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Recently, the Casimir self-entropy of an electromagnetic δ-function shell was considered by two

different groups, with apparently discordant conclusions, although both had concluded that a region of

negative entropy existed for sufficiently weak coupling. We had found that the entropy contained an

infrared divergence, which we argued should be discarded on physical grounds. On the contrary, Bordag

and Kirsten recently found a completely finite self-entropy, although they, in fact, have to remove an

infrared divergence. Apart from this, the high- and low-temperature results for finite coupling agree

precisely for the transverse electric mode, but there are significant discrepancies in the transverse magnetic

mode. We resolve those discrepancies here. In particular, it is shown that coupling-independent terms,

likely being an artifact of the omission of pole terms, do not occur in a consistent regulated calculation. The

results of our previous analysis, especially the existence of a negative entropy region for sufficiently weak

coupling, are therefore confirmed. Finally, we offer some analogous remarks concerning the Casimir

entropy of a thin electromagnetic sheet, where the total entropy is always positive. In that case, the origin of

the analogous discrepancy can be explicitly isolated.

DOI: 10.1103/PhysRevD.99.045013

I. INTRODUCTION

The entropy due to electromagnetic field fluctuations, or

Casimir entropy, of a perfectly conducting spherical shell

(of radius a) was computed many years ago by Balian and

Duplantier [1], who found the following low- and high-

temperature behaviors for the free energy:

ΔF
∞
∼ −

ðπaÞ3
15

T4; aT ≪ 1;

F
∞
∼ −

T

4
ðln aT þ 0.7686Þ; aT ≫ 1: ð1:1Þ

Here, the subscript is a reminder that the conductivity of

the sphere is considered infinite, and theΔmeans this is the

correction to the zero-temperature Casimir energy of the

sphere, first calculated by Boyer [2]. Only recently was

this calculation generalized to a spherical shell with a finite

electromagnetic coupling, a so-called electromagnetic

δ-function shell, or a spherical plasma shell [3,4]. The

former is described by the background permittivity

εðrÞ − 1 ¼ λð1 − rrÞδðr − aÞ; ð1:2Þ

which describes a sphere of radius a centered at the origin.

The anisotropy is required by Maxwell’s equations, as

detailed in Refs. [5,6]. We further assume that the medium

is dispersive, with a plasma-model-like dispersion relation,

λ ¼ λ0=ðζ2aÞ, with λ0 a dimensionless constant, in terms of

the imaginary frequency ζ. This model is approximately

realistic, and the transverse electric (TE) mode in this model

coincides with the analogous scalar field model. It also

coincides with the plasma-shell model considered by Bordag

and Kirsten in Ref. [4]. To translate parameters in the model

in that reference to ours, we note that their R is the same as

our a, andΩR coincides with λ0. When λ0 → ∞, we recover

the perfectly conducting spherical shell.

In this paper, we will make a detailed comparison

between the results found in Refs. [3,4]. We will see that

the finite coupling results found at low and high tem-

perature agree for the TE mode, which is by far easier to
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treat. There are some discrepancies in the transverse

magnetic (TM) contributions to the entropy. We see no

sign of the coupling-independent high-temperature TM

term in the free energy found in Ref. [4]; this arises because

the heat-kernel approach incorrectly incorporates λ0 terms,

apparently due to the omission of a pole term in the

frequency integration. However, the high-temperature term

linear in the coupling coincides with our findings and

results from the exact treatment of the Oðλ0Þ terms. At low

temperature, Ref. [4] gives only the result for λ0 ≫ ðaTÞ2,
that is, for the temperature being the smallest scale in the

problem; we show that their machinery yields our result for

arbitrary values of aT=
ffiffiffiffiffi

λ0
p

. The low-temperature behavior

will be described in Sec. II, while the high-temperature

limit will be discussed in Sec. III. Finally, we note that we

disagree with their procedure of subtracting the leading

high-temperature terms in the free energy; doing so would

violate the strong-coupling limit given in Eq. (1.1), which

we reproduce but was initially unmentioned, except at zero

temperature, in Ref. [4]. Indeed, in the revised version of

Ref. [4], they perform a different subtraction for the

perfectly conducting sphere, so a smooth limit is not

possible.

