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Abstract—This paper is motivated by the observation that
the average queueing delay can be decreased by sacrificing
power efficiency in wireless communications. In this sense, we
naturally wonder what the minimum queueing delay is when
the available power is limited and how to achieve the minimum
queueing delay. To answer these two questions in the scenario
where randomly arriving packets are transmitted over multi-state
wireless fading channel, a probabilistic cross-layer scheduling
policy is proposed in this paper, and characterized by a con-
strained Markov Decision Process (MDP). Using the steady-state
probability of the underlying Markov chain, we are able to derive
the mathematical expressions of the concerned metrics, namely,
the average queueing delay and the average power consumption.
To describe the delay-power tradeoff, we formulate a non-linear
programming problem, which, however, is very challenging to
solve. By analyzing its structure, this optimization problem can be
converted into an equivalent Linear Programming (LP) problem
via variable substitution, which allows us to derive the optimal
delay-power tradeoff as well as the optimal scheduling policy. The
optimal scheduling policy turns out to be dual-threshold-based,
which means transmission decisions should be made based on the
optimal thresholds imposed on the queue length and the channel
state.

Index Terms—Cross-layer design, delay-power tradeoff, qual-
ity of service, probabilistic scheduling, controllable queueing
system, Markov Decision Process.

I. INTRODUCTION

FUTURE wireless networks, such as the fifth Genera-

tion (5G) of mobile network, bring more stringent QoS

(quality-of-service) to support emerging applications that in-

volve explosive mobile devices [1]. Low latency is one of the

most important QoS for URLLC (Ultra-Reliable Low Latency

Communications) which is a features brought by 5G [2]. At

the mean time, high energy efficiency is urgently required
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especially for these machine nodes that are usually powered

by rechargeable batteries of finite capacity. Thus, it is of great

importance to ensure the required latency with finite transmit

power for these users in wireless communications [3], [4].

In general, it is very challenging to derive the delay-power

tradeoff in such machine-based applications, considering the

random behavior of the bursty traffic, and the time-varying

characteristics of wireless channels [5]. These randomness

occur in different layers of the transmitter, which increases

the difficulty of characterizing the delay-power tradeoff [6].

We evaluate the latency and power efficiency performances

under a point-to-point transmission scenario. In such case, the

cross-layer design framework, first presented in [7], can be

used for reference to capture the uncertainties occurring at

different layers in the last decades [8]–[14].

Within the cross-layer architecture, many works have fo-

cused on revealing the delay-power tradeoff, which can be

classified into two major categories. One line of the works at-

tempt to find the analytical delay-power tradeoffs by consider-

ing some ideal or simplified assumptions on the system model

[15]–[19]. In [15], the authors proposed a scheduling policy

named Lazy scheduling which assigns transmission chances

based on the backlog in the queue under the assumption that

the arrival times of the packets are known in advance. In

[16], the authors minimized the transmission power with QoS

constraits by assuming that the data arrival is known ahead of

schedule and the channel is static or slow fading. This line of

works mainly provide theoretical value more than engineering

value, since the assumptions are too ideal to be practical.

However, they are able to provide deeper insights to guide

for engineering applications such as protocol design.

The works in the other category consider more complex and

practical system models [9]–[11], [20]–[22]. In [9], Berry and

Gallager proposed adapting the users’ transmission rate and

power by regulating the average power and average buffer

delay over a wireless fading channel. They also focused

on studying the cross-layer resource allocation in wireless

fading channels for [10] and deriving the optimal power-delay

tradeoff for a single user in the regime of asymptotically

small delays in [11]. Ata investigated the power minimization

problem subject to the packet drop rate in [20], assuming the

fixed channel state, Possion packet arrival and exponentially

distributed packet size. In [21], [22], the authors studied the

delay-bounded packet scheduling problem with bursty traffic

arrival over wireless channels. This line of works studied the

delay-power curve and analyzed its property under some cir-

cumstances. While it is difficult to derive theoretical solutions
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Fig. 1: Potential application scenarios in sensor network

in general cases. This line of works mainly focus on studying

resource allocation solutions and designing efficient algorithms

for practical usage, which is of great importance in designing

delay/power-efficient wireless transmission strategies.

The cross-layer resource scheduling problem can be applied

in many potential application scenarios. Dynamic resource

management problems were studied under the IoT (Internet

of Thing) in [23] and the Smart Grid scenarios in [24],

respectively. The power constrained delay minimization prob-

lems were studied in [17] [25] for multi-access channel.

The resource scheduling problem in energy harvesting was

studied in [26]. Studying the point to point resource scheduling

problem can provide useful insights for these important and

emerging applications.

More recently, a simple probabilistic scheduling policy

was proposed to achieve the minimum queueing delay under

power constraint in our previous work [18], where Bernoulli

packet arrivals and a two-state fading channel model were

considered. Some potential application scenarios are shown

in Fig.1. Further, arbitrarily random packet arrival patterns

were considered to capture the impact of bursty network

traffic in [27], [28] and adaptive transmission is considered in

[29]. In these works, we proved that the optimal delay-power

tradeoff can be achieved by applying the optimal scheduling

polices which determine packet transmissions based on the

threshold imposed on the queue length. The structured policy

is appealing for the scheduler thanks to its ease of deployment.

Hence, it inspires us to further dig into this topic. We naturally

wonder if the optimal solution still has a special structure in

more general scenarios and what kind of structure it may have.

In this paper, we study the delay-power tradeoff in wireless

packet transmissions in a more realistic but complex com-

munication system, where data packets are generated from

an arbitrarily bursty traffic and a multi-state wireless fading

channel is considered. The major challenges of this work lie

in two aspects: 1) how to perform probabilistic scheduling

jointly based on the randomness of the data packet arrival,

the occupancy of the transmission data queue, and the time-

varying characteristics of the wireless channel, and 2) how to

reveal the structure of the optimal policy.

At the first task, the major challenge confronted is to

build a proper cross-layer framework which includes all the

system dynamics. Incorporating all these effects, our proposed

scheduling policy performs joint scheduling based on the

time-varying environment. Hence, it is very challenging to

formulate the optimal cross-layer scheduling problem while

facilitating theoretical analysis of its optimal solution. To deal

with this difficulty, we propose a stochastic scheduling policy

being aware of packet arrival, buffer and channel states. Then,

we formulate a non-linear optimization problem to find the

optimal probabilistic scheduling parameters. The challenge

behind the second task is how to solve the optimal scheduling

problem and derive the closed-form solution. This lies in the

fact that the dimensionality of solving the optimal scheduling

problem increases significantly due to the enlarged number of

scheduling parameters that increases linearly with the number

of channel and packet arrival states. By solving the obtained

non-linear problem, we can surely obtain the optimal delay-

power tradeoff. However, it is not trivial to search for the

optimal solution to the non-linear optimization problem, let

alone derive the optimal scheduling solution theoretically. To

deal with this challenge, we first find a method to convert it

to an LP problem, through which we can further analyze the

structure of the optimal solution and reveal that the optimal

scheduling policy has a dual-threshold-based structure step by

step. By dual-threshold-based, we mean that packets should

be transmitted based on the thresholds imposed on not only

the queue state but also the on channel state.

The remainder of this paper is organized as follows. The

system setting is introduced in Section II. In Section III,

we propose the probabilistic scheduling policy to schedule

packet transmissions based on the buffer and the channel

states simultaneously. In Section IV, we formulate a non-

linear power constrained delay minimization problem and then

convert it to an equivalent LP problem. In Section V, we reveal

that the optimal scheduling policy is dual-threshold-based

with a rigorous mathematic proof and propose an algorithm

to find simplified suboptimal policy. Simulation results are

demonstrated in Section VI to validate the dual-threshold-

based policy and concluding remarks are presented in Section

VII. Some notations frequently used are explained as follows.

Given a positive integer K , the notation K denotes an integer

set {0,1,2, · · · ,K} while K+ denotes integer set K/{0}. Sets

W and W+, M and M+ are defined in the same way1.

