form of the diagonal Green’s function ultimately

agrees with that found by numerical integration. (For a

20-term expansion of R̃E, the error of the analytic approxi-

mation is less than 1% for z > 11.)

IX. REFLECTED POTENTIALS

Of course, there is no net force on the semi-infinite slab

we have been considering to this point. This is because Tzz

must vanish at infinity, and once the obvious bulk sub-

traction is made, Tzzð0−Þ ¼ 0, according to Eq. (4.9). So

suppose we consider two bodies, constructed by placing the

mirror image of our potential to the left of z ¼ 0: that is, we

assume εðzÞ ¼ εð−zÞ. These are two bodies in contact, not

disjoint. Then for either the TE or TM mode, the Green’s

function may be constructed in terms of the fundamental

solutions of the homogeneous equations, F̃ and G̃, where

F̃ → 0 as z → þ∞, and G̃ → 0 as z → −∞,

gðz; z0Þ ¼ 1

A
F̃ðz>ÞG̃ðz<Þ; ð9:1Þ

in terms of the effective Wronskian factor A. If we expand
this out in terms of the solutions on the right for the semi-

infinite slab, denoted as previously by F and G, we find

for z, z0 > 0

gðz; z0Þ ¼ 1

α
½Fðz>ÞGðz<Þ þ RFðzÞFðz0Þ�; ð9:2Þ

where α is the Wronskian term for the half-space. Here the

reflection coefficient is

R ¼ −
ðFGÞ0ð0Þ
ðF2Þ0ð0Þ : ð9:3Þ

Perturbatively, it is easy to check that to first order

R ¼

8

>

>

<

>

>

:

−
αγ

κ
; TE;

α

κ

�

1

2
− γ

�

; TM;
ð9:4Þ

which are twice as big as the values found for the semi-

infinite slab, in Eqs. (6.6) and (6.15), as would be expected,

because the slope discontinuity is doubled.

In the case of the plasma model, Ts
zz is finite, and for an

exact linear potential was solved explicitly in Sec. VIII—

see Fig. 2. So in the case of two facing reflected linear

potentials in contact, one might think that a finite force of

one body upon the other could be determined,

Ts;E
zz ð0Þ ¼ −0.001017α

4=3
0 ; ð9:5Þ

where we have restored the proper scaling with the

coupling. Although this appears to be a finite attraction

between the two slabs, the interpretation of this is suspect

FIG. 6. The diagonal elements of the scattering contribution to

the TE Green’s function for the linear wall, ϵðzÞ ¼ 1þ z=ζ2, for z
within the wall. This represents the expectation values of the

square of the electric field, which rapidly decrease to zero as the

wall is penetrated.

FIG. 5. The asymptotic TE reflection coefficient −α0=ð8κ3Þ
(dotted) from Eq. (6.6) compared to the exact reflection coef-

ficient (solid) given by Eq. (4.7), for the linear potential. The

former has to be normalized by the correct factor to account for

the normalization of the Airy functions in the Green’s function.

Here α0 ¼ ϵ ¼ 1.
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for the reasons stated in Sec. II, because the body is not

immersed in a homogeneous medium. As there is no

distance scale in the problem aside from the coupling, it

is impossible to connect this to a change in the energy

according to the principle of virtual work. Moreover, the

ambiguity of separating bulk and scattering parts remains.

X. CONCLUSION

In this paper we have extended our previous calcu-

lations on the soft wall problem to the electromagnetic

case. In the plasma dispersion model, the TE mode

coincides with the scalar case considered in Ref. [28].

Without dispersion we recover the universal edge behav-

ior found by Ref. [24]. We also reproduce the Weyl

divergences found in the scalar case. We do this, first by

considering explicitly solvable examples, and then by

performing a generic perturbative analysis for small

slopes in the dielectric potential.