Details of the new calculations for the sphere are

relegated to Appendixes A and B. In Appendix C, we

discuss the entropy of a flat electromagnetic sheet which

we considered earlier in Ref. [7] and has been revisited

by Bordag [8]. Again, there is disagreement about the

coupling-independent term, this time in the TE mode, as

well as about what is to be subtracted. This changes the

physical conclusions, in that we find the total entropy to

be always positive; and the total entropy for a perfectly

conducting sheet is zero. Mathematically, one can see

essential agreement of all the terms found in the two

approaches. In particular, in Appendix D, we show how

our result is reproduced using the Abel-Plana formula,

which yields an expression very similar to that seen in

Bordag’s paper [8], differing only by a crucial extra term.

The latter is the origin of the discrepant coupling-

independent term. In Appendix E, we identify the exact

origin of this discrepancy: In the passage from the real-

frequency expression for the entropy to that obtained

from the phase-shift expression used in Ref. [8], a pole

contribution was omitted. (This omission seems to have

been done in Ref. [8], as we also show in Appendix E.)

We believe a similar omission occurs in the sphere

calculation, although because of its greater complexity,

it is harder to identify.

II. LOW-TEMPERATURE REGIME

OF THE FREE ENERGY

The leading low-temperature correction given by Ref. [4]

is in our notation (disregarding the subtraction of the high-

temperature contribution, to which we return later)

FT→0 ¼ −
π3

15

6þ λ0

3þ λ0
a3T4 ¼ ðπaÞ3T4

15

�

1

1þ 3=λ0
− 2

�

;

ð2:1Þ

where the first term is the TE contribution and the second is

the TM. The TE term in the free energy is precisely that

given in Ref. [3]; see Eq. (6.3) there. The second term is the

TM free energy found there as well, see Eq. (6.13), if

aT ≪

ffiffiffiffiffi

λ0
p

, that is, if the dimensionless temperature aT is

the smallest quantity in the problem. However, if this is not

the case, there are corrections parametrized by ξ ¼ α
ffiffiffiffiffiffiffiffi

2λ0=3
p ,

where we have introduced the abbreviation α ¼ 2πaT.
We obtained closed-form expressions for the TM free

energy for low temperatures as a function of ξ; see

Eq. (A9). For small ξ, the result coincides with that

contained in Eq. (2.1),

ξ ≪ 1∶ FTM
∼ −

2

15
ðπaÞ3T4; ð2:2Þ

which is Eq. (6.22) of Ref. [3], while for large ξ, the result

coincides with the high-temperature limit of the exact result

for the TM free energy in Oðλ0Þ,

ξ ≫ 1∶ FTM
∼
2

9
λ0πaT

2; ð2:3Þ

as stated in Eq. (6.23) of Ref. [3]. This implies negative

entropy occurs for small coupling and temperature. (The

TE contribution is always negative.)

These results may be easily reproduced using the

methods of Ref. [4]. The details are given in Appendix A.

III. HIGH-TEMPERATURE REGIME

OF THE FREE ENERGY

Here, there seems more discrepancy between the two

approaches, but again the results coincide for the TE mode.

We both have for large aT (fixed λ0) that (Eq. (7.17) of

Ref. [3])

aT ≫ 1∶ FTE
∼
λ0πaT

2

6
; ð3:1Þ

which results from the exact free energy in the lowest order

in λ0. On the other hand, Ref. [4] gives

aT ≫ 1∶ FTM
∼ −2ζð3Þa2T3 þ λ0πaT

2

18
: ð3:2Þ

The second term is the same as the high-temperature limit

again of the Oðλ0Þ term given in Eq. (7.30) of Ref. [3], but

we saw no evidence of the first term in Eq. (3.2), which

seems counterintuitive because it persists even if the
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coupling goes to zero. However, in Ref. [3] we did not

examine the general high-temperature result for fixed λ0 in

our earlier paper, but only in the strong-coupling (perfectly

conducting) limit. We remedy that deficiency now in

Appendix B and again only find the term of Oðλ0Þ in

Eq. (3.2). This again implies negative entropy occurs even

at high temperature for sufficiently small coupling. The

reason for the discrepancy with the result of Ref. [4], which

was calculated by a rather elaborate method in Ref. [9], is

that we used the exact uniform asymptotic expansion for

Euclidean frequencies together with the rapidly convergent

Chowla-Selberg formula [10,11], so a term independent of

λ0 cannot occur in our calculation.