II. SYSTEM MODEL

We consider a wireless communication system where the

source node transmits to the destination over a time-varying

wireless link. As shown in Fig.2, packets of bursty traffic

generated by higher-layer applications arrive at the network

layer randomly, and are stored at the buffer in the data link

layer. In the physical layer, the transmitter determines when

to transmit the queued packets over a multi-state wireless

channel, with the aid of efficient scheduling policies.

Let a[n] denote the number of packets randomly arriving

in the nth slot. To capture the burstiness and variability of

1Part of this work was published in [30], where main results were presented
while most important derivations for some conclusions towards the dual-
threshold-based structure were omitted due to the limited space.
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Fig. 2: System model

real-time applications, we assume an arbitrarily packet arrival

pattern, i.e., the number of newly arriving packets could

follow any distribution. Suppose that a[n] is independent

and identically distributed (i.i.d.). Thus, the mass probability

function of a[n] can be characterized by

Pr{a[n] = m} = θm,m = 0,1,2, · · · (1)

where θm ∈ [0,1]. Considering traffic shaping and admission

control adopted in the system, the number of packets newly

arriving in each time slot must be upper-bounded by a large

integer M . In other words, there exists a positive integer M

such that θm = 0, for all m > M , and
∑M

m=0 θm = 1. The

average packet arrival rate ā is obtained as

ā = lim
N→∞

sup
1

N

∑N

n=0
a[n] =

∑M

m=0
m · θm. (2)

At the source node, a buffer is employed to store the

backlogged packets which cannot be sent immediately. The

queue state, denoted by q[n], is characterized by the number

of packets in the buffer at the end of nth slot and updated as

q[n] = max
{
min{q[n−1] + a[n],K} − s[n],0

}
, (3)

where s[n] is the transmitted packets in the nth time slot and

K is the capacity of the buffer2.

We adopt a W-state block fading channel model, where W

is a positive integer. Let h[n] denote the channel state in the

nth time slot. By block fading, we mean that the channel

state h[n] stays invariant during each time slot and follows an

i.i.d. fading process across the time slots. Here, the discrete

W channel states indicate different wireless channel qualities.

Let d1 = 0 < d2 < · · · < dW < dW+1 = ∞ be the channel

power gain levels. If the channel gain in the nth time slot

ranges in interval [dw, dw+1), we say that the wireless channel

is at state w. Since the channel quality becomes better with

the increase of the index, w = 1 and w = W represent the

worst and the best channel condition, respectively. The mass

probability function of h[n] is described as

Pr
{
h[n] = w

}
= ηw, (4)

where ηw ∈ [0,1] and w ∈ W+.

Suppose that there exists a feedback channel through which

the Channel State Information (CSI) is sent back from the

receiver to the transmitter. Intuitively, the transmission power

shall be adapted to the channel state to meet the requirement of

successful packet delivery. Let Pw (w ∈ W+) denote the power

2Packet overflow will occur if K is quite small. In this work, we assume
that K is a sufficiently large constant such that no packet overflow will occur.
In Section V, we give the conclusion that if K is greater than a threshold,
the queueing length will never reach the capacity according to our proposed
scheduling scheme. Thus, the max operation in (3) can be omitted.

needed to transmit one packet successfully in the channel sate

w. Since more power is required to combat wireless channel

fading when the channel condition is worse, it is reasonable

to assume P1 > P2 > · · · > Pw > · · · > PW .

In our model, we consider a fixed-rate transmission scheme

which has been widely adopted in practice [31]. Without loss

of generality, we assume the transmission rate is one packet

per slot. Hence, at most one data packet can be delivered in

each slot, namely, s[n] ∈ {0,1}.

In the cross-layer design framework shown in Fig.2, the

scheduler will schedule packets transmissions in each slot n

based on the packet arrival state a[n], the queueing state q[n−

1], and the channel state h[n] subjected to a power constraint,

as will be discussed in details in the next section where the

scheduling problem is treated as a power constrained Markov

Decision Process (MDP), and discussed in Section IV.

III. PROBABILISTIC SCHEDULING POLICY

In this section, we introduce a probabilistic scheduling

policy based on which the transmitter decides whether or not

to deliver one data packet to its receiver in each slot.

A. Probabilistic Scheduling

To improve the power efficiency, the transmitter should

exploit a better channel state to deliver the packets to spend

much less power. Thus, the source is more willing to keep

silent till the channel state gets better. However, this may in-

duce undesirable large latency waiting for good channel states,

which is intolerable for serving delay-sensitive or time-critical

traffics. To overcome this issue, some backlogged packets

should be transmitted immediately at the cost of consuming

higher power, even when the channel state may not be so

good. Hence, the proposed scheduler must achieve a balance

between the average delay and the power consumption.

In this work, a probabilistic cross-layer scheduling policy is

proposed to schedule packet transmissions in each time slot.

At the beginning of the nth time slot, the scheduler collects the

current system state including the queueing state q[n−1] = k,

the packet arrival state a[n] = m, and the channel state h[n] =

w. Given q[n − 1] = k, a[n] = m, and h[n] = w, it decides to

transmit one packet with probability fk+m,w or keep silent with

probability 1− fk+m,w . By fk+m,w , we mean that the scheduler

can schedule packet transmissions based on the updated queue

state q[n−1]+a[n] = k+m after one packet arrival. The reason

lies in the fact that one of the packets newly arriving at this

slot can be delivered immediately. Hence, it is not necessary

to distinguish between the backlogged packets and the newly

arriving packets. Clearly, the transmission probability fk+m,w

lies in the interval [0,1].

According to the above probabilistic scheduling policy, the

number of transmitted packets s[n] for the current slot is a

random variable, the probability mass function of which is

given by

s[n] =

{
1 w.p. fk+m,w,

0 w.p. 1 − fk+m,w,
(5)
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where k ∈ K,m ∈ M,w ∈ W and the abbreviation ′w.p.′ is

short for ′with the probability o f ′3.

We aim to find the optimal policy with a set of optimal

transmission probabilities { f ∗
k+m,w

} that can minimize the

average queueing delay under an average transmission power

constraint.

B. Markov Decision Process

Based on the scheduling policy in section III-A, the sched-

uler makes decision of transmitting s[n] packet(s) in every slot.

The transmission decision affects the number of the packets

queueing in the buffer as well as the transmission power. In

this sense, we model the scheduling problem as a constrained

MDP with the queue length q[n] being the system state.

The decision, either waiting or transmitting (s[n] ∈ {0,1}),

is treated as one candidate action taken at the current state.

Executing each action certainly causes some system costs,

namely, the delay cost associated with the queue length and

the power cost associated with the packet transmission. Let

τk ,l denote the one-step state transition probability from state

q[n − 1] = k to state q[n] = l, i.e.,

τk ,l = Pr
{
q[n] = l | q[n − 1] = k

}
. (6)

The transition probabilities of the underlying Markov chain

are presented in Lemma 1.

Lemma 1. The forward and backward state transition proba-

bilities denoted by λk ,m = τk ,k+m and µk = τk ,k−1 are obtained

as

λk ,m= θm

∑W

w=1
ηw(1 − fk+m,w)

+ θm+1

∑W

w=1
ηw fk+m+1,w, (7)

µk = θ0

∑W

w=1
ηw fk ,w, (8)

where k ∈ K and m ∈ M+. The state transition probability

λk ,0 is the probability that the queue length remains the same,

given by

λk ,0 = τk ,k =

{
1−

∑M
m=1 λk ,m, k = 0,

1−
∑M

m=1 λk ,m−µk, k ∈ K+.
(9)

Proof: Due to limited space, the detail is given in [32].

Notice that, τk ,l = 0 holds for |l−k | > M , since the queue

length increases from k up to l = k+M after one packet arrival.

In Fig.3, we show an example of the MDP model with M = 2.

In each time slot, q[n] increases by no more than M due to

one new data arrival, while decreases by one since at most one

packet can be delivered. Let matrix Λ denote the (K+1)-by-

(K+1) transition probability matrix of the underlying Markov

chain. The ( j+1, i+1)-th element of Λ is transition probability

τi, j . The transition probability matrix Λ is a banded matrix,

since the number of the newly arrival packets and departing

packets are limited in one slot.

