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Abstract—This paper is motivated by the observation that
the average queueing delay can be decreased by sacrificing
power efficiency in wireless communications. In this sense, we
naturally wonder what the minimum queueing delay is when
the available power is limited and how to achieve the minimum
queueing delay. To answer these two questions in the scenario
where randomly arriving packets are transmitted over multi-state
wireless fading channel, a probabilistic cross-layer scheduling
policy is proposed in this paper, and characterized by a con-
strained Markov Decision Process (MDP). Using the steady-state
probability of the underlying Markov chain, we are able to derive
the mathematical expressions of the concerned metrics, namely,
the average queueing delay and the average power consumption.
To describe the delay-power tradeoff, we formulate a non-linear
programming problem, which, however, is very challenging to
solve. By analyzing its structure, this optimization problem can be
converted into an equivalent Linear Programming (LP) problem
via variable substitution, which allows us to derive the optimal
delay-power tradeoff as well as the optimal scheduling policy. The
optimal scheduling policy turns out to be dual-threshold-based,
which means transmission decisions should be made based on the
optimal thresholds imposed on the queue length and the channel
state.

Index Terms—Cross-layer design, delay-power tradeoff, qual-
ity of service, probabilistic scheduling, controllable queueing
system, Markov Decision Process.

I. INTRODUCTION

UTURE wireless networks, such as the fifth Genera-

tion (5G) of mobile network, bring more stringent QoS
(quality-of-service) to support emerging applications that in-
volve explosive mobile devices [1]. Low latency is one of the
most important QoS for URLLC (Ultra-Reliable Low Latency
Communications) which is a features brought by 5G [2]. At
the mean time, high energy efficiency is urgently required
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especially for these machine nodes that are usually powered
by rechargeable batteries of finite capacity. Thus, it is of great
importance to ensure the required latency with finite transmit
power for these users in wireless communications [3], [4].

In general, it is very challenging to derive the delay-power
tradeoff in such machine-based applications, considering the
random behavior of the bursty traffic, and the time-varying
characteristics of wireless channels [5]. These randomness
occur in different layers of the transmitter, which increases
the difficulty of characterizing the delay-power tradeoff [6].
We evaluate the latency and power efficiency performances
under a point-to-point transmission scenario. In such case, the
cross-layer design framework, first presented in [7], can be
used for reference to capture the uncertainties occurring at
different layers in the last decades [8]-[14].

Within the cross-layer architecture, many works have fo-
cused on revealing the delay-power tradeoff, which can be
classified into two major categories. One line of the works at-
tempt to find the analytical delay-power tradeoffs by consider-
ing some ideal or simplified assumptions on the system model
[15]-[19]. In [15], the authors proposed a scheduling policy
named Lazy scheduling which assigns transmission chances
based on the backlog in the queue under the assumption that
the arrival times of the packets are known in advance. In
[16], the authors minimized the transmission power with QoS
constraits by assuming that the data arrival is known ahead of
schedule and the channel is static or slow fading. This line of
works mainly provide theoretical value more than engineering
value, since the assumptions are too ideal to be practical.
However, they are able to provide deeper insights to guide
for engineering applications such as protocol design.

The works in the other category consider more complex and
practical system models [9]-[11], [20]-[22]. In [9], Berry and
Gallager proposed adapting the users’ transmission rate and
power by regulating the average power and average buffer
delay over a wireless fading channel. They also focused
on studying the cross-layer resource allocation in wireless
fading channels for [10] and deriving the optimal power-delay
tradeoff for a single user in the regime of asymptotically
small delays in [11]. Ata investigated the power minimization
problem subject to the packet drop rate in [20], assuming the
fixed channel state, Possion packet arrival and exponentially
distributed packet size. In [21], [22], the authors studied the
delay-bounded packet scheduling problem with bursty traffic
arrival over wireless channels. This line of works studied the
delay-power curve and analyzed its property under some cir-
cumstances. While it is difficult to derive theoretical solutions
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Fig. 1: Potential application scenarios in sensor network

in general cases. This line of works mainly focus on studying
resource allocation solutions and designing efficient algorithms
for practical usage, which is of great importance in designing
delay/power-efficient wireless transmission strategies.

The cross-layer resource scheduling problem can be applied
in many potential application scenarios. Dynamic resource
management problems were studied under the IoT (Internet
of Thing) in [23] and the Smart Grid scenarios in [24],
respectively. The power constrained delay minimization prob-
lems were studied in [17] [25] for multi-access channel.
The resource scheduling problem in energy harvesting was
studied in [26]. Studying the point to point resource scheduling
problem can provide useful insights for these important and
emerging applications.

More recently, a simple probabilistic scheduling policy
was proposed to achieve the minimum queueing delay under
power constraint in our previous work [18], where Bernoulli
packet arrivals and a two-state fading channel model were
considered. Some potential application scenarios are shown
in Fig.1. Further, arbitrarily random packet arrival patterns
were considered to capture the impact of bursty network
traffic in [27], [28] and adaptive transmission is considered in
[29]. In these works, we proved that the optimal delay-power
tradeoff can be achieved by applying the optimal scheduling
polices which determine packet transmissions based on the
threshold imposed on the queue length. The structured policy
is appealing for the scheduler thanks to its ease of deployment.
Hence, it inspires us to further dig into this topic. We naturally
wonder if the optimal solution still has a special structure in
more general scenarios and what kind of structure it may have.

In this paper, we study the delay-power tradeoff in wireless
packet transmissions in a more realistic but complex com-
munication system, where data packets are generated from
an arbitrarily bursty traffic and a multi-state wireless fading
channel is considered. The major challenges of this work lie
in two aspects: 1) how to perform probabilistic scheduling
jointly based on the randomness of the data packet arrival,
the occupancy of the transmission data queue, and the time-
varying characteristics of the wireless channel, and 2) how to
reveal the structure of the optimal policy.

At the first task, the major challenge confronted is to
build a proper cross-layer framework which includes all the

system dynamics. Incorporating all these effects, our proposed
scheduling policy performs joint scheduling based on the
time-varying environment. Hence, it is very challenging to
formulate the optimal cross-layer scheduling problem while
facilitating theoretical analysis of its optimal solution. To deal
with this difficulty, we propose a stochastic scheduling policy
being aware of packet arrival, buffer and channel states. Then,
we formulate a non-linear optimization problem to find the
optimal probabilistic scheduling parameters. The challenge
behind the second task is how to solve the optimal scheduling
problem and derive the closed-form solution. This lies in the
fact that the dimensionality of solving the optimal scheduling
problem increases significantly due to the enlarged number of
scheduling parameters that increases linearly with the number
of channel and packet arrival states. By solving the obtained
non-linear problem, we can surely obtain the optimal delay-
power tradeoff. However, it is not trivial to search for the
optimal solution to the non-linear optimization problem, let
alone derive the optimal scheduling solution theoretically. To
deal with this challenge, we first find a method to convert it
to an LP problem, through which we can further analyze the
structure of the optimal solution and reveal that the optimal
scheduling policy has a dual-threshold-based structure step by
step. By dual-threshold-based, we mean that packets should
be transmitted based on the thresholds imposed on not only
the queue state but also the on channel state.