Let us summarize the salient features. For the plasma

model, where the potential may be defined by εðzÞ − 1 ¼
vðzÞ=ζ2 we see universal Weyl singularities in the bulk

stress tensor for both TE and TM polarizations:

Tb;E;H
zz ¼ 1

2π2δ4
−

v

8π2δ2
−

v2

32π2
ln δ; ð10:1aÞ

Tb;E;H
00 ¼ 3

2π2δ4
−

v

8π2δ2
þ v2

32π2
ln δþ v00

48π2
ln δ; ð10:1bÞ

which coincide with the divergences found for a scalar field

[28]. (The second derivative term is seen for the quadratic

potential treated in Appendix B.) For the nondispersive

model, with temporal splitting,

Tb;E;H
zz ¼ 1

2π2δ4

�

1þ 3

2
αz

�

;

Tb;E;H
00 ¼ 3

2π2δ4

�

1þ 3

2
αz

�

: ð10:2Þ

For the singularities just inside the edge, with a constant

(nondispersive) linear potential near the edge, with no

discontinuity,

Ts;E
zz ∼ −

α2

2560π2
1

z2
; Ts;H

zz ∼ −
43α2

7680π2
1

z2
; ð10:3aÞ

Ts;E
00 ∼ −

α

960π2
1

z3
; Ts;H

00 ∼
3α

320π2
1

z3
: ð10:3bÞ

These results are very similar to those seen for the quadratic

potential treated in Appendix B, with the replacements

α=z → −β, α2=z2 → 4β2 ln z.

One might think one could remove the Weyl divergences

by removing all terms with polynomial growth in z, for
surely such growth deep within the material is unphysical.

Unfortunately, the WKB analysis of Ref. [28] shows there

must also be z2 ln z terms in the linear plasma-model TE

case, which is confirmed by numerical experiments, so

such a procedure appears impossible.

Although we recover expected results, as well as some

new features, our analysis remains incomplete. It hinges on

a breakup between bulk and scattering contributions, which

is not unique; however, it captures the essential asymptotic

behavior for large wave numbers. The suggestion that to

achieve a finite stress one merely omits the bulk terms

is plausible, but this is not a unique process. Moreover,

there are finite, position-dependent contributions to the

stress tensor contained in the bulk term that likely cannot be

merely discarded.
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APPENDIX A: POINT-SPLITTING

REGULARIZATION

To pass from the reduced (Fourier-transformed) stress

tensor components to the space-time stress tensor, we need

to integrate over (imaginary) frequency and transverse

wave vectors. Doing so leads to divergences for the bulk

parts, so we regulate the integrals by point splitting in the

transverse directions and in time:

TðzÞ ¼
Z

∞

−∞

dζ

2π

Z ðdkÞ
ð2πÞ2 e

iζτeik·Δtðκ̃; ζÞ;

κ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2ϵ
p

; τ;Δ → 0; ðA1Þ

writing in a generic form. If the function t only depends

on κ̃ we can evaluate this in polar coordinates, with the

polar angle being the angle between δ ¼ ðτ= ffiffiffi

ϵ
p

;ΔÞ and

κ̃ ¼ ð ffiffiffi

ϵ
p

ζ;kÞ. Then

TðzÞ ¼ 1

2π2
1
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃2
sin κ̃δ

κ̃δ
tðκ̃Þ: ðA2Þ

The resulting Fresnel integrals of this type are obtained by

integrating by parts and discarding the contribution at

infinity (justified in a distributional sense):
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Z

∞

0

dκ κ2 sin κδ ¼ −
2

δ3
; ðA3aÞ

Z

∞

0

dκ κ cos κδ ¼ −
1

δ2
; ðA3bÞ

Z

∞

0

dκ sin κδ ¼ 1

δ
: ðA3cÞ

We can also give the integrals which have infrared

singularities (regulated by a cutoff μ, which never appears

in the results):

Z

∞

μ

dκ

κ
cos κδ ∼ −γ − ln μδ; δ → 0; ðA3dÞ

Z

∞

μ

dκ

κ2
sin κδ ∼ δð1 − γ − ln μδÞ; δ → 0: ðA3eÞ

But we also encounter terms where ζ2 appears linearly.