Let πk denote the steady-state probability of the queue

length being equal to k. The stationary distribution of the sys-

tem state is denoted by the vector π = [π0, π1, · · · , πK ]
T , where

3In Eq. (5), when a[n] + q[n − 1] = 0, there is no packet waiting to be
transmitted, and when a[n] + q[n − 1] > K , packet loss will happen. Thus,
f0,w (w ∈ W) and fk+m,w (k+m > K , w ∈ W) are set as zero for notational
consistence.

the superscript T denotes matrix transpose. Vectors 0 and 1

are used to denote the (K + 1)-dimensional column vectors

whose entries are zero and one, respectively. According to the

property of the steady-state probability, we have Λπ = π and

1T π = 1. Hence, the stationary distribution π is the solution

to the following linear equations[
QK

1T

]
π =

[
0

1

]
, (10)

where QK is a matrix consisting of the first K rows of the

generator matrix Q = Λ− I. From Eq. (10) and Lemma 1, we

can see that the steady-state probability π is determined by

the scheduling policy with the parameters { fk+m,w}.

IV. DELAY AND POWER TRADEOFF

In this section, we first analyze the two key performance

metrics: the average queueing delay and the average power

consumption. Then, we formulate optimization problems to

describe the delay minimum power constrained scheduling

problem, based on the stationary probability of the built

Markov Decision Process.

A. Delay and Power Metrics

In accordance with every transmission action s[n], the

scheduler spends some system costs due to queue occupation

and packet transmission. Given action s[n], the queueing cost

for buffer occupation is denoted by Cq[n] and the power

cost for packet transmission is denoted by Cp[n], respectively,

expressed as

Cq[n] = (q[n − 1] + a[n] − s[n])+ and Cp[n] = Pws[n] (11)

As time goes by, the time-average costs can be built up as

QΩ = lim
N→∞

1

N

∑N

n=1
Cq[n]

and PΩ = lim
N→∞

1

N

∑N

n=1
Cp[n], (12)

respectively. Considering the minus and connotative plus op-

erators before s[n] in Eq. (11), an action s[n] exerts opposite

influences on the buffer occupation and power consumption,

which naturally leads to a tradeoff between the average delay

(the Little’s Law) and the average power.

The above analyses explain the average delay and the

average power from the cost perspective of the scheduling

policy. It’s much easier to understand the tradeoff from the

expressions of the two metrics given in Eq. (11). To mathe-

matically derive the two metrics, we refer to the MDP model

built in Section III-B. Once the stationary distribution π is

obtained, the average queueing delay and power consumption

can be derived and shown in the following theorem.

Theorem 1. Given a probabilistic scheduling policy { fk+m,w},

the average queueing delay D and power consumption P can

be expressed as

D =
1

ā

∑K

k=0
kπk, (13)

P =
∑K

k=0
πk

∑W

w=1
ηwPw

∑M

m=0
θm fk+m,w . (14)

Proof: Given the stationary probability distribution of the

Markov chain, the average queue length can be expressed as
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Fig. 3: Illustrative of the MDP model with M = 2: for each queue length, a transmission power Pw is consumed when

transmitting one packet over the channel state w.

Q = E{q[n]} =
∑K

k=0
kπk . Then according to the Little’s Law

[33], the average queueing delay D can be derived as Q/ā and

shown in Eq. (13).

With Cp[n] = Pws[n], we have Cp[n] = Pw and Cp[n] =

P0 = 0, respectively, when one packet is transmitted over the

channel state w, i.e., s[n] = 1, and no transmission takes place,

i.e., s[n] = 0. Let ψk ,w denote the conditional probability of

Cp[n] = Pw

(
w ∈ W = {0 ∪ W+}

)
given the queue state

q[n−1]= k and channel state h[n]=w. It can be expressed as

ψk ,w =Pr{Cp[n]=Pw

��q[n−1]= k, h[n]=w}

=

{ ∑M
m=0 θm fk+m,w, w ∈ W+,

1 −
∑W

w=1
ψk ,w, w = 0.

(15)

By the law of total probability, the average power can be

derived as

P =

K∑

k=0

W∑

w=1

Pr{q[n−1] = k}Pr{h[n] = w}

Pr{Cp[n]=Pw

��q[n−1]= k, h[n]= w} × Pw

=

∑K

k=0

∑W

w=1
πkηwψk ,wPw (16)

=

∑K

k=0
πk

∑W

w=1
ηwPw

∑M

m=0
θm fk+m,w .

We notice that, the steady state probability π is an implicit

function of the transmission probabilities, since it is uniquely

determined by the transmission probabilities { fk+m,w} based

on the analyses in Section III-B. Thus, from Theorem 1, the

average queueing delay and the average power consumption

are both functions of transmission probabilities.

B. Delay-Power Tradeoff

To find the optimal scheduling policy with a set of trans-

mission probabilities { f ∗
k+m,w

|, k ∈ K,m ∈ M,w ∈ W}, we

formulate an optimization problem to minimize the average

queueing delay D under the power constraint Paver as follows:

min{ fk+m,w } D =
1

ā

∑K

k=0
kπk

s.t.





P 6 Paver (a)

fk+m,w ∈ [0,1], (b)

Qπ = 0 (c)

1T π = 1 (d)

0 � π � 1 (e)

(17)

where k ∈ K, m ∈ M, w ∈ W, and symbol ’�’ represents

the component-wise inequality between vectors. In problem

(17), the objective is to minimize the average queueing delay.

Constraint (17.a) denotes the maximum power constraint.

Constraint (17.b) indicates the range of the optimization

variables { fk+m,w}. Constraints (17.c-17.e) are derived from

the properties of the Markov chain. Constraint (17.e) specifies

the range of the steady-state probabilities. Since problem (17)

is a non-linear programming problem, it is rather difficult to

obtain the optimal solution { f ∗
k+m,w

} analytically. To make it

tractable, we first convert problem (17) into an equivalent LP

problem via variable substitution.

C. LP Problem Formulation

To formulate an LP problem, we introduce a set of new

variables {yk ,w |k ∈ K,w ∈ W} as

yk ,w =

∑M

m=0
πk+1−mθm f(k+1−m)+m,w

=

∑M

m=0
πk+1−mθm fk+1,w . (18)

In Eq. (18)4, πk+1−mθm fk+1,w is the probability of transmitting

one packet, i.e., s[n] = 1, when there are q[n − 1] = k+1 −m

data packets in the buffer and a[n] = m data packets newly

arriving at the transmitter. Thus, yk ,w is the probability that

there are k packets backlogged in the queue after one packet

transmission over channel state w. This procedure allows us

to express the objective function and the constraints of (17) as

linear functions of {yk ,m}. Hence, we are able to convert the

non-linear problem (17) into a more tractable LP problem, as

shown below.

Theorem 2. Let ξ =
∑M−1

m=1

m(m+1)
2

θm+1 be a constant. The

optimization problem (17) is equivalent to the following LP

4We assume the steady-state probability whose subscript is negative is
zero for notation convenience. Otherwise, variable yk ,w should be defined

as yk ,w =
∑min{M ,(k+1)}

m=0
πk+1−mθm fk+1,w .
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problem:

min
{yk ,w }

D =
1

ā2

( K∑

k=0

W∑

w=1

kηw yk ,w − ξ
)

s.t.





P =
K∑

k=0

W∑
w=1

ηwPw yk ,w 6 Paver (a)

K∑

k=0

W∑
w=1

ηw yk ,w = ā (b)

06 yk ,w6
M∑
m=0

θm
K∑
i=0

W∑
j=1

G(k+2−m,iW+j) ·yi, j (c)

(19)

where G(i, j) is the (i, j)-th element of (K + 1) ×
[
W(K + 1)

]

matrix G which describes the relationship between the steady-

state probabilities {πk} of the Markov chain and the variables

{yk ,w}, as given by

πk =
∑K

i=0

∑W

j=1
G(k+1,iW+j) · yi, j, (20)

Proof: The detail is given in Appendix A.