The remainder of this paper is organized as follows. The
system setting is introduced in Section II. In Section III,
we propose the probabilistic scheduling policy to schedule
packet transmissions based on the buffer and the channel
states simultaneously. In Section IV, we formulate a non-
linear power constrained delay minimization problem and then
convert it to an equivalent LP problem. In Section V, we reveal
that the optimal scheduling policy is dual-threshold-based
with a rigorous mathematic proof and propose an algorithm
to find simplified suboptimal policy. Simulation results are
demonstrated in Section VI to validate the dual-threshold-
based policy and concluding remarks are presented in Section
VII. Some notations frequently used are explained as follows.
Given a positive integer K, the notation K denotes an integer
set {0,1,2,---,K} while K* denotes integer set K/{0}. Sets
W and W*, M and M* are defined in the same way!.

II. SYSTEM MODEL

We consider a wireless communication system where the
source node transmits to the destination over a time-varying
wireless link. As shown in Fig.2, packets of bursty traffic
generated by higher-layer applications arrive at the network
layer randomly, and are stored at the buffer in the data link
layer. In the physical layer, the transmitter determines when
to transmit the queued packets over a multi-state wireless
channel, with the aid of efficient scheduling policies.

Let a[n] denote the number of packets randomly arriving
in the nth slot. To capture the burstiness and variability of

IPart of this work was published in [30], where main results were presented
while most important derivations for some conclusions towards the dual-
threshold-based structure were omitted due to the limited space.
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Fig. 2: System model

real-time applications, we assume an arbitrarily packet arrival
pattern, i.e., the number of newly arriving packets could
follow any distribution. Suppose that a[n] is independent
and identically distributed (i.i.d.). Thus, the mass probability
function of a[n] can be characterized by

Pr{a[n] = m} = 0,,,m =0,1,2,--- (1
where 6,, € [0,1]. Considering traffic shaping and admission
control adopted in the system, the number of packets newly
arriving in each time slot must be upper-bounded by a large
integer M. In other words, there exists a positive integer M
such that 6,, = 0, for all m > M, and ZZI:O 6,, = 1. The
average packet arrival rate a is obtained as

_ . 1 N M
a= A}linoo Sup & ano a[n] = Zm:O m- Op,. )
At the source node, a buffer is employed to store the

backlogged packets which cannot be sent immediately. The
queue state, denoted by ¢[n], is characterized by the number
of packets in the buffer at the end of nth slot and updated as

qln] = max{min{q[n—l] +aln],K} - s[n],O}, 3)
where s[n] is the transmitted packets in the nth time slot and
K is the capacity of the buffer?.

We adopt a W-state block fading channel model, where W
is a positive integer. Let i[n] denote the channel state in the
nth time slot. By block fading, we mean that the channel
state i[n] stays invariant during each time slot and follows an
i.i.d. fading process across the time slots. Here, the discrete
W channel states indicate different wireless channel qualities.
Let di =0 < dy <--- <dw < dwy4+1 = o be the channel
power gain levels. If the channel gain in the nth time slot
ranges in interval [d,,, d,,+1), we say that the wireless channel
is at state w. Since the channel quality becomes better with
the increase of the index, w = 1 and w = W represent the
worst and the best channel condition, respectively. The mass
probability function of A[n] is described as

Pr{h[n] = w} =, 4)
where n,, € [0,1] and w € W™,

Suppose that there exists a feedback channel through which
the Channel State Information (CSI) is sent back from the
receiver to the transmitter. Intuitively, the transmission power
shall be adapted to the channel state to meet the requirement of
successful packet delivery. Let P,, (w € W*) denote the power

2Packet overflow will occur if K is quite small. In this work, we assume
that K is a sufficiently large constant such that no packet overflow will occur.
In Section V, we give the conclusion that if K is greater than a threshold,
the queueing length will never reach the capacity according to our proposed
scheduling scheme. Thus, the max operation in (3) can be omitted.

needed to transmit one packet successfully in the channel sate
w. Since more power is required to combat wireless channel
fading when the channel condition is worse, it is reasonable
to assume Py > Py > ---> P,, > -+ > Py.

In our model, we consider a fixed-rate transmission scheme
which has been widely adopted in practice [31]. Without loss
of generality, we assume the transmission rate is one packet
per slot. Hence, at most one data packet can be delivered in
each slot, namely, s[n] € {0,1}.

In the cross-layer design framework shown in Fig.2, the
scheduler will schedule packets transmissions in each slot n
based on the packet arrival state a[n], the queueing state g[n—
1], and the channel state A[n] subjected to a power constraint,
as will be discussed in details in the next section where the
scheduling problem is treated as a power constrained Markov
Decision Process (MDP), and discussed in Section IV.

III. PROBABILISTIC SCHEDULING POLICY

In this section, we introduce a probabilistic scheduling
policy based on which the transmitter decides whether or not
to deliver one data packet to its receiver in each slot.

A. Probabilistic Scheduling

To improve the power efficiency, the transmitter should
exploit a better channel state to deliver the packets to spend
much less power. Thus, the source is more willing to keep
silent till the channel state gets better. However, this may in-
duce undesirable large latency waiting for good channel states,
which is intolerable for serving delay-sensitive or time-critical
traffics. To overcome this issue, some backlogged packets
should be transmitted immediately at the cost of consuming
higher power, even when the channel state may not be so
good. Hence, the proposed scheduler must achieve a balance
between the average delay and the power consumption.

In this work, a probabilistic cross-layer scheduling policy is
proposed to schedule packet transmissions in each time slot.
At the beginning of the nth time slot, the scheduler collects the
current system state including the queueing state g[n—1] = &,
the packet arrival state a[n] = m, and the channel state i[n] =
w. Given g[n — 1] = k, a[n] = m, and h[n] = w, it decides to
transmit one packet with probability fim . or keep silent with
probability 1 — fism.w. BY fi+m.w, Wwe mean that the scheduler
can schedule packet transmissions based on the updated queue
state g[n—1]+a[n] = k+m after one packet arrival. The reason
lies in the fact that one of the packets newly arriving at this
slot can be delivered immediately. Hence, it is not necessary
to distinguish between the backlogged packets and the newly
arriving packets. Clearly, the transmission probability fiim w
lies in the interval [0, 1].

According to the above probabilistic scheduling policy, the
number of transmitted packets s[n] for the current slot is a
random variable, the probability mass function of which is

given by
L wp. fermw
= ; 5
S[n] { 0 w.p. 1 _ﬁ<+m,w» ( )



where k € K,m € M,w € W and the abbreviation 'w.p.’
short for ‘with the probability of">.

We aim to find the optimal policy with a set of optimal
transmission probabilities { fk*+m’w} that can minimize the
average queueing delay under an average transmission power
constraint.

B. Markov Decision Process

Based on the scheduling policy in section III-A, the sched-
uler makes decision of transmitting s[n] packet(s) in every slot.
The transmission decision affects the number of the packets
queueing in the buffer as well as the transmission power. In
this sense, we model the scheduling problem as a constrained
MDP with the queue length ¢[n] being the system state.
The decision, either waiting or transmitting (s[n] € {0,1}),
is treated as one candidate action taken at the current state.
Executing each action certainly causes some system costs,
namely, the delay cost associated with the queue length and
the power cost associated with the packet transmission. Let
7,1 denote the one-step state transition probability from state
qln—1] =k to state g[n] =1, i.e.,

1 =Pr{g[n] =1 | g[n— 1] = k}. (6)
The transition probabilities of the underlying Markov chain
are presented in Lemma 1.