Indeed, we can recover a term of the same form as the

first term in Eq. (3.2) by including, erroneously, a k ¼ 0

term in Eq. (B7), with the leading asymptotic term given

by Eq. (B11). Evidently, the approach used in Ref. [4] does

not correctly omit the ðλ0Þ0 contribution from the free

energy. This is further elucidated in the flat sheet case in

Appendixes D and E; in the former, we show that the Abel-

Plana formula, which recasts our Euclidean approach into

real frequencies, yields our, not Bordag’s, result, and

in the latter, we identify the pole term that transforms

Bordag’s free energy into ours.

IV. DISCUSSION

Therefore, we have shown substantial agreement

between the results of Refs. [3,4], for the free energy

of a δ-function sphere. The agreement is perfect for the

TE mode. The TM mode is more subtle. There, at low

temperature, the calculations agree if the temperature (in

units of the inverse radius of the sphere) is the smallest

quantity, but we point out that there are interesting

corrections if λ0=ðaTÞ2 is small, resulting in a sign

change in the entropy. At high temperature, again, we

exactly agree with the term linear in the coupling, but we

see no evidence of a term in the free energy, independent

of λ0, proportional to T3. We believe this term is an

artifact of the method employed by Bordag et al. In the

case of a flat sheet, the Abel-Plana formula, which we

would expect to yield results equivalent to the heat-

kernel approach used in Ref. [8], in fact resums the free

energy into a form which does yield our weak-coupling

expansion [7]. This is discussed in Appendix D. We

identify the extra pole term that resolves this discrepancy

in Appendix E; we expect a similar resolution in the

sphere case, but the analysis is more involved there.

References [3,7] use temporal and spatial point split-

ting, permitting weak- and strong-coupling expansions.

Working with Euclidean frequencies removes ambiguities

in the branch lines of the square roots.

Reference [4] does not make any comparison of their

results with ours. This is surprising, but they justify this by

remarking that our procedure results in some divergent

terms. However, at the end of the calculation, there was

only an infrared-sensitive term,

FTM
IR ¼ T ln

μ

T
: ð4:1Þ

This we argued should be removed as an irrelevant contact

term, since it does not refer to the sphere parameters, and

indeed precisely such a term can be seen to be removed

implicitly in the calculation given in Ref. [4], as one can

verify by examining the arguments in Ref. [9].

Finally, we must address the subtraction procedure

advocated in Ref. [4]. The argument given there is that

the two leading high-temperature terms seen in Eq. (3.2)

should be subtracted because they do not possess a classical

limit. But doing so would seem to challenge the self-

consistency of the theory and would result in changing the

well-established perfectly conducting sphere limit, which is

indeed acknowledged in the revised version of their paper

[4]. Subtracting their leading, coupling-independent, term

from the free energy further introduces an explicitly

negative entropy term for weak coupling.

Both calculations discussed in this paper find that there is

a negative entropy region, which seems in contradiction

with the physical, thermodynamical meaning of entropy.

However, as Ref. [4] seems to acknowledge, neither of us is

accounting for the complete physical system. The back-

ground, in our case the δ-function potential and in their case

the plasma shell, is established by forces other than those

arising from the electromagnetic fluctuating fields, the

effects of which we are calculating. A thorough inves-

tigation including the complete physical system would

yield a positive total entropy.

Recently, Bordag posted a new paper [8] which discusses

the electromagnetic thin sheet, which we had considered

earlier in Ref. [7]. As we have already mentioned, in

Appendixes C and D, we again show essential agreement

between our two approaches, although Bordag again finds

a spurious λ0-independent term in now the TE component

of the free energy, and advocates subtractions for which we

see no necessity. This discrepancy is resolved in

Appendix E, and we presume a similar extra term occurs

in the more complicated spherical calculation.
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APPENDIX A: THE LOW-TEMPERATURE

LIMIT OF THE TM FREE ENERGY

In this Appendix, we sketch how the methods of

Ref. [4] yield exactly the same result for FTM in the

low-temperature limit as found in Ref. [3]. Bordag and

Kirsten compute the free energy from the phase shifts,

defined here by

δTMl ¼ −
π

2
þ arctan

1 −
λ0
x
|̃l
0ðxÞỹl0ðxÞ

λ0
x
½|̃l0ðxÞ�2

; x ¼ ωa;