As shown in problem (19), there exists a minimum queueing

delay for any feasible power constraint Paver . Hence, the

optimal queueing delay D∗ can be expressed as a function

of Paver , i.e., D∗ = d(Paver ). In the following theorem, we

reveal the decreasing property of the delay-power function to

discuss the structure of the optimal scheduling policy in the

next section.

Theorem 3. The delay function D∗ = d(Paver ) monotonically

decreases with the maximum transmission power Paver .

Proof: The detail is given in Appendix B.

Till now, we construct an LP problem to describe the

delay-minimal scheduling problem under power constraint.

After deriving the optimal solution y
∗
k ,w

, we can then obtain

the steady-state probability π∗
k

by Eq. (20) and the optimal

scheduling probability { f ∗
k ,w
} by Eq. (18). In the sequel, we

show how to derive the optimal solution as well as the optimal

probabilities.

V. DUAL-THRESHOLD-BASED POLICY

In this section, we focus on revealing the dual-threshold-

based structure of the optimal scheduling policy. We first

present the definition of the threshold-based structure.

Definition 1. Let I = {0,1,2, · · · } denote an integer set. A

probability set
{
Υi | i ∈ I

}
has a i∗-threshold-based structure

if and only if there exists an optimal threshold i∗ ∈ I such that

Υi = 0, i < i∗ and Υi = 1, i > i∗.

In what follows, we show that the optimal scheduling policy

has such a structure on both the buffer state dimension and

the channel state dimension, referred to as a dual-threshold-

based policy. An example of the structure is illustrated in

Fig.4, where positive scheduling probabilities with the indexes

of buffer and channel states are plotted, and zero scheduling

probabilities are omitted for briefness. In particular, given

the queue state k, the optimal scheduling probabilities { f ∗
k ,w
}

follows a threshold-based structure, i.e., f ∗
k ,w
= 1 for w > T∗

k

and f ∗
k ,w
= 0 for w < T∗

k
, where T∗

k
is the optimal threshold on

the channel state dimension. Similarly, given the channel state

w, the optimal scheduling probabilities { f ∗
k ,w
} has a threshold-

based structure on the queue state dimension. That is, there

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 … w … W-1 WW-2
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…

k

k-1

2

1

0

k+1

…

3

Channel State (w)

Q
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e
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e
 S

ta
te

 (
k

)

Fig. 4: The dual-threshold structure: 1) for any queue length k,

the scheduling probabilities { fk ,w} follows a threshold-based

structure on the channel state dimension with T∗
k

being the

optimal threshold; 2) given the channel state w, the scheduling

probabilities { fk ,w} has a threshold-based structure on the

queue state dimension with the optimal threshold I∗w; 3) there

is at most one threshold state at which the optimal scheduling

probability is non-zero.

exists an optimal threshold I∗w on the queue state such that

f ∗
k ,w
= 1 for k > I∗w and f ∗

k ,w
= 0 for k < I∗w , respectively.

The proof of the dual-threshold-based policy is presented in

two steps in subsections A and B, in accordance with the two

dimensions of the channel and buffer states. What’s more, we

show that among the threshold points, there is at most one

joint state (k?, w?) at which the optimal scheduling probability

is non-zero in subsection C. A simplified threshold policy is

proposed to achieve suboptimal performance in subsection D.

A. Threshold-based Structure on the Channel State Dimension

We firstly reveal the non-decreasing property of the opti-

mal solution {y∗
k ,w
} to problem (19). Then, we equivalently

transform problem (19) into a new problem, which facilitates

us to prove that {y∗
k ,w
} has a Tk-threshold-based structure. By

mapping {y∗
k ,w
} back to { f ∗

k ,w
}, the optimal scheduling policy

is shown to have a threshold-based structure.

Lemma 2. The optimal solution to problem (19) {y∗
k ,w
} has

the following property, for any queue length k,

y
∗
k ,w1
6 y
∗
k ,w2

, ∀ 0 < w1 < w2 6 W . (21)

Proof: The detail is given in Appendix C.

Recall that, yk ,w is the probability that there are k packets

left in the queue after one packet transmission over channel

w. Thus, the physical meaning of Lemma 2 is that, it reveals

the tendency of exploiting a better channel state when one

transmission has to be performed for the optimal policy.
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Lemma 3. The LP Problem (19) is equivalent to the following

problem

min
{yk ,w }

D =
1

ā

( K∑

k=0

k · max
w
{yk ,w} − p0π0 − ς

)

s.t.





max
w
{yk ,w} =

M∑
m=0

θmπk+1−m (a)

(19.a) − (19.c),

(22)

where ς =
M−1∑
i=1

iθi+1 − θ0 is a constant.

Proof: The detail is given in Appendix D.

With above two lemmas, we derive the threshold structure

imposed on the channel state for a given queue length of the

optimal solution {y∗
k ,w
} to problem (19) as follows:

Theorem 4. For any queue length k, there exists an optimal

integer threshold T∗
k
∈ W such that the variables {y∗

k ,w
} has

a T∗
k

-threshold-based structure, i.e.,





y
∗
k ,w
= 0, 0 < w < T∗

k
;

0 6 y
∗
k ,w
6

M∑
m=0

θmπ
∗
k+1−m

, w = T∗
k
;

y
∗
k ,w
=

M∑
m=0

θmπ
∗
k+1−m

, w > T∗
k
.

(23)

Proof: The detail is given in Appendix E.

On one hand, based on the results obtained in Lemma 2,

Theorem 4 illustrates that one packet can only be transmitted

if the channel state is better than a threshold. On the other

hand, with the bond between {y∗
k ,w
} and { f ∗

k ,w
}, the threshold

structure in Theorem 4 reflects the structure of the optimal

scheduling policy { f ∗
k ,w
}. Specifically, the optimal scheduling

probability f ∗
k ,w

is derived according to Eq. (18) and given

as 1) f ∗
k ,w
= 0, if w < Tk ; 2) f ∗

k ,w
= 1, if w > Tk ; 3)

f ∗
k ,Tk
= y

∗
k−1,Tk

( M∑
m=0

π∗
k+1−m

θm

)−1

. Thus, { f ∗
k ,w
} also satisfies

Definition 1 and the optimal scheduling policy has a threshold-

based structure on the channel state dimension for any given

queue length k.

B. Threshold-based Structure on the Queue Length Dimension

It is not a trivial work to reveal the threshold structure on

the queue state dimension straightforwardly due to the highly

complicated relationship between the variables {y∗
k ,w
}. Thus,

we turn to the scheduling action s[n] taken by the optimal

policy. Then, we map the transmission action s[n] back to the

scheduling probability {y∗
k ,w
} and find that the optimal policy

also has an I∗w-threshold-based structure on the queue state

dimension.

Lemma 4. For a given channel state w, there exists an optimal

integer threshold I∗w ∈ K such that the optimal transmission

action s∗[n] has the I∗w-threshold structure, namely

s∗[n] =

{
0, t[n] < I∗w;

1, t[n] > I∗w,
(24)

where t[n] = q[n − 1] + a[n] denotes the updated queue state

after one new packet arrival in the nth time slot.

Proof: The detail is given in Appendix F.

In Lemma 4, we show that the optimal transmission action

s∗[n] is determined based on the updated queue state t[n]

and the optimal threshold I∗w . Together with Eq. (5), we can

connect s[n] to the scheduling probability f ∗
k ,w

, and reveal that

the probabilities { f ∗
k ,w
} also depend on the updated queue state

t[n] = k and the optimal threshold I∗w: 1) f ∗
k ,w
= 0, if k < Iw;

2) f ∗
k ,w
= 1, if k > Iw . Thus, the optimal policy is proved to

has a threshold-based structure on the queue length for any

given channel state.

C. Dual-threshold-based Policy

The optimal scheduling policy turns out to be a dual-

threshold-based policy, as illustrated in Fig.4. We further

strengthen this result by specifying the values on the threshold

points in what follows.