Lemma 1. The forward and backward state transition proba-
bilities denoted by Ak = Tk k+m and Pk = Tk k-1 are obtained

as
Akeom= Om Z w1 = firmw)
+ O szl Moo Ficoms 1 ws ()
w
=00 ) M fows ®)

where k € K and m € M*. The state transition probability
A0 is the probability that the queue length remains the same,
given by
1- Z lk m»
Ao =Tex = m=l
0T Tk { 1=3 0 e — ks

Proof: Due to limited space, the detail is given in [32].
|
Notice that, 7 ; = 0 holds for |/—k| > M, since the queue
length increases from k up to [ = k+M after one packet arrival.
In Fig.3, we show an example of the MDP model with M = 2.
In each time slot, g[n] increases by no more than M due to
one new data arrival, while decreases by one since at most one
packet can be delivered. Let matrix A denote the (K+1)-by-
(K+1) transition probability matrix of the underlying Markov
chain. The (j+1,i+1)-th element of A is transition probability
7;,j. The transition probability matrix A is a banded matrix,
since the number of the newly arrival packets and departing
packets are limited in one slot.
Let m; denote the steady-state probability of the queue
length being equal to k. The stationary distribution of the sys-
tem state is denoted by the vector 7 = [mg, 711, - - ,mg |7, where

k=0,

k e K. ©)

3In Eq. (5), when a[n] + g[n — 1] = 0, there is no packet waiting to be
transmitted, and when a[n] + g[n — 1] > K, packet loss will happen. Thus,
Jo,w W € W)and fi iy, (k+m > K, w € W) are set as zero for notational
consistence.

the superscript 7 denotes matrix transpose. Vectors 0 and 1
are used to denote the (K + 1)-dimensional column vectors
whose entries are zero and one, respectively. According to the
property of the steady-state probability, we have Azr = 7 and
177 = 1. Hence, the stationary distribution 7 is the solution
to the following linear equations

0

il

where Qg is a matrix consisting of the first K rows of the
generator matrix Q = A — L. From Eq. (10) and Lemma 1, we
can see that the steady-state probability 7 is determined by
the scheduling policy with the parameters { fx+m.w}-

(10)

T =

IV. DELAY AND POWER TRADEOFF

In this section, we first analyze the two key performance
metrics: the average queueing delay and the average power
consumption. Then, we formulate optimization problems to
describe the delay minimum power constrained scheduling
problem, based on the stationary probability of the built
Markov Decision Process.

A. Delay and Power Metrics

In accordance with every transmission action s[n], the
scheduler spends some system costs due to queue occupation
and packet transmission. Given action s[n], the queueing cost
for buffer occupation is denoted by C,[n] and the power
cost for packet transmission is denoted by Cp[n], respectively,
expressed as

Cyln] = (gln - 1] + a[n] - s[n]* and Cpln] = Pys[n] (11)

As time goes by, the time-average costs can be built up as
1 N
Qo= lim =%,

1 N

and Po = lim anl (12)

respectively. Considering the minus and connotative plus op-

erators before s[n] in Eq. (11), an action s[n] exerts opposite

influences on the buffer occupation and power consumption,

which naturally leads to a tradeoff between the average delay
(the Little’s Law) and the average power.

The above analyses explain the average delay and the
average power from the cost perspective of the scheduling
policy. It’s much easier to understand the tradeoff from the
expressions of the two metrics given in Eq. (11). To mathe-
matically derive the two metrics, we refer to the MDP model
built in Section III-B. Once the stationary distribution n is
obtained, the average queueing delay and power consumption
can be derived and shown in the following theorem.

Cq (1]

Cp [n],

Theorem 1. Given a probabilistic scheduling policy { fi+mw}
the average queueing delay D and power consumption P can
be expressed as

D:l-ZkKokﬂk’

Zk Oﬂ'kz nw WZ -0 Om Jierm,w -

Proof: Given the stationary probability distribution of the
Markov chain, the average queue length can be expressed as

13)

(14)
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transmitting one packet over the channel state w.

0 = E{q[n]} = Zszo kny. Then according to the Little’s Law
[33], the average queueing delay D can be derived as Q/a and
shown in Eq. (13).

With C,[n] = P, s[n], we have Cpy[n] = P,, and Cp[n] =
Py = 0, respectively, when one packet is transmitted over the
channel state w, i.e., s[n] = 1, and no transmission takes place,
ie., s[n] = 0. Let Y4, denote the conditional probability of
Cpln] = Py, (w € W = {0UW*}) given the queue state
q|n—1]=k and channel state h[n]=w. It can be expressed as

Ykw =Pr{Cp[n]=Py|qln—11=k, h[n] =w}

_ { %:0 Om Scrmw, W E W,
1= zx] Yiw, w=0.
By the law of total probability, the average power can be
derived as

K W
P =% Pr{gln-1] = k}Pr{h[n] = w}
=0 w=l
Pr{Cp[n]=Py|qln—1]=k, h[n]= w} X P,

- Zf:o Zvvle Tk wWi,w Py
= K_ Tk W_ Nw Py M_ mek_*_m,w’
Zk—() Zw_l m=0
|

We notice that, the steady state probability 7 is an implicit
function of the transmission probabilities, since it is uniquely
determined by the transmission probabilities { fi+m.w} based
on the analyses in Section III-B. Thus, from Theorem 1, the
average queueing delay and the average power consumption
are both functions of transmission probabilities.

15)

(16)

B. Delay-Power Tradeoff

To find the optimal scheduling policy with a set of trans-
mission probabilities { fk*+m,w|’k e Kkm e M,w € W}, we
formulate an optimization problem to minimize the average
queueing delay D under the power constraint Py, as follows:

. 1 K
ming .y D= — Zk:o kmy

a
P S Paver (a)
fk+m,w € [0’ 1]’ (b) (17)
sty Qr=0 (c)
"7 =1 (d)

0<nm<x1 (e)

i

where k € K, m € M, w € W, and symbol ’<’ represents
the component-wise inequality between vectors. In problem
(17), the objective is to minimize the average queueing delay.
Constraint (17.a) denotes the maximum power constraint.
Constraint (17.b) indicates the range of the optimization
variables { fx+m.w}. Constraints (17.c-17.e) are derived from
the properties of the Markov chain. Constraint (17.e) specifies
the range of the steady-state probabilities. Since problem (17)
is a non-linear programming problem, it is rather difficult to
obtain the optimal solution { fk*+m,w} analytically. To make it
tractable, we first convert problem (17) into an equivalent LP
problem via variable substitution.

C. LP Problem Formulation

To formulate an LP problem, we introduce a set of new
variables {yx.w|k € K,w € W} as

M
Yew = Zm:O 7rk+1—m0mﬁk+1—m)+m,w

M
= > Tkt omOm ficrt - (18)
m=0

In Eq. (18)*, Mkt 1—mOum Ji+1,w 18 the probability of transmitting
one packet, i.e., s[n] = 1, when there are g[n — 1] = k+1-m
data packets in the buffer and a[n] = m data packets newly
arriving at the transmitter. Thus, yx,, is the probability that
there are k packets backlogged in the queue after one packet
transmission over channel state w. This procedure allows us
to express the objective function and the constraints of (17) as
linear functions of {yx_,}. Hence, we are able to convert the
non-linear problem (17) into a more tractable LP problem, as
shown below.