ðA1Þ

where the Riccati-Bessel functions are defined in terms of

the usual spherical Bessel functions by |̃lðxÞ ¼ xjlðxÞ,
ỹlðxÞ ¼ xylðxÞ. For small temperature, all that is relevant

is the leading low-frequency behavior, which arises only

for l ¼ 1 (larger values of l give higher powers of T):

δTM1 ∼ −π þ 2

3
x3: ðA2Þ

From this limit, the result (2.2) follows. However, if x and

λ0 are comparable, there are corrections:

δTM1 ¼ −π þ 2

3
x3

X

∞

k¼0

�

3

2

x2

λ0

�

k

: ðA3Þ

In the scheme given in Ref. [4], the temperature correction

to the free energy is given by the formula

ΔTF ¼ T

Z

∞

0

dω

π
ln ð1 − e−ω=TÞ d

dω
δðωÞ;

δ ¼
X

∞

l¼1

ð2lþ 1Þδl: ðA4Þ

This result may be readily derived from the real-frequency

version of Eq. (B1). Inserting the expansion (A3) into this,

we find

ΔTF ¼ −
2

π
T
X

∞

k¼0

ð2kþ 3Þ
�

3

2λ0

�

k

ðaTÞ3þ2k
Γð2kþ 3Þ

× ζð2kþ 4Þ; ðA5Þ

and then if we use the Euler representation of the gamma

function, we have

ΔTF ¼ −2
a3T4

π

Z

∞

0

dtt3e−tf

�

ξt

2π

�

; ξ ¼ 2πaT
ffiffiffiffiffiffiffiffiffiffiffiffi

2λ0=3
p ;

ðA6Þ

where

fðyÞ ¼
X

∞

k¼0

y2kζð2kþ 4Þ ¼ 3 − π2y2 − 3πy cot πy

6y4
: ðA7Þ

This expression actually does not exist because of poles in

the cotangent; the radius of convergence of the series is 1.

Such poles are characteristic of real-frequency formula-

tions. However, we may find a unique analytic continuation

by making, e.g., a π=4 rotation in the integration variable,

t → tð1þ iÞ,

ΔTF
TM ¼ −

�

2λ0

3

�

2 1

πa

ξ4

8π4
ð1þ iÞ4

×

Z

∞

0

dtt3e−tð1þiÞf

�

ξt

2π
ð1þ iÞ

�

; ðA8Þ

which is absolutely convergent. This is an alternative

“closed form” to that shown in Ref. [3], and it gives the

limits shown above in Eqs. (2.2) and (2.3). It coincides with

the form given in our paper [Eq. (6.24)] for all ξ [ðπaÞ−1
was inadvertently omitted there],

ΔTF
TM ¼

�

2λ0

3

�

2 1

πa

�

ξ2

12
− ln ξ −ℜψ

�

1þ i

ξ

��

; ðA9Þ

as seen in Fig. 1, which is equivalent to Fig. 3 in Ref. [3].

This further shows that the TM entropy (the negative slope

of the free energy with respect to T) is positive for strong
coupling (small ξ) and negative for weak coupling (large ξ),

with the transition occurring near ξ0 ¼ 1.75….

APPENDIX B: THE HIGH-TEMPERATURE

LIMIT OF THE TM FREE ENERGY

The general expression for the TM component of the free

energy for a electromagnetic δ-function shell is (Eq. (2.10)

of Ref. [3])

FIG. 1. The free energy computed from either Eq. (A8) or

Eq. (A9), which coincide, compared with the leading low ξ

approximation (lower dotted, blue) and with the leading large ξ

approximation (upper dotted, magenta). The latter approaches the

exact result closely for larger ξ than shown in the figure.
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FTM ¼ T

2

X

∞

n¼−∞

X

∞

l¼1

ð2lþ 1Þ ln
�

1 −
λ0

x
e0lðxÞs0lðxÞ

�

;

x ¼ nα; α ¼ 2πaT; ðB1Þ

where we see the appearance of the modified Riccati-Bessel

functions,

slðxÞ ¼
ffiffiffiffiffi

πx

2

r

Ilþ1=2ðxÞ; elðxÞ ¼
ffiffiffiffiffi

2x

π

r

Klþ1=2ðxÞ: ðB2Þ

To get the high-temperature behavior, it is convenient to

first use the uniform asymptotic expansion for the Bessel

functions, which leads to the expansion of the logarithm

appearing here:

ln

�

1 −
λ0

x
e0lðxÞs0lðxÞ

�

∼

X

∞

k¼1

a
ðkÞ
TMðzÞ
ð2νÞk ; x ¼ νz;