Theorem 5. (1) The optimal scheduling policy corresponds

to a dual-threshold policy: a) For any queue length k, there

exists a threshold T∗
k
∈ W, f ∗

k ,w
= 0 for w < T∗

k
and f ∗

k ,w
= 1

for w > T∗
k

; b) There exists T∗
1
> T∗

2
> · · · > T∗

K
; (2) Among

the threshold points, there is at most one joint state (k?,w?)

at which the optimal scheduling probability is non-zero.

Proof: Conclusion (1-a) presents exactly the threshold

structure obtained in subsection A. Based on the threshold

structure imposed on the buffer states, we present in (1-b) the

non-increasing property of {T∗
k
}. Conclusion (2) comes from

the fact that the optimal solution to an LP problem is always

at a corner point of its feasible region. Its detailed proof can

be seen in Appendix G in [32] due to space limitation.

According to our proposed scheduling scheme, once the

queue length exceeds max
w
{I∗w}, one packet will be transmitted

whatever the channel state. Thus, if we set the buffer capacity

K > max
w
{I∗w}, the queueing length will never reach the

capacity and no packet overflow will occur. The threshold

structure is a tradeoff result of reducing the queueing delay and

saving power resource. An intuition explanation that explains

why the policy has such a structure can be found in Appendix

H in [32] due to space limitation.

D. The Suboptimal scheduling Policy

It is not a trivial work to obtain closed-form expressions

of the thresholds even if we have revealed their properties in

Theorem 5. By solving the LP problem, we surely can obtain

optimal thresholds and the non-zero scheduling parameter that

might exist at one of the joint threshold points. Otherwise, we

have to resort to some search methods to find these optimal

thresholds directly. Searching the optimal policy by traversing

all possible candidates of the threshold policy can be done

by performing intensive computations. In what follows, we

develop a structured search algorithm to find a suboptimal

solution by fully exploiting the non-increasing properties of

the optimal thresholds, as presented in Theorem 5. In other

words, this property helps to reduce the search space of the

candidate threshold points significantly.

In detail, combing the non-increasing property of the thresh-

old points Tk , i.e., Tk1
> Tk2

if k1 6 k2, and the fact that
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Algorithm 1 An algorithm to find the suboptimal scheduling

policy

Input:

The average power constraint: Paver ;

The dimension of the channel state: W ;

The buffer capacity: K;

The table that with a sufficiently large capacity: Table;

Output:

The threshold on the queue states: k◦;

The threshold on the channel states for (0, k◦]: w◦
1
;

The threshold on the channel states for (k◦,K]: w◦
2
;

1: if Table == NULL then

2: initialize Table[K][W][W][2] = ∞; # build up

the table that stores the delay and power for all the

deterministic policies

3: for each k� ∈ {1,2, · · · ,K} do

4: for each w1 ∈ {1,2, · · · ,W} do

5: for each w2 ∈ {1,2, · · · ,W} do

6: Set the scheduling parameters as:

7: if k 6 k� then

8: fk ,w = 0, if w 6 w
◦
1
;

9: fk ,w = 1, if w > w
◦
1
;

10: else

11: fk ,w = 0, if w 6 w
◦
2
;

12: fk ,w = 1, if w > w
◦
2
;

13: end if

14: Calculate the average queueing delay by Eq.

(13): Delay;

15: Calculate the average power by Eq. (14):

Power;

16: Table[k][w1][w2] = [Delay Power];

17: end for

18: end for

19: end for

20: end if

21: index ← {Table : Power <= Paver} # look up the

table, find the policies that consume less power than Paver

22: delay ← Min{Table[index] : Delay} # find the policy

that generates the smallest delay

23: [k◦, w◦
1
, w◦

2
]← GetIndex{Table : Delay == delay} #

return the threshold parameters of the suboptimal policy

the buffer capacity K is usually greater than the number of

channel states W , we know some neighbor buffer states are

likely to share a same threshold Tk . Based on this property,

we can reduce the number of the thresholds points that need

to be searched. In detail, the queue length range [0,K] can

be divided into several small intervals, each of which is

assigned one threshold imposed on the channel states. Thus,

we only need to determine how to divide the queue states and

assign one threshold for each small interval. The simplified

suboptimal policy is given in Algorithm 1, where the total

queue states are divided into two sub-intervals. A table can

be built up once for all to store the induced delay and

power metrics for all the 1
2
KW2 simple policies. Then, to

obtain the suboptimal policy for a given power constraint,

we only need to look up the table and return the thresholds.

The performance can be further improved by assigning one

scheduling probability to some threshold points.

VI. NUMERICAL RESULTS

In this section, simulation results are given to validate

the derived dual-threshold-based scheduling policy and to

demonstrate its potential. For performance comparison, theo-

retical results of the optimal delay-power function D∗(Paver )

are obtained by solving the LP problem (19). Meanwhile,

simulation results are obtained by applying the dual-threshold-

based scheduling policy with the optimal transmission param-

eters. In simulations, data packets are generated following a

given probabilistic distribution {θm}. The W-state block fading

channel model is adopted and follows with probability {ηm}.

Each simulation runs over 106 time slots. As shown in Fig.5-

8, the theoretical and simulation results are plotted by lines

(solid or dashed) and marked by red square dots, respectively.

Fig.5 plots the delay-power tradeoff curves under different

average packet arrival rates. The simulation results are in

good agreement with the theoretical results, which validates

the optimality of the derived dual-threshold-based policy.

The delay-power tradeoff curve is piecewise linear since the

threshold-based is obtained as the linear combinations of de-

terministic scheduling parameters. Besides, the average delay

monotonically decreases with the maximum average power,

as stated in Theorem 3. When the power constraint Paver

decreases to zero, the queueing delay increases dramatically

to infinity, which implies that the queueing system is unstable.

Given the same power constraint, the queueing delay increases

with the packet arrival rate since more packets are detained in

the buffer due to lack of transmission opportunities.

In Fig.6, we evaluate the effect of the burstiness of the

packet arrival on the optimal delay-power tradeoff curves, con-

sidering different packet arrival patterns, namely, the Bernoulli

arrival and the bursty arrival. We can see that the proposed

scheduling policy has a better delay-power tradeoff perfor-

mance when the packet arrivals follow the Bernoulli distribu-

tion rather than the more bursty probabilistic distribution (with

larger variance), subject to the same average arrival rate. This

is due to the fact that the bursty packet arrivals bring more

randomness to the queueing system. The average queueing

delay decreases with the increase of the power constraint and

remains constant when the power constraint exceeds a constant

Pmax . In other words, the delay-power curve becomes flat after

an inflection point (D∗
min

,Pmax), where D∗
min

is the globally

minimum delay and Pmax denotes the power consumption that

the source spends to keep transmitting packets as long as the

buffer is not empty, regardless of the channel state. However,

the value of Pmax is identical for the two different patterns.

The value of Dmin is able to reach zero for the Bernoulli

arrival since the transmission rate is fixed as one packet per

slot and is greater than zero due to the burstiness.

Inspired by the observation in Fig.6, we further demonstrate

the delay-power tradeoffs in Fig.7 for the packet arrivals have

the same average arrival rate and different variances. It is

observed that a higher queueing delay is induced when the
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(a) Optimal delay-power tradeoff curves

(b) Simulation settings

Fig. 5: Optimal delay-power tradeoff curves under different arrival rates

(a) Optimal delay-power tradeoff curves

(b) Simulation settings

Fig. 6: The effect of the burstiness of the arrival

data arrival variance is larger. Due to higher bursty arrivals,

some packets have to wait for a longer time before they are

transmitted, which leads to a larger queueing delay.