Theorem 2. Let £ = Y M~ wemﬂ be a constant. The
optimization problem (17) is equivalent to the following LP

4We assume the steady-state probability whose subscript is negative is
zero for notation convenience. Otherwise, variable yy ,, should be defined
min{M ,(k+1)}

as Ye,w = Zm=0 Thert-m Om fic+1,w -



problem:
| E W
{QZT D= E(kZOZZIkUWyk w _‘f)
=0 w=
K W
P= Z Z nwpwyk,w < Paver ((1)
“0w=1 (19)
K W )
S0y 2 X MwYkw =4 (b)
k=0 w=1
M KW
0< Yk wS 2 Om 2 2 Grsr-m,iw+j)-Yi,j (€)
m=0  i=0j=1

where G jy is the (i,j)-th element of (K+1)x [W(K+ 1)]
matrix G which describes the relationship between the steady-
state probabilities {r;.} of the Markov chain and the variables

{Yk,w}, as given by
K W
=) ijl Gler1,iwj) * Yiij»

Proof: The detail is given in Appendix A. ]
As shown in problem (19), there exists a minimum queueing
delay for any feasible power constraint P,,... Hence, the
optimal queueing delay D* can be expressed as a function
of Puyer, i.6., D* = d(Pgyer). In the following theorem, we
reveal the decreasing property of the delay-power function to
discuss the structure of the optimal scheduling policy in the
next section.

(20)

Theorem 3. The delay function D* = d(P,yer) monotonically
decreases with the maximum transmission power Pgyer.

Proof: The detail is given in Appendix B. [ |
Till now, we construct an LP problem to describe the
delay-minimal scheduling problem under power constraint.
After deriving the optimal solution y;w, we can then obtain
the steady-state probability 7, by Eq. (20) and the optimal
scheduling probability { fk*’w} by Eq. (18). In the sequel, we
show how to derive the optimal solution as well as the optimal
probabilities.

V. DUAL-THRESHOLD-BASED POLICY

In this section, we focus on revealing the dual-threshold-
based structure of the optimal scheduling policy. We first
present the definition of the threshold-based structure.

Definition 1. Ler I = {0,1,2,---} denote an integer set. A
probability set {(;| i €I} has a i*-threshold-based structure
if and only if there exists an optimal threshold i* € 1 such that
T, =0, i<i*and Y; =1, i >i"

In what follows, we show that the optimal scheduling policy
has such a structure on both the buffer state dimension and
the channel state dimension, referred to as a dual-threshold-
based policy. An example of the structure is illustrated in
Fig.4, where positive scheduling probabilities with the indexes
of buffer and channel states are plotted, and zero scheduling
probabilities are omitted for briefness. In particular, given
the queue state k, the optimal scheduling probabilities { fk*’w}
follows a threshold-based structure, i.e., fk*’w =1 for w > T,f
and fk*’w =0 for w < T/, where T} is the optimal threshold on
the channel state dimension. Similarly, given the channel state
w, the optimal scheduling probabilities { f];"’w} has a threshold-
based structure on the queue state dimension. That is, there

Channel State (w)

1 wee w W-2 W-1 W

0 T, T, T,
1 1 1
}sz
2 11 1
3 11 1
=
T L 1011
S 11 1 1
%)
g k| fews 11 1 1
Tw
< 1 1 11 1 1
11 11 11
k1t 1 1 1 1 1 1

Fig. 4: The dual-threshold structure: 1) for any queue length &,
the scheduling probabilities {fi .} follows a threshold-based
structure on the channel state dimension with 7;" being the
optimal threshold; 2) given the channel state w, the scheduling
probabilities {fi} has a threshold-based structure on the
queue state dimension with the optimal threshold 73 ; 3) there
is at most one threshold state at which the optimal scheduling
probability is non-zero.

exists an optimal threshold I;;, on the queue state such that
S = 1for k> 1I0 and f° ~= 0 for k < I, respectively.
The proof of the dual-threshold-based policy is presented in
two steps in subsections A and B, in accordance with the two
dimensions of the channel and buffer states. What’s more, we
show that among the threshold points, there is at most one
joint state (k*, w*) at which the optimal scheduling probability
is non-zero in subsection C. A simplified threshold policy is

proposed to achieve suboptimal performance in subsection D.

A. Threshold-based Structure on the Channel State Dimension

We firstly reveal the non-decreasing property of the opti-
mal solution {yz,w} to problem (19). Then, we equivalently
transform problem (19) into a new problem, which facilitates
us to prove that {y,’z’w} has a T -threshold-based structure. By
mapping {yz’w} back to { fk*’w}, the optimal scheduling policy
is shown to have a threshold-based structure.

Lemma 2. The optimal solution to problem (19) {y;  } has
the following property, for any queue length k,

Veww, SVkr ¥V 0<wi <wp <W. 21)

Proof: The detail is given in Appendix C. [ ]
Recall that, yi ,, is the probability that there are k packets
left in the queue after one packet transmission over channel
w. Thus, the physical meaning of Lemma 2 is that, it reveals
the tendency of exploiting a better channel state when one
transmission has to be performed for the optimal policy.



Lemma 3. The LP Problem (19) is equivalent to the following
problem

K
1
min Dzj( k- max{yg.w} — n'—g)
jmin D= - Z ax(yie} = pomo
(22)
max{yk w) = Z OmTiaim ()
(19.a) — (19. c)
M-1
where ¢ = ), i6;11 — 6y is a constant.
i=1
Proof: The detail is given in Appendix D. ]

With above two lemmas, we derive the threshold structure
imposed on the channel state for a given queue length of the
optimal solution {y;  } to problem (19) as follows:

Theorem 4. For any queue length k, there exists an optimal
integer threshold T, € W such that the variables {y; } has
a T, -threshold-based structure, i.e.,

y,’:W=0, 0<w<T;;
' M
< * < * — T*.
0 < yew mZ:O OmTp i W =T (23)
)’i w o Z 6‘m7r1i+1—m’ w> le
’ m=0
Proof: The detail is given in Appendix E. ]

On one hand, based on the results obtained in Lemma 2,
Theorem 4 illustrates that one packet can only be transmitted
if the channel state is better than a threshold. On the other
hand, with the bond between { y;’w} and { fk*,w}, the threshold
structure in Theorem 4 reflects the structure of the optimal
scheduling policy { fk*’w}. Specifically, the optimal scheduling
probability fk is derived according to Eq. (18) and given
as 1) f', _0 1fw<Tk,2)fkw =1, it w > T; 3)

5 T, = Vi, Tk( > nk+1_m9m) . Thus, {f;" } also satisfies
? ’ m=0 ’

Definition 1 and the optimal scheduling policy has a threshold-
based structure on the channel state dimension for any given
queue length k.

B. Threshold-based Structure on the Queue Length Dimension

It is not a trivial work to reveal the threshold structure on
the queue state dimension straightforwardly due to the highly
complicated relationship between the variables { yk }. Thus,
we turn to the scheduling action s[n] taken by the optimal
policy. Then, we map the transmission action s[n] back to the
scheduling probability {yk } and find that the optimal policy
also has an I -threshold- based structure on the queue state
dimension.