Then it is easiest to consider time splitting and space

splitting separately. For the τ cutoff, the angular average of

ϵζ2 gives

TτðzÞ ¼
1

4π2
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃2
Z

1

−1

d cos θeiκ̃τ cos θ=
ffiffi

ϵ
p
κ̃2cos2θ

¼ −
1

2π2
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃4
�

∂

∂ðκ̃δÞ

�

2 sin κ̃δ

κ̃δ
;

δ ¼ τ=
ffiffiffi

ϵ
p

; ðA4Þ

while for the spatial cutoff (which, without loss of general-

ity we can choose to be in the x direction),

TΔðzÞ ¼
1

8π3
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃2
Z

1

−1

d cos θ

×

Z

2π

0

dϕeiκ̃δ sin θ cosϕκ̃2cos2θ

¼ 1

4π2
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃4
Z

π

0

dθ sin θcos2θJ0ðκ̃δ sin θÞ

¼ 1

2π2
ffiffiffi

ϵ
p

Z

∞

0

dκ̃ κ̃4
�

sin κ̃δ

ðκ̃δÞ3 −
cos κ̃δ

ðκ̃δÞ2
�

: ðA5Þ

In these expressions we have not written the remaining

function of κ̃ within the integrals. The relation between the

two cutoff factors is just that given in Ref. [17]:

d

dx

�

x

�

sin x

x3
−
cos x

x2

��

¼ −
d2

dx2
sin x

x
: ðA6Þ

APPENDIX B: QUADRATIC POTENTIAL

Suppose the potential begins quadratically, that is,

it is continuous, with a continuous first derivative, but a

discontinuous second derivative at the edge,

εðzÞ ¼ 1þ βz2: ðB1Þ

We then easily find the fundamental solution to first order

in β:

FEðzÞ
GEðzÞ

�

¼ e∓κz

�

1 ∓
βζ2z

4κ3
ð1� κzþ 2

3
ðκzÞ2Þ

�

; ðB2aÞ

FHðzÞ
GHðzÞ

�

¼ e∓κz

�

1 ∓
βz

4κ3
ððζ2 − 2κ2Þ � ðζ2 − 2κ2Þκz

þ 2

3
ζ2ðκzÞ2Þ

�

: ðB2bÞ

Here we again note that the terms proportional to ζ2 are

identical. The Wronskians of the solutions are

αE ¼ wE ¼ 2κ þ βζ2

2κ3
; ðB3aÞ

αH ¼ wHðzÞ
εHðzÞ ¼ 2κ þ β

2κ3
ðζ2 − 2κ2Þ: ðB3bÞ

First consider the bulk divergences. The identity (6.21)

still holds with the potential αζ2ϵz here replaced by βζ2z2,
so it is straightforward to compute in the plasma model,

where βζ2 ¼ β0 is a constant,

Tb;E
zz ¼ 1

2π2δ4
−

β0z
2

8π2δ2
−
ðβ0z2Þ2
32π2

ln δ; ðB4Þ

which is just as expected from the WKB analysis of

Ref. [28]. The divergent terms are again the same for the

corresponding TM contributions. And for the energy density,

with temporal splitting

Tb;E
00 ¼ 3

2π2δ4
−

β0z
2

8π2δ2
þ β0

24π2
ln δ; ðB5Þ

again as expected. Although for the TM part a singularity

emerges in the ζ integration once again, the first two terms

here are reproduced.

For the nondispersive, constant β, case we obtain results

precisely analogous to those in Eqs. (6.5a), (6.14) and (7.7):

Tb;E;H
zz ∼

1þ 3
2
βz2

2πδ4
; Tb;E;H

00 ∼
3þ 9

2
βz2

2πδ4
: ðB6Þ

For the scattering parts, we need the reflection coefficients:

R̃E ¼ βζ2

8κ4
; R̃H ¼ β

8κ4
ðζ2 − 2κ2Þ: ðB7Þ

Then, for the normal-normal stress tensor and the energy

density we obtain terms which are less singular toward

the edge than was the case for the linear potential for the

nondispersive case:

QUANTUM ELECTROMAGNETIC STRESS TENSOR IN AN … PHYS. REV. D 97, 125009 (2018)

125009-17



Ts;E
zz ∼ −

β2

640π2
ln z; Ts;H

zz ∼ −
43β2

1920π2
ln z; ðB8aÞ

Ts;E
00 ∼

β

960π2z2
; Ts;H

00 ∼ −
3β

320π2z2
: ðB8bÞ

Notice that the ratios of the zz components are 43=3, while
the energy densities are in the ratio −9, exactly as in the

linear case, which reflects the fact that the angular

integrations over cos2 θ ¼ ζ2=κ2 are the same.
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