In Fig.8, we demonstrate the theoretical results to validate

the dual-threshold-based structure of the optimal scheduling

policy, which are in agreement with the structure shown in

Fig.4. The transmission probabilities reveal a threshold-based

structure on both the channel state dimension and the queue

length dimension. In Fig.8(a), the threshold is in channel state

1 and queue length 8 while in Fig.8(b), it is in channel

state 1 and queue length 3. Thus, transmission is much

easier to occur in Fig.8(b), which corresponds to a higher

power consumption. That is, the scheduler makes use of the

power resource mainly by adjusting the threshold point for

quite different power constraints. In Fig.8(b) and Fig.8(c), it’s

calculated for both scenarios that the threshold is in channel

state 1 and queue length 3. However the scheduler makes a

decision of transmitting one packets with probability 0.2377

in Fig.8(b) and 0.4899 in Fig.8(c) on the threshold point,

respectively. That is, the scheduler makes full use of the power

resource mainly by adjusting the transmission probability on

the threshold point for slight different power constraints.

In Fig.9, we plot the optimal delay-power curve of our

proposed scheme and 1000 delay-power points of the de-

terministic policy with the binary transmission parameters

fk ,w ∈ {0,1} randomly generated. As can be seen from this

figure, the delay-power tradeoff curve is the lower boundary of

the convex hull of the achievable delay-power region, which

is in accordance with the conclusion proved in [21] that the

optimal probabilistic policy can be constructed by the convex

combination of deterministic scheduling policies. Hence, our

proposed optimal scheduling policy outperforms any deter-

ministic scheduling policies given the same power constraint.

Meanwhile, our proposed stochastic scheduling policy with the

optimal thresholds and scheduling parameters can achieve the

same optimal delay-power tradeoff performance as the optimal

scheduling policies found by the DP method.

In Fig.10, we plot the delay-power tradeoff curves of the

optimal policy and suboptimal policy that applies Algorithm

1 to find the suboptimal thresholds [k◦, w
◦
1
, w

◦
2
]. We also

plot the delay-power tradeoff of the improved suboptimal

policy with the suboptimal thresholds [k◦, w
◦
1
, w

◦
2
] and the

scheduling parameter fk ,w . Surely, the optimal scheduling

policy achieves the best delay-power tradeoff by exploiting the
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Fig. 8: The dual-threshold-based policy: ā = 0.35.

power resource to transmit in the most efficient way. Compared

to the optimal policy, the suboptimal one achieves a zigzag

delay-power tradeoff curve. This is because that it schedules

transmissions based on the suboptimal thresholds which could

remain the same for a range of power. Comparable with the

optimal one, the improved suboptimal policy performs much

better, since it can exploit the suboptimal thresholds together

with the scheduling probability fk ,w to schedule transmissions

efficiently.

VII. CONCLUSION

In this paper, we studied the power-constrained delay-

optimal scheduling problem in wireless systems, where ar-

bitrary packet arrivals and multi-state block-fading channels

were considered. A probabilistic queue-aware and channel-

aware scheduling policy was proposed to schedule packet

transmissions over a W-state wireless fading channel and

investigated in the framework of constrained MDP. Through

theoretical analysis, we reveal the dual-threshold-based struc-

ture of the optimal scheduling policy. It is found that the

optimal scheduler always seeks to exploit a good channel

while maintaining a relatively short queue as possible to reduce

the latency. To this end, the scheduler should schedule packet

transmissions based on the queue state and the channel state.

Specifically, given a channel state, if the queue length exceeds

the threshold, the transmitter should transmit to decrease the

latency. Otherwise, it should keep silent to save power. In the

future, we will extend this work to more general scenarios

with adaptive-rate transmission and/or multi-user scheduling.

APPENDIX A

THE PROOF OF Theorem 2

In this appendix, we show that problem (17) can be

equivalently converted into LP problem (19) with variables

{yk ,w} being the optimization variables. To make it clear,

we explain the transformation procedure in the following

five steps. We first present the equivalent expressions of the

average queueing delay and the power constraint in Part A-1.

Secondly, we specify the ranges of optimization variables

{yk ,w} corresponding to constraint (17.b) in Part A-2. Then,

we reformulate constraints (17.c) and (17.d) in Part A-3 and

Part A-4, respectively. Finally, we explain why constraints

(17.c) and (17.e) are not shown in the LP problem (19) in

Part A-5.

1) The average queueing delay and the power constraint

can be re-expressed as :





D = 1

ā2

( K∑

k=0

W∑
w=1

kηw yk ,w − ξ
)
,

P =
K∑

k=0

W∑
w=1

ηwPw yk ,w,

(25)

where ξ =
∑M−1

m=1

m(m+1)
2

θm+1.
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Fig. 9: The optimal delay-power tradeoff is the lower boundary

of the achievable (D,P) region: the arrival distribution is ā =

0.55, θ1 = 0.3, θ2 = 0.125; the channel distribution is [η1 =

0.6, η2 = 0.4] and [P1,P2] = [10.14,0.103].

Firstly, we re-express the average queueing delay. Adding

the weighted sum of the terms
∑W

w=1
ηw yk ,w with k being the

weight, we have
K∑

k=0

k

W∑

w=1

ηw yk ,w =
1©

K∑

k=0

k

M−1∑

m=0

πk−m

M∑

i=m+1

θi

=
2© (θ1 + θ2 + · · · + θM )

∑K

k=0
kπk

+ (θ2 + · · · + θM )
∑K

k=0
kπk−1 + · · ·

+ θM

∑K

k=0
kπk−(M−1)

=
3© (θ1 + θ2 + · · · + θM )Q + (θ2 + · · · + θM )(Q + 1)

+ · · · + θM (Q + (M − 1))

=
4© āQ +

∑M−1

m=1

∑m

i=1
iθm+1

=
5© āQ +

∑M−1

m=1

m(m + 1)

2
θm+1 = āQ + ξ, (26)

where equality 1© is derived by substituting (30), equality 2© is

obtained by expressing each term in πk−m
∑M

i=m+1 θi separately

for m = 0, 1, 2, · · · ,M − 1, equality 3© comes from the

definition of the average queue length, equality 4© is obtained

by substituting ā =
∑M

m=0 m · θm, and equality 5© stems from∑m
i=1

i = m(m + 1)/2. Thus, the average queue length is:

Q =
1

ā

(∑K

k=0

∑W

w=1
kηw yk ,w − ξ

)
. (27)

According to the Little’s Law, we obtain the average queueing

delay as given in Eq. (25).

Secondly, we express the average power as a function of

variables {yk ,m}. From the definition of variable yk ,w in Eq.

(18), we have∑K

k=0
πk

∑M

m=0
θm fk+m,w =

∑K

k=0
yk ,w . (28)

By substituting Eq. (28) into Eq. (14), we obtain the average

power as presented in Eq. (25).

2) The variable yk ,w satisfies the following inequalities:

0 6 yk ,w 6

∑M

m=0
θmπk+1−m. (29)

We know that probability fk+1,w takes its value from the

interval [0,1]. By substituting fk+1,w = 0 and fk+1,w = 1 in
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Fig. 10: The tradeoff curve induced by the suboptimal policy:

the arrival distribution is ā = 0.55, θ1 = 0.3, θ2 = 0.125;

the channel distribution is [η1 = 0.135, η2 = 0.239, η3 =

0.232, η4 = 0.394, ] and [P1,P2,P3,P4] = [10,5,2,1].

Eq.(18), we get the lower and upper bounds of variable yk ,w ,

respectively. In this way, the range of variable yk ,w is specified

by the inequalities in Eq. (29).

3) The constraint (17.c) can be equivalently expressed as:

M−1∑

m=0

πk−m

M∑

i=m+1

θi =

W∑

w=1

ηw yk ,w =

M−1∑

i=0

πk−iri . (30)

where ri =
∑M

m=i+1 θm.

In fact, constraint (17.c) denotes the steady-state equilibrium

equation of the underlying Markov chain:

πk+1µk+1 =

M−1∑

m=0

πk−m

M∑

i=m+1

λk−m,i, k ∈ K. (31)

We can obtain the following conclusion
M∑

i=m

λk ,i =

M∑

i=m

θi − θm

W∑

w=1

ηw fk+m,w, m ∈ M (32)

by adding up the terms {λk ,i | i = m, · · · ,M} in Eq. (7).