Lemma 4. For a given channel state w, there exists an optimal
integer threshold I, € K such that the optimal transmission
action s*[n] has the I -threshold structure, namely
. 0, tln]<I
s"[n] :{ I, ] > I,
where t[n] = g[n — 1] + a[n] denotes the updated queue state
after one new packet arrival in the nth time slot.

(24)

Proof: The detail is given in Appendix F. [ |

In Lemma 4, we show that the optimal transmission action
s*[n] is determined based on the updated queue state t[n]
and the optimal threshold I;;. Together with Eq. (5), we can
connect s[n] to the scheduling probability fk* and reveal that
the probabilities { fk } also depend on the updated queue state
t[n] = k and the optlmal threshold 17,: 1) fk =0,if k < I,;
2) fk w = L, if & > I,,. Thus, the optlmal pohcy is proved to
has a threshold-based structure on the queue length for any
given channel state.

C. Dual-threshold-based Policy

The optimal scheduling policy turns out to be a dual-
threshold-based policy, as illustrated in Fig.4. We further
strengthen this result by specifying the values on the threshold
points in what follows.

Theorem 5. (1) The optimal scheduling policy corresponds
to a dual-threshold policy: a) For any queue length k, there
exists a threshold T, € W, fk*’w =0 for w <T; and fk*’w =
Jor w>T¢; b) There exists T > T; > -+ > Ty; (2) Among
the threshold points, there is at most one joint state (k*,w*)
at which the optimal scheduling probability is non-zero.

Proof: Conclusion (1-a) presents exactly the threshold
structure obtained in subsection A. Based on the threshold
structure imposed on the buffer states, we present in (1-b) the
non-increasing property of {7;'}. Conclusion (2) comes from
the fact that the optimal solution to an LP problem is always
at a corner point of its feasible region. Its detailed proof can
be seen in Appendix G in [32] due to space limitation. [ ]

According to our proposed scheduling scheme, once the
queue length exceeds max{/},}, one packet will be transmitted

whatever the channel state. Thus, if we set the buffer capacity
K > max{[l},}, the queueing length will never reach the
capacitywand no packet overflow will occur. The threshold
structure is a tradeoff result of reducing the queueing delay and
saving power resource. An intuition explanation that explains
why the policy has such a structure can be found in Appendix
H in [32] due to space limitation.

D. The Suboptimal scheduling Policy

It is not a trivial work to obtain closed-form expressions
of the thresholds even if we have revealed their properties in
Theorem 5. By solving the LP problem, we surely can obtain
optimal thresholds and the non-zero scheduling parameter that
might exist at one of the joint threshold points. Otherwise, we
have to resort to some search methods to find these optimal
thresholds directly. Searching the optimal policy by traversing
all possible candidates of the threshold policy can be done
by performing intensive computations. In what follows, we
develop a structured search algorithm to find a suboptimal
solution by fully exploiting the non-increasing properties of
the optimal thresholds, as presented in Theorem 5. In other
words, this property helps to reduce the search space of the
candidate threshold points significantly.

In detail, combing the non-increasing property of the thresh-
old points Ty, ie., Ty, > Ty, if ki < ko, and the fact that



Algorithm 1 An algorithm to find the suboptimal scheduling
policy

Input:
The average power constraint: Pgyer;
The dimension of the channel state: W;
The buffer capacity: K;
The table that with a sufficiently large capacity: Table;
Output:
The threshold on the queue states: k°;
The threshold on the channel states for (0,k°]: w{;
The threshold on the channel states for (k°,K]: w3,
1: if Table == NULL then
2:  initialize Table[K][W][W][2] = oo; # build up
the table that stores the delay and power for all the
deterministic policies
3 for each k° € {1,2,--- ,K} do
4 for each w; € {1,2,--- ,W} do
5 for each wy € {1,2,--- ,W} do
6: Set the scheduling parameters as:
7 if k < k° then
8 Jew =0, if w<w
9 Jew=1Liftw>w

o.
1°
o

1°

10: else

11: Jew =0, ifWSWS;

12: Jew =1, i w > w3,

13: end if

14: Calculate the average queueing delay by Eq.
(13): Delay;

15: Calculate the average power by Eq. (14):
Power;

16: Table[k][wi][wz] = [Delay Power];

17: end for

18: end for

19:  end for

20: end if

21: index «— {Table : Power <= Pg.r}  # look up the
table, find the policies that consume less power than P,

22: delay «— Min{Tablelindex] : Delay} # find the policy
that generates the smallest delay

23: [k°, wi, w3] « GetIndex{Table : Delay == delay} #
return the threshold parameters of the suboptimal policy

the buffer capacity K is usually greater than the number of
channel states W, we know some neighbor buffer states are
likely to share a same threshold 7. Based on this property,
we can reduce the number of the thresholds points that need
to be searched. In detail, the queue length range [0, K] can
be divided into several small intervals, each of which is
assigned one threshold imposed on the channel states. Thus,
we only need to determine how to divide the queue states and
assign one threshold for each small interval. The simplified
suboptimal policy is given in Algorithm 1, where the total
queue states are divided into two sub-intervals. A table can
be built up once for all to store the induced delay and
power metrics for all the %KW2 simple policies. Then, to
obtain the suboptimal policy for a given power constraint,

we only need to look up the table and return the thresholds.
The performance can be further improved by assigning one
scheduling probability to some threshold points.

VI. NUMERICAL RESULTS

In this section, simulation results are given to validate
the derived dual-threshold-based scheduling policy and to
demonstrate its potential. For performance comparison, theo-
retical results of the optimal delay-power function D*(Pgyer)
are obtained by solving the LP problem (19). Meanwhile,
simulation results are obtained by applying the dual-threshold-
based scheduling policy with the optimal transmission param-
eters. In simulations, data packets are generated following a
given probabilistic distribution {6,, }. The W-state block fading
channel model is adopted and follows with probability {r,,}.
Each simulation runs over 10° time slots. As shown in Fig.5-
8, the theoretical and simulation results are plotted by lines
(solid or dashed) and marked by red square dots, respectively.

Fig.5 plots the delay-power tradeoff curves under different
average packet arrival rates. The simulation results are in
good agreement with the theoretical results, which validates
the optimality of the derived dual-threshold-based policy.
The delay-power tradeoff curve is piecewise linear since the
threshold-based is obtained as the linear combinations of de-
terministic scheduling parameters. Besides, the average delay
monotonically decreases with the maximum average power,
as stated in Theorem 3. When the power constraint Py,
decreases to zero, the queueing delay increases dramatically
to infinity, which implies that the queueing system is unstable.
Given the same power constraint, the queueing delay increases
with the packet arrival rate since more packets are detained in
the buffer due to lack of transmission opportunities.