ν ¼ lþ 1=2; t ¼ ð1þ z2Þ−1=2:
ðB3Þ

The first four of these coefficients are given in Eq. (7.26) of

Ref. [3]. The leading term is that with the highest power of

λ0 in each coefficient, which amounts to retaining only the

leading order uniform asymptotic expansion of the Bessel

functions within the logarithm. Therefore, we approximate

the increasingly elaborate structure of the expansion

coefficients by

a
ðkÞ
TM ∼ ð−1Þkþ1

1

k

�

λ0

z2t

�

k

: ðB4Þ

This then leads to the approximate form (the prime

designates 1=2 weight for n ¼ 0)

FTM
∼ T

X

∞

k¼1

ð−1Þkþ1
1

k

X0
∞

n¼0

X

∞

l¼1

2ν

�

λ0

2νz2

�

k

ð1þ z2Þk=2;

z ¼ nα=ν: ðB5Þ

This is actually incorrect for n ¼ 0, where we should use

the small argument expansion of the Bessel functions, as

explained in Ref. [3]. The n ¼ 0 term requires an infrared

regulator and is a bit subtle. However, it can only give an

OðTÞ contribution, smaller than the leading terms we are

seeking.

So, to extract the leading high-temperature contributions

to the free energy, we consider

FTM
n>0 ∼ T

X

∞

k¼1

X

∞

n¼0

X

∞

l¼0

ð2lþ 3Þ ð−1Þ
kþ1

k

�

λ0

2

�

k

×
½ðlþ 3=2Þ2 þ α2ðnþ 1Þ2�k=2

½α2ðnþ 1Þ2�k : ðB6Þ

Here, we have shifted the n and l variables down by 1 to put
the sum in standard form. This expression does not actually

exist; we will define it by analytically continuing the

exponent in the numerator to s − 1 < −1=2 and then at

the end continuing back to s ¼ 1þ k=2. We can take care

of the factor of 2lþ 3 by differentiating with respect to b, a
variable to be set to 3=2 at the end. In this way, our

approximation reads

FTM
n>0 ∼ T

X

∞

k¼1

ð−1Þkþ1

k

�

λ0

2

�

k 1

s

∂

∂b
Z; ðB7Þ

where

Z ¼
X

∞

n;l¼0

½ðlþ bÞ2 þ α2dðnþ 1Þ2�s
½ðnþ 1Þ2α2�k : ðB8Þ

We have introduced yet another parameter d, to be set to 1

at the end, so that by differentiating with respect to dwe can
get rid of the denominator:

�

∂

∂d

�

k

Z ¼ Γðsþ 1Þ
Γðsþ 1 − kÞE2ðk − s; 1; dα2; b; 1Þ: ðB9Þ

In this expression, we have followed the notation of

Elizalde [10,11]. The high-temperature behavior is cap-

tured by the generalized Chowla-Selberg formula given

there (see Eq. (7.3) of Ref. [3]),

E2ðk − s; 1; dα2; b; 1Þ ∼ ðdα2Þs−kζð0; bÞζð2k − 2sÞ;
ðB10Þ

with higher terms being down by powers of α−2. Then, we

can integrate up the derivatives seen in Eq. (B9), but there

are k integration constants,

Z ∼ dsα2s−2kζð0; bÞζð2k − 2sÞ þ
X

k−1

j¼0

Ajd
j; ðB11Þ

where we can now set d ¼ 1 and s ¼ k=2þ 1. The

integration constants Aj can be readily computed by

evaluating Z and its derivatives at d ¼ 0. However, these

constants are innocuous for extracting the leading

behavior; for a given power of λ0 in the free energy, the

largest term in α comes from the Ak−1 term, which goes like

α−2, subdominant compared to the leading terms.