By substituting Eq. (8) and Eq. (32) into Eq. (31), we have

πk+1(θ0

∑W

w=1
ηw fk+1,w)

=

M−1∑

m=0

πk−m(

M∑

i=m+1

θi − θm+1

W∑

w=1

ηw fk−m+m+1,w). (33)

Then, we can further simplify this equation as
M−1∑

m=0

πk−m

M∑

i=m+1

θi =

M−1∑

m=−1

πk−mθm+1

W∑

w=1

ηw fk+1,w

=

W∑

w=1

ηw(

M−1∑

m=−1

πk−mθm+1 fk+1,w)

=

W∑

w=1

ηw yk ,w . (34)

4) The constraint (17.d) can be re-expressed as∑K
k=0

∑W
w=1

ηw yk ,w = ā.: Summarizing all the k on

both sides of Eq. (30), we have
K∑

k=0

W∑

w=1

ηw yk ,w =

K∑

k=0

M−1∑

m=0

πk−m

M∑

i=m+1

θi
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=

M−1∑

m=0

M∑

i=m+1

θi = ā, (35)

where the second equality holds because the normalization of

the steady-state probabilities, i.e.,
∑K

k=0
πk = 1.

To construct the LP problem (19), we need to express πk as

a linear function of variables {yk ,m}. For ease of exposition,

we introduce a (K+1)×
[
W(K+1)

]
constant matrix G to describe

the relationship between {πk} and {yk ,m} based on Eq. (34).

The (k + 1)-th row vector of matrix G, denoted by gk+1, is

given as




gk+1 =
1
r0

l1, k = 0,

gk+1 =
1
r0
(lk+1 −

M−1∑
i=1

rigk−i), k ∈ K.
(36)

In Eq. (36), lk+1 is a W(K + 1)-dimensional vector whose

(W k + w)th element is ηw while the other elements are zero.

In this way, the steady-state probabilities {πk} can be linearly

expressed by the set of variables {yk ,w}, namely,

πk =

K∑

i=0

W∑

j=1

G(k+1,iW+j) · yi, j, (37)

where G(i, j) is the (i × j)-th element of matrix G.

5) Constraints (17.c) and (17.e) can be left out in the new

equivalent LP problem: The constraint (17.c) is incorporated

in the derivation of Eq. (37) which is the reason that it can be

left out. As for constraint (17.e), since the elements in matrix

G and variable yi, j are non-negative, as given by Eq. (37), πk
is clearly non-negative. On the other hand, since ri (c.f. Eq.

30) is non-negative and
∑W

w=1
ηw yk ,w is equal to or less than

one, πk is no more than one. Thus, constraint (17.e) is also

implied in constraints (19.c).

In summary, we have shown that how to construct the LP

problem (19) step by step equivalently from problem (17),

which completes the proof of Theorem 2.

APPENDIX B

THE PROOF OF Theorem 3

Suppose {yk ,w} is a set of variables that minimize the aver-

age delay D under constraints
[
19.(a-c)

]
. The corresponding

transmission power P is equal to
∑K

k=0

∑W
w=1

ηwPw yk ,w . We

show that if there exists another set of variables { ŷk ,w} which

cost a higher power P̂ > P to transmit, a smaller queueing

delay D̂ < D will be induced.

Let kth be a positive integer. We construct variables { ŷk ,w}

as follows: {
ŷk ,w = yk ,w + ∆yk ,w, k 6 kth;

ŷk ,w = yk ,w − ∆yk ,w, k > kth,
(38)

where {∆yk ,w} are set as non-negative quantities to make

sure that variables { ŷk ,w} meet constraints
[
19.(b-c)

]
and the

constraint P̂ − P > 0 is satisfied. Let ∆P = P̂ − P, we then

have

∆P =

W∑

w=1

ηwPw

( kth∑

k=0

∆yk ,w −

K∑

k=kth+1

∆yk ,w

)
> 0, (39)

which means that ∆yk ,w strictly stays positive for some k 6

kth .

In this way, the average delay gap satisfies the following

inequality

D̂ − D =
1

ā2

K∑

k=0

W∑

w=1

kηw(ŷk ,w − yk ,w)

=

1

ā2

W∑

w=1

ηw(

kth∑

k=0

k∆yk ,w −

K∑

k=kth+1

k∆yk ,w) (40)

<
1

ā2

W∑

w=1

ηw[kth

kth∑

k=0

∆yk ,w−(kth+1)

K∑

k=kth+1

∆yk ,w].

Since both { ŷk ,w} and {yk ,w} meet constraint (19.b), we

have
W∑

w=0

ηw

kth∑

k=0

∆yk ,w =

W∑

w=0

ηw

K∑

k=kth+1

∆yk ,w . (41)

Combining Eq. (40) and Eq. (41), we know D̂ < D.

We have proven that if P
′

aver < P
′′

aver , then d(P
′′

aver ) <

d(P
′

aver ). Thus, the delay-power tradeoff function d(·) is a

monotonically decreasing function of the average power.

APPENDIX C

THE PROOF OF Lemma 2

We adopt the proof by contradiction, namely, if there exists

a set of optimal variables {yk ,w} that do not meet Eq. (21),

we can find another set of variables { ŷk ,w} that can use less

power to obtain the same queueing delay, which contradicts

Theorem 3.

Suppose that, there exists a set of optimal variables {yk ,w},

in which there are 0 < w1 < w2 6 W that make yk ,w1
> yk ,w2

.

With this solution, the minimum delay D can be achieved at

the power cost of Γk . We construct another set of { ŷk ,w} as

ŷk ,w =





yk ,w, w > w2

yk ,w1
, w = w2

yk ,w, w1 < w < w2

yk ,w − ∆yk ,w, w 6 w1,

(42)

where the quantities {∆yk ,w,w 6 w2} are all non-negative

reals that meet the constraints that
w1∑
w=1

ηw∆yk ,w = ηw2
(yk ,w1

−

yk ,w2
) and 0 6 ŷk ,w 6 ŷk ,w+1. Thus, all the variables ŷk ,w

satisfy Eq. (21) and
∑W

w=1
ηw ŷk ,w =

∑W
w=1

ηw yk ,w . Also, we

have max
w
{ ŷk ,w} = max

w
{yk ,w}. Thus, by introducing the new

set of variables, the objective function in problem (19) does

not change. The corresponding power consumption can be

calculated as

Γ̂k =

∑W

w=1
ηwPw ŷk ,w

= Γk + ηw2
Pw2
(yk ,w1

− yk ,w2
) −

∑w1

w=1
ηwPw∆yk ,w

< Γk + Pw2

[
ηw2
(yk ,w1

− yk ,w2
) −

∑w1

w=1
ηw∆yk ,w

]
,

where the last inequality holds due to that less power is

consumed for a better channel, namely, P1 > P2 > · · · > PW .

Thus, we obtain that Γ̂k < Γk since
∑w1

w=1
ηw∆yk ,w =

ηw2
(yk ,w1

− yk ,w2
). This means the new constructed variables

lead to the same queueing delay while consuming less power.

This contradicts the assumption that variables {yk ,w} are the

optimal solution.

APPENDIX D

THE PROOF OF Lemma 3

Let us denote L =

∑K
k=0

k
∑M

m=0 θmπk+1−m. With some

transformation, we have

L =θ0

∑K

k=0
kπk+1 + θ1

∑K

k=0
kπk
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+ · · · + θM

∑K

k=0
kπk+1−M

=θ0[Q − (1 − π0)] + θ1Q + θ2(Q + 1)

+ · · · + θM (Q + M − 1) (43)

=Q(θ0 + · · · θM ) − θ0(1 − π0) +
∑M−1

m=1
mθm+1

=Q + θ0π0 − θ0 +

∑M−1

m=1
mθm+1 = Q + θ0π0 + ς,

where ς =
∑M−1

m=1 mθm+1. Thus, the average queue length Q

can be expressed as Q = L − θ0π0 − ς. From the Little’s Law,

we have

D =
1

ā
(L − θ0π0 − ς). (44)

In Eq. (29), yk ,w satisfies the inequalities 0 6 yk ,w 6

M∑
m=0

θmπk+1−m. Thus, we know max
w
{yk ,w} 6

M∑
m=0

θmπk+1−m.