In Fig.6, we evaluate the effect of the burstiness of the
packet arrival on the optimal delay-power tradeoff curves, con-
sidering different packet arrival patterns, namely, the Bernoulli
arrival and the bursty arrival. We can see that the proposed
scheduling policy has a better delay-power tradeoff perfor-
mance when the packet arrivals follow the Bernoulli distribu-
tion rather than the more bursty probabilistic distribution (with
larger variance), subject to the same average arrival rate. This
is due to the fact that the bursty packet arrivals bring more
randomness to the queueing system. The average queueing
delay decreases with the increase of the power constraint and
remains constant when the power constraint exceeds a constant
Prax. In other words, the delay-power curve becomes flat after
an inflection point (D} . . Pnax), where D} . is the globally
minimum delay and P, denotes the power consumption that
the source spends to keep transmitting packets as long as the
buffer is not empty, regardless of the channel state. However,
the value of P, is identical for the two different patterns.
The value of D,,;, is able to reach zero for the Bernoulli
arrival since the transmission rate is fixed as one packet per
slot and is greater than zero due to the burstiness.

Inspired by the observation in Fig.6, we further demonstrate
the delay-power tradeoffs in Fig.7 for the packet arrivals have
the same average arrival rate and different variances. It is
observed that a higher queueing delay is induced when the
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data arrival variance is larger. Due to higher bursty arrivals,
some packets have to wait for a longer time before they are
transmitted, which leads to a larger queueing delay.

In Fig.8, we demonstrate the theoretical results to validate
the dual-threshold-based structure of the optimal scheduling
policy, which are in agreement with the structure shown in
Fig.4. The transmission probabilities reveal a threshold-based
structure on both the channel state dimension and the queue
length dimension. In Fig.8(a), the threshold is in channel state
1 and queue length 8 while in Fig.8(b), it is in channel
state 1 and queue length 3. Thus, transmission is much
easier to occur in Fig.8(b), which corresponds to a higher
power consumption. That is, the scheduler makes use of the
power resource mainly by adjusting the threshold point for
quite different power constraints. In Fig.8(b) and Fig.8(c), it’s
calculated for both scenarios that the threshold is in channel
state 1 and queue length 3. However the scheduler makes a
decision of transmitting one packets with probability 0.2377
in Fig.8(b) and 0.4899 in Fig.8(c) on the threshold point,
respectively. That is, the scheduler makes full use of the power
resource mainly by adjusting the transmission probability on
the threshold point for slight different power constraints.

In Fig.9, we plot the optimal delay-power curve of our
proposed scheme and 1000 delay-power points of the de-
terministic policy with the binary transmission parameters
Jew € {0,1} randomly generated. As can be seen from this
figure, the delay-power tradeoff curve is the lower boundary of
the convex hull of the achievable delay-power region, which
is in accordance with the conclusion proved in [21] that the
optimal probabilistic policy can be constructed by the convex
combination of deterministic scheduling policies. Hence, our
proposed optimal scheduling policy outperforms any deter-
ministic scheduling policies given the same power constraint.
Meanwhile, our proposed stochastic scheduling policy with the
optimal thresholds and scheduling parameters can achieve the
same optimal delay-power tradeoff performance as the optimal
scheduling policies found by the DP method.

In Fig.10, we plot the delay-power tradeoff curves of the
optimal policy and suboptimal policy that applies Algorithm
1 to find the suboptimal thresholds [k°, wf, wg]. We also
plot the delay-power tradeoff of the improved suboptimal
policy with the suboptimal thresholds [£°, w{, wj] and the
scheduling parameter fi ,. Surely, the optimal scheduling
policy achieves the best delay-power tradeoff by exploiting the
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power resource to transmit in the most efficient way. Compared
to the optimal policy, the suboptimal one achieves a zigzag
delay-power tradeoff curve. This is because that it schedules
transmissions based on the suboptimal thresholds which could
remain the same for a range of power. Comparable with the
optimal one, the improved suboptimal policy performs much
better, since it can exploit the suboptimal thresholds together
with the scheduling probability fi ,, to schedule transmissions
efficiently.

VII. CONCLUSION

In this paper, we studied the power-constrained delay-
optimal scheduling problem in wireless systems, where ar-
bitrary packet arrivals and multi-state block-fading channels
were considered. A probabilistic queue-aware and channel-
aware scheduling policy was proposed to schedule packet
transmissions over a W-state wireless fading channel and
investigated in the framework of constrained MDP. Through
theoretical analysis, we reveal the dual-threshold-based struc-
ture of the optimal scheduling policy. It is found that the
optimal scheduler always seeks to exploit a good channel
while maintaining a relatively short queue as possible to reduce
the latency. To this end, the scheduler should schedule packet
transmissions based on the queue state and the channel state.
Specifically, given a channel state, if the queue length exceeds
the threshold, the transmitter should transmit to decrease the

latency. Otherwise, it should keep silent to save power. In the
future, we will extend this work to more general scenarios
with adaptive-rate transmission and/or multi-user scheduling.

APPENDIX A
THE PROOF OF Theorem 2

In this appendix, we show that problem (17) can be
equivalently converted into LP problem (19) with variables
{yk,w} being the optimization variables. To make it clear,
we explain the transformation procedure in the following
five steps. We first present the equivalent expressions of the
average queueing delay and the power constraint in Part A-1.
Secondly, we specify the ranges of optimization variables
{¥kw} corresponding to constraint (17.b) in Part A-2. Then,
we reformulate constraints (17.c) and (17.d) in Part A-3 and
Part A-4, respectively. Finally, we explain why constraints
(17.c) and (17.e) are not shown in the LP problem (19) in
Part A-5.

1) The average queueing delay and the power constraint
can be re-expressed as :

1 K W
D=5(3 T kv —£),

K l‘fV:()w—l (25)
P=3 X Tw Prw Yk, ws

k=0w=1

where & = Zﬂml:_ll m&nﬂ.
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Firstly, we re-express the average queueing delay. Adding
the weighted sum of the terms Z&’:l Tw Yk w With k being the
weight we have

>k Zw«w—@Z Zﬂkm > o

k=0 w=l1 i=m+1
_@
== (01 +60,+-- +6M)Zk0 Tk
+ (62 + --+0M)Zk:0k7rk_1 +--
K
+ QM Zk:o kﬂ'k—(M—l)
@ 0+ 02+ +00)Q + (024 +04)(Q + 1)

"+9M(Q+(M—1))

_@ aQ + Z Z 10m+1
=®ag+ 3" IM Ot = AQ + €, (26)

where equality (1) is derived by substituting (30), equality (2) is
obtained by expressmg each term in mg_p, Zl —m+1 Ui separately
for m =0, 1, 2,-- — 1, equality (3) comes from the
definition of the average queue length, equality (4) is obtained
by substituting a = Z;Ay/{:o m - 0, and equality (5) stems from
2 i =m(m+1)/2. Thus, the average queue length is:

= é(Zszo Zvv:/:l Kt Vi _f)' @7

According to the Little’s Law, we obtain the average queueing
delay as given in Eq. (29).

Secondly, we express the average power as a function of
variables {yx_,}. From the definition of variable yi,, in Eq.

(18), we have
K
emfk-i-m,w = Zk:o

Zszo 7Tk ZZ:O Vie,w- (28)

By substituting Eq. (28) into Eq. (14), we obtain the average
power as presented in Eq. (25).
2) The variable yy ., satisfies the following inequalities:

M
0< Yiw < ). Onlhsiom- (29)
We know that probability fi,1, takes its value from the
interval [0, 1]. By substituting fi+1,w = 0 and fi+1w = 1 in
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- - - Suboptimal policy

—— Improved suboptimal policy
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Fig. 10: The tradeoff curve induced by the suboptimal policy:
the arrival distribution is @ = 0.55, 8; = 0.3, 6, = 0.125;
the channel distribution is [y = 0.135,72 = 0.239,m3 =
0.232,n4 = 0.394,] and [Py, P2, P3, P4] = [10,5,2,1].