Therefore, we disregard those terms, do the b derivative

by noticing that

∂

∂b
ζð0; bÞjb¼3=2 ¼ −1; ðB12Þ

and write (aT → ∞)
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FTM
∼ −Tα2

�

λ0

2α

2

3
ζð−1Þ − 1

2

�

λ0

2α

�

2 1

2
ζð0Þ

þ 1

3

�

λ0

2α

�

3 2

5
ζð1Þ þ

X

∞

k¼4

ð−1Þkþ1

k

�

λ0

2α

�

k

×
1

1þ k=2
ζðk − 2Þ

�

: ðB13Þ

The sum turns out to be of order ðλ0=2αÞ3, but that and the

third divergent term are temperature independent. The

second term here is of order T, but that must be supple-

mented by the n ¼ 0 term which we deferred above. Thus,

all we can extract is the leading term for high temperature,

FTM
∼
λ0πaT

2

18
; aT ≫ 1; λ0; ðB14Þ

which coincides with the second term in Eq. (3.2) and

which, as anticipated, agrees with the high-temperature

limit of the exact Oðλ0Þ solution. No sign appears of the

first term in Eq. (3.2), which is coupling independent. The

reason for the discrepancy with that of the procedure used

in Ref. [9] is that our regulated expressions for the free

energy vanish in the absence of interactions, so there can be

no contribution at λ0 ¼ 0. It appears, as demonstrated in

Appendix E for the analogous flat sheet problem, that in

translating the free energy expression into the phase-shift

formulation used in Refs. [4,8] a pole term has been

omitted, the inclusion of which would cancel the offending

term. The unregulated heat-kernel technique, unlike the

Abel-Plana formula, discussed in Appendix D, inserts

spurious coupling-independent terms. Further evidence

for the appropriateness of our approach lies in the

strong-coupling (perfect conductor) limit, where there is

a term of just such a form in both the TE and TM modes,

occurring with equal magnitudes and opposite signs, so

they cancel in the total free energy. (This was seen also in

Refs. [12,13].) Here, the term appears only in the TM

mode. Finally, we note that in our procedure, detailed in

Ref. [3], where no such term appears, we do recover the

Balian and Duplantier result (1.1) for the perfect-conductor,

high-temperature limit. No smooth limit is possible in the

scheme advocated for in Ref. [4].

APPENDIX C: THIN ELECTROMAGNETIC

SHEET

In Ref. [7], we exactly solved for the Casimir entropy of

a flat electromagnetic δ-function sheet, described by the

permittivity εðrÞ − 1 ¼ diagðλ; λ; 0ÞδðzÞ. We showed that

the TE entropy is always negative, while the TM entropy is

positive, and always larger than the magnitude of the

former. The total entropy tends to zero in the limit

λ → ∞, that is, for a perfectly conducting sheet. Results

were precisely defined using temporal and spatial point-

splitting regulators.

Closed-form results were obtained for the entropy for a

“plasma model,” where the dispersion was incorporated

by writing λ ¼ λ0=ζ
2, where λ0 is a constant and ζ is the

imaginary frequency. [For the flat sheet, λ0 has the

dimension of ðlengthÞ−1]. The explicit forms for the TE

and TM entropies per unit area are given by (4.13) and

(4.25) of Ref. [7]. We will content ourselves here by writing

the limits

T ≫ λ0∶ STE ∼ −
λ0

12
T þOðT0Þ; ðC1aÞ

T ≪ λ0∶ STE ∼ −
3ζð3Þ
4π

T2 þOðT3Þ; ðC1bÞ

and

T ≫ λ0∶ STM ∼
120ζð5Þ
πλ20

T4 þ 3ζð3Þ
2π

T2
−
λ0

36
T þOðT0Þ;

ðC2aÞ

T ≪ λ0∶ STM ∼
3ζð3Þ
4π

T2 þOðT3Þ: ðC2bÞ

Notice that these results mean that the total entropy

vanishes in the perfect conducting limit.

Reference [8] seems to obtain somewhat different limits.

For high temperature, Bordag gives (with his Ω0 ¼ λ0=2
and ω0 ¼ 0) for the TE contributions

T ≫ λ0∶ STEB ∼
3ζð3Þ
4π

T2
−
λ0

12
T; ðC3Þ

so although the second term coincides with Eq. (C1a), the

first term was not seen by us. (The corresponding heat-

kernel coefficients were first worked out in Ref. [14].)

Again, this is presumably because our regulated expres-

sions allow for a weak-coupling expansion. Indeed, were

we to start the sum in Eq. (4.11) in Ref. [7] at n ¼ −1

(n ¼ 0 is already explicitly included), we would obtain

(taking the limit n→ −1) exactly the first term in Eq. (C3).