Recalling that L =
K∑

k=0

k
M∑
m=0

θmπk+1−m, we have L >
K∑

k=0

k ·

max
w
{yk ,w}. Thus,

D >
1

ā
(

K∑

k=0

k ·max
w
{yk ,w} − θ0π0 − ς), (45)

the ”=” holds if and only if max
w
{yk ,w} =

∑k+1
m=0

θmπk+1−m.

APPENDIX E

THE PROOF OF THEOREM 4

In Theorem 3, we have shown that problem (19) is equiva-

lent to problem (22). To minimize the average queueing delay

in (22), the weighted sum of max
w
{yk ,w} should be minimized

while π0 should be maximized. To minimize
K∑

k=1

k max
w
{yk ,w},

the term max
w
{yk ,w} should be assigned its maximum for

smaller k and its minimum for larger k. Subject to constraint

(19.c), we have

max
w
{y∗k ,w} =




M∑
m=0

θmπ
∗
k+1−m

, k < k∗;

0, k > k∗,

(46)

where k∗ is a threshold imposed on the queue length. Once

the queue length exceeds k∗, the maximum of variable {y∗
k ,w
}

is zero, and hence all of the variables {y∗
k ,w
} are equal to zero.

Thus, we only consider the situation when k < k∗.

Based on the result in Lemma 2, we know that for any

k, there exists yk ,1 6 yk ,2 6 · · · 6 yk ,W . Thus, yk ,W =

max
w
{y∗

k ,w
}, the threshold value Tk introduced in Theorem 4

meets the constraint that Tk < W . Suppose that there exists a

set of optimal variables {y∗
k ,w
} which violate the assignment

described in Eq. (23), we can always find another set of

variables { ŷk ,w} which consume less power while achieving

to achieve the same delay.

Suppose that {y∗
k ,w
} are the optimal variables and satisfy Eq.

(23). Accordingly, the steady-state probabilities π∗
k

are given

by Eq. (20), and the minimum delay D∗ ia achieved at the cost

of power Γk . For a given queue state k, we reassign π̂k = π
∗
k

to a new set of variables { ŷk ,w} as



ŷk ,w = 0, 1 6 w < Tk − 1,

0 6 ŷk ,Tk−1 6 ŷk ,Tk 6

M∑
m=0

θmπ
∗
k+1−m

,

ŷk ,w =

M∑
m=0

θmπ
∗
k+1−m

, Tk < w 6 W .

(47)

Notice that this set of variables violate the constraints in Eq.

(23) since it has more than one term that lies between the

maximum and the minimum of { ŷk ,w}. Since the steady-

state probabilities do not change, the minimum queueing delay

remains the same. By comparing { ŷk ,w} with {y∗
k ,w
}, we get

y
∗
k ,Tk−1

< ŷk ,Tk−1 6 ŷk ,Tk < y
∗
k ,Tk

. Since π∗
k
= π̂k , from Eq.

(30), we have ηTk−1(y
∗
k ,Tk−1

− ŷk ,Tk−1) + ηTk (y
∗
k ,Tk
− ŷk ,Tk ) =

0.The power consumption can be calculated as

Γ̂k =

∑W

w=1
ηwPw ŷk ,w

= Γk + ηTk−1PTk−1(ŷk ,Tk−1 − y
∗
k ,Tk−1

)

+ ηTk PTk (ŷk ,Tk − y
∗
k ,Tk
) (48)

= Γk + PTk−1ηTk (y
∗
k ,Tk
− ŷk ,Tk )+ηTk PTk (ŷk ,Tk −y

∗
k ,Tk
)

= Γk + ηTk (y
∗
k ,Tk
− ŷk ,Tk )(PTk−1 − PTk ) > Γk .

The last inequality holds since less power is consumed in

a better channel, i.e., PTk−1 > PTk and y
∗
k ,Tk

> ŷk ,Tk . This

means that {yk ,w} violating Eq. (23) will cause a higher power

consumption. The same conclusion can be obtained when more

than two variables violate Eq. (23). In this way, we prove

Theorem 4 by contradiction.

APPENDIX F

THE PROOF OF Lemma 4

Given channel state w, we define the delay minimization

problem subject to the power constraint from the perspective

of buffer occupation and power consumption costs discussed

in Section IV as follows:

min
{s[n]}

1

ᾱ
E[(t[n] − s[n] + a[n + 1])+] (49)

s.t. E(Pws[n]) 6 P
′

aver , (50)

where t[n] = q[n − 1] + a[n] is the queue state after a new

datat arrival. The objective is derived based on the Little’s

Law and the average symbol E means the expectation taken

over all the time slots. In the above optimization problem, the

scheduling policy is described by the transmission variable

{s[n]}. We mainly consider the optimal scheduling policy in

the case when the equality (50) holds. If the power constraint

is sufficiently large, i.e., the inequality in (50) holds, we only

need to apply the scheduling policy to transmit packets as long

as the queue is not empty, regardless of the channel state. Thus,

using the method of Lagrangian multipliers, we only need to

minimize the following Lagrangian function

min
{s[n],β }

L(s[n], β′) =
1

ᾱ
E
[
(t[n] − s[n] + a[n + 1])+

]

+ β′
[
E(Pws[n]) − P

′

aver

]
, (51)

where β′ is a Lagrangian multiplier. Equivalently, for each

multiplier β′, we should solve the following problem

min
{s[n]}

E[(t[n] − s[n] + a[n + 1])+] + βE(s[n]), (52)

where β is defined as ᾱβ
′
Pw . In the sequel, we show that

the optimal solution to Eq. (52) has a threshold structure. We

define the expected total cost function in time slot n as

Cn(t[n], s[n]) = E[(t[n] − s[n] + a[n + 1])+] + βs[n], (53)

where the first term represents the queue length cost and the

second term represents the power cost, respectively. Define
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Vn(t[n]) as the total cost spent from slot n to slot N if we

follow the optimal policy from slot n thereafter, namely,

Vn(t[n]) = inf
s[n
′
],n
′
>n
E

N∑

n′=n

γn
′

Cn′
(
t[n′],XΩ(t[n′])

)
. (54)

The factor γ in Eq.(54) is the discount factor. Hence, the

quantity Vn adds up all the costs spent across the slots n, n+1,

· · · , N and ignores the costs spent previously before slot n.

Let z = t[n] − s[n]. Define Gn as a function of z

Gn(z) = −βz + E[(z + a[n + 1])+]

+ γE[Vn+1(z + a[n + 1])]. (55)

The cost Vn can be rewritten as

Vn(t[n]) = βt[n] +min
z

Gn(z). (56)

Let Iw = argmin
z

Gn(z). Since5 Gn(z) is a convex function of z

among all the feasible z, we should choose a solution z = Iw
rather than any other s[n]. Otherwise, the transmission action

s[n] should always be chosen to make z = t[n]− s[n] approach

Iw . To this end, when t[n] is greater than Iw , the transmission

action s[n] = 1 should be made and otherwise s[n] = 0 is

selected. Combining these two cases, we show that s[n] is

obtained as given by Eq. (24).

A. Function Gn(z) is convex of z for all n

We use the mathematical induction to prove the convexity

of Gn(z). Firstly, considering the fact that term (z+a[N +1])+

is convex in z for any value of a[n + 1],

GN (z) = −βz + E[(z + a[N + 1])+] (57)

is convex in z. Secondly, we assume that Gn+1(z) is convex.

Then, we know

Vn+1(t[n + 1]) = βt[n + 1] +min
z

G(n+1)(z) (58)

is convex. Finally, We can derive Gn(z) as

Gn(z) = − βz + E[(z + a[n + 1])+]

+ γE[Vn+1(z + a[n + 1])] (59)

is convex in z.
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