Eq.(18), we get the lower and upper bounds of variable yi y,
respectively. In this way, the range of variable yy ,, is specified
by the inequalities in Eq. (29).

3) The constraint (17.c) can be equivalently expressed as:

M-1 M W M-1
D MmO, 0= ) mwvkw = ) e (30)
m=0 i=m+1 w=1 i=0

where r; = Z"Ml:iﬂ 0,,.

In fact, constraint (17.c) denotes the steady-state equilibrium
equation of the underlying Markov chain:

T+l Hier1 = Z Me-m Z Ak-m,i» k € K. (€29)
i=m+1
We can obtaln the followmg conclusion
W
Z A = Z 0i = Om ) M fismws MEM  (32)

w=1
by addlng up the terms {A; | i = --,M} in Eq. (7).
By substituting Eq. (8) and Eq. (32) into Eq. (31), we have

mi41(Bo ZW

i=m

Nw fie+1,w)

W
= Z Ti-m( Z 0i = Ot Y Mwfeomemsiw).  (33)
i=m+1 =1
Then, we can further s1mp11fy this equation as
M-1 M
Z Te—m Z 0 = Z T—m m+1 anfk+lw
m=0 i=m+1 m=-1
w
an( Z T-mOm+1 fir1,w)
w=1 m=-—1
w
- Z Mo Vi (34)
4) The constraint ( ] 7. d) can be re-expressed as
Z,Ifzo Zy:l MwYkw = a.. Summarizing all the &k on

both sides of Eq. (30), we have

K W K M-1
PIPIETEEDIPIT
k=0 m=0

k=0 w=1

M
>

i=m+1



M-

M
> b=a (35)
where the second equality hoﬂlsobecause the normalization of
the steady-state probabilities, i.e., 21,5:0 g = 1.

To construct the LP problem (19), we need to express mi as
a linear function of variables {yx . }. For ease of exposition,
we introduce a (K+1)><[W(K+1)] constant matrix G to describe
the relationship between {n} and {yx .} based on Eq. (34).
The (k + 1)-th row vector of matrix G, denoted by gi1, is
given as

gk+l = r]—oll, k=0,

(36)

Sl = 1(1k+1 Z rigr-i), kek

In Eq. (36), lx4 is a W(K+ 1) dimensional vector whose
(Wk + w)th element is 7, while the other elements are zero.
In this way, the steady-state probabilities {7z} can be linearly
expressed by the set of variables {yx ., }, namely,

K

T = Z Z G(k+1,iw+j) * Vi,js
i=0 j=1

where G; j is the (i x j)]-th element of matrix G.

5) Constraints (17.c) and (17.e) can be left out in the new
equivalent LP problem: The constraint (17.c) is incorporated
in the derivation of Eq. (37) which is the reason that it can be
left out. As for constraint (17.e), since the elements in matrix
G and variable y; ; are non-negative, as given by Eq. (37), mx
is clearly non-negative. On the other hand, since r; (c.f. Eq.
30) is non-negative and 23/:1 NwYkw 18 equal to or less than
one, 7, is no more than one. Thus, constraint (17.e) is also
implied in constraints (19.c).

In summary, we have shown that how to construct the LP
problem (19) step by step equivalently from problem (17),
which completes the proof of Theorem 2.

(37

APPENDIX B
THE PROOF OF Theorem 3

Suppose {yk.w} is a set of variables that minimize the aver-
age delay D under constraints [19.(a-c)]. The corresponding
transmission power P is equal to ZkK:o ZYVVZI wPwYikw- We
show that if there exists another set of variables {J ,,} which
cost a higher power P > P to transmit, a smaller queueing
delay D < D will be induced.

Let k;, be a positive integer. We construct variables {9, }
as follows:

Vkow = Yiow + DYiows  k < ks (38)
Vkew = Yiow = DViows k> ken,
where {Ayr .} are set as non-negative quantities to make
sure that variables {§x,,,} meet constraints [19.(b-c)| and the
constraint P — P > 0 is satisfied. Let AP = P — P, we then

have
w K
AP = Z anw( ZAyk,w - Z Ayk,w) > 0,
k=0 k=kp+1

which means that Ayy ,, strictly stays positive for some k <
klh'

In this way, the average delay gap satisfies the following
inequality

ken

(39)

K W

bh- D—izzknw(}’kw Vi)

k=0 w=1

ken K
=5 ZMZ kAyiw = Y kAyew)  (40)
k=kip+1
kth
<= Zr]w kchAyk w_(kth+1) Z Aka
k= kth+l

Since both {yk,w} and {yk,w} meet constraint (19.b), we
have

kin
anZAykw an Z Ayew. (A1)
w=0 k=k;p+1
Combining Eq. (40) and Eq. (41) we know D < D.
We have proven that if P, < P, then d(P,,.,.) <

d(P.,,.,). Thus, the delay-power tradeoff function d(-) is a
monotonically decreasing function of the average power.

APPENDIX C
THE PROOF OF Lemma 2

We adopt the proof by contradiction, namely, if there exists
a set of optimal variables {yi ,} that do not meet Eq. (21),
we can find another set of variables {J% ,,} that can use less
power to obtain the same queueing delay, which contradicts
Theorem 3.

Suppose that, there exists a set of optimal variables {yx .},
in which there are 0 < w; < wp < W that make yx v, > Yk,w,-
With this solution, the minimum delay D can be achieved at
the power cost of I'y. We construct another set of {Jx .} as

Vi, ws w > wy

A Yk,wy» w=w

Ykw = ! (42)
Vi, ws wr <w<wp
Yk,w - Ayk,Ws w < wi,

where the quantities {Ayg,w < wy} are all non-negative
w

1
reals that meet the constraints that Y, 7, AYkw = 1w, Vi, w, —

Yeow,) and 0 < Frw < Fowel- Tlvlvus, all the variables i
satisfy Eq. (21) and Zvvle Nwikw = ZYZI Tw Yk w- Also, we
have max{¥x ., } = max{yx . }. Thus, by introducing the new
set of variables, the objective function in problem (19) does
not change. The corresponding power consumption can be
calculated as

A w
Fk = Zw:l
wi
= 1—‘k + nwzpwz(yk,wl - yk,wz) - Zw:l

wi

<Tg + Py, [an()’k,wl = Ykowa) — Zw:l nwAyk,w],
where the last inequality holds due to that less power is
consumed for a better channel, namely, P; > P, > --- > Py.
Thus, we obtain that Iy < T} since ZX‘:I MwlAYkw =
Twy (Vk,wy — Yk,w,)- This means the new constructed variables
lead to the same queueing delay while consuming less power.
This contradicts the assumption that variables {yx , } are the
optimal solution.

anw)A]k,w
anwAyk,w
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Let us denote L = ZkK:o k Z%:O 0 Tis1—m- With some

transformation, we have
L =0 K k 0 E K k
= e + T
0 Z ko Tkt 1 1 2 jieo K7k



+ + 0y Z::O kmyi1-m
=60o[Q — (1 = m)] + 610 + 62(Q + 1)
+-+O0(Q+M-1)
M-1
=Q(f0 + -+ Om) = O0(1 = 70) + ) by