Again, this is clearly incorrect. Once more, because he

subtracted both of these leading terms from the entropy, his

subtracted TE entropy per unit area has a linear term at low

temperature,

T ≪ λ0∶ STEB;sub ∼
λ0

12
T; ðC4Þ

the term shown in Eq. (C1b) being of higher order.

For TM, Bordag recognizes the first two terms in the

high-temperature limit (C2a) as the TM surface plasmon

contributions (ω0 ¼ 0), which he again subtracts, leaving

precisely the third term there,

T ≫ λ0∶ STMB;sub1 ∼ −
λ0

36
T; ðC5Þ
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but he subtracts this term away as well, leaving a low-

temperature entropy per unit area exactly one-third of that

for TE in Eq. (C4),

T ≪ λ0∶ STMB;sub2 ¼
λ0

36
T; ðC6Þ

because again the correction from Eq. (C2b) is higher order.

Note that with Bordag’s prescription the perfect conductor

limit does not exist.

So, the technical results of both papers coincide, as

further shown in Appendix D. We disagree only the

inclusion of spurious coupling-independent terms and on

the necessity of subtracting terms because they do not seem

to reproduce known results. The following two Appendixes

help resolve the issue of the spurious terms.

APPENDIX D: ABEL-PLANA FORMULA

For simplicity, we consider here the TE mode of the free

energy per area for the thin sheet, which is given by the

spatially regulated formula (Eq. (4.1) of Ref. [7])

FTE ¼ T

2π

X0
∞

m¼0

Z

∞

0

dkkJ0ðkδÞ ln
�

1þ λ0

2κm

�

;

κm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2m

q

; ðD1Þ

where the prime means them ¼ 0 term is counted with half

weight. The Abel-Plana formula allows us to turn the sum

into an integral:

X0
∞

m¼0

fðmÞ ¼
Z

∞

0

dtfðtÞ þ i

Z

∞

0

dt
1

e2πt − 1
½fðitÞ− fð−itÞ�:

ðD2Þ

Using the first term here in the formula for the free energy

(D1) gives a term independent of temperature, which we

disregard. For the second term, we integrate by parts,

ΔFTE ¼ T

ð2πÞ2
Z

∞

0

dt lnð1 − e−2πtÞ½f0ðitÞ þ f0ð−itÞ�;

ðD3Þ

where

fðtÞ ¼
Z

∞

0

dkkJ0ðkδÞ ln
�

1þ λ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ð2πtTÞ2
p

�

: ðD4Þ

The derivative of f does not require the regulator,

f0ðtÞ ¼ ð2πTÞ2t ln
�

1þ λ0

4πtT

�

; ðD5Þ

and then with ω̃ ¼ 2πt, we have

f0ðitÞ þ f0ð−itÞ ¼ −4πT2ω̃ arctan
λ0

2ω̃T
: ðD6Þ

In this way, we obtain a result slightly different from what

Bordag gives,

ΔFTE ¼ −
T3

2π2

Z

∞

0

dω̃ ω̃ ln ð1 − e−ω̃Þ arctan λ0

2ω̃T
; ðD7Þ

while Ref. [8] has the same formula with the arctangent

replaced by − arctan 2ω̃T
λ0

¼ arctan
λ0
2ω̃T

−
π
2
.

If we expand the arctangent for large argument, we

obtain nearly the same leading high-temperature result that

Bordag does,

T

λ0
≫ 1∶ ΔFTE

∼
λ0

24
T2

−
λ20
24

T

�

1 − 2 ln
λ0

2T

�

; ðD8Þ

which is consistent with Eq. (C3), apart from the first term

there. The two terms here agree with those found in

Eq. (4.14b) of Ref. [7], and, as shown there, the full series

is convergent. In the opposite limit, that of low temperature

or strong coupling, we obtain from Eq. (D7) the asymptotic

series

λ0

T
≫ 1∶ ΔFTE ¼ −

ζð3Þ
4π

T3
−

T3

2π2

X

∞

n¼0

ð−1Þn

×
Γð2nþ 4Þζð2nþ 4Þ
ð2nþ 1Þð2nþ 3Þ

�

2T

λ0

�

2nþ1

; ðD9Þ

which coincides with our expansion (4.14a) of Ref. [7]. In

general, we conclude that the difference between the two

forms of the entropy is

STE ¼ STEB −
3ζð3Þ
4π

T2: ðD10Þ

This suggests that that the properly regulated theory is that

discussed in Ref. [7], so the coupling-independent term is

not present. This is demonstrated in the following Appendix.

APPENDIX E: RESOLUTION OF DISCREPANCY

We now carefully rederive the starting point in Ref. [8]

starting from the real-frequency form for the free energy,

which follows directly from the familiar Tr ln formula F ¼
−

1
2
Tr lnΓΓ−1

0 in terms of the free and full Green’s dyadics

Γ0 and Γ. For the transverse electric contribution to the free

energy, this amounts to (β ¼ 1=T)

ΔFTE ¼ 1

2π2
ℑ

Z

∞

0

dω
1

eβω − 1

×

Z

∞

0

dkk ln

�

1þ λ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ω2
p

�

¼ −
λ0

4π2β
ℑ

Z

∞

0

dkk

Z

∞

0

dωω ln ð1 − e−βωÞ

×
1

k2 − ω2

1

λ0=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ω2
p : ðE1Þ
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[Formally, this can be derived from the Euclidean form

(D1) by the Abel-Plana formula.] In the second line, we

have integrated by parts and omitted the boundary term

because it is real. There are two singularities in the ω

integration above, a pole and a branch point, both occurring

at ω ¼ k. We choose the branch line to pass from k to ∞.

In the spirit of using the causal or Feynman propagator,

our contour of integration must pass above all of

these singularities. Let us change variables from ω to

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ω2
p

, where κ is real for ω < k and κ ¼ −ikz for
ω > k, the sign of i being dictated by the above contour

requirement. We then write the free energy as

ΔF ¼ −
λ0

4π2β
ℑ

Z

∞

0

dkk

�
Z

k

0

dκ

κ

lnð1 − e−β
ffiffiffiffiffiffiffiffiffi

k2−κ2
p

Þ
λ0=2þ κ

−

Z

∞

0

dkz

kz

lnð1 − e−β
ffiffiffiffiffiffiffiffiffi

k2þk2z

p
Þ

λ0=2 − ikz

�

: ðE2Þ

Wewill initially disregard the pole at κ ¼ kz ¼ 0. Then, the

first term in the above is purely real, so it is to be discarded,

and the imaginary part of what is left is

Δ1F ¼ λ0T

4π2

Z

∞

0

dkk

Z

∞

0

dkz
1

k2z þ ðλ0=2Þ2

× ln ð1 − e−β
ffiffiffiffiffiffiffiffiffi

k2þk2z

p
Þ: ðE3Þ

This is precisely the formula (10) given in Ref. [8], with the

derivative of the phase shift (or the density of states factor)

given there by

d

dp
δðpÞ ¼ Ω0

Ω
2
0 þ p2

; ðE4Þ

which coincides with Eq. (30) of Bordag’s paper.

(Remember our translation of variables: here, Ω0→ λ0=2,
p → kz, and ω0 ¼ 0.) This then leads directly, upon

introducing polar coordinates, to Bordag’s results for the

free energy and entropy:

Δ1F ¼ T

2π2

Z

∞

0

dωω ln ð1 − e−βωÞ arctan 2ω
λ0

: ðE5Þ

Let us now include the pole terms that we omitted

following Eq. (E2). This gives another contribution to

the imaginary part:

Δ2F ¼ −

π
2

2π2β

Z

∞

0

dkk ln ð1 − e−βkÞ: ðE6Þ

Combining this with the Δ1F contribution yields our

result (D7).

In fact, Bordag’s starting point [8]

ΔFTE ¼
Z

∞

0

dp

π

Z ðdkÞ
ð2πÞ2 T ln ð1 − e−βωÞ dδðpÞ

dp
; ðE7Þ

properly interpreted, also yields the same result. This is

because

dδðpÞ
dp

¼ ℜ
Ω0

pðp − iΩ0Þ
ðE8Þ

is not exactly Eq. (E4) because p contains an implicit

branch line, with branch point at p ¼ 0. Thus,

ΔFTE ¼ −Tℑ

Z

∞

0

dp

π

Z

dkk

2π
ln ð1− e−βωÞ

�

1

p
−

1

p− iΩ0

�

:

ðE9Þ

The second term is Bordag’s result (E3) and (E5), while the

first, evaluated by integrating over a quarter-circle around

the pole at p ¼ 0 in the positive sense, yields precisely our

correction (E6). [The sense of the contour is most easily

seen starting from Eq. (E1).]
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