M-1

=0 + Oomo — b + Zm:l MmOms1 = Q + oo + G,
where ¢ = Z%;ll m6,,+1. Thus, the average queue length Q
can be expressed as Q = L —6pmp — ¢. From the Little’s Law,
we have

(43)

1
D= E(L — 6oy — §).
In Eq. (29), yrw satisfies the inequalities 0 <
M M

> OmApsom. Thus, we know max{yix.w} < 2 OmTistom-
m=0 w m=0

K M
Recalling that L = Y k Y, 6,u7p41om, We have L >
k=0 m=0

(44)

Vew S

K

2 k-
k=0
max{yx.w }. Thus,

K
1
D> =() k-max{ycw} - om0 - ), (45)
Y "

the =" holds if and only if max{yx .} = Z';:;lo 0 Tkl -
w
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In Theorem 3, we have shown that problem (19) is equiva-
lent to problem (22). To minimize the average queueing delay
in (22), the weighted sum of max{yx .} should be minimized

w

K
while 7y should be maximized. To minimize , k max{yx .},
k=1 W
the term max{yx, } should be assigned its maximum for
w
smaller k and its minimum for larger k. Subject to constraint

(19.c), we have

M

2 Omm s k<K%
m=0

0, k> k",
where k* is a threshold imposed on the queue length. Once
the queue length exceeds k*, the maximum of variable { y;;w}
is zero, and hence all of the variables { y;’w} are equal to zero.

Thus, we only consider the situation when k < k*.
Based on the result in Lemma 2, we know that for any
k, there exists yx1 < Yk2 < -+ < Yew. Thus, yew =
mvilx{y;;w}, the threshold value T} introduced in Theorem 4

max{y; ,,} = (46)

meets the constraint that 7 < W. Suppose that there exists a
set of optimal variables {yzyw} which violate the assignment
described in Eq. (23), we can always find another set of
variables {¥x .} which consume less power while achieving
to achieve the same delay.

Suppose that { yl’;’w} are the optimal variables and satisfy Eq.
(23). Accordingly, the steady-state probabilities x, are given
by Eq. (20), and the minimum delay D* ia achieved at the cost
of power I'y. For a given queue state k, we reassign 7y = 7,
to a new set of variables {Jx } as

kw =0, IL<w<T-1,

M
0 < f’k,Tk—l < yk,Tk < Zoemﬂ-;+1,m5
m=

47
A M
Vew = Zoemn,§+l_m, T <w < W.

m=

Notice that this set of variables violate the constraints in Eq.
(23) since it has more than one term that lies between the
maximum and the minimum of {J¢,,}. Since the steady-
state probabilities do not change, the minimum queueing delay
remains the same. By comparing {$x .} with {yl’;’w}, we get
yZ’Tk_l < k-1 < Y1y < y;’Tk. Since IT; = Ay, from Eq.
(30), we have ng; —1(y; 7, -y = Skn-1) + 1 (Vg g, = ki) =
0.The power consumption can be calculated as

. w
I = Zw:l anwyk,w
=Tk + 11 -1 Pri—1 Ok, 1-1 = Ve 1)
+ Nty PTk (yk,Tk - yZ’Tk) (48)
=Tk + Prnr Vg 1, = S 01 Prie Ok 1 = Vi 1,.)
=Tk + 1.0 1, = e )(Pr-1 — Pr.) > Tk
The last inequality holds since less power is consumed in
a better channel, i.e., Py, .1 > Pr, and y;; 7. > Yk,1;.- This
means that {yx ,,} violating Eq. (23) will cause a higher power
consumption. The same conclusion can be obtained when more

than two variables violate Eq. (23). In this way, we prove
Theorem 4 by contradiction.

APPENDIX F
THE PROOF OF Lemma 4

Given channel state w, we define the delay minimization
problem subject to the power constraint from the perspective
of buffer occupation and power consumption costs discussed
in Section IV as follows:

min é]E[(t[n] —s[n] +a[n+1])7]
{slnl} @
s.t. E(Pys[n]) < P,

aver?’

(49)

(50)
where t[n] = g[n — 1] + a[n] is the queue state after a new
datat arrival. The objective is derived based on the Little’s
Law and the average symbol E means the expectation taken
over all the time slots. In the above optimization problem, the
scheduling policy is described by the transmission variable
{s[n]}. We mainly consider the optimal scheduling policy in
the case when the equality (50) holds. If the power constraint
is sufficiently large, i.e., the inequality in (50) holds, we only
need to apply the scheduling policy to transmit packets as long
as the queue is not empty, regardless of the channel state. Thus,
using the method of Lagrangian multipliers, we only need to
minimize the following Lagrangian function

Lisin] B) =2 B[] = s[n] + aln + 1]

+ B'[E(PuwsInD) = Poyer |, (51
where B’ is a Lagrangian multiplier. Equivalently, for each

multiplier 8’, we should solve the following problem
{H%ir]l} E[(t[n] - s[n] + a[n + 1])"] + BE(s[n]),
s(n

min
{s[n].B}

(52)

where S is defined as @B P,,. In the sequel, we show that
the optimal solution to Eq. (52) has a threshold structure. We
define the expected total cost function in time slot n as

Cu(t[n], s[n]) = E[(t[n] — s[n] + aln + 1])7] + Bs[n], ~ (53)

where the first term represents the queue length cost and the
second term represents the power cost, respectively. Define



Va(t[n]) as the total cost spent from slot n to slot N if we
follow the optimal policy from slot n thereafter, namely,

N
E Yy Cu (il X)) (54
n’=n
The factor y in Eq.(54) is the discount factor. Hence, the
quantity V,, adds up all the costs spent across the slots n, n+1,
-+, N and ignores the costs spent previously before slot n.
Let z = t[n] — s[n]. Define G, as a function of z

Gn(z) = -Bz +E[(z + a[n + 1])"]

inf
s[n'ln’>n

Va(t[n]) =

+ YE[Vys1(z + aln + 1])]. (55)
The cost V,, can be rewritten as
V. (t[n]) = Bt[n] + min G,,(2). (56)

Let I,, = argmin G,,(z). Since® G,(z) is a convex function of z

among all che feasible z, we should choose a solution z = I,
rather than any other s[n]. Otherwise, the transmission action
s[n] should always be chosen to make z = t[n]—s[n] approach
I,,. To this end, when #[n] is greater than I,,, the transmission
action s[n] = 1 should be made and otherwise s[n] = 0 is
selected. Combining these two cases, we show that s[n] is
obtained as given by Eq. (24).

A. Function G,(z) is convex of z for all n

We use the mathematical induction to prove the convexity
of G,(z). Firstly, considering the fact that term (z +a[N + 1])*
is convex in z for any value of a[n + 1],

Gn(z) = Bz +E[(z + a[N + 1])*] (57)
is convex in z. Secondly, we assume that G,;(z) is convex.
Then, we know

Vet (tln + 1)) = Bt[n + 1] + min Gue1)(2) (58)
is convex. Finally, We can derive G,(z) as
Gn(z) == Bz +E[(z +a[n+ 1])*]
+ YE[Vir1(z + a[n + 1])] (59

is convex in z